CN114779554A - Camera module and electronic equipment - Google Patents
Camera module and electronic equipment Download PDFInfo
- Publication number
- CN114779554A CN114779554A CN202210365343.2A CN202210365343A CN114779554A CN 114779554 A CN114779554 A CN 114779554A CN 202210365343 A CN202210365343 A CN 202210365343A CN 114779554 A CN114779554 A CN 114779554A
- Authority
- CN
- China
- Prior art keywords
- light
- transmitting medium
- camera module
- electrode
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 97
- 238000005538 encapsulation Methods 0.000 claims abstract description 33
- 238000003384 imaging method Methods 0.000 claims abstract description 29
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 230000002209 hydrophobic effect Effects 0.000 claims description 67
- 238000001514 detection method Methods 0.000 claims description 16
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims 2
- 238000003860 storage Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
- G02B26/005—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Blocking Light For Cameras (AREA)
- Studio Devices (AREA)
Abstract
本申请公开了一种摄像模组及电子设备,该摄像模组包括:镜头,滤光单元和成像芯片;滤光单元包括:第一透光介质,第二透光介质和亲水封装层;亲水封装层的一侧与第一透光介质连接,另一侧与第二透光介质连接,亲水封装层与第一透光介质和第二透光介质构成腔室;腔室内设有驱动电极和液体;镜头,第一透光介质,第二透光介质,及成像芯片依次沿镜头的光轴方向设置;其中,在驱动电极向液体施加预设电压的情况下,液体铺展在第一透光介质与第二透光介质之间,以截止非可见光;在驱动电极断电状态的情况下,液体收缩于亲水封装层处。
The application discloses a camera module and electronic equipment, the camera module includes: a lens, a filter unit and an imaging chip; the filter unit includes: a first light-transmitting medium, a second light-transmitting medium and a hydrophilic encapsulation layer; One side of the hydrophilic encapsulation layer is connected with the first light-transmitting medium, and the other side is connected with the second light-transmitting medium. The hydrophilic encapsulating layer, the first light-transmitting medium and the second light-transmitting medium constitute a chamber; The driving electrode and the liquid; the lens, the first light-transmitting medium, the second light-transmitting medium, and the imaging chip are sequentially arranged along the optical axis direction of the lens; wherein, when the driving electrode applies a preset voltage to the liquid, the liquid spreads on the first Between a light-transmitting medium and a second light-transmitting medium to cut off invisible light; when the driving electrode is powered off, the liquid shrinks at the hydrophilic encapsulation layer.
Description
技术领域technical field
本申请涉及光学技术领域,尤其涉及一种摄像模组及电子设备。The present application relates to the field of optical technology, and in particular, to a camera module and an electronic device.
背景技术Background technique
随着电子设备的快速发展,拍照功能已成为智能终端等电子设备的基础功能配置之一。电子设备的成像芯片(sensor)尺寸受摄像组件的影响,通常成像芯片的尺寸较小,摄像组件在暗光环境下拍摄时的成像质量差。With the rapid development of electronic devices, the camera function has become one of the basic functional configurations of electronic devices such as smart terminals. The size of an imaging chip (sensor) of an electronic device is affected by a camera assembly. Usually, the size of the imaging chip is small, and the image quality of the camera assembly is poor when shooting in a dark light environment.
发明内容SUMMARY OF THE INVENTION
本申请旨在提供一种摄像模组及电子设备,以解决相关技术中摄像组件在暗光环境下拍摄时的成像质量差的技术问题。The present application aims to provide a camera module and an electronic device to solve the technical problem of poor imaging quality of a camera assembly in the related art when shooting in a dark light environment.
为了解决上述技术问题,本申请是这样实现的:In order to solve the above technical problems, this application is implemented as follows:
第一方面,本申请实施例提出了一种摄像模组,该摄像模组包括:镜头,滤光单元和成像芯片;In the first aspect, an embodiment of the present application proposes a camera module, the camera module includes: a lens, a filter unit and an imaging chip;
滤光单元包括:第一透光介质,第二透光介质和亲水封装层;亲水封装层的一侧与第一透光介质连接,另一侧与第二透光介质连接,亲水封装层与第一透光介质和第二透光介质构成腔室;腔室内设有驱动电极和液体;The filter unit includes: a first light-transmitting medium, a second light-transmitting medium and a hydrophilic encapsulation layer; one side of the hydrophilic encapsulation layer is connected with the first light-transmitting medium, and the other side is connected with the second light-transmitting medium, which is hydrophilic The encapsulation layer, the first light-transmitting medium and the second light-transmitting medium form a cavity; the cavity is provided with a driving electrode and a liquid;
镜头,第一透光介质,第二透光介质,及成像芯片依次沿镜头的光轴方向设置;The lens, the first light-transmitting medium, the second light-transmitting medium, and the imaging chip are sequentially arranged along the optical axis direction of the lens;
其中,在驱动电极向液体施加预设电压的情况下,液体铺展在第一透光介质与第二透光介质之间,以截止非可见光;Wherein, when the driving electrode applies a preset voltage to the liquid, the liquid spreads between the first light-transmitting medium and the second light-transmitting medium to cut off invisible light;
在驱动电极断电状态的情况下,液体收缩于亲水封装层处。In the case of the power-off state of the drive electrode, the liquid shrinks at the hydrophilic encapsulation layer.
第二方面,本申请实施例提出了一种电子设备,该电子设备包括第一方面的摄像模组。In a second aspect, an embodiment of the present application provides an electronic device, and the electronic device includes the camera module of the first aspect.
本申请实施例中的摄像模组,包括:镜头,滤光单元和成像芯片;滤光单元包括:第一透光介质,第二透光介质和亲水封装层;亲水封装层的一侧与第一透光介质连接,另一侧与第二透光介质连接,亲水封装层与第一透光介质和第二透光介质构成腔室;腔室内设有驱动电极和液体;且,镜头,第一透光介质,第二透光介质,及成像芯片依次沿镜头的光轴方向设置。从而,在使用该摄像模组拍摄过程中,若需要截止非可见光(例如白天拍摄时),则驱动电极可以向腔室中的液体施加预设电压,使得液体铺展在所述第一透光介质与所述第二透光介质之间,以截止非可见光;若需要提升摄像模组的进光量(例如夜晚的暗光环境拍摄时),则驱动电极可以处于断电状态,从而使得上述液体自然收缩于亲水封装层处,以避免液体处于摄像模组的入射光路上遮挡进光量,能够充分利用非可见光的能量,增加了摄像模组进光量,提高了暗光环境下的拍摄质量。The camera module in the embodiment of the present application includes: a lens, a filter unit and an imaging chip; the filter unit includes: a first light-transmitting medium, a second light-transmitting medium and a hydrophilic encapsulation layer; one side of the hydrophilic encapsulation layer is connected with the first light-transmitting medium, and the other side is connected with the second light-transmitting medium, and the hydrophilic encapsulation layer, the first light-transmitting medium and the second light-transmitting medium constitute a chamber; the chamber is provided with a driving electrode and a liquid; and, The lens, the first light-transmitting medium, the second light-transmitting medium, and the imaging chip are sequentially arranged along the direction of the optical axis of the lens. Therefore, in the process of shooting with the camera module, if it is necessary to cut off invisible light (for example, when shooting in the daytime), the driving electrode can apply a preset voltage to the liquid in the chamber, so that the liquid spreads on the first light-transmitting medium between the second light-transmitting medium and the second light-transmitting medium to cut off invisible light; if it is necessary to increase the light input of the camera module (for example, when shooting in a dark light environment at night), the driving electrode can be in a power-off state, so that the above-mentioned liquid can be naturally It shrinks at the hydrophilic encapsulation layer to prevent the liquid from blocking the incoming light on the incident light path of the camera module. It can make full use of the energy of invisible light, increase the light intake of the camera module, and improve the shooting quality in the dark light environment.
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be set forth, in part, from the following description, and in part will become apparent from the following description, or may be learned by practice of the present application.
附图说明Description of drawings
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments in conjunction with the accompanying drawings, wherein:
图1是本申请实施例提供的摄像模组的结构示意图之一;Fig. 1 is one of the structural schematic diagrams of the camera module provided by the embodiment of the present application;
图2是图1中的滤光单元的爆炸图;Fig. 2 is an exploded view of the filter unit in Fig. 1;
图3是本申请实施例提供的摄像模组的结构示意图之二;3 is the second schematic structural diagram of the camera module provided by the embodiment of the present application;
图4是本申请实施例提供的摄像模组的第二电极的结构示意图;4 is a schematic structural diagram of a second electrode of a camera module provided by an embodiment of the present application;
图5是本申请实施例提供的摄像模组的结构示意图之三;5 is a third schematic structural diagram of a camera module provided by an embodiment of the present application;
图6是本申请实施例提供的摄像模组的结构示意图之四;6 is a fourth schematic structural diagram of a camera module provided by an embodiment of the present application;
图7是本申请实施例提供的电子设备的结构示意图之一;FIG. 7 is one of the schematic structural diagrams of the electronic device provided by the embodiment of the present application;
图8是本申请实施例提供的电子设备的结构示意图之二;FIG. 8 is a second schematic structural diagram of an electronic device provided by an embodiment of the present application;
图9是本申请实施例提供的电子设备的结构示意图之三。FIG. 9 is a third schematic structural diagram of an electronic device provided by an embodiment of the present application.
附图标记:Reference number:
摄像模组1000,
滤光单元100,第一透光介质110,第二透光介质120;亲水封装层130,驱动电极140,第一电极141,第二电极142,液体150,介电疏水层160,镜头300,成像芯片400;
电子设备200,角度检测单元210,供电单元220,控制单元230,存储单元240。
具体实施方式Detailed ways
下面将详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Embodiments of the present application will be described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present application, but should not be construed as a limitation on the present application. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The features of the terms "first" and "second" in the description and claims of this application may expressly or implicitly include one or more of such features. In the description of this application, unless stated otherwise, "plurality" means two or more. In addition, "and/or" in the description and claims indicates at least one of the connected objects, and the character "/" generally indicates that the associated objects are in an "or" relationship.
在本申请的描述中,需要理解的是,术语“竖直”、“水平”、“垂直”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of the present application, it should be understood that the orientations or positional relationships indicated by the terms "vertical", "horizontal", "vertical", "clockwise", "counterclockwise", etc. are based on the orientations shown in the drawings Or the positional relationship is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the present application.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise expressly specified and limited, the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood in specific situations.
相关技术中,摄像组件中通常包括红外光截止滤色片(Infrared cutoff filter,IRCF),进入摄像组件中的光线经过红外光截止滤色片后,会过滤掉非可见光,一般只剩下波长为380nm-780nm的光线进入摄像组件中的成像芯片中。这种结构,在摄像组件所处的环境的光线明亮的情况下,不会影响成像芯片的成像质量,然而,若在暗光环境下,本身外界环境光线就非常有限,而进入成像芯片中的光线又会被红外光截止滤色片截止一部分,导致摄像模组在暗光环境下成像质量差。目前通常是通过软件,提高成像芯片的感光效果,但是,进入成像芯片的总的光源能量并未增加,无法从根本上解决成像质量差的问题。In the related art, the camera assembly usually includes an infrared cutoff filter (Infrared cutoff filter, IRCF). After the light entering the camera assembly passes through the infrared light cutoff filter, the non-visible light will be filtered out, and generally only wavelengths of 380nm-780nm light enters the imaging chip in the camera assembly. This structure will not affect the imaging quality of the imaging chip when the light in the environment where the camera assembly is located is bright. However, in a dark light environment, the external ambient light itself is very limited, and the light entering the imaging chip The light will be partially cut off by the infrared light cut filter, resulting in poor image quality of the camera module in a dark light environment. At present, the photosensitive effect of the imaging chip is usually improved through software, but the total light source energy entering the imaging chip has not increased, and the problem of poor imaging quality cannot be fundamentally solved.
而本申请的摄像模组,在使用该摄像模组拍摄过程中,若需要截止非可见光(例如白天拍摄时),则驱动电极可以向腔室中的液体施加预设电压,使得液体铺展在所述第一透光介质与所述第二透光介质之间,以截止非可见光;若需要提升摄像模组的进光量(例如夜晚的暗光环境拍摄时),则驱动电极可以处于断电状态,从而使得上述液体自然收缩于亲水封装层处,以避免液体处于摄像模组的入射光路上遮挡进光量,能够充分利用非可见光的能量,增加了摄像模组进光量,提高了暗光环境下的拍摄质量。也就是说,本申请是摄像模组,可以在不同的光照环境下,灵活的控制液体铺展在所述第一透光介质与所述第二透光介质之间,以截止非可见光(例如红外光),或控制液体收缩于摄像模组的亲水封装层处,使得液体避让摄像模组的入射光路上进光量,以增加摄像模组进光量,能够充分利用非可见光的能量,增加了摄像模组的成像芯片所吸收的光线能量,提高了暗光环境下的拍摄质量。However, in the camera module of the present application, if the non-visible light needs to be cut off (for example, when shooting during the day) during the shooting process using the camera module, the driving electrode can apply a preset voltage to the liquid in the chamber, so that the liquid spreads in all places. between the first light-transmitting medium and the second light-transmitting medium to cut off invisible light; if it is necessary to increase the light input of the camera module (for example, when shooting in a dark light environment at night), the driving electrode can be in a power-off state , so that the above-mentioned liquid naturally shrinks at the hydrophilic encapsulation layer, so as to prevent the liquid from being on the incident light path of the camera module and block the incoming light, making full use of the energy of non-visible light, increasing the amount of light entering the camera module, and improving the dark light environment. shooting quality below. That is to say, the present application is a camera module, which can flexibly control the liquid to spread between the first light-transmitting medium and the second light-transmitting medium under different lighting environments, so as to cut off non-visible light (such as infrared light). light), or control the liquid to shrink at the hydrophilic encapsulation layer of the camera module, so that the liquid avoids the amount of light entering the incident light path of the camera module, so as to increase the amount of light entering the camera module, making full use of the energy of non-visible light, increasing the camera module. The light energy absorbed by the imaging chip of the module improves the shooting quality in the dark light environment.
下面结合图1至图9描述本申请实施例提供的摄像模组1000及电子设备200。The following describes the
如图1所示,该摄像模组1000包括:镜头300,滤光单元100和成像芯片400;滤光单元包括:第一透光介质110,第二透光介质120和亲水封装层130;亲水封装层130的一侧与第一透光介质连接,另一侧与第二透光介质连接,亲水封装层与第一透光介质和第二透光介质构成腔室;腔室内设有驱动电极140和液体150。As shown in FIG. 1 , the
镜头300,第一透光介质110,第二透光介质120,及成像芯片400依次沿镜头的光轴方向设置。The
其中,在驱动电极向液体施加预设电压的情况下,液体铺展在第一透光介质与第二透光介质之间,以截止非可见光;Wherein, when the driving electrode applies a preset voltage to the liquid, the liquid spreads between the first light-transmitting medium and the second light-transmitting medium to cut off invisible light;
在驱动电极断电状态的情况下,液体收缩于亲水封装层处。In the case of the power-off state of the drive electrode, the liquid shrinks at the hydrophilic encapsulation layer.
可以理解,本申请实施例中,镜头300,第一透光介质110,第二透光介质120,及成像芯片400依次沿镜头的光轴方向设置,是指:镜头300,滤光单元100,成像芯片400,依次设于摄像模组的入射光路上。示例性地,如图1所示,图1中,镜头300,滤光单元100,成像芯片400,依次设于摄像模组的入射光路上,图1中的箭头方向为进入摄像模组的光线方向。It can be understood that in this embodiment of the present application, the
示例性地,结合图1,如图2所示,图2为图1中的滤光单元的爆炸图,可见,镜头300,第一透光介质110,第二透光介质120和成像芯片400依次设置在摄像模组的入射光路上(即,镜头300,第一透光介质110,第二透光介质120和成像芯片400依次沿镜头的光轴方向设置)。从而,在拍摄时,入射光依次经过镜头,第一透光介质和第二透光介质之后,会进入成像芯片,进行成像,从而完成拍摄。Exemplarily, with reference to FIG. 1, as shown in FIG. 2, FIG. 2 is an exploded view of the filter unit in FIG. They are sequentially arranged on the incident light path of the camera module (ie, the
可以理解,第一透光介质110与第二透光介质120之间存在间隙,用于容纳封装上述液体150。It can be understood that a gap exists between the first light-transmitting
本申请实施例中,上述液体150可以为液滴,例如微小液滴。In this embodiment of the present application, the above-mentioned
本申请实施例中,第一透光介质110和第二透光介质120的形状可以为圆形,方形等其他可能的形状。In the embodiment of the present application, the shapes of the first light-transmitting
示例性地,第一透光介质110和第二透光介质120可以采用玻璃基板,例如能够透光的无色玻璃或蓝色玻璃。Exemplarily, the first light-transmitting
本申请实施例中,亲水封装层130的两侧,可以分别连接于第一透光介质110的边缘和第二透光介质120的边缘,或分别连接于靠近第一透光介质110的外周处和第二透光介质120的外周处(即分别连接于靠近第一透光介质110的边缘处和第二透光介质120的边缘处),只要亲水封装层130能够与第一透光介质110和第二透光介质120构成一个腔室即可。In the embodiment of the present application, the two sides of the
示例性地,如图3所示,亲水封装层130的两侧,分别连接于第一透光介质110的边缘和第二透光介质120的边缘,图3中可见,亲水封装层130与第一透光介质110和第二透光介质120构成的上述腔室,液体150位于该腔室中。Exemplarily, as shown in FIG. 3 , two sides of the
需要说明,亲水封装层130,能够在驱动电极140断电的情况下,即需要提升摄像模组的进光量的情况下,使上述液体150收缩至亲水封装层130的侧壁处内侧,根据表面能越大疏水性能越差的原则,亲水封装层130的材料具备较大的表面能,当摄像模组中此处表面能最小时,就能使得上述液体150聚集在亲水封装层130处,达到约束液体150的作用。It should be noted that the
示例性地,亲水封装层130的材料可以为亲水纤维,或者亲水树脂,或其他可能的材料。Exemplarily, the material of the
可以理解,上述液体150可以为能够截止非可见光的液体150,例如,吸收红外光的液体150,或者反射红外光的液体150,或其他可能的液体150。It can be understood that the above-mentioned liquid 150 can be a liquid 150 that can cut off invisible light, for example, a liquid 150 that absorbs infrared light, or a liquid 150 that reflects infrared light, or other
可以理解,上述驱动电极140位于腔室内,与上述液体150接触。如此,在使用该摄像模组拍摄过程中,若需要截止非可见光(例如白天拍摄时),则驱动电极140可以向腔室中的液体150施加预设电压,使得液体150可以均匀的铺展在第一透光介质110与第二透光介质120之间,以截止非可见光;若需要提升摄像模组的进光量(例如夜晚拍摄时),则驱动电极140可以处于断电状态,从而使得上述液体150自然收缩于亲水封装层130处,以避免遮挡摄像模组的进光量,能够充分利用非可见光的能量,增加了摄像模组进光量。It can be understood that the above-mentioned
示例性地,如图3所示,图3示出了驱动电极140可以处于断电状态,上述液体150自然收缩于亲水封装层130处的一种可能的侧视图,图3中可见,液体150收缩于亲水封装层130处,可以理解,液体150可以收缩于腔室的内侧壁的亲水封装层130处。Exemplarily, as shown in FIG. 3 , FIG. 3 shows a possible side view in which the driving
示例性地,摄像模组包括与驱动电极140电连接的导线,该导线的一端可以位于腔室内,另一端可以穿出腔室,并且,导线与腔室之间密封。Exemplarily, the camera module includes a wire electrically connected to the driving
本申请实施例提供的摄像模组,在使用该摄像模组拍摄过程中,若需要截止非可见光,则驱动电极可以向腔室中的液体施加预设电压,使得液体铺展在所述第一透光介质与所述第二透光介质之间,以截止非可见光(例如红外光);若需要提升摄像模组的进光量,则驱动电极可以处于断电状态,从而使得上述液体自然收缩于亲水封装层处,以避免液体遮挡摄像模组的进光量,如此,在暗光环境下拍摄时,可以充分利用非可见光的能量,增加了摄像模组进光量,提高了暗光环境下的拍摄质量。In the camera module provided by the embodiment of the present application, if the non-visible light needs to be cut off during the shooting process using the camera module, the driving electrode can apply a preset voltage to the liquid in the chamber, so that the liquid spreads on the first transparent Between the optical medium and the second light-transmitting medium to cut off invisible light (such as infrared light); if it is necessary to increase the light input of the camera module, the driving electrode can be in a power-off state, so that the above-mentioned liquid naturally shrinks to the pro- The water encapsulation layer is used to avoid liquid blocking the light input of the camera module. In this way, when shooting in a dark light environment, the energy of invisible light can be fully utilized, which increases the light input of the camera module and improves shooting in a dark light environment. quality.
可选地,本申请实施例中,如图2所示,上述腔室内还设有介电疏水层160,液体位于介电疏水层与目标透光介质之间;目标透光介质为第一透光介质和第二透光介质中的任一个;其中,在驱动电极140处于断电状态的情况下,介电疏水层未通电,介电疏水层与液体的疏水接触角为第一角度;在驱动电极向液体施加预设电压的情况下,介电疏水层通电,介电疏水层与液体的疏水接触角为第二角度;第一角度大于第二角度。Optionally, in the embodiment of the present application, as shown in FIG. 2 , a dielectric
可以理解,介电疏水层能够透光。It can be understood that the dielectric hydrophobic layer can transmit light.
本申请实施例中,介电疏水层的材料可以采用介电和疏水符合材料,介电疏水层有较大的介电常数和较大的疏水角,使得驱动电极在向液体施加预设电压后,液体能够沿着介电疏水层有较大的动态范围,控制液体在腔室中自由流动,使得液体的流动可以不受摄像模组的姿势影响。In the embodiment of the present application, the material of the dielectric hydrophobic layer may be dielectric and hydrophobic conforming materials, and the dielectric hydrophobic layer has a large dielectric constant and a large hydrophobic angle, so that the driving electrode can apply a preset voltage to the liquid after the drive electrode is applied with a preset voltage. , the liquid can have a large dynamic range along the dielectric hydrophobic layer, and control the free flow of the liquid in the chamber, so that the flow of the liquid can not be affected by the posture of the camera module.
本申请实施例中,介电疏水层与驱动电极连接,从而,在驱动电极通电的情况下(例如,驱动电极向液体施加预设电压的情况下),介电疏水层处于通电状态。In the embodiment of the present application, the dielectric hydrophobic layer is connected to the driving electrode, so that when the driving electrode is energized (for example, when the driving electrode applies a preset voltage to the liquid), the dielectric hydrophobic layer is in an energized state.
本申请实施例中,根据电润湿原理,驱动电压越大,介电疏水层的疏水角越小,介电疏水层的整个膜层都趋于亲水状态。In the embodiment of the present application, according to the principle of electrowetting, the larger the driving voltage, the smaller the hydrophobic angle of the dielectric hydrophobic layer, and the entire film layer of the dielectric hydrophobic layer tends to be in a hydrophilic state.
也就是说,介电疏水层的疏水能力与介电疏水层的通电电压负相关,即介电疏水层的通电电压越大,介电疏水层的疏水能力越小,介电疏水层的通电电压越小,介电疏水层的疏水能力越大,若介电疏水层的通电电压为0,介电疏水层的疏水能力最大。That is to say, the hydrophobic capability of the dielectric hydrophobic layer is negatively correlated with the electrification voltage of the dielectric hydrophobic layer, that is, the greater the electrification voltage of the dielectric hydrophobic layer, the smaller the hydrophobic capability of the dielectric hydrophobic layer, and the electrification voltage of the dielectric hydrophobic layer. The smaller the value, the greater the hydrophobic ability of the dielectric hydrophobic layer. If the electrification voltage of the dielectric hydrophobic layer is 0, the hydrophobic ability of the dielectric hydrophobic layer is the largest.
如此,若需要截止非可见光时,驱动电极处于通电状态,相应的,介电疏水层处于通电状态,介电疏水层的疏水能力减弱,从而使得液体快速均匀的铺展在第一透光介质与第二透光介质之间(即介电疏水层与目标透光介质之间);若需要增加摄像模组的进光量时,驱动电极处于断电状态,相应的,介电疏水层处于断电状态,介电疏水层的疏水能力最大,从而,使得液体快速收缩于亲水封装层处,以避免遮挡摄像模组的进光量。In this way, if the non-visible light needs to be cut off, the driving electrode is in an energized state, correspondingly, the dielectric hydrophobic layer is in an energized state, and the hydrophobic ability of the dielectric hydrophobic layer is weakened, so that the liquid quickly and uniformly spreads on the first light-transmitting medium and the second light-transmitting medium. Between two light-transmitting media (that is, between the dielectric hydrophobic layer and the target light-transmitting medium); if it is necessary to increase the light input of the camera module, the driving electrode is in a power-off state, and correspondingly, the dielectric hydrophobic layer is in a power-off state , the hydrophobicity of the dielectric hydrophobic layer is the largest, so that the liquid rapidly shrinks at the hydrophilic encapsulation layer to avoid blocking the light input of the camera module.
示例性地,介电疏水层的材料可以为聚甲基丙烯酸甲酯(PMMA),或者,聚二甲基硅氧烷(PDMS)。Exemplarily, the material of the dielectric hydrophobic layer may be polymethyl methacrylate (PMMA), or polydimethylsiloxane (PDMS).
可以理解,在驱动电极处于断电状态的情况下,介电疏水层未通电(即处于断电状态),介电疏水层在这个状态下的疏水能力最大;在驱动电极向液体施加预设电压的情况下,介电疏水层通电,相比介电疏水层处于断电状态的情况,介电疏水层的疏水能力减弱。因此,第一角度大于第二角度。It can be understood that when the driving electrode is in a power-off state, the dielectric hydrophobic layer is not energized (that is, in a power-off state), and the hydrophobicity of the dielectric hydrophobic layer is the largest in this state; when the driving electrode applies a preset voltage to the liquid In the case where the dielectric hydrophobic layer is electrified, the hydrophobicity of the dielectric hydrophobic layer is weakened compared to the case where the dielectric hydrophobic layer is in an off state. Therefore, the first angle is greater than the second angle.
可以理解,如图2所示,第一透光介质,介电疏水层,第二透光介质,依次设于所述摄像模组的入射光路上。目标透光介质不同,则液体所处的位置不同,基于此,本申请包括以下可能的示例。It can be understood that, as shown in FIG. 2 , the first light-transmitting medium, the dielectric hydrophobic layer, and the second light-transmitting medium are sequentially arranged on the incident light path of the camera module. If the target light-transmitting medium is different, the position of the liquid will be different. Based on this, the present application includes the following possible examples.
一种可能的示例中,若目标透光介质为第一透光介质,如图2所示,液体150位于第一透光介质110与介电疏水层160之间。In a possible example, if the target light-transmitting medium is the first light-transmitting medium, as shown in FIG. 2 , the liquid 150 is located between the first light-transmitting
另一种可能的示例中,若目标透光介质为第二透光介质,液体位于第二透光介质与介电疏水层之间。In another possible example, if the target light-transmitting medium is the second light-transmitting medium, the liquid is located between the second light-transmitting medium and the dielectric hydrophobic layer.
可选地,本申请实施例中,如图2所示,上述驱动电极140包括第一电极141和第二电极142;沿第一方向,第一电极141、液体150、介电疏水层160、和第二电极142依次设置。Optionally, in this embodiment of the present application, as shown in FIG. 2 , the above-mentioned
其中,第一方向为:由目标透光介质至介电疏水层的方向。Wherein, the first direction is: the direction from the target light-transmitting medium to the dielectric hydrophobic layer.
可以理解,第一电极和第二电极均能够透光。It can be understood that both the first electrode and the second electrode can transmit light.
示例性地,若目标透光介质为第一透光介质,如图2所示,沿第一方向(图2中为自上至下的方向),第一透光介质110、第一电极141、液体150、介电疏水层160、第二电极142、和第二透光介质120依次设置。Exemplarily, if the target light-transmitting medium is the first light-transmitting medium, as shown in FIG. 2 , along the first direction (the direction from top to bottom in FIG. 2 ), the first light-transmitting
示例性地,若目标透光介质为第二透光介质,沿第一方向,第二透光介质、第一电极、液体、介电疏水层、第二电极、和第一透光介质依次设置。Exemplarily, if the target light-transmitting medium is the second light-transmitting medium, along the first direction, the second light-transmitting medium, the first electrode, the liquid, the dielectric hydrophobic layer, the second electrode, and the first light-transmitting medium are arranged in sequence. .
可选地,本申请实施例中,如图2所示,上述第一电极141为一体式电极。Optionally, in the embodiment of the present application, as shown in FIG. 2 , the above-mentioned
可以理解,第一电极为一体成型的电极。It can be understood that the first electrode is an integrally formed electrode.
示例性地,第一电极的形状与第一透光介质的形状一致。Exemplarily, the shape of the first electrode is consistent with the shape of the first light-transmitting medium.
可选地,本申请实施例中,如图2所示,上述第二电极142为分体式电极,第二电极包括多个子电极,多个子电极间隔设置。Optionally, in the embodiment of the present application, as shown in FIG. 2 , the
示例性地,多个子电极可以均匀布置在上述腔室内,例如,如图4所示,多个子电极可以阵列布置在上述腔室内。Exemplarily, a plurality of sub-electrodes may be uniformly arranged in the above-mentioned chamber. For example, as shown in FIG. 4 , a plurality of sub-electrodes may be arranged in an array in the above-mentioned chamber.
可选地,本申请实施例中,如图5和图6所示,当摄像模组处于第一拍摄状态时,在驱动电极向液体施加预设电压的情况下,多个子电极中每个子电极对应的电压相等;Optionally, in the embodiment of the present application, as shown in FIG. 5 and FIG. 6 , when the camera module is in the first shooting state, under the condition that the driving electrode applies a preset voltage to the liquid, each sub-electrode in the plurality of sub-electrodes The corresponding voltages are equal;
当摄像模组处于第二拍摄状态时,在所述驱动电极向所述液体施加预设电压的情况下,多个子电极中,每个子电极对应的电压沿第二方向逐渐减小。When the camera module is in the second shooting state, under the condition that the driving electrode applies a preset voltage to the liquid, among the plurality of sub-electrodes, the voltage corresponding to each sub-electrode gradually decreases along the second direction.
示例性地,当摄像模组处于第一拍摄状态时,摄像模组可以处于水平放置状态(或接近水平放置状态),第一透光介质和第二透光介质也处于水平放置状态(或接近水平放置状态)。Exemplarily, when the camera module is in the first shooting state, the camera module may be in a horizontal placement state (or close to a horizontal placement state), and the first light-transmitting medium and the second light-transmitting medium are also in a horizontal placement state (or close to a horizontal placement state). horizontal position).
示例性地,第二方向可以为重力方向。Exemplarily, the second direction may be the direction of gravity.
示例性地,当摄像模组处于第二拍摄状态时,摄像模组可以处于竖直放置状态,第一透光介质和第二透光介质也处于竖直放置状态。Exemplarily, when the camera module is in the second shooting state, the camera module may be in a vertical placement state, and the first light-transmitting medium and the second light-transmitting medium are also in a vertical placement state.
示例性地,当摄像模组处于第二拍摄状态时,摄像模组与水平面之间的夹角大于或等于预设角度,并小于或等于90°;同样的,第一透光介质和第二透光介质也与水平面之间的夹角大于或等于预设角度,并小于或等于90°。Exemplarily, when the camera module is in the second shooting state, the angle between the camera module and the horizontal plane is greater than or equal to the preset angle, and less than or equal to 90°; similarly, the first light-transmitting medium and the second The included angle between the light-transmitting medium and the horizontal plane is greater than or equal to the preset angle and less than or equal to 90°.
可以理解,当摄像模组处于第一拍摄状态时,在驱动电极向液体施加预设电压的情况下,说明摄像模组所处环境的光强度大于或等于预设阈值,需要进行截止非可见光,从而,驱动电极向液体施加预设电压,且多个子电极中每个子电极对应的电压相等,以使得液体均匀的铺展在第一透光介质与第二透光介质之间。It can be understood that when the camera module is in the first shooting state, and the driving electrode applies a preset voltage to the liquid, it means that the light intensity of the environment where the camera module is located is greater than or equal to the preset threshold, and it is necessary to cut off invisible light. Therefore, the driving electrode applies a preset voltage to the liquid, and the voltage corresponding to each sub-electrode in the plurality of sub-electrodes is equal, so that the liquid is uniformly spread between the first light-transmitting medium and the second light-transmitting medium.
可以理解,当摄像模组处于第二拍摄状态时,在驱动电极向液体施加预设电压的情况下,说明摄像模组所处环境的光强度大于或等于预设阈值,需要进行截止非可见光,从而,驱动电极向液体施加预设电压,且多个子电极中,每个子电极对应的电压沿第二方向逐渐减小,以使得液体均匀的铺展在第一透光介质与第二透光介质之间。It can be understood that when the camera module is in the second shooting state, when the driving electrode applies a preset voltage to the liquid, it means that the light intensity of the environment where the camera module is located is greater than or equal to the preset threshold, and it is necessary to cut off invisible light. Therefore, the driving electrode applies a preset voltage to the liquid, and among the plurality of sub-electrodes, the voltage corresponding to each sub-electrode gradually decreases along the second direction, so that the liquid evenly spreads between the first light-transmitting medium and the second light-transmitting medium between.
如此,实现对液体的分区控制,来克服摄像模组不同的姿势差,对拍摄效果的影响。In this way, the partition control of the liquid is realized to overcome the influence of different postures of the camera modules on the shooting effect.
示例1,如图6所示,图6示出了摄像模组处于第二拍摄状态时的示意图,图6中,第二电极142包括沿第二方向的5组子电极,每组子电极可以包括至少一个子电极,每组子电极对应的电压沿第二方向依次为:2.5V,2V,1.5V,1V,0.5V。Example 1, as shown in FIG. 6, FIG. 6 shows a schematic diagram of the camera module in the second shooting state. In FIG. 6, the
如此,越靠下的位置,第二电极的子电极对应的电压越小,以使得此区域液体的疏水性能越好,逐渐往上,子电极对应的电压逐渐增大,使得液体的疏水性能逐渐变差,以克服重力的作用。In this way, the lower the position is, the lower the voltage corresponding to the sub-electrode of the second electrode is, so that the hydrophobic performance of the liquid in this area is better. becomes worse to overcome the effect of gravity.
示例2,结合示例1和图4,可见,每组子电极包括5个子电极。Example 2, in conjunction with Example 1 and FIG. 4, it can be seen that each group of sub-electrodes includes 5 sub-electrodes.
需要说明,示例1中各个子电极对应的电压只是示意,针对不同摄像模组,还需要对比不同摄像模组的重力表现实际计算得到电压分布。It should be noted that the voltage corresponding to each sub-electrode in Example 1 is only a schematic representation. For different camera modules, it is also necessary to compare the gravity performance of different camera modules to actually calculate the voltage distribution.
实际场景中,可以根据不同摄像模组的重力表现,预先计算各个子电极实际的电压分布,并将计算的实际电压分布对应的电压分布表存储在存储单元中,从而,当摄像模组处于第二拍摄状态时,驱动电极可以直接根据存储单元中预先存储的电压分布情况,向液体施加电压。In the actual scene, the actual voltage distribution of each sub-electrode can be pre-calculated according to the gravity performance of different camera modules, and the voltage distribution table corresponding to the calculated actual voltage distribution can be stored in the storage unit. In the second shooting state, the driving electrode can directly apply a voltage to the liquid according to the voltage distribution pre-stored in the storage unit.
电润湿原理:电介质上的电润湿(Electrowetting on Dielectric,EWOD)是通过改变界面张力来控制微小液滴的最有效方法之一,其主要原理是通过改变施加在介电层(例如上述介电疏水层)及其表面的导电液体外的电压控制介电层润湿性能的变化,通过使其内部产生压强差,进一步驱动液-固相的接触角改变,造成液滴的形变,最终达到控制驱动电压来调控液滴形状和位置的目的。电极和液滴之间的介电层在EWOD器件中起着至关重要的作用,介电层材料的选择和制备工艺直接影响器件的性能和应用。Young-Lippmann方程可以描述极性液体在电润湿器件中具有电压依赖性的润湿原理。Electrowetting principle: Electrowetting on Dielectric (EWOD) is one of the most effective methods to control tiny droplets by changing the interfacial tension. The voltage outside the electrically-hydrophobic layer) and the conductive liquid on its surface controls the change of the wetting properties of the dielectric layer, and further drives the change of the contact angle of the liquid-solid phase by generating a pressure difference inside it, resulting in the deformation of the droplet, and finally achieves the The purpose of controlling the driving voltage to modulate the shape and position of the droplet. The dielectric layer between electrodes and droplets plays a crucial role in EWOD devices, and the selection of dielectric layer materials and fabrication processes directly affect the performance and applications of the devices. The Young-Lippmann equation can describe the wetting principle of polar liquids with voltage dependence in electrowetting devices.
Young-Lippmann方程,上式只适用于理想的光滑、均一、刚性、惰性表面,其中d是介电润湿层厚度;γlg是气-液界面的表面张力;ε0是真空介电常数;ε是介电润湿层的介电常数;V是外加电压;θ为施加电压V下的液滴接触角;θ0为初始静态接触角。Young-Lippmann equation, the above equation only applies to ideal smooth, uniform, rigid, inert surfaces, where d is the thickness of the dielectric wetting layer; γlg is the surface tension of the gas-liquid interface; ε0 is the vacuum dielectric constant; ε is the dielectric constant of the dielectric wetting layer; V is the applied voltage; θ is the droplet contact angle under the applied voltage V; θ 0 is the initial static contact angle.
根据上述方程,阈值电压是由介电层厚度与介电常数之比决定的,因此高介电常数的介电薄膜对降低驱动阈值电压、提高器件可靠性至关重要,并保证电压驱动时接触角有较大的变化范围。而介电层具有低表面能和低润湿性是保证薄膜表面微流体更方便流动的另一关键因素。因此,具有高介电常数和疏水表面的介电层是低压电润湿器件的关键。According to the above equation, the threshold voltage is determined by the ratio of the thickness of the dielectric layer to the dielectric constant, so a dielectric film with a high dielectric constant is crucial for lowering the driving threshold voltage, improving device reliability, and ensuring contact during voltage driving. The angle has a large variation range. The low surface energy and low wettability of the dielectric layer are another key factor to ensure more convenient flow of microfluidics on the surface of the film. Therefore, a dielectric layer with a high dielectric constant and a hydrophobic surface is the key to low-voltage electrowetting devices.
可选地,本申请实施例中,结合图1,如图2所示,上述第一透光介质,第一电极,介电疏水层,第二电极,第二透光介质,依次设于摄像模组的入射光路上;Optionally, in the embodiment of the present application, with reference to FIG. 1 and as shown in FIG. 2 , the first light-transmitting medium, the first electrode, the dielectric hydrophobic layer, the second electrode, and the second light-transmitting medium are sequentially arranged on the camera. On the incident light path of the module;
目标透光介质为第一透光介质。The target light-transmitting medium is the first light-transmitting medium.
示例性地,结合图1,可知,入射光路的方向为自上至下,参照图2,第一透光介质110,第一电极141,介电疏水层160,第二电极142,第二透光介质120,自上至下依次设置。该示例中,液体150位于第一电极141和介电疏水层160之间。Exemplarily, referring to FIG. 1 , it can be known that the direction of the incident light path is from top to bottom. Referring to FIG. 2 , the first light-transmitting
可选地,本申请实施例中,上述第一电极和所述第二电极均为透光导电膜。Optionally, in the embodiment of the present application, the first electrode and the second electrode are both light-transmitting conductive films.
示例性地,第一电极和所述第二电极均可以为铟锡氧化物半导体透明导电膜,或其他可能的透光导电膜。Exemplarily, both the first electrode and the second electrode may be an indium tin oxide semiconductor transparent conductive film, or other possible light-transmitting conductive films.
可选地,本申请实施例中,上述第一电极镀设于第一透光介质表面,第二电极镀设于第二透光介质表面。Optionally, in the embodiment of the present application, the first electrode is plated on the surface of the first light-transmitting medium, and the second electrode is plated on the surface of the second light-transmitting medium.
示例性地,可以将第一电极蒸镀于第一透光介质的表面,将第二电极蒸镀于第二透光介质的表面。Exemplarily, the first electrode may be vapor-deposited on the surface of the first light-transmitting medium, and the second electrode may be vapor-deposited on the surface of the second light-transmitting medium.
示例性地,第一透光介质靠近第二透光介质的一侧的表面可以整面镀设第一电极。Exemplarily, the surface of the side of the first light-transmitting medium close to the second light-transmitting medium may be plated with the first electrode on the entire surface.
可以理解,第二电极的各个子电极,是通过分区镀设于第二透光介质的表面。It can be understood that each sub-electrode of the second electrode is plated on the surface of the second light-transmitting medium by partitioning.
本申请实施例还提供了一种电子设备200,如图7所示,该电子设备包括上述实施例中任一项实施例中的摄像模组1000。An embodiment of the present application further provides an
可选地,本申请实施例中,结合图7,如图8所示,上述电子设备包括角度检测单元210,供电单元220和控制单元230;角度检测单元用于检测电子设备的倾斜角度;控制单元分别与角度检测单元和供电单元连接;供电单元与摄像模组的驱动电极连接;控制单元,用于根据角度检测单元所检测的倾斜角度,控制供电单元向驱动电极的供电电压。Optionally, in the embodiment of the present application, with reference to FIG. 7 , as shown in FIG. 8 , the above-mentioned electronic device includes an
可以理解,角度检测单元所检测的电子设备的倾斜角度,即为摄像模组的倾斜角度,例如,当摄像模组处于第一拍摄状态时,摄像模组对应的倾斜角度(即,摄像模组与水平面之间的夹角的角度)为0度,当摄像模组处于第二拍摄状态时,摄像模组对应的倾斜角度为90度。其中,摄像模组对应的倾斜角度为:摄像模组与水平面之间的夹角。It can be understood that the tilt angle of the electronic device detected by the angle detection unit is the tilt angle of the camera module. For example, when the camera module is in the first shooting state, the tilt angle corresponding to the camera module (that is, the camera module The angle of the included angle with the horizontal plane) is 0 degrees, and when the camera module is in the second shooting state, the corresponding inclination angle of the camera module is 90 degrees. Wherein, the inclination angle corresponding to the camera module is: the angle between the camera module and the horizontal plane.
示例性地,角度检测单元可以采用陀螺仪,或其他可能的用于检测角度的结构件。Exemplarily, the angle detection unit may use a gyroscope, or other possible structural components for detecting the angle.
需要说明,结合图8,如图9所示,电子设备还可以包括存储单元240,该存储单元240可以为上述存储单元。It should be noted that, with reference to FIG. 8 , as shown in FIG. 9 , the electronic device may further include a
示例性地,存储单元240可以包括上述电压分布表,控制单元与存储单元连接,用于根据角度检测单元所检测的倾斜角度和电压分布表,控制供电单元向驱动电极的供电电压。Exemplarily, the
示例性地,沿上述第二方向相邻的子电极的电压的差值,与电子设备的倾斜角度正相关。Exemplarily, the difference between the voltages of adjacent sub-electrodes along the second direction is positively correlated with the tilt angle of the electronic device.
示例性地,电子设备的倾斜角度的范围可以为0°~90°。Exemplarily, the tilt angle of the electronic device may range from 0° to 90°.
如此,当电子设备竖直拍摄时,控制单元可以直接根据角度检测单元所检测的倾斜角度和电压分布表,控制供电单元向驱动电极的供电电压,从而控制驱动电极向液体施加的电压,以使得液体均匀的铺展在第一透光介质与第二透光介质之间,克服了重力对液体分布的影响。In this way, when the electronic device shoots vertically, the control unit can directly control the power supply voltage of the power supply unit to the driving electrodes according to the inclination angle and the voltage distribution table detected by the angle detection unit, thereby controlling the voltage applied by the driving electrodes to the liquid, so that the The liquid spreads evenly between the first light-transmitting medium and the second light-transmitting medium, overcoming the influence of gravity on the liquid distribution.
可以理解,电子设备中通常包括角度检测单元,控制单元,供电单元和存储单元,因此,可以直接复用电子设备中的这些单元器件(即角度检测单元,控制单元,供电单元和存储单元),以节省电子设备的空间。It can be understood that an electronic device usually includes an angle detection unit, a control unit, a power supply unit and a storage unit. Therefore, these unit devices (ie, the angle detection unit, the control unit, the power supply unit and the storage unit) in the electronic device can be directly reused, to save space on electronic equipment.
如此,本申请实施例的电子设备,可以在不同的光照环境下,通过控制单元,根据角度检测单元所检测的电子设备的倾斜角度,灵活的控制供电单元向驱动电极的供电电压,从而,灵活的控制摄像模组中的液体铺展在第一透光介质与所述第二透光介质之间,以截止非可见光(例如红外光),或控制液体收缩于摄像模组的亲水封装层处,使得液体避让摄像模组的入射光路上进光量,以增加摄像模组的进光量,能够充分利用非可见光的能量,增加了摄像模组的成像芯片所吸收的光线能量,提高了暗光环境下的拍摄质量。In this way, the electronic device of the embodiment of the present application can flexibly control the power supply voltage of the power supply unit to the driving electrodes through the control unit under different lighting environments, according to the tilt angle of the electronic device detected by the angle detection unit, thereby flexibly control the liquid in the camera module to spread between the first light-transmitting medium and the second light-transmitting medium to cut off invisible light (such as infrared light), or control the liquid to shrink at the hydrophilic packaging layer of the camera module , so that the liquid avoids the amount of light entering the incident light path of the camera module, so as to increase the amount of light entering the camera module, can make full use of the energy of invisible light, increase the light energy absorbed by the imaging chip of the camera module, and improve the dark light environment. shooting quality below.
需要注意的是,本申请实施例中的电子设备可以包括移动电子设备和非移动电子设备。示例性的,移动电子设备可以为移动终端设备,例如手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personalcomputer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为非移动终端设备,例如服务器、网络附属存储器(network attachedstorage,NAS)、个人计算机(personal computer,PC)等,本申请实施例不作具体限定。It should be noted that the electronic devices in the embodiments of the present application may include mobile electronic devices and non-mobile electronic devices. Exemplarily, the mobile electronic device may be a mobile terminal device, such as a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital Assistant (personal digital assistant, PDA), etc., the non-mobile electronic device may be a non-mobile terminal device, such as a server, a network attached storage (network attached storage, NAS), a personal computer (personal computer, PC), etc., which are not specifically described in the embodiments of this application. limited.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "exemplary embodiment," "example," "specific example," or "some examples", etc., is meant to incorporate the embodiments A particular feature, structure, material, or characteristic described by an example or example is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。Although the embodiments of the present application have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the present application, The scope of the application is defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210365343.2A CN114779554B (en) | 2022-04-07 | 2022-04-07 | Camera modules and electronic equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210365343.2A CN114779554B (en) | 2022-04-07 | 2022-04-07 | Camera modules and electronic equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114779554A true CN114779554A (en) | 2022-07-22 |
| CN114779554B CN114779554B (en) | 2024-07-23 |
Family
ID=82427371
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210365343.2A Active CN114779554B (en) | 2022-04-07 | 2022-04-07 | Camera modules and electronic equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114779554B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024067055A1 (en) * | 2022-09-29 | 2024-04-04 | 荣耀终端有限公司 | Optical assembly, preparation method for optical assembly, and electronic device |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1682143A (en) * | 2002-09-19 | 2005-10-12 | 皇家飞利浦电子股份有限公司 | Switchable Optics |
| CN104054016A (en) * | 2012-03-30 | 2014-09-17 | 富士胶片株式会社 | Optical element and image display device |
| CN105593756A (en) * | 2014-07-31 | 2016-05-18 | Jsr株式会社 | Display element, photosensitive composition, and electrowetting display |
| CN110649051A (en) * | 2019-09-02 | 2020-01-03 | Oppo广东移动通信有限公司 | Filter elements, image sensors, camera modules and terminal equipment |
| CN112492153A (en) * | 2020-11-17 | 2021-03-12 | 维沃移动通信有限公司 | Camera module and electronic equipment |
| CN113114922A (en) * | 2021-05-27 | 2021-07-13 | 维沃移动通信有限公司 | Camera module and electronic equipment |
| CN113747035A (en) * | 2021-10-12 | 2021-12-03 | 维沃移动通信有限公司 | Camera module and electronic equipment |
-
2022
- 2022-04-07 CN CN202210365343.2A patent/CN114779554B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1682143A (en) * | 2002-09-19 | 2005-10-12 | 皇家飞利浦电子股份有限公司 | Switchable Optics |
| CN104054016A (en) * | 2012-03-30 | 2014-09-17 | 富士胶片株式会社 | Optical element and image display device |
| CN105593756A (en) * | 2014-07-31 | 2016-05-18 | Jsr株式会社 | Display element, photosensitive composition, and electrowetting display |
| CN110649051A (en) * | 2019-09-02 | 2020-01-03 | Oppo广东移动通信有限公司 | Filter elements, image sensors, camera modules and terminal equipment |
| CN112492153A (en) * | 2020-11-17 | 2021-03-12 | 维沃移动通信有限公司 | Camera module and electronic equipment |
| CN113114922A (en) * | 2021-05-27 | 2021-07-13 | 维沃移动通信有限公司 | Camera module and electronic equipment |
| CN113747035A (en) * | 2021-10-12 | 2021-12-03 | 维沃移动通信有限公司 | Camera module and electronic equipment |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024067055A1 (en) * | 2022-09-29 | 2024-04-04 | 荣耀终端有限公司 | Optical assembly, preparation method for optical assembly, and electronic device |
| CN117857904A (en) * | 2022-09-29 | 2024-04-09 | 荣耀终端有限公司 | Optical component, preparation method of optical component and electronic equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114779554B (en) | 2024-07-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7675687B2 (en) | Liquid lens group | |
| CN100434941C (en) | liquid zoom lens | |
| KR100711254B1 (en) | Liquid zoom lens | |
| US12019351B2 (en) | Display panel, display device and terminal | |
| KR101866873B1 (en) | Device and method for variable curvature | |
| US7787190B2 (en) | Optical element and imaging device | |
| US7701644B2 (en) | Optical element and imaging apparatus | |
| KR100759510B1 (en) | Liquid lens | |
| US8488249B2 (en) | Optical element, imaging device, and method of driving the optical element | |
| EP2108983A2 (en) | Optical device, illumination apparatus, and camera | |
| US7609954B2 (en) | Lens module and camera module using the lens module | |
| CN110226117B (en) | Liquid lens | |
| US11579342B2 (en) | Liquid lens, camera module, and optical device | |
| US10510537B2 (en) | Pixel structure and driving method thereof, and display device | |
| CN114779554A (en) | Camera module and electronic equipment | |
| CN101169571A (en) | Shutter device and camera module | |
| US11392008B2 (en) | Liquid lens | |
| KR102619638B1 (en) | Lens module and Camera module including the same | |
| CN112099115B (en) | Liquid lens and camera module | |
| KR102603708B1 (en) | Lens and Camera module including the same | |
| KR102156378B1 (en) | Liquid lens and lens assembly including the liquid lens | |
| KR100843371B1 (en) | Liquid lens module | |
| KR102761693B1 (en) | Liquid lens, camera module and optical device/instrument including the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |