CN114740848A - Multi-mode and few-drive tension mobile robot control system and control method - Google Patents
Multi-mode and few-drive tension mobile robot control system and control method Download PDFInfo
- Publication number
- CN114740848A CN114740848A CN202210357644.0A CN202210357644A CN114740848A CN 114740848 A CN114740848 A CN 114740848A CN 202210357644 A CN202210357644 A CN 202210357644A CN 114740848 A CN114740848 A CN 114740848A
- Authority
- CN
- China
- Prior art keywords
- motion
- mode
- mobile robot
- control
- robot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000005021 gait Effects 0.000 claims abstract description 72
- 241000256247 Spodoptera exigua Species 0.000 claims description 14
- 238000005096 rolling process Methods 0.000 claims description 11
- 230000002572 peristaltic effect Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 238000013480 data collection Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 7
- 238000011161 development Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 241000361919 Metaphire sieboldi Species 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Toys (AREA)
Abstract
Description
技术领域technical field
本发明属于机器人控制技术领域,具体涉及多模式少驱动张拉移动机器人控制系统及控制方法。The invention belongs to the technical field of robot control, and in particular relates to a multi-mode and few-drive tension mobile robot control system and a control method.
背景技术Background technique
张拉整体结构是由不连续的受压元件及连续的受拉元件组成的自应力网状结构,在张拉整体结构中加入驱动使其产生运动便形成了张拉移动机器人。The tensioned overall structure is a self-stressed network structure composed of discontinuous compression elements and continuous tensioned elements, and a tensioned mobile robot is formed by adding a drive to the tensioned overall structure to make it move.
张拉移动机器人具有易变形的特点,通常具备多种运动模式,可应用于非结构化野外环境。由于张拉移动机器人需较多的驱动器来维持其运动过程中的动态稳定,因此机器人的控制系统较为复杂。Tension mobile robots are easy to deform and usually have multiple motion modes, which can be used in unstructured field environments. Because the tensegrity mobile robot needs more drives to maintain the dynamic stability during its movement, the control system of the robot is more complicated.
此外,传统张拉移动机器人在实际控制过程中,需先观察机器人状态,手动输入数据来控制多个电机实现运动,且机器人运动后,需手动令机器人恢复至初始状态,以便再进行下一次运动。这类控制方法的操作程序繁琐,大大降低了机器人的运动效率。In addition, in the actual control process of the traditional tension mobile robot, it is necessary to observe the state of the robot first, manually input data to control multiple motors to achieve movement, and after the robot moves, it is necessary to manually restore the robot to the initial state for the next movement. . The operation procedure of this kind of control method is cumbersome, which greatly reduces the motion efficiency of the robot.
为解决现有张拉移动机器人存在的控制系统复杂、操作程序繁琐的问题,将张拉移动机器人中的独立受拉绳索聚集成可绕若干节点滑动的滑移绳索,形成滑移索驱动的张拉移动机器人。不仅能减少驱动数目,简化机器人控制系统,还可保持张拉整体结构可变形特征,使机器人具有少驱动多模式的特点。In order to solve the problems of complex control system and cumbersome operation procedures of the existing mobile tensioning robot, the independent tensioned ropes in the mobile tensioning robot are aggregated into sliding ropes that can slide around several nodes to form a sliding cable-driven tensioner. Pull the mobile robot. It can not only reduce the number of drives and simplify the robot control system, but also maintain the deformable characteristics of the overall structure of tension, so that the robot has the characteristics of less drives and more modes.
目前这类少驱动多模式的张拉移动机器人成果较少,同时缺乏对其系统化的控制方法的研究。At present, there are few achievements in this kind of tensegrity mobile robot with few drives and multiple modes, and there is a lack of research on its systematic control method.
发明内容SUMMARY OF THE INVENTION
本发明为解决现有技术存在的问题而提出,其目的是提供多模式少驱动张拉移动机器人控制系统及控制方法。The present invention is proposed to solve the problems existing in the prior art, and its purpose is to provide a multi-mode and few-drive tension mobile robot control system and control method.
本发明的技术方案是:一种多模式少驱动张拉移动机器人控制系统,所述多模式少驱动张拉移动机器人控制系统设置有:The technical solution of the present invention is: a multi-mode and less-drive tension mobile robot control system, wherein the multi-mode and less-drive tension mobile robot control system is provided with:
传感器,与数据采集卡进行数据通讯,将采集到的数据传输到数据采集卡;The sensor communicates with the data acquisition card, and transmits the collected data to the data acquisition card;
数据采集卡,与控制器进行数据通讯,接收传感器采集到的外部数据信息和自身数据信息;Data acquisition card, which communicates with the controller, receives the external data information collected by the sensor and its own data information;
控制器,与电机驱动器进行数据通讯,控制器结合外部数据信息和自身数据信息,调取到对应的运动步态,运动步态数据传输给电机驱动器;The controller performs data communication with the motor driver. The controller combines external data information and its own data information to retrieve the corresponding motion gait, and the motion gait data is transmitted to the motor driver;
电机驱动器,与步进电机进行数据通讯,将运动步态数据转化为步进电机控制指令,将控制指令传输到步进电机;The motor driver performs data communication with the stepper motor, converts the motion gait data into the stepper motor control command, and transmits the control command to the stepper motor;
步进电机,为执行单元,控制指令控制步进电机的主轴输出;The stepper motor is the execution unit, and the control instruction controls the output of the spindle of the stepper motor;
编码器,与控制器进行数据通讯,将步进电机的输出信息传输到控制器。The encoder communicates with the controller and transmits the output information of the stepper motor to the controller.
更进一步的,所述传感器包括激光测距传感器、力矩传感器,激光测距传感器采集移动机器人识别外部地形特征,力矩传感器检测采集移动机器人自身的运动状态信息。Further, the sensors include a laser ranging sensor and a torque sensor. The laser ranging sensor collects the mobile robot to identify external terrain features, and the torque sensor detects and collects the motion state information of the mobile robot itself.
更进一步的,所述力矩传感器包括力矩传感器1、力矩传感器2,力矩传感器1采集步进电机1的运动状态信息,力矩传感器2采集步进电机2的运动状态信息。Furthermore, the torque sensor includes a
更进一步的,所述控制器包括嵌入式主控制模块、步进电机驱动模块、变压模块、电机接口、电源接口模块、主机开关。Further, the controller includes an embedded main control module, a stepping motor drive module, a transformer module, a motor interface, a power interface module, and a host switch.
更进一步的,所述嵌入式主控制模块包括控制指令接收模块、控制算法模块、运动控制模块;Further, the embedded main control module includes a control instruction receiving module, a control algorithm module, and a motion control module;
控制指令接收模块,接收红外控制器外部输入的控制指令;The control command receiving module receives the control commands input from the outside of the infrared controller;
控制算法模块,用于机器人识别外部环境地形特征,并自适应切换相应的运动步态;The control algorithm module is used for the robot to identify the terrain features of the external environment and adaptively switch the corresponding motion gait;
运动控制模块,用于给出张拉移动机器人运动指令。The motion control module is used to give the motion command of the tensegrity mobile robot.
更进一步的,所述运动步态包括蠕动运动步态、尺蠖运动步态以及翻滚运动步态,所述运动步态为对步进电机1、步进电机2的转速、转向、周期、启停控制的数据集合。Further, the motion gait includes the peristaltic motion gait, the inchworm motion gait and the rolling motion gait, and the motion gait is the rotation speed, steering, cycle, start and stop of the stepping
更进一步的,所述控制指令包括机器人运动状态控制、电机转速控制、设定驱动芯片电流保护、读取电机状态信息、读取FLASH表指定位、修改FLASH表指定位、FLASH表恢复默认值。Further, the control instructions include robot motion state control, motor speed control, setting driver chip current protection, reading motor state information, reading FLASH table specified positions, modifying FLASH table specified positions, and FLASH table restoring default values.
一种多模式少驱动张拉移动机器人控制系统的控制方法,包括以下步骤:A control method for a multi-mode and few-drive tension mobile robot control system, comprising the following steps:
a.运动前启动自检a. Start the self-check before exercising
b.设定张拉移动机器人运动模式b. Set the motion mode of the tensegrity mobile robot
c.机器人在运动模式下进行运动c. The robot moves in motion mode
d.检测运动过程中的外部地形特征d. Detecting external terrain features during movement
e.机器人到达目标位置e. The robot reaches the target position
f.存储机器人当前状态f. Store the current state of the robot
g.停止。g. to stop.
更进一步的,步骤b中设定张拉移动机器人运动模式,其运动模式包括自主识别运动模式、指令操控运动模式、状态调整运动模式。Furthermore, in step b, a motion mode of the tension mobile robot is set, and the motion mode includes an autonomous recognition motion mode, an instruction control motion mode, and a state adjustment motion mode.
更进一步的,所述自主识别运动模式中包括对当前运动步态的判断,判断是否需要切换运动步态,所述运动步态包括蠕动运动步态、尺蠖运动步态、翻滚运动步态。Furthermore, the autonomously identifying the motion mode includes judging the current motion gait, and judging whether the motion gait needs to be switched, and the motion gait includes the peristaltic motion gait, the inchworm motion gait, and the rolling motion gait.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明控制系统满足小型化要求且开发难度和成本低,驱动器硬件设计集成度高,同时将机器人多种步态的代码进行存储,仅需简单调用即可下发控制指令。The control system of the invention meets the requirements of miniaturization, has low development difficulty and cost, and has a high degree of integration of driver hardware design. At the same time, the codes of various gaits of the robot are stored, and control instructions can be issued only by simple calls.
本发明传感及控制系统简单,可靠性好,驱动器采用驱控一体化设计,体积小,部署灵活且可靠性高,同时搭配传感系统准确识别地形特征及机器人自身状态,满足移动机器人在多种地形环境下的多种步态运动需求。The sensing and control system of the invention is simple and has good reliability. The driver adopts a drive-control integrated design, which is small in size, flexible in deployment and high in reliability. At the same time, it is matched with the sensing system to accurately identify the terrain features and the state of the robot itself, so as to meet the needs of the mobile robot in multiple applications. A variety of gait motion requirements in various terrain environments.
本发明的控制方法解决了传统移动机器人仅用单一运动模式无法有效适应真实环境多种地形的问题,通过预置机器人三种不同运动步态,配合传感系统感知不同地形特征而切换相应的步态,实现张拉移动机器人在多种地形环境中运动,同时控制系统无系留设计,满足野外环境的续航要求。The control method of the invention solves the problem that the traditional mobile robot cannot effectively adapt to various terrains in the real environment by only using a single movement mode. By presetting three different movement gaits of the robot and cooperating with the sensing system to perceive different terrain features, the corresponding steps are switched. It can realize the movement of the tensegrity mobile robot in various terrain environments, and at the same time, the control system is designed without tethering, which meets the endurance requirements of the field environment.
附图说明Description of drawings
图1为本发明中控制系统的结构框图;Fig. 1 is the structural block diagram of the control system in the present invention;
图2为本发明中红外控制器按键图;Fig. 2 is the key diagram of the infrared controller of the present invention;
图3为本发明中控制实例流程图;Fig. 3 is the flow chart of control example in the present invention;
图4为本发明中自主识别运动模式程序框图;Fig. 4 is the program block diagram of autonomous identification motion pattern in the present invention;
图5为本发明中感知地形特征原理图;Fig. 5 is the principle diagram of sensing terrain feature in the present invention;
图6为本发明中指令操控运动模式程序框图;Fig. 6 is the program block diagram of command control motion mode in the present invention;
图7为本发明中嵌入式主控制模块接口图。FIG. 7 is an interface diagram of an embedded main control module in the present invention.
具体实施方式Detailed ways
以下,参照附图和实施例对本发明进行详细说明:Below, the present invention will be described in detail with reference to the accompanying drawings and embodiments:
如图1~7所示,一种多模式少驱动张拉移动机器人控制系统,所述多模式少驱动张拉移动机器人控制系统设置有:As shown in Figures 1 to 7, a multi-mode and few-drive tensioning mobile robot control system, the multi-mode and less-driving tensioning mobile robot control system is provided with:
传感器,与数据采集卡进行数据通讯,将采集到的数据传输到数据采集卡;The sensor communicates with the data acquisition card, and transmits the collected data to the data acquisition card;
数据采集卡,与控制器进行数据通讯,接收传感器采集到的外部数据信息和自身数据信息;Data acquisition card, which communicates with the controller, receives the external data information collected by the sensor and its own data information;
控制器,与电机驱动器进行数据通讯,控制器结合外部数据信息和自身数据信息,调取到对应的运动步态,运动步态数据传输给电机驱动器;The controller performs data communication with the motor driver. The controller combines external data information and its own data information to retrieve the corresponding motion gait, and the motion gait data is transmitted to the motor driver;
电机驱动器,与步进电机进行数据通讯,将运动步态数据转化为步进电机控制指令,将控制指令传输到步进电机;The motor driver performs data communication with the stepper motor, converts the motion gait data into the stepper motor control command, and transmits the control command to the stepper motor;
步进电机,为执行单元,控制指令控制步进电机的主轴输出;The stepper motor is the execution unit, and the control instruction controls the output of the spindle of the stepper motor;
编码器,与控制器进行数据通讯,将步进电机的输出信息传输到控制器。The encoder communicates with the controller and transmits the output information of the stepper motor to the controller.
所述传感器包括激光测距传感器、力矩传感器,激光测距传感器采集移动机器人识别外部地形特征,力矩传感器检测采集移动机器人自身的运动状态信息。The sensors include a laser ranging sensor and a torque sensor. The laser ranging sensor collects the mobile robot to identify external terrain features, and the torque sensor detects and collects the motion state information of the mobile robot itself.
所述力矩传感器包括力矩传感器1、力矩传感器2,力矩传感器1采集步进电机1的运动状态信息,力矩传感器2采集步进电机2的运动状态信息。The torque sensor includes a
所述控制器包括嵌入式主控制模块、步进电机驱动模块、变压模块、电机接口、电源接口模块、主机开关The controller includes an embedded main control module, a stepping motor drive module, a transformer module, a motor interface, a power interface module, and a host switch
所述嵌入式主控制模块包括控制指令接收模块、控制算法模块、运动控制模块;The embedded main control module includes a control instruction receiving module, a control algorithm module, and a motion control module;
控制指令接收模块,接收红外控制器外部输入的控制指令;The control command receiving module receives the control commands input from the outside of the infrared controller;
控制算法模块,用于机器人识别外部环境地形特征,并自适应切换相应的运动步态;The control algorithm module is used for the robot to identify the terrain features of the external environment and adaptively switch the corresponding motion gait;
运动控制模块,用于给出张拉移动机器人运动指令。The motion control module is used to give the motion command of the tensegrity mobile robot.
所述运动步态包括蠕动运动步态、尺蠖运动步态以及翻滚运动步态,所述运动步态为对步进电机1、步进电机2的转速、转向、周期、启停控制的数据集合。The motion gait includes a peristaltic motion gait, an inchworm motion gait and a rolling motion gait, and the motion gait is a data set for the speed, steering, cycle, and start-stop control of the stepping
所述控制指令包括机器人运动状态控制、电机转速控制、设定驱动芯片电流保护、读取电机状态信息、读取FLASH表指定位、修改FLASH表指定位、FLASH表恢复默认值。The control instructions include robot motion state control, motor speed control, setting drive chip current protection, reading motor state information, reading FLASH table specified bits, modifying FLASH table specified bits, and FLASH table restoring default values.
优选的,所述嵌入式主控制模块与步进电机驱动模块、变压模块、电源接口模块集成。嵌入式主控制模块与激光测距传感器模块、力矩传感器、电源及主机开关连接。Preferably, the embedded main control module is integrated with a stepping motor drive module, a transformer module, and a power interface module. The embedded main control module is connected with the laser ranging sensor module, the torque sensor, the power supply and the host switch.
其中,力矩传感器安装于机器人步进电机处。两个步进电机中独立安装力矩传感器。Among them, the torque sensor is installed at the robot stepping motor. Torque sensors are installed independently in the two stepper motors.
所述嵌入式主控制模块中控制电路用于接收外部控制指令,并发送电机控制信号到步进电机驱动模块;所述步进电机驱动模块用于接收所述电机控制信号对步进电机进行控制。The control circuit in the embedded main control module is used for receiving external control commands and sending motor control signals to the stepping motor driving module; the stepping motor driving module is used for receiving the motor control signals to control the stepping motor .
所述步进电机驱动模块的硬件接口包括:电机传感器及驱动接口、驱动器电源接口、电机电源接口、外部ADC采集接口、程序下载接口。The hardware interface of the stepper motor drive module includes: a motor sensor and drive interface, a driver power supply interface, a motor power supply interface, an external ADC acquisition interface, and a program download interface.
所述步进电机驱动模块将电源芯片、驱动芯片、控制芯片皆集成到同一控制电路板上,电路板面积小、集成度高。The stepping motor driving module integrates the power supply chip, the driving chip and the control chip on the same control circuit board, and the circuit board has a small area and a high degree of integration.
所述嵌入式主控制模块包括控制指令接收模块、控制算法模块、运动控制模块。The embedded main control module includes a control instruction receiving module, a control algorithm module, and a motion control module.
所述控制指令接收模块接受红外控制器依据NEC协议实现,控制指令包括机器人运动状态控制、电机转速控制、设定驱动芯片电流保护、读取电机状态信息、读取FLASH表指定位、修改FLASH表指定位、FLASH表恢复默认值。The control instruction receiving module accepts the infrared controller and is realized according to the NEC protocol, and the control instructions include robot motion state control, motor speed control, setting drive chip current protection, reading motor state information, reading FLASH table designation position, and modifying FLASH table. The specified bit and the FLASH table are restored to their default values.
所述控制算法模块用于张拉移动机器人自我识别外部环境地形特征,并自适应切换相应的运动步态。所述控制算法通过调用激光测距传感器测量模块存储值并进行判别实现。The control algorithm module is used to self-identify the terrain features of the external environment for the tensegrity mobile robot, and adaptively switch the corresponding motion gait. The control algorithm is realized by calling the laser ranging sensor measurement module to store the value and make a judgment.
所述运动控制模块用于给出张拉移动机器人运动指令,包含三种基本运动步态,即蠕动运动步态、尺蠖运动步态以及翻滚运动步态,三种基本运动步态通过控制机器人两台步进电机的数据集规律运动实现。The motion control module is used to give the motion instructions of the tensegrity mobile robot, including three basic motion gaits, namely the peristaltic motion gait, the inchworm motion gait and the rolling motion gait. The regular motion of the data set of the stepper motor is realized.
如图2所示,远程控制包含自主识别运动模式、指令操控运动模式、状态调整运动模式控制按键和原地恢复机器人初始状态的恢复按键。As shown in Figure 2, the remote control includes autonomously identifying the motion mode, commanding the motion mode, state adjustment motion mode control buttons, and a recovery button for restoring the robot's initial state in situ.
所述指令操控运动模式控制区包含蠕动运动步态、尺蠖运动步态和翻滚运动步态按键。The command-controlled motion mode control area includes buttons for peristaltic motion gait, inchworm motion gait and rolling motion gait.
所述状态调整运动模式控制区包含张拉整体机器人电机1、电机2正反转及启停按键。The state adjustment motion mode control area includes tensioning the
所述总体控制区包含开始、停止及激光测距三个命令按键。The overall control area includes three command buttons: start, stop and laser ranging.
所述机器人嵌入式主控制模块主要包括电机传感器及驱动接口、驱动器电源接口、串口通讯接口、电机电源接口、外部ADC采集接口、程序下载接口,以及复位按键、拨码开关、状态显示LED。The embedded main control module of the robot mainly includes a motor sensor and a drive interface, a driver power supply interface, a serial communication interface, a motor power supply interface, an external ADC acquisition interface, a program download interface, as well as a reset button, a DIP switch, and a status display LED.
具体的,所述的状态显示LED用于更加直观的观测驱动器控制状态,红色LED用于通电指示,绿色LED用于电机运行状态指示。所述拨码开关用于决定对应驱动器输出电机电流大小及频率。Specifically, the state display LED is used for more intuitive observation of the control state of the driver, the red LED is used for power-on indication, and the green LED is used for motor running state indication. The DIP switch is used to determine the magnitude and frequency of the output motor current of the corresponding driver.
需要说明的是,所述嵌入式主控制模块将电源芯片、驱动芯片、通信芯片、控制芯片集成到同一控制板上,控制板面积小、集成度高。It should be noted that the embedded main control module integrates the power chip, the driver chip, the communication chip, and the control chip on the same control board, and the control board has a small area and a high degree of integration.
机器人的控制过程都是在张拉整体机器人躯体内部完成,张拉整体机器人在自我识别运动模式下能够自主运动并根据外部环境变化实现自适应运动状态切换,配合无系留设计机器人能够满足应用于真实环境的需求。同时配合红外控制器的设计增加张拉整体机器人运动的多样性,并能大大简化调试机器人的复杂性。The control process of the robot is completed inside the body of the tensegrity robot. The tensegrity robot can move autonomously in the self-recognition motion mode and realize adaptive motion state switching according to changes in the external environment. With the tetherless design, the robot can meet the application requirements. real-world needs. At the same time, the design of the infrared controller increases the diversity of the overall robot motion and greatly simplifies the complexity of debugging the robot.
一种多模式少驱动张拉移动机器人控制系统的控制方法,包括以下步骤:A control method for a multi-mode and few-drive tension mobile robot control system, comprising the following steps:
a.运动前启动自检a. Start the self-check before exercising
b.设定张拉移动机器人运动模式b. Set the motion mode of the tensegrity mobile robot
c.机器人在运动模式下进行运动c. The robot moves in motion mode
d.检测运动过程中的外部地形特征d. Detecting external terrain features during movement
e.机器人到达目标位置e. The robot reaches the target position
f.存储机器人当前状态f. Store the current state of the robot
g.停止。g. to stop.
步骤b中设定张拉移动机器人运动模式,其运动模式包括自主识别运动模式、指令操控运动模式、状态调整运动模式。In step b, a motion mode of the tensegrity mobile robot is set, and the motion mode includes an autonomous recognition motion mode, an instruction-controlled motion mode, and a state adjustment motion mode.
所述自主识别运动模式中包括对当前运动步态的判断,判断是否需要切换运动步态,所述运动步态包括蠕动运动步态、尺蠖运动步态、翻滚运动步态。The autonomously recognizing the motion mode includes judging the current motion gait, and judging whether the motion gait needs to be switched, and the motion gait includes the peristaltic motion gait, the inchworm motion gait, and the rolling motion gait.
步骤a 运动前启动自检,包括以下过程:Step a Start the self-test before exercising, including the following process:
打开滑移索张拉移动机器人控制器上的开关,机器人上电启动,检测自身状态,调用复位程序恢复为给定的初始状态。Turn on the switch on the controller of the sliding cable tensioning mobile robot, the robot is powered on and started, detects its own state, and calls the reset program to restore to the given initial state.
步骤b设定张拉移动机器人运动模式,包括以下过程:Step b is to set the motion mode of the tensegrity mobile robot, including the following processes:
点击红外控制器上所述运动模式控制区的按键,设定张拉移动机器人运动模式为自主识别运动模式、指令操控运动模式或状态调整运动模式。Click the button of the motion mode control area on the infrared controller, and set the motion mode of the tensegrity mobile robot to the autonomous recognition motion mode, the command control motion mode or the state adjustment motion mode.
步骤b中自主识别运动模式,具体包括以下步骤:In step b, the motion pattern is independently identified, which specifically includes the following steps:
首先,张拉移动机器人处于初始设定的蠕动运动步态开始向前运动。First, the tensegrity mobile robot starts to move forward in the initially set creeping motion gait.
然后,后台程序循环调用该步态对应的自定义的Earthworm函数,每调用一次张拉移动机器人向前行进一个蠕动周期。Then, the background program cyclically calls the custom Earthworm function corresponding to the gait, and each time the tensegrity mobile robot is called, the robot moves forward for one peristalsis cycle.
再后,激光测距传感器连续测量张拉移动机器人外部环境地形特征。Then, the laser ranging sensor continuously measures the terrain features of the external environment of the tensegrity mobile robot.
再后,通过距离变化感知并确认地形发生变化,向机器人所述主控制模块发送中断请求。After that, it senses and confirms that the terrain changes through the distance change, and sends an interrupt request to the main control module of the robot.
再后,机器人结束当前蠕动步态运动周期并记录当前电机位置信息,随后调用Reset函数恢复至初始状态。After that, the robot ends the current peristaltic gait motion cycle and records the current motor position information, and then calls the Reset function to restore to the initial state.
再后,移动机器人根据激光测距传感器测量数据,判断后续地形,随后确定该地形对应的蠕动、尺蠖或翻滚运动步态,并循环调用该步态对应的定义Earthworm、Inchworm或Tumbling函数。Then, the mobile robot judges the subsequent terrain according to the measurement data of the laser ranging sensor, then determines the creeping, inchworm or rolling motion gait corresponding to the terrain, and cyclically calls the Earthworm, Inchworm or Tumbling function corresponding to the gait.
最后,张拉整体机器人继续向前行进若干周期直到下一次激光测距传感器感知地形变化并发送中断请求。Finally, the tensegrity robot continues to move forward for several cycles until the next time the laser ranging sensor senses the terrain change and sends an interrupt request.
步骤b中指令操控运动模式,具体包括以下步骤:In step b, the command to control the motion mode specifically includes the following steps:
首先,张拉移动机器人处于复位后的初始状态,红外控制器循环调用Key函数直到读取到用户按下一个指令操控运动模式控制区的3种运动步态按键。First, the tensegrity mobile robot is in the initial state after reset, and the infrared controller calls the Key function cyclically until it reads that the user presses an instruction to control the three motion gait buttons in the motion mode control area.
然后,机器人主控制模块接收该运动步态相应的返回值。Then, the main control module of the robot receives the corresponding return value of the motion gait.
再后,机器人主控模块根据返回值调用蠕动、尺蠖或翻滚运动步态相对应的Earthworm、Inchworm或Tumbling函数,机器人按照该蠕动、尺蠖或翻滚运动步态运动一个周期。Then, the robot main control module calls the Earthworm, Inchworm or Tumbling function corresponding to the creeping, inchworm or rolling motion gait according to the return value, and the robot moves for one cycle according to the creeping, inchworm or rolling motion gait.
最后,单个周期运动结束后机器人恢复到初始状态并等待用户给出下一周期运动指令。Finally, after a single cycle of motion, the robot returns to the initial state and waits for the user to give instructions for the next cycle of motion.
步骤b中状态调整运动模式,具体包括以下步骤:In step b, the state adjustment motion mode specifically includes the following steps:
首先,观察张拉移动机器人当前状态,判断机器人是否需要进行电机位置调整。First, observe the current state of the tensegrity mobile robot and determine whether the robot needs to adjust the motor position.
然后,通过所述状态调整运动模式控制区电机正反转及启停按钮微调张拉移动机器人绳索长度,以更好地适应当前环境及状态下机器人的运动。Then, adjust the forward and reverse rotation of the motor in the motion mode control area and the start-stop button to fine-tune the length of the rope of the mobile robot through the state adjustment, so as to better adapt to the movement of the robot in the current environment and state.
步骤b中张拉移动机器人在不同地形特征下选择的步态不同,其基于激光传感器的地形感知也有所不同,具体如下:In step b, the gait selected by the tensegrity mobile robot under different terrain features is different, and its terrain perception based on the laser sensor is also different, as follows:
将激光距离传感器安装于张拉整体机器人中上部,其距地面垂直距离记为h,机器人在运动过程中任意时刻位形不同,h值也随之变化。将传感器测量方向与竖直方向所成夹角记为,传感器测量值记为a。The laser distance sensor is installed in the middle and upper part of the overall tensioning robot, and its vertical distance from the ground is recorded as h. The robot has different configurations at any time during the movement process, and the h value also changes accordingly. The angle formed between the measurement direction of the sensor and the vertical direction is recorded as, and the measured value of the sensor is recorded as a.
ⅰ.在平坦地面,机器人对应运动模式为尺蠖运动模式,此时传感器测量值a应在左右区间内波动。ⅰ. On the flat ground, the corresponding motion mode of the robot is the inchworm motion mode, and the measured value a of the sensor should fluctuate in the left and right intervals.
ⅱ.当机器人行进过程中遇到狭小空间,切换运动模式为蠕动运动模式,此时传感器测量值a应远小于。ⅱ. When the robot encounters a narrow space during the process of traveling, switch the motion mode to the creep motion mode, and the sensor measurement value a should be much smaller than that.
ⅲ.当机器人行进过程中遇到沟壑,切换运动模式为翻滚运动模式,此时传感器测量值a应远大于。ⅲ. When the robot encounters a ravine in the process of traveling, switch the motion mode to the tumbling motion mode. At this time, the measured value of the sensor a should be much larger than that.
ⅳ.当机器人行进过程中遇到下斜面,切换运动模式为翻滚运动模式,此时传感器测量值a应稍大于。iv. When the robot encounters a downward slope during the process of traveling, switch the motion mode to the tumbling motion mode, and the measured value a of the sensor should be slightly larger than that.
ⅴ.当机器人行进过程中遇到上斜面或障碍物,两种场景下传感器测量值a都应稍小于,此时机器人仍保持原运动模式继续运动一段距离再次启动传感器进行测量,根据两次测量值的差值来判断地形特征为上斜面或障碍物,随后切换运动模式为上斜面的蠕动运动模式或越过障碍物的翻滚运动模式。ⅴ. When the robot encounters an upper slope or an obstacle during its travel, the measured value a of the sensor should be slightly smaller in both scenarios. At this time, the robot still maintains the original motion mode and continues to move for a certain distance. Start the sensor again to measure, according to the two measurements The difference between the values is used to determine whether the terrain feature is an upward slope or an obstacle, and then the motion mode is switched to the creeping motion mode of the upward slope or the tumbling motion mode of crossing the obstacle.
本发明控制系统满足小型化要求且开发难度和成本低,驱动器硬件设计集成度高,满足小型化需求,同时将机器人多种步态的代码进行存储,仅需简单调用即可下发控制指令。The control system of the invention meets the requirements of miniaturization, has low development difficulty and cost, and has high integration of driver hardware design to meet the requirements of miniaturization. At the same time, the codes of various gaits of the robot are stored, and control instructions can be issued only by simple calls.
本发明传感及控制系统简单,可靠性好,驱动器采用驱控一体化设计,体积小,部署灵活且可靠性高,同时搭配传感系统准确识别地形特征及机器人自身状态,满足移动机器人在多种地形环境下的多种步态运动需求。The sensing and control system of the invention is simple and has good reliability. The driver adopts the integrated design of drive and control, which is small in size, flexible in deployment and high in reliability. At the same time, it is matched with the sensing system to accurately identify the terrain features and the state of the robot itself, so as to meet the needs of the mobile robot in multiple applications. A variety of gait motion requirements in various terrain environments.
本发明的控制方法解决了传统移动机器人仅用单一运动模式无法有效适应真实环境多种地形的问题,通过预置机器人三种不同运动步态,配合传感系统感知不同地形特征而切换相应的步态,实现张拉移动机器人在多种地形环境中运动,同时控制系统无系留设计,满足野外环境的续航要求。The control method of the invention solves the problem that the traditional mobile robot cannot effectively adapt to various terrains in the real environment by only using a single movement mode. By presetting three different movement gaits of the robot and cooperating with the sensing system to perceive different terrain features, the corresponding steps are switched. It can realize the movement of the tensegrity mobile robot in various terrain environments, and at the same time, the control system is designed without tethering, which meets the endurance requirements of the field environment.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210357644.0A CN114740848A (en) | 2022-04-07 | 2022-04-07 | Multi-mode and few-drive tension mobile robot control system and control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210357644.0A CN114740848A (en) | 2022-04-07 | 2022-04-07 | Multi-mode and few-drive tension mobile robot control system and control method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114740848A true CN114740848A (en) | 2022-07-12 |
Family
ID=82278758
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210357644.0A Pending CN114740848A (en) | 2022-04-07 | 2022-04-07 | Multi-mode and few-drive tension mobile robot control system and control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114740848A (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN204076261U (en) * | 2014-05-15 | 2015-01-07 | 郑天江 | A kind of imitative snake type soft robot control system |
| CN105511267A (en) * | 2016-01-06 | 2016-04-20 | 北京化工大学 | Snake imitation search and rescue robot multi-gait control method |
| US20190382995A1 (en) * | 2017-03-03 | 2019-12-19 | The Regents Of The University Of California | Elastic lattices for design of tensegrity structures and robots |
| CN110774282A (en) * | 2019-10-15 | 2020-02-11 | 哈尔滨工程大学 | A control system and control method of a spherical tension integral robot based on mobile phone Bluetooth APP software |
| CN111237415A (en) * | 2020-02-27 | 2020-06-05 | 浙江理工大学 | A cable-rod telescopic mechanism for controlling the deformation of a tensioned integral structure |
| CN111452028A (en) * | 2020-05-25 | 2020-07-28 | 苏州大学应用技术学院 | Multi-joint bionic robot and its control method and application |
| CN112643677A (en) * | 2020-12-18 | 2021-04-13 | 华南理工大学 | Terrain adaptive control method, system, device and medium |
-
2022
- 2022-04-07 CN CN202210357644.0A patent/CN114740848A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN204076261U (en) * | 2014-05-15 | 2015-01-07 | 郑天江 | A kind of imitative snake type soft robot control system |
| CN105511267A (en) * | 2016-01-06 | 2016-04-20 | 北京化工大学 | Snake imitation search and rescue robot multi-gait control method |
| US20190382995A1 (en) * | 2017-03-03 | 2019-12-19 | The Regents Of The University Of California | Elastic lattices for design of tensegrity structures and robots |
| CN110774282A (en) * | 2019-10-15 | 2020-02-11 | 哈尔滨工程大学 | A control system and control method of a spherical tension integral robot based on mobile phone Bluetooth APP software |
| CN111237415A (en) * | 2020-02-27 | 2020-06-05 | 浙江理工大学 | A cable-rod telescopic mechanism for controlling the deformation of a tensioned integral structure |
| CN111452028A (en) * | 2020-05-25 | 2020-07-28 | 苏州大学应用技术学院 | Multi-joint bionic robot and its control method and application |
| CN112643677A (en) * | 2020-12-18 | 2021-04-13 | 华南理工大学 | Terrain adaptive control method, system, device and medium |
Non-Patent Citations (3)
| Title |
|---|
| WENJUAN DU, ETAL.: "Dynamic Simulation for 6-strut Tensegrity Robots", PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 31 July 2014 (2014-07-31), pages 870 - 875, XP032667802, DOI: 10.1109/ICInfA.2014.6932774 * |
| 杜汶娟 等: "可变结构体机器人形变状态找寻及运动方向预测方法", 科学通报, vol. 58, 31 December 2013 (2013-12-31), pages 97 - 103 * |
| 蔡晖映: "动态张拉整体结构的步态设计与评价", 中国博士学位论文全文数据库 工程科技Ⅱ辑, no. 1, 15 January 2021 (2021-01-15), pages 177 - 178 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3968501B2 (en) | Robot self-position identification system and self-position identification method | |
| CN105711591A (en) | Unmanned vehicle, and control method and device thereof | |
| EP3251805A1 (en) | Multiaxial motion control device and method, in particular control device and method for a robot arm | |
| AU2024287091A1 (en) | On-board charging station for a remote control device | |
| CN107813306B (en) | Robot and motion control method and device thereof | |
| JP6788005B2 (en) | Remote control | |
| CN108628303A (en) | Self-discipline mobile device, self-discipline moving method and program recorded medium | |
| CN116974272A (en) | Multi-mode mobile robot control method | |
| CN114740848A (en) | Multi-mode and few-drive tension mobile robot control system and control method | |
| JP2002307350A (en) | Robot device, and operation control method, control system, program and recording medium for the same | |
| CN113848968B (en) | Gait adjustment method, multi-legged robot, and computer-readable storage medium | |
| CN113681541A (en) | Exoskeleton control system and method based on Internet of things | |
| CN205750377U (en) | A kind of multi-joint small scale robot electric-control system | |
| KR101199468B1 (en) | Processing System of Sensor Signal for Robot And Method thereof | |
| JP2007215869A (en) | Biological information measuring device | |
| CN205969039U (en) | Intelligent robot and control system thereof | |
| JP2003001577A (en) | Charge equipment, robot system and charge control method | |
| CN107962546A (en) | A kind of image recognition element follows pickup robot | |
| CN113848967B (en) | Gait control method, legged robot and computer-readable storage medium | |
| CN215881644U (en) | Building blocks robot programming control module | |
| CN111113378B (en) | Robot control method based on three-axis angular velocity anti-falling protection | |
| JP4023614B2 (en) | Gripping device, gripping control method, gripping control program, and recording medium | |
| CN205721358U (en) | Robot and control system thereof | |
| JP2009131044A (en) | Charging device, charging method, and charging system | |
| CN114915048B (en) | Charging device, charging method of foot type robot and foot type robot |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |