[go: up one dir, main page]

CN114765671A - High-dynamic image sensor, pixel unit, and electronic information device - Google Patents

High-dynamic image sensor, pixel unit, and electronic information device Download PDF

Info

Publication number
CN114765671A
CN114765671A CN202110043121.4A CN202110043121A CN114765671A CN 114765671 A CN114765671 A CN 114765671A CN 202110043121 A CN202110043121 A CN 202110043121A CN 114765671 A CN114765671 A CN 114765671A
Authority
CN
China
Prior art keywords
transistor
photodiode
floating diffusion
turned
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110043121.4A
Other languages
Chinese (zh)
Other versions
CN114765671B (en
Inventor
赵立新
黄琨
彭文冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galaxycore Shanghai Ltd Corp
Original Assignee
Galaxycore Shanghai Ltd Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galaxycore Shanghai Ltd Corp filed Critical Galaxycore Shanghai Ltd Corp
Priority to CN202110043121.4A priority Critical patent/CN114765671B/en
Publication of CN114765671A publication Critical patent/CN114765671A/en
Application granted granted Critical
Publication of CN114765671B publication Critical patent/CN114765671B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors
    • H10F39/18Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/802Geometry or disposition of elements in pixels, e.g. address-lines or gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/80Constructional details of image sensors
    • H10F39/803Pixels having integrated switching, control, storage or amplification elements
    • H10F39/8037Pixels having integrated switching, control, storage or amplification elements the integrated elements comprising a transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The embodiment of the invention discloses a high dynamic range image sensor, a pixel unit and an electronic information device, wherein the image sensor comprises: a reset transistor; a source follower transistor; an overflow drain; a first photodiode; a first transfer transistor; a first floating diffusion region; a second photodiode; a second transfer transistor; a second floating diffusion region; the first photodiode and the second photodiode have different full well capacities; the first photodiode and the second photodiode share one of the overflow drains; the source follower transistor outputs a signal at its source. The embodiment of the invention is different from the existing 4T pixel structure design, adopts the 3T pixel structure design and the photodiodes with different full-well capacities to share the overflow drain, adds three switching transistors and three corresponding capacitors, and selectively opens or closes the capacitors through the switching transistors, thereby realizing the multi-level conversion gain high dynamic range image sensor.

Description

高动态图像传感器、像素单元、电子信息装置High dynamic image sensor, pixel unit, electronic information device

技术领域technical field

本发明涉及图像传感器领域,特别涉及高动态图像传感器、像素单元。The present invention relates to the field of image sensors, in particular to a high dynamic image sensor and a pixel unit.

背景技术Background technique

在不同的现实场景中,光照强度存在着非常大的变化范围。特别对于监控、车载等场景,光线的明暗变化非常常见。为了适应不同的场景,在这些场景下所使用的图像传感器需要有足够大的动态范围,以记录尽可能多的图像细节。高动态范围(HDR, High DynamicRange)对传感器像素的设计要求在不同亮度下并不相同。在高亮度下,记录细节需要像素的光电二极管(PD,Photodiode)具有尽量大的满阱容量(FWC, Full-well Capacitance)。而在低亮度下,需要浮置扩散区(FD, Floating Diffusion)的电容尽量小,得到尽可能大的转换增益,以便于提高传感器的信噪比。这两者在设计上存在矛盾,过小的浮置扩散区无法完全读出高光下大满阱容量PD的所有电子,造成残像(Lag)现象。因此,有人提出采用两种不同FWC的像素(pixel)结合输出,大像素具有高FWC,适合弱光场景;小像素具有低FWC,适合强光场景,将大小不同的两种pixel获取的图像结合在一起,通过改变浮置扩散区的有效电容得到比各自单像素图像更高的动态范围。In different real scenes, there is a very large variation range of light intensity. Especially for surveillance, vehicle and other scenes, the change of light and shade is very common. In order to adapt to different scenarios, the image sensors used in these scenarios need to have a large enough dynamic range to record as much image detail as possible. High Dynamic Range (HDR, High DynamicRange) has different design requirements for sensor pixels under different brightness. At high brightness, recording details requires the pixel's photodiode (PD, Photodiode) to have as large a full-well capacity (FWC, Full-well Capacitance) as possible. At low brightness, the capacitance of the floating diffusion region (FD, Floating Diffusion) needs to be as small as possible to obtain as large a conversion gain as possible, so as to improve the signal-to-noise ratio of the sensor. There is a contradiction in the design of the two. The floating diffusion area that is too small cannot fully read all the electrons of the PD with a large full well capacity under bright light, resulting in an afterimage (Lag) phenomenon. Therefore, some people propose to use two different FWC pixels (pixels) for combined output. Large pixels have high FWC and are suitable for low-light scenes; small pixels have low FWC and are suitable for high-light scenes. Together, a higher dynamic range than the respective single-pixel image is obtained by changing the effective capacitance of the floating diffusion.

现有的可变转换增益传感器,常使用双转换增益(DCG, Dual Conversion Gain)设计。该设计引入了一个外挂的电容,并加入一个控制开关(常见使用金属氧化物半导体场效应管,即MOSFET,作为开关)。在需要读出高曝光信号的时候,将开关开启,使FD与电容器相连,帮助抽取电荷;而需要读出较低信号强度的时候,关闭开关,使得浮置扩散区的有效电容减小,从而获得较高的转换增益,提高读出信噪比。单独靠大小像素阵列分布输出两个不同曝光程度的图像数据,再结合DCG技术,在大小pixel分别配合高转换增益(HCG, HighConversion Gain)和低转换增益(LCG, Low Conversion Gain),将对应图像数据展宽到合适的数据范围。由此进一步的增加图像数据的亮度分隔,保存更多的图像细节。通过算法整合两张图像,就形成单帧的HDR图像。Existing variable conversion gain sensors are often designed with dual conversion gain (DCG, Dual Conversion Gain). The design introduces an external capacitor and adds a control switch (usually using a metal-oxide-semiconductor field-effect transistor, or MOSFET, as a switch). When the high exposure signal needs to be read out, the switch is turned on, so that the FD is connected to the capacitor to help extract the charge; when the low signal strength needs to be read out, the switch is turned off, so that the effective capacitance of the floating diffusion area is reduced, so that the Obtain higher conversion gain and improve readout signal-to-noise ratio. Independently rely on the distribution of large and small pixel arrays to output two image data with different exposure levels, and then combine with DCG technology, with high conversion gain (HCG, High Conversion Gain) and low conversion gain (LCG, Low Conversion Gain) in the large and small pixels, respectively. The data is stretched to the appropriate data range. This further increases the brightness separation of the image data and preserves more image details. The algorithm integrates the two images to form a single-frame HDR image.

随着图像传感器制备工艺的提升,像素的FWC也在逐步增加,这对转换增益的档位提出了更高的比例要求。具有大小pixel的图像传感器在强光和暗光下的电信号强度可能有数十倍之差,若仅仅采用DCG方案,势必要求外挂电容的大小达到FD电容值的数十倍。这给图像传感器的电路设计带来了巨大挑战。同时,两个差异巨大的档位无法在整个光强范围都提供最佳的转换增益,使中等光强场景下反而出现图像细节丢失的情况。With the improvement of the image sensor fabrication process, the FWC of the pixel is also gradually increasing, which puts forward higher proportional requirements for the conversion gain. Image sensors with large and small pixels may have dozens of times the difference in electrical signal strength under strong light and dark light. If only the DCG solution is used, the size of the external capacitor must be dozens of times the value of the FD capacitor. This brings great challenges to the circuit design of the image sensor. At the same time, the two gears with huge differences cannot provide the best conversion gain in the entire light intensity range, so that the image details are lost in medium light intensity scenes.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,具有大小pixel的图像传感器需要有更多转换增益档位的设计。本发明实施例一方面提供了一种高动态图像传感器,包括:In view of the problems existing in the prior art, an image sensor with large and small pixels needs to be designed with more conversion gain gears. An aspect of the embodiments of the present invention provides a high dynamic image sensor, including:

复位晶体管;源跟随晶体管;溢出漏极;reset transistor; source follower transistor; overflow drain;

第一光电二极管;第一转移晶体管;第一浮置扩散区;first photodiode; first transfer transistor; first floating diffusion;

第二光电二极管;第二转移晶体管;第二浮置扩散区;second photodiode; second transfer transistor; second floating diffusion;

所述第一光电二极管与所述第二光电二极管具有不同的满阱容量;the first photodiode and the second photodiode have different full well capacities;

所述第一光电二极管和所述第二光电二极管共享一个所述溢出漏极;the first photodiode and the second photodiode share one of the overflow drain;

所述源跟随晶体管的源极输出信号。The source follows the source output signal of the transistor.

在一些实施例中,所述第一转移晶体管和所述第二转移晶体管采用垂直转移栅极。In some embodiments, the first transfer transistor and the second transfer transistor employ vertical transfer gates.

在一些实施例中,还包括:至少包括三个晶体管及分别对应的三个电容器,以实现多转换增益。In some embodiments, the method further includes: at least three transistors and three corresponding capacitors, so as to realize multi-conversion gain.

在一些实施例中,所述三个晶体管包括第一晶体管、第二晶体管和第三晶体管;所述第一晶体管的第一端与所述第一浮置扩散区连接;所述第一晶体管的第二端与所述第二浮置扩散区连接,以及与所述第一电容器的第一端连接;所述第一电容器的第二端接地;In some embodiments, the three transistors include a first transistor, a second transistor and a third transistor; a first end of the first transistor is connected to the first floating diffusion region; The second end is connected to the second floating diffusion region and to the first end of the first capacitor; the second end of the first capacitor is grounded;

所述第二晶体管的第一端与所述第二浮置扩散区连接;所述第二晶体管的第二端与所述第二电容器的第一端连接;所述第二电容器的第二端接地;The first end of the second transistor is connected to the second floating diffusion region; the second end of the second transistor is connected to the first end of the second capacitor; the second end of the second capacitor ground;

所述第三晶体管的第一端与所述第二晶体管的第二端连接;所述第三晶体管的第二端与所述第三电容器的第一端连接;所述第三电容器的第二端接地;The first end of the third transistor is connected to the second end of the second transistor; the second end of the third transistor is connected to the first end of the third capacitor; the second end of the third capacitor terminal grounding;

复位晶体管的第一端与所述第三晶体管的第二端连接,所述复位晶体管的第二端连接电源。The first end of the reset transistor is connected to the second end of the third transistor, and the second end of the reset transistor is connected to the power supply.

在一些实施例中,对于所述第一浮置扩散区或所述第二浮置扩散区,控制所述第一晶体管、所述第二晶体管、所述第三晶体管和所述复位晶体管的栅极,使所述第一浮置扩散区或所述第二浮置扩散区,获得第一、第二、第三或第四转换增益。In some embodiments, for the first floating diffusion region or the second floating diffusion region, gates of the first transistor, the second transistor, the third transistor and the reset transistor are controlled pole, so that the first floating diffusion region or the second floating diffusion region can obtain the first, second, third or fourth conversion gain.

在一些实施例中,对于所述第一浮置扩散区,保持所述第三晶体管开启和所述复位晶体管开启,使所述第一晶体管为所述第一浮置扩散区提供复位功能,当关闭所述第一晶体管时,获得第一转换增益;当关闭所述第一晶体管和所述第二晶体管,并开启所述第一晶体管时,获得第二转换增益;当关闭所述第三晶体管,并开启所述第一晶体管和所述第二晶体管时,获得第三转换增益;当开启所述第一晶体管、所述第二晶体管和所述第三晶体管时,获得第四转换增益。In some embodiments, for the first floating diffusion, keeping the third transistor on and the reset transistor on so that the first transistor provides a reset function for the first floating diffusion, when When the first transistor is turned off, a first conversion gain is obtained; when the first transistor and the second transistor are turned off, and the first transistor is turned on, a second conversion gain is obtained; when the third transistor is turned off , and when the first transistor and the second transistor are turned on, a third conversion gain is obtained; when the first transistor, the second transistor and the third transistor are turned on, a fourth conversion gain is obtained.

在一些实施例中,对于所述第二浮置扩散区,保持所述复位晶体管开启,使所述第三晶体管为所述第二浮置扩散区提供复位功能,当关闭所述第一晶体管和所述第二晶体管时,获得第一转换增益;当关闭所述第二晶体管和所述第三晶体管,并开启所述第一晶体管时,获得第二转换增益;当关闭所述第三晶体管,并开启所述第一晶体管和所述第二晶体管时,获得第三转换增益;当开启所述第一晶体管、所述第二晶体管和所述第三晶体管时,获得第四转换增益。In some embodiments, for the second floating diffusion, keeping the reset transistor on, so that the third transistor provides a reset function for the second floating diffusion, when the first transistor is turned off and When the second transistor is turned off, a first conversion gain is obtained; when the second transistor and the third transistor are turned off, and the first transistor is turned on, a second conversion gain is obtained; when the third transistor is turned off, And when the first transistor and the second transistor are turned on, a third conversion gain is obtained; when the first transistor, the second transistor and the third transistor are turned on, a fourth conversion gain is obtained.

本发明实施例的另一方面提供了一种高动态图像传感器的像素单元,包括:复位晶体管;源跟随晶体管;第一光电二极管;第一转移晶体管;第一浮置扩散区;第二光电二极管;第二转移晶体管;第二浮置扩散区;第一晶体管、第二晶体管、第三晶体管;第一电容器、第二电容器、第三电容器;第一有源区和第二有源区;其中,所述第一光电二极管和所述第二光电二极管呈对角布置;所述第一有源区和所述第二有源区分别布置于所述第一光电二极管和所述第二光电二极管的两侧;所述复位晶体管、所述第二晶体管和所述第三晶体管布置于所述第一有源区;所述源跟随晶体管布置于所述第二有源区;所述源跟随晶体管为鳍式场效应管;所述第一晶体管布置于所述第一光电二极管和所述第二光电二极管之间。Another aspect of the embodiments of the present invention provides a pixel unit of a high dynamic image sensor, including: a reset transistor; a source follower transistor; a first photodiode; a first transfer transistor; a first floating diffusion region; a second photodiode ; second transfer transistor; second floating diffusion region; first transistor, second transistor, third transistor; first capacitor, second capacitor, third capacitor; first active region and second active region; wherein , the first photodiode and the second photodiode are arranged diagonally; the first active region and the second active region are respectively arranged on the first photodiode and the second photodiode The reset transistor, the second transistor and the third transistor are arranged in the first active region; the source follower transistor is arranged in the second active region; the source follower transistor is a fin field effect transistor; the first transistor is arranged between the first photodiode and the second photodiode.

本发明实施例的另一方面还提供了一种包括上述高动态图像传感器的电子信息装置。Another aspect of the embodiments of the present invention further provides an electronic information device including the above-mentioned high dynamic image sensor.

与现有技术相比,本发明实施例存在以下有益效果:Compared with the prior art, the embodiments of the present invention have the following beneficial effects:

本发明实施例在高动态图像传感器的像素设计中引入了FWC不同的两种光电二极管PD、以及四转换增益(QCG, Quad Conversion Gain)设计。在高曝光的情况下,使用大PD输出信号,此时应将所有电容器对应的晶体管打开,提供最大的有效电容,可获取最小的转换增益。在低曝光的情况下,使用小PD 输出信号,此时应将所有电容开关关闭,提供最小的有效电容,可获得最大的转换增益。转换增益电路包括三个逐级不同大小的电容的电容器,和三个晶体管分别作为三个电容器的开关。对三个开关进行不同的开关配置,可以在不同的光电二极管PD对应的浮置扩散区FD上加上不同大小的电容的电容器,将转换增益在四个不同的档位之间切换。这样可以使得图像传感器拥有更大的动态范围。The embodiment of the present invention introduces two types of photodiodes PD with different FWCs and a quad conversion gain (QCG, Quad Conversion Gain) design in the pixel design of the high dynamic image sensor. In the case of high exposure, when using a large PD output signal, the transistors corresponding to all capacitors should be turned on to provide the largest effective capacitance and obtain the smallest conversion gain. In the case of low exposure, using a small PD output signal, all capacitive switches should be turned off at this time to provide the smallest effective capacitance and obtain the largest conversion gain. The conversion gain circuit includes three capacitors with different sizes of capacitors in stages, and three transistors as switches of the three capacitors respectively. Different switch configurations are performed on the three switches, and capacitors with different capacitances can be added to the floating diffusion regions FD corresponding to different photodiodes PD to switch the conversion gain among four different gears. This allows the image sensor to have a larger dynamic range.

本发明实施例区别于现有的4T像素结构设计,而采用3T像素结构设计和不同满阱容量的光电二极管共享一个溢出漏极,并增加三个开关晶体管和分别对应的三个电容器,通过开关晶体管,选择性的打开或者关闭电容器,从而实现多级转换增益的高动态范围图像传感器。The embodiment of the present invention is different from the existing 4T pixel structure design, and adopts the 3T pixel structure design and photodiodes with different full well capacities to share one overflow drain, and adds three switching transistors and three corresponding capacitors respectively. Transistors that selectively turn on or off capacitors to achieve multi-level conversion gain high dynamic range image sensors.

附图说明Description of drawings

图1为本发明一种示例性的实施例的多转换增益的高动态图像传感器像素单元的结构示意图;FIG. 1 is a schematic structural diagram of a pixel unit of a multi-conversion gain high dynamic image sensor according to an exemplary embodiment of the present invention;

图2为一种示例性的双转换增益图像传感器像素的读出期间像素信号与读出电子数的关系曲线;2 is a graph showing the relationship between pixel signal and readout electron number during readout of an exemplary dual conversion gain image sensor pixel;

图3为本发明实施例的一种示例性的多转换增益的高动态图像传感器像素的读出期间像素信号与读出电子数的关系曲线;3 is a graph showing the relationship between the pixel signal and the number of readout electrons during readout of an exemplary multi-conversion gain high dynamic image sensor pixel according to an embodiment of the present invention;

图4为本发明实施例的一种是示例性的多转换增益的高动态图像传感器像素单元的版图设计示意图。4 is a schematic diagram of layout design of an exemplary multi-conversion gain high dynamic image sensor pixel unit according to an embodiment of the present invention.

具体实施方式Detailed ways

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本发明应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some examples or embodiments of the present invention. For those of ordinary skill in the art, the present invention can also be applied to the present invention according to these drawings without any creative effort. other similar situations. Unless obvious from the locale or otherwise specified, the same reference numbers in the figures represent the same structure or operation.

如本发明和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As used herein and in the claims, unless the context clearly dictates otherwise, the words "a", "an", "an" and/or "the" are not intended to be specific in the singular and may include the plural. Generally speaking, the terms "comprising" and "comprising" only imply that the clearly identified steps and elements are included, and these steps and elements do not constitute an exclusive list, and the method or apparatus may also include other steps or elements.

图1为本发明一种示例性的实施例的多转换增益的高动态图像传感器像素单元的电路结构示意图。FIG. 1 is a schematic diagram of a circuit structure of a pixel unit of a multi-conversion gain high dynamic image sensor according to an exemplary embodiment of the present invention.

如图1所示,该高动态图像传感器像素单元包括:复位晶体管RST、源跟随晶体管SF、溢出漏极(OFD,over flow diffusion,图1中未示出)、第一光电二极管PD0、第一转移晶体管TX0;第一浮置扩散区FD0;第二光电二极管PD1;第二转移晶体管TX1;第二浮置扩散区FD1、第一晶体管QCG0和对应的电容器C0、第二晶体管QCG1和对应的电容器C1、第三晶体管QCG2和对应的电容器C2。其中,第一光电二极管PD0与第二光电二极管PD1具有不同的灵敏度。例如,第一光电二极管PD0与第二光电二极管PD1的感光面积可以不同。第一光电二极管PD0与第二光电二极管PD1共享一个溢出漏极。溢出漏极可以设置于第一光电二极管PD0与第二光电二极管PD1之间。源跟随晶体管SF的源极输出信号PXD。As shown in FIG. 1 , the high dynamic image sensor pixel unit includes: a reset transistor RST, a source follower transistor SF, an overflow drain (OFD, over flow diffusion, not shown in FIG. 1 ), a first photodiode PD0, a first photodiode PD0, a first transfer transistor TX0; first floating diffusion FD0; second photodiode PD1; second transfer transistor TX1; second floating diffusion FD1, first transistor QCG0 and corresponding capacitor C0, second transistor QCG1 and corresponding capacitor C1, the third transistor QCG2 and the corresponding capacitor C2. The first photodiode PD0 and the second photodiode PD1 have different sensitivities. For example, the light-sensing areas of the first photodiode PD0 and the second photodiode PD1 may be different. The first photodiode PD0 shares an overflow drain with the second photodiode PD1. The overflow drain may be disposed between the first photodiode PD0 and the second photodiode PD1. The source follower transistor SF outputs the signal PXD.

第一晶体管QCG0的第一端与第一浮置扩散区FD0连接;第一晶体管QCG0的第二端与第二浮置扩散区FD1连接,以及与第一电容器C0的第一端连接;所述第一电容器C0的第二端接地。The first end of the first transistor QCG0 is connected to the first floating diffusion region FD0; the second end of the first transistor QCG0 is connected to the second floating diffusion region FD1, and is connected to the first end of the first capacitor C0; the The second end of the first capacitor C0 is grounded.

第二晶体管QCG1的第一端与第二浮置扩散区FD1连接;第二晶体管QCG1的第二端与第二电容器C1的第一端连接;第二电容器C1的第二端接地。The first end of the second transistor QCG1 is connected to the second floating diffusion FD1; the second end of the second transistor QCG1 is connected to the first end of the second capacitor C1; the second end of the second capacitor C1 is grounded.

第三晶体管QCG2的第一端与第二晶体管QCG1的第二端连接;第三晶体管QCG2的第二端与第三电容器C2的第一端连接;第三电容器C2的第二端接地。The first end of the third transistor QCG2 is connected to the second end of the second transistor QCG1; the second end of the third transistor QCG2 is connected to the first end of the third capacitor C2; the second end of the third capacitor C2 is grounded.

复位晶体管RST的第一端与第三晶体管QCG2的第二端连接,复位晶体管RST的第二端连接电源VDD。The first end of the reset transistor RST is connected to the second end of the third transistor QCG2, and the second end of the reset transistor RST is connected to the power supply VDD.

对于第一浮置扩散区FD0或第二浮置扩散区FD1,控制第一晶体管QCG0、第二晶体管QCG1、第三晶体管QCG2和复位晶体管RST的栅极,使第一浮置扩散区FD0或第二浮置扩散区FD1,获得第一、第二、第三或第四转换增益。For the first floating diffusion region FD0 or the second floating diffusion region FD1, the gates of the first transistor QCG0, the second transistor QCG1, the third transistor QCG2 and the reset transistor RST are controlled so that the first floating diffusion region FD0 or the second floating diffusion region FD0 or the Two floating diffusion regions FD1 to obtain the first, second, third or fourth conversion gain.

对于第一浮置扩散区FD0,保持第三晶体管QCG2开启和复位晶体管RST开启,使第一晶体管QCG0为第一浮置扩散区FD0提供复位功能,当关闭第一晶体管QCG0时,获得第一转换增益;当关闭第一晶体管QCG0和第二晶体管QCG1,并开启第一晶体管QCG0时,获得第二转换增益;当关闭第三晶体管QCG2,并开启第一晶体管QCG0和第二晶体管QCG1时,获得第三转换增益;当开启第一晶体管QCG0、第二晶体管QCG1和第三晶体管QCG2时,获得第四转换增益。For the first floating diffusion FD0, keep the third transistor QCG2 on and the reset transistor RST on, so that the first transistor QCG0 provides the reset function for the first floating diffusion FD0, and when the first transistor QCG0 is turned off, the first conversion is obtained Gain; when the first transistor QCG0 and the second transistor QCG1 are turned off, and the first transistor QCG0 is turned on, the second conversion gain is obtained; when the third transistor QCG2 is turned off, and the first transistor QCG0 and the second transistor QCG1 are turned on, the second conversion gain is obtained. Three conversion gains; a fourth conversion gain is obtained when the first transistor QCG0, the second transistor QCG1 and the third transistor QCG2 are turned on.

对于第二浮置扩散区FD1,保持复位晶体管RST开启,使第三晶体管QCG2为第二浮置扩散区FD1提供复位功能,当关闭第一晶体管QCG0和第二晶体管QCG1时,获得第一转换增益;当关闭第二晶体管QCG1和第三晶体管QCG2,并开启第一晶体管QCG0时,获得第二转换增益;当关闭第三晶体管QCG2,并开启第一晶体管QCG0和第二晶体管QCG1时,获得第三转换增益;当开启第一晶体管QCG0、第二晶体管QCG1和第三晶体管QCG2时,获得第四转换增益。For the second floating diffusion FD1, keep the reset transistor RST on, so that the third transistor QCG2 provides the reset function for the second floating diffusion FD1, and when the first transistor QCG0 and the second transistor QCG1 are turned off, the first conversion gain is obtained ; When the second transistor QCG1 and the third transistor QCG2 are turned off, and the first transistor QCG0 is turned on, the second conversion gain is obtained; when the third transistor QCG2 is turned off, and the first transistor QCG0 and the second transistor QCG1 are turned on, the third Conversion gain; the fourth conversion gain is obtained when the first transistor QCG0, the second transistor QCG1 and the third transistor QCG2 are turned on.

在一些实施例中,第一转移晶体管TX0和第二转移晶体管TX1采用垂直转移栅极(VTG,vertical transfer gate)。In some embodiments, the first transfer transistor TX0 and the second transfer transistor TX1 employ a vertical transfer gate (VTG).

需要说明的是,本发明实施例为3T结构设计,具体采用复位晶体管RST、转移晶体管TX(例如,第一转移晶体管TX0、第二转移晶体管TX1)、源跟随晶体管SF、和两种光电二极管PD(例如,第一光电二极管PD0、第二光电二极管PD1)共用一个溢出漏极的设计,将像素信号PXD直接从源跟随晶体管SF的源极输出。现有的图像传感器采用4T的结构设计,像素信号从行选晶体管SEL的一端输出。因此,本发明实施例的像素单元有别于现有的4T结构设计。It should be noted that the embodiment of the present invention is a 3T structure design, and specifically adopts a reset transistor RST, a transfer transistor TX (for example, a first transfer transistor TX0, a second transfer transistor TX1), a source follower transistor SF, and two types of photodiodes PD. For example, the design of the first photodiode PD0 and the second photodiode PD1 sharing one overflow drain, the pixel signal PXD is directly output from the source of the source follower transistor SF. The existing image sensor adopts a 4T structure design, and the pixel signal is output from one end of the row selection transistor SEL. Therefore, the pixel unit of the embodiment of the present invention is different from the existing 4T structure design.

图2为一种示例性的双转换增益图像传感器像素的读出期间像素信号与读出电子数的关系曲线。2 is a graph of pixel signal versus readout electron number during readout of an exemplary dual conversion gain image sensor pixel.

图3为本发明实施例的一种示例性的多转换增益的高动态图像传感器像素的读出期间像素信号与读出电子数的关系曲线。3 is a graph showing the relationship between the pixel signal and the number of readout electrons during readout of an exemplary multi-conversion gain high dynamic image sensor pixel according to an embodiment of the present invention.

图2和图3分别示出了使用DCG方案和使用QCG方案在读出同样读出FWC范围内对应的读出信号强度(digital number, DN)分布。Figures 2 and 3 show the corresponding readout signal intensity (digital number, DN) distributions in the same readout FWC range using the DCG scheme and using the QCG scheme, respectively.

在图3中,当PD0或PD1中信号会导致读出信号数值溢出的时候,会自动使用更低一档的转换增益。对于大FWC的像素设计,为了能够覆盖全部FWC范围,低档转换增益需要设置的比较小。因此进入Gain 2范围后,DN随电子数目上升的速率就会明显下降。举例说明,在图2中,当某个图像中最暗和最亮光强分布对应图中A、B两点时,图像中亮度仅有(N-M)阶区分。而对于图3,使用QCG方案进行读出时,在A、B点中会发生一次转换增益的切换,因此同样的亮度范围,对应的亮度阶层可以达到(DNsat-S)+(T-P)。因为要覆盖相同的FWC范围,假定DCG方案中的Gain 2与QCG方案中的Gain 4相等。由于QCG方案中的Gain 3段曲线斜率显然高于DCG方案中的Gain2,对于同样的亮度范围A~B,QCG方案中从A点到增益转换点C点之间的DN值差显然要大于DCG方案。因此QCG方案所输出的图像将在中等光强的范围内包含更细致的亮度区分,拥有更多的图像细节。In Figure 3, when the signal in PD0 or PD1 causes the readout signal to overflow, a lower conversion gain will be used automatically. For a pixel design with a large FWC, in order to cover the entire FWC range, the low-grade conversion gain needs to be set relatively small. Therefore, after entering the Gain 2 range, the rate at which DN increases with the number of electrons will decrease significantly. For example, in Figure 2, when the darkest and brightest light intensity distributions in a certain image correspond to points A and B in the figure, the brightness in the image is only distinguished by (N-M) order. For Figure 3, when using the QCG scheme for readout, a conversion gain switching occurs at points A and B, so the same brightness range, the corresponding brightness level can reach (DNsat-S)+(T-P). To cover the same FWC range, it is assumed that Gain 2 in the DCG scheme is equal to Gain 4 in the QCG scheme. Since the slope of the Gain 3-segment curve in the QCG scheme is obviously higher than that of Gain2 in the DCG scheme, for the same brightness range A~B, the difference in DN value from point A to point C of the gain conversion point in the QCG scheme is obviously larger than that of DCG. Program. Therefore, the image output by the QCG scheme will contain more detailed brightness distinction in the range of medium light intensity, and have more image details.

图4为本发明实施例的一种多转换增益的高动态图像传感器像素单元的版图设计示意图。FIG. 4 is a schematic layout design diagram of a pixel unit of a multi-conversion gain high dynamic image sensor according to an embodiment of the present invention.

本发明实施例的像素单元包括复位晶体管RST、源跟随晶体管SF、第一光电二极管PD0、第一转移晶体管TX0、第一浮置扩散区FD0、第二光电二极管PD1、第二转移晶体管TX1、第二浮置扩散区FD1、第一晶体管QCG0、第二晶体管QCG1、第三晶体管QCG2、第一电容器C0、第二电容器C1、第三电容器C2、第一有源区AA1和第二有源区AA2。The pixel unit of the embodiment of the present invention includes a reset transistor RST, a source follower transistor SF, a first photodiode PD0, a first transfer transistor TX0, a first floating diffusion region FD0, a second photodiode PD1, a second transfer transistor TX1, a first Two floating diffusion regions FD1, first transistor QCG0, second transistor QCG1, third transistor QCG2, first capacitor C0, second capacitor C1, third capacitor C2, first active area AA1 and second active area AA2 .

第一光电二极管PD0和第二光电二极管PD1呈对角布置。第一有源区AA1和第二有源区AA2分别布置于第一光电二极管PD0和第二光电二极管PD1的两侧。具体的,第一有源区AA1布置于第一光电二极管PD0和第二光电二极管PD1的左上角区域;第二有源区AA1布置于第一光电二极管PD0和第二光电二极管PD1的右下角区域。The first photodiode PD0 and the second photodiode PD1 are arranged diagonally. The first active area AA1 and the second active area AA2 are arranged on both sides of the first photodiode PD0 and the second photodiode PD1, respectively. Specifically, the first active area AA1 is arranged in the upper left corner area of the first photodiode PD0 and the second photodiode PD1; the second active area AA1 is arranged in the lower right corner area of the first photodiode PD0 and the second photodiode PD1 .

复位晶体管RST、第二晶体管QCG1和第三晶体管QC2布置于第一有源区AA1;源跟随晶体管SF布置于第二有源区AA2;第一晶体管QCG0布置于第一光电二极管PD0和第二光电二极管PD1之间。The reset transistor RST, the second transistor QCG1 and the third transistor QC2 are arranged in the first active area AA1; the source follower transistor SF is arranged in the second active area AA2; the first transistor QCG0 is arranged in the first photodiode PD0 and the second photodiode between diode PD1.

在一些实施例中,第一电容器C0、第二电容器C1或第三电容器C2可以为金属线间电容或金属-绝缘层-金属(MIM)电容。In some embodiments, the first capacitor C0, the second capacitor C1, or the third capacitor C2 may be an inter-metal capacitance or a metal-insulator-metal (MIM) capacitance.

在一些实施例中,源跟随晶体管SF可以为鳍式场效应管(FinFET)。In some embodiments, the source follower transistor SF may be a Fin Field Effect Transistor (FinFET).

需要说明的是,附图均采用简化的形式和非精准的比例,仅用以方便、清晰地辅助说明本发明的一些实施例的目的。It should be noted that the accompanying drawings are all in simplified form and inaccurate scales, and are only used for the purpose of assisting in explaining some embodiments of the present invention conveniently and clearly.

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论如何来看,均应将实施例看作是示范性的,而且是非限制性的。此外,明显的,“包括”一词不排除其他元素和步骤,并且措辞“一个”不排除复数。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments should be considered in any way as exemplary and not restrictive. Furthermore, it is clear that the word "comprising" does not exclude other elements and steps, and the word "a" does not exclude a plural. The terms first, second, etc. are used to denote names and do not denote any particular order.

Claims (9)

1.一种高动态范围图像传感器,其特征在于,包括:1. a high dynamic range image sensor, is characterized in that, comprises: 复位晶体管;源跟随晶体管;溢出漏极;reset transistor; source follower transistor; overflow drain; 第一光电二极管;第一转移晶体管;第一浮置扩散区;first photodiode; first transfer transistor; first floating diffusion; 第二光电二极管;第二转移晶体管;第二浮置扩散区;second photodiode; second transfer transistor; second floating diffusion; 所述第一光电二极管与所述第二光电二极管具有不同的满阱容量;the first photodiode and the second photodiode have different full well capacities; 所述第一光电二极管和所述第二光电二极管共享一个所述溢出漏极;the first photodiode and the second photodiode share one of the overflow drain; 所述源跟随晶体管的源极输出信号。The source follows the source output signal of the transistor. 2.如权利要求1所述的高动态范围图像传感器,其特征在于,所述第一转移晶体管和所述第二转移晶体管采用垂直转移栅极。2. The high dynamic range image sensor of claim 1, wherein the first transfer transistor and the second transfer transistor employ vertical transfer gates. 3.如权利要求2所述的高动态范围图像传感器,其特征在于,还包括:3. The high dynamic range image sensor of claim 2, further comprising: 至少包括三个晶体管及分别对应的三个电容器,以实现多转换增益。At least three transistors and three corresponding capacitors are included to realize multi-conversion gain. 4.如权利要求3所述的高动态范围图像传感器,其特征在于,所述三个晶体管包括第一晶体管、第二晶体管和第三晶体管;4. The high dynamic range image sensor of claim 3, wherein the three transistors comprise a first transistor, a second transistor and a third transistor; 所述第一晶体管的第一端与所述第一浮置扩散区连接;所述第一晶体管的第二端与所述第二浮置扩散区连接,以及与所述第一电容器的第一端连接;所述第一电容器的第二端接地;The first end of the first transistor is connected to the first floating diffusion region; the second end of the first transistor is connected to the second floating diffusion region, and to the first end of the first capacitor terminal connection; the second terminal of the first capacitor is grounded; 所述第二晶体管的第一端与所述第二浮置扩散区连接;所述第二晶体管的第二端与所述第二电容器的第一端连接;所述第二电容器的第二端接地;The first end of the second transistor is connected to the second floating diffusion region; the second end of the second transistor is connected to the first end of the second capacitor; the second end of the second capacitor ground; 所述第三晶体管的第一端与所述第二晶体管的第二端连接;所述第三晶体管的第二端与所述第三电容器的第一端连接;所述第三电容器的第二端接地;The first end of the third transistor is connected to the second end of the second transistor; the second end of the third transistor is connected to the first end of the third capacitor; the second end of the third capacitor terminal grounding; 复位晶体管的第一端与所述第三晶体管的第二端连接,所述复位晶体管的第二端连接电源。The first end of the reset transistor is connected to the second end of the third transistor, and the second end of the reset transistor is connected to the power supply. 5.如权利要求4所述的高动态范围图像传感器,其特征在于,5. The high dynamic range image sensor of claim 4, wherein 对于所述第一浮置扩散区或所述第二浮置扩散区,控制所述第一晶体管、所述第二晶体管、所述第三晶体管和所述复位晶体管的栅极,使所述第一浮置扩散区或所述第二浮置扩散区,获得第一、第二、第三或第四转换增益。For the first floating diffusion region or the second floating diffusion region, the gates of the first transistor, the second transistor, the third transistor and the reset transistor are controlled so that the first transistor A floating diffusion region or the second floating diffusion region obtains the first, second, third or fourth conversion gain. 6.如权利要求5所述的高动态范围图像传感器,其特征在于,6. The high dynamic range image sensor of claim 5, wherein 对于所述第一浮置扩散区,For the first floating diffusion region, 保持所述第三晶体管开启和所述复位晶体管开启,使所述第一晶体管为所述第一浮置扩散区提供复位功能,当关闭所述第一晶体管时,获得第一转换增益;Keep the third transistor turned on and the reset transistor turned on, so that the first transistor provides a reset function for the first floating diffusion region, and when the first transistor is turned off, a first conversion gain is obtained; 当关闭所述第一晶体管和所述第二晶体管,并开启所述第一晶体管时,获得第二转换增益;When the first transistor and the second transistor are turned off, and the first transistor is turned on, a second conversion gain is obtained; 当关闭所述第三晶体管,并开启所述第一晶体管和所述第二晶体管时,获得第三转换增益;When the third transistor is turned off and the first transistor and the second transistor are turned on, a third conversion gain is obtained; 当开启所述第一晶体管、所述第二晶体管和所述第三晶体管时,获得第四转换增益。A fourth conversion gain is obtained when the first transistor, the second transistor and the third transistor are turned on. 7.如权利要求5所述的高动态范围图像传感器,其特征在于,7. The high dynamic range image sensor of claim 5, wherein 对于所述第二浮置扩散区,For the second floating diffusion region, 保持所述复位晶体管开启,使所述第三晶体管为所述第二浮置扩散区提供复位功能,当关闭所述第一晶体管和所述第二晶体管时,获得第一转换增益;Keeping the reset transistor turned on, so that the third transistor provides a reset function for the second floating diffusion region, and when the first transistor and the second transistor are turned off, a first conversion gain is obtained; 当关闭所述第二晶体管和所述第三晶体管,并开启所述第一晶体管时,获得第二转换增益;When the second transistor and the third transistor are turned off, and the first transistor is turned on, a second conversion gain is obtained; 当关闭所述第三晶体管,并开启所述第一晶体管和所述第二晶体管时,获得第三转换增益;When the third transistor is turned off and the first transistor and the second transistor are turned on, a third conversion gain is obtained; 当开启所述第一晶体管、所述第二晶体管和所述第三晶体管时,获得第四转换增益。A fourth conversion gain is obtained when the first transistor, the second transistor and the third transistor are turned on. 8.一种如权利要求1至7中任一项所述的高动态图像传感器的像素单元,其特征在于,所述像素单元包括:8. A pixel unit of a high dynamic image sensor according to any one of claims 1 to 7, wherein the pixel unit comprises: 所述复位晶体管;the reset transistor; 所述源跟随晶体管;the source follower transistor; 所述第一光电二极管;所述第一转移晶体管;所述第一浮置扩散区;所述第二光电二极管;所述第二转移晶体管;所述第二浮置扩散区;the first photodiode; the first transfer transistor; the first floating diffusion; the second photodiode; the second transfer transistor; the second floating diffusion; 所述第一晶体管、所述第二晶体管、所述第三晶体管;the first transistor, the second transistor, and the third transistor; 所述第一电容器、所述第二电容器、所述第三电容器;the first capacitor, the second capacitor, the third capacitor; 第一有源区和第二有源区;a first active region and a second active region; 其中,所述第一光电二极管和所述第二光电二极管呈对角布置;Wherein, the first photodiode and the second photodiode are arranged diagonally; 所述第一有源区和所述第二有源区分别布置于所述第一光电二极管和所述第二光电二极管的两侧;the first active region and the second active region are respectively arranged on both sides of the first photodiode and the second photodiode; 所述复位晶体管、所述第二晶体管和所述第三晶体管布置于所述第一有源区;the reset transistor, the second transistor and the third transistor are arranged in the first active region; 所述源跟随晶体管布置于所述第二有源区;所述源跟随晶体管为鳍式场效应管;the source follower transistor is arranged in the second active region; the source follower transistor is a fin field effect transistor; 所述第一晶体管布置于所述第一光电二极管和所述第二光电二极管之间。The first transistor is arranged between the first photodiode and the second photodiode. 9.一种电子信息装置,其特征在于,包括如权利要求1至7中任一项所述的高动态图像传感器。9. An electronic information device, comprising the high dynamic image sensor according to any one of claims 1 to 7.
CN202110043121.4A 2021-01-13 2021-01-13 High dynamic range image sensor, pixel unit, electronic information device Active CN114765671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110043121.4A CN114765671B (en) 2021-01-13 2021-01-13 High dynamic range image sensor, pixel unit, electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110043121.4A CN114765671B (en) 2021-01-13 2021-01-13 High dynamic range image sensor, pixel unit, electronic information device

Publications (2)

Publication Number Publication Date
CN114765671A true CN114765671A (en) 2022-07-19
CN114765671B CN114765671B (en) 2025-04-15

Family

ID=82364483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110043121.4A Active CN114765671B (en) 2021-01-13 2021-01-13 High dynamic range image sensor, pixel unit, electronic information device

Country Status (1)

Country Link
CN (1) CN114765671B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067325A1 (en) * 2006-09-20 2008-03-20 Sanyo Electric Co., Ltd. Photo detecting apparatus
JP2008092478A (en) * 2006-10-04 2008-04-17 Canon Inc PHOTOELECTRIC CONVERSION DEVICE, ITS CONTROL METHOD, AND IMAGING DEVICE
JP2011188530A (en) * 2011-06-13 2011-09-22 Sony Corp Solid-state image pickup device, method of driving the same, and electronic device
CN108270981A (en) * 2017-12-19 2018-07-10 思特威电子科技(开曼)有限公司 Pixel unit and its imaging method and imaging device
CN108511471A (en) * 2017-02-24 2018-09-07 普里露尼库斯日本股份有限公司 Solid-state imaging apparatus, the manufacturing method of solid-state imaging apparatus and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067325A1 (en) * 2006-09-20 2008-03-20 Sanyo Electric Co., Ltd. Photo detecting apparatus
JP2008092478A (en) * 2006-10-04 2008-04-17 Canon Inc PHOTOELECTRIC CONVERSION DEVICE, ITS CONTROL METHOD, AND IMAGING DEVICE
JP2011188530A (en) * 2011-06-13 2011-09-22 Sony Corp Solid-state image pickup device, method of driving the same, and electronic device
CN108511471A (en) * 2017-02-24 2018-09-07 普里露尼库斯日本股份有限公司 Solid-state imaging apparatus, the manufacturing method of solid-state imaging apparatus and electronic equipment
CN108270981A (en) * 2017-12-19 2018-07-10 思特威电子科技(开曼)有限公司 Pixel unit and its imaging method and imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武林 , 陈永花: "1036×1010像素CCD图像传感器TC281", 《国外电子元器件》, no. 02, 22 February 2002 (2002-02-22), pages 42 - 44 *

Also Published As

Publication number Publication date
CN114765671B (en) 2025-04-15

Similar Documents

Publication Publication Date Title
CN109922287B (en) Method and imaging system for reducing fixed image noise of image sensor pixel array
CN108200367B (en) Pixel unit, method for forming pixel unit and digital camera imaging system assembly
US10237500B2 (en) Solid-state imaging device, method of driving the same, and electronic apparatus
US10250828B1 (en) Global shutter image sensor with anti-blooming pixel and knee point self-calibration
KR101437912B1 (en) How to drive the image sensor
US8426796B2 (en) Image sensor having supplemental capacitive coupling node
CN103782582B (en) Image sensors with hybrid heterostructures
US7026596B2 (en) High-low sensitivity pixel
JP7604102B2 (en) Image Sensor
KR102730555B1 (en) Solid-state imaging element and electronic device
CN101690157B (en) Method for reading image sensor
TW201911855A (en) Detection circuit of photo sensor with stacked substrates
US10070090B2 (en) Stacked image sensor pixel cell with selectable shutter modes and in-pixel CDS
CN107743206B (en) Image sensor and control method therefor
CN108305884A (en) Pixel unit and the method and digital camera imaging system components for forming pixel unit
US20180227513A1 (en) Stacked image sensor pixel cell with selectable shutter modes and in-pixel cds
CN108234910A (en) Imaging system and formation stack the method for imaging system and digital camera imaging system components
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
KR102017713B1 (en) Cmos image sensor
JP2007184928A (en) CMOS image sensor
EP3420592B1 (en) Improved ultra-high dynamic range pixel architecture
CN111757026A (en) Image sensor pixel structure
CN114765671A (en) High-dynamic image sensor, pixel unit, and electronic information device
TW202410690A (en) Pixel circuit for high dynamic range image sensor
CN114765670A (en) Method for implementing multi-conversion gain image sensor and electronic information device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant