CN114797864B - Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst - Google Patents
Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst Download PDFInfo
- Publication number
- CN114797864B CN114797864B CN202110082993.1A CN202110082993A CN114797864B CN 114797864 B CN114797864 B CN 114797864B CN 202110082993 A CN202110082993 A CN 202110082993A CN 114797864 B CN114797864 B CN 114797864B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- carbon nanotubes
- diameter
- comparative example
- containing element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 94
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 239000002109 single walled nanotube Substances 0.000 title claims abstract description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 112
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 81
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 81
- 239000008139 complexing agent Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 27
- 150000001875 compounds Chemical class 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 16
- 239000011261 inert gas Substances 0.000 claims description 15
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical group OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000395 magnesium oxide Substances 0.000 claims description 13
- 229910017052 cobalt Inorganic materials 0.000 claims description 12
- 239000010941 cobalt Substances 0.000 claims description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 239000012018 catalyst precursor Substances 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 8
- 239000002245 particle Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 68
- 239000007789 gas Substances 0.000 description 16
- 238000001237 Raman spectrum Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000001069 Raman spectroscopy Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 239000010457 zeolite Substances 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000005457 ice water Substances 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 235000019832 sodium triphosphate Nutrition 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- PPQREHKVAOVYBT-UHFFFAOYSA-H dialuminum;tricarbonate Chemical compound [Al+3].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O PPQREHKVAOVYBT-UHFFFAOYSA-H 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910019931 (NH4)2Fe(SO4)2 Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 229940048086 sodium pyrophosphate Drugs 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- POFFJVRXOKDESI-UHFFFAOYSA-N 1,3,5,7-tetraoxa-4-silaspiro[3.3]heptane-2,6-dione Chemical compound O1C(=O)O[Si]21OC(=O)O2 POFFJVRXOKDESI-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229940118662 aluminum carbonate Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- HLWRUJAIJJEZDL-UHFFFAOYSA-M sodium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [Na+].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC([O-])=O HLWRUJAIJJEZDL-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical group 0.000 description 2
- 102000000546 Apoferritins Human genes 0.000 description 1
- 108010002084 Apoferritins Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- AUQMGYLQQPSCNH-UHFFFAOYSA-L NIR-2 dye Chemical compound [K+].[K+].C1=CC2=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C=C2C(C2(C)C)=C1[N+](CC)=C2C=CC=CC=C1C(C)(C)C2=CC(C(O)=O)=CC=C2N1CCCCS([O-])(=O)=O AUQMGYLQQPSCNH-UHFFFAOYSA-L 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241001579136 Yeatesia Species 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/36—Diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种碳材料生长催化剂的制备方法,具体涉及一种小直径体相单壁碳纳米管生长催化剂的制备方法。The invention relates to a method for preparing a carbon material growth catalyst, and in particular to a method for preparing a small-diameter bulk single-wall carbon nanotube growth catalyst.
背景技术Background technique
单壁碳纳米管的结构可控生长是其在量子器件、生物成像、电子学、光电子学等高端应用中所面临的关键挑战。半导体性单壁碳纳米管的带隙宽度与管径大小直接相关。通过对单壁碳纳米管直径的控制,就可以调控带隙,以满足相应应用的要求。例如对于近红外生物荧光成像而言,管径在0.8-1.2nm的单壁碳纳米管可以在生物组织的近红外2区窗口发射荧光。对于量子器件中的单光子光源而言,管径在0.9-1.2nm的单壁碳纳米管有着合适的发光波长。在单壁碳纳米管薄膜场效应晶体管中,碳纳米管带隙的大小和均匀程度会直接影响器件性能。在单壁碳纳米管-富勒烯太阳能电池中,电池的内量子效率随着碳纳米管管径增大而减小,这意味着只有小直径的碳纳米管才适合应用在这种太阳能电池中。同时,小直径的体相碳纳米管更易于在溶液中分散,因此更适合通过溶液相的分离手段,分离得到不同导电性和手性指数碳纳米管。The structurally controllable growth of single-walled carbon nanotubes is a key challenge faced in high-end applications such as quantum devices, bioimaging, electronics, and optoelectronics. The band gap width of semiconducting single-walled carbon nanotubes is directly related to the diameter of the tube. By controlling the diameter of single-walled carbon nanotubes, the band gap can be adjusted to meet the requirements of corresponding applications. For example, for near-infrared biofluorescence imaging, single-walled carbon nanotubes with a diameter of 0.8-1.2 nm can emit fluorescence in the near-infrared 2 zone window of biological tissues. For single-photon light sources in quantum devices, single-walled carbon nanotubes with a diameter of 0.9-1.2nm have a suitable emission wavelength. In single-walled carbon nanotube film field effect transistors, the size and uniformity of the carbon nanotube band gap will directly affect device performance. In single-walled carbon nanotube-fullerene solar cells, the internal quantum efficiency of the cell decreases as the diameter of the carbon nanotube increases, which means that only small-diameter carbon nanotubes are suitable for use in this type of solar cell. middle. At the same time, small-diameter bulk carbon nanotubes are easier to disperse in solution, so they are more suitable for separating carbon nanotubes with different conductivities and chiral indices through solution phase separation.
在化学气相沉积法(CVD)生长单壁碳纳米管的过程中,主要有两个控制碳纳米管直径的关键因素,其一是对催化剂颗粒尺寸分布的调控,其二是对CVD条件的控制。首先,催化剂的尺寸分布会直接影响碳纳米管的直径分布。沸石、氧化镁、氧化铝、介孔氧化硅等通过溶液化学方法,可以合成出尺寸均一可控的纳米颗粒,并作为催化剂或催化剂前驱体,生长出直径可控的碳纳米管。使用长链羧酸或胺分子作为保护剂,或使用去铁铁蛋白、树枝状高分子、嵌段共聚物等作为纳米反应器,均可以有效控制纳米颗粒的尺寸,合成均一的碳纳米管催化剂前驱体。催化剂载体通常可以发挥稳定催化剂尺寸、限制催化剂团聚的作用。In the process of growing single-walled carbon nanotubes by chemical vapor deposition (CVD), there are two key factors that control the diameter of carbon nanotubes. One is the control of catalyst particle size distribution, and the second is the control of CVD conditions. . First, the size distribution of the catalyst will directly affect the diameter distribution of carbon nanotubes. Zeolites, magnesium oxide, alumina, mesoporous silica, etc. can be used to synthesize nanoparticles with uniform and controllable sizes through solution chemistry methods, and can be used as catalysts or catalyst precursors to grow carbon nanotubes with controllable diameters. Using long-chain carboxylic acid or amine molecules as protective agents, or using apoferritin, dendrimers, block copolymers, etc. as nanoreactors can effectively control the size of nanoparticles and synthesize uniform carbon nanotube catalysts. Precursor. Catalyst supports can usually play a role in stabilizing the size of the catalyst and limiting catalyst agglomeration.
现有技术中常用沸石、介孔氧化硅等多孔型材料作为催化剂载体,多孔结构虽然起到了限制催化剂尺寸的作用,但沸石和介孔氧化硅载体较难除去,这给碳纳米管的制备和应用带来了一定的不便。In the prior art, porous materials such as zeolite and mesoporous silica are commonly used as catalyst carriers. Although the porous structure plays a role in limiting the size of the catalyst, the zeolite and mesoporous silica carriers are difficult to remove, which poses challenges to the preparation and production of carbon nanotubes. The application brings some inconvenience.
发明内容Contents of the invention
基于上述技术背景,本发明人进行了锐意研究,结果发现:采用含A元素的化合物、催化剂载体和络合剂制得催化剂前驱体,然后经灼烧、还原制得的金属催化剂,可以用于生长小直径的体相单壁碳纳米管,其制得的单壁碳纳米管具有较小的直径,且直径分布较窄。Based on the above technical background, the inventors conducted intensive research and found that the catalyst precursor was prepared from a compound containing element A, a catalyst carrier and a complexing agent, and then the metal catalyst prepared by burning and reduction could be used for By growing bulk single-walled carbon nanotubes with small diameters, the single-walled carbon nanotubes produced have smaller diameters and a narrower diameter distribution.
本发明的第一方面在于提供一种用于小直径体相单壁碳纳米管生长的催化剂,该催化剂由含A元素的化合物、催化剂载体和络合剂制得,所述A元素选自铁、钴、镍、钼、铬、铜、钨、锰、银、金、钯、铂、钌、铱、铑、铼中的一种或几种。The first aspect of the present invention is to provide a catalyst for the growth of small-diameter bulk single-walled carbon nanotubes. The catalyst is prepared from a compound containing element A, a catalyst carrier and a complexing agent. The element A is selected from iron. , one or more of cobalt, nickel, molybdenum, chromium, copper, tungsten, manganese, silver, gold, palladium, platinum, ruthenium, iridium, rhodium and rhenium.
本发明的第二方面在于提供本发明第一方面所述催化剂的制备方法,包括以下步骤:The second aspect of the present invention is to provide a preparation method of the catalyst according to the first aspect of the present invention, which includes the following steps:
步骤1、采用含A元素的化合物、催化剂载体和络合剂制备催化剂前驱体;Step 1. Prepare a catalyst precursor using a compound containing element A, a catalyst carrier and a complexing agent;
步骤2、经灼烧、还原,制备催化剂;Step 2: Prepare the catalyst through burning and reduction;
A元素选自铁、钴、镍、钼、铬、铜、钨、锰、银、金、钯、铂、钌、铱、铑、铼中的一种或几种;Element A is selected from one or more of iron, cobalt, nickel, molybdenum, chromium, copper, tungsten, manganese, silver, gold, palladium, platinum, ruthenium, iridium, rhodium, and rhenium;
所述含A元素的化合物选自含A元素可溶于水的盐中的一种或几种;The compound containing element A is selected from one or more water-soluble salts containing element A;
所述催化剂载体选自镁、铝、硅、钙等的氧化物或其混合氧化物、碳酸盐,各类沸石和氮化硼等;The catalyst carrier is selected from oxides of magnesium, aluminum, silicon, calcium, etc. or their mixed oxides, carbonates, various zeolites, boron nitride, etc.;
特别地,络合剂分子可以对A元素金属离子进行配位,从而抑制其水解、减少其团聚,因此可以使得制得的金属催化剂颗粒保持较小而均一的尺寸,有利于生长小直径单壁碳纳米管;In particular, complexing agent molecules can coordinate the metal ions of element A, thereby inhibiting their hydrolysis and reducing their aggregation. Therefore, the prepared metal catalyst particles can be kept small and uniform in size, which is conducive to the growth of small-diameter single-walled carbon nanotubes;
络合剂选自氨水、甲胺、吡啶、草酸盐、邻菲罗啉、乙二胺、乙二胺四乙酸或其盐、三聚磷酸钠、三乙醇胺和焦磷酸钠中的一种或几种。The complexing agent is selected from one of ammonia, methylamine, pyridine, oxalate, o-phenanthroline, ethylenediamine, ethylenediaminetetraacetic acid or its salt, sodium tripolyphosphate, triethanolamine and sodium pyrophosphate, or Several kinds.
本发明的第三方面在于提供一种根据本发明第一方面所述催化剂或由本发明第二方面所述的制备方法制得的用于小直径体相单壁碳纳米管生长的催化剂的用途,其可用于小直径体相单壁碳纳米管的制备。A third aspect of the present invention is to provide the use of a catalyst for the growth of small-diameter bulk single-walled carbon nanotubes prepared according to the catalyst of the first aspect of the present invention or prepared by the preparation method of the second aspect of the present invention, It can be used for the preparation of small-diameter bulk single-walled carbon nanotubes.
本发明的第四方面在于提供一种小直径体相单壁碳纳米管的制备方法,所述方法包括以下步骤:A fourth aspect of the present invention is to provide a method for preparing small-diameter bulk single-walled carbon nanotubes, which method includes the following steps:
步骤a、向管式炉中加入催化剂,升高炉温至碳纳米管生长温度;Step a: Add catalyst to the tube furnace and raise the furnace temperature to the carbon nanotube growth temperature;
步骤b、通入碳源进行碳纳米管的制备。Step b: pass in a carbon source to prepare carbon nanotubes.
本发明提供小直径体相单壁碳纳米管生长催化剂及由此制备的小直径体相单壁碳纳米管具有以下优势:催化剂载体去除简单,便于碳纳米管的后续应用,且制备效率较高,制得的碳纳米管具有较小的直径和较窄的管径分布(直径分布与0.9~1.2nm),适合应用于近红外生物荧光成像和量子器件单光子光源等领域中。The invention provides a small-diameter bulk single-walled carbon nanotube growth catalyst and the small-diameter bulk single-walled carbon nanotubes prepared thereby have the following advantages: the catalyst carrier is simple to remove, facilitates the subsequent application of the carbon nanotubes, and has high preparation efficiency. , the carbon nanotubes produced have a smaller diameter and a narrower diameter distribution (diameter distribution is between 0.9 and 1.2nm), and are suitable for use in fields such as near-infrared biofluorescence imaging and quantum device single-photon light sources.
附图说明Description of the drawings
图1示出本发明对比例2和对比例3制得碳纳米管激光波长为532nm的拉曼谱图;Figure 1 shows the Raman spectrum of the carbon nanotube laser wavelength 532nm prepared in Comparative Example 2 and Comparative Example 3 of the present invention;
图2示出本发明对比例2和对比例3制得碳纳米管激光波长为633nm的拉曼谱图;Figure 2 shows the Raman spectrum of the carbon nanotube laser wavelength 633nm produced in Comparative Example 2 and Comparative Example 3 of the present invention;
图3示出本发明对比例2、对比例4和对比例5制得碳纳米管激光波长为532nm的拉曼谱图;Figure 3 shows the Raman spectrum of the carbon nanotube laser wavelength 532nm prepared in Comparative Example 2, Comparative Example 4 and Comparative Example 5 of the present invention;
图4示出本发明对比例2、对比例4和对比例5制得碳纳米管激光波长为633nm的拉曼谱图;Figure 4 shows the Raman spectrum of the carbon nanotube laser wavelength 633nm prepared in Comparative Example 2, Comparative Example 4 and Comparative Example 5 of the present invention;
图5示出本发明对比例2、对比例6、对比例7、对比例8、对比例9、对比例10、对比例11和对比例12制得碳纳米管激光波长为532nm的拉曼谱图;Figure 5 shows the Raman spectra of carbon nanotube lasers with a wavelength of 532 nm prepared in Comparative Examples 2, 6, 7, 8, 9, 10, 11 and 12 of the present invention. picture;
图6示出本发明对比例2、对比例6、对比例7、对比例8、对比例9、对比例10、对比例11和对比例12制得碳纳米管激光波长为633nm的拉曼谱图;Figure 6 shows the Raman spectra of carbon nanotube lasers with a wavelength of 633 nm prepared in Comparative Examples 2, 6, 7, 8, 9, 10, 11 and 12 of the present invention. picture;
图7示出本发明对比例2、对比例13、对比例14、对比例15和对比例16制得碳纳米管激光波长为532nm的拉曼谱图;Figure 7 shows the Raman spectra of carbon nanotube lasers with a wavelength of 532 nm prepared in Comparative Example 2, Comparative Example 13, Comparative Example 14, Comparative Example 15 and Comparative Example 16 of the present invention;
图8示出本发明对比例2、对比例13、对比例14、对比例15和对比例16制得碳纳米管激光波长为633nm的拉曼谱图;Figure 8 shows the Raman spectra of carbon nanotube lasers with a wavelength of 633 nm prepared in Comparative Example 2, Comparative Example 13, Comparative Example 14, Comparative Example 15 and Comparative Example 16 of the present invention;
图9示出本发明对比例2和实施例2制得碳纳米管激光波长为532nm的拉曼谱图;Figure 9 shows the Raman spectrum of the carbon nanotube laser wavelength 532nm produced in Comparative Example 2 and Example 2 of the present invention;
图10示出本发明对比例2和实施例2制得碳纳米管激光波长为633nm的拉曼谱图。Figure 10 shows the Raman spectra of carbon nanotubes produced in Comparative Example 2 and Example 2 of the present invention with a laser wavelength of 633 nm.
具体实施方式Detailed ways
下面将对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。The present invention will be described in detail below, and the features and advantages of the present invention will become clearer and clearer with these descriptions.
本发明的第一方面在于提供一种用于小直径体相单壁碳纳米管生长的催化剂,该催化剂由含A元素的化合物、催化剂载体和络合剂制得。A first aspect of the present invention is to provide a catalyst for the growth of small-diameter bulk single-walled carbon nanotubes. The catalyst is prepared from a compound containing element A, a catalyst carrier and a complexing agent.
所述含A元素的化合物选自含A元素可溶于水的盐中的一种或几种,优选选自含A元素的硫酸盐、硝酸盐和乙酸盐中的一种或几种,更优选选自含A元素的硫酸盐。The compound containing element A is selected from one or more water-soluble salts containing element A, preferably one or more from the group consisting of sulfate, nitrate and acetate containing element A, More preferably, it is selected from sulfates containing element A.
本发明中的A元素选自铁、钴、镍、钼、铬、铜、钨、锰、银、金、钯、铂、钌、铱、铑、铼中的一种或几种,优选选自铁、钴、镍、铜、锰和钼中的一种或几种,更优选选自铁、钴和镍中的一种或两种。Element A in the present invention is selected from one or more of iron, cobalt, nickel, molybdenum, chromium, copper, tungsten, manganese, silver, gold, palladium, platinum, ruthenium, iridium, rhodium and rhenium, preferably selected from One or more of iron, cobalt, nickel, copper, manganese and molybdenum, more preferably one or two of iron, cobalt and nickel.
催化剂载体选自氧化镁、氧化铝、氧化硅、氧化钙、碳酸镁、碳酸铝、碳酸硅、碳酸钙、沸石和氮化硼中的一种或几种,优选选自氧化镁、Y型沸石和氧化硅中的一种或几种,更优选为氧化镁。The catalyst carrier is selected from one or more of magnesium oxide, alumina, silicon oxide, calcium oxide, magnesium carbonate, aluminum carbonate, silicon carbonate, calcium carbonate, zeolite and boron nitride, preferably selected from magnesium oxide, Y-type zeolite and one or more types of silicon oxide, more preferably magnesium oxide.
所述催化剂载体与含A元素化合物的摩尔比为(30~70):1,优选摩尔比为(40~60):1,更优选摩尔比为(45~55):1。当含A元素化合物中采用双金属,两种金属的摩尔比优选为1:1。The molar ratio of the catalyst carrier to the compound containing element A is (30-70):1, preferably the molar ratio is (40-60):1, and more preferably the molar ratio is (45-55):1. When a bimetal is used in a compound containing A element, the molar ratio of the two metals is preferably 1:1.
络合剂选自氨水、甲胺、吡啶、草酸盐、邻菲罗啉、乙二胺、乙二胺四乙酸或其盐、三聚磷酸钠、三乙醇胺和焦磷酸钠中的一种或几种,优选选自草酸盐、乙二胺四乙酸或其盐和三聚磷酸钠中的一种或几种,更优选为乙二胺四乙酸或乙二胺四乙酸钠盐。The complexing agent is selected from one of ammonia, methylamine, pyridine, oxalate, o-phenanthroline, ethylenediamine, ethylenediaminetetraacetic acid or its salt, sodium tripolyphosphate, triethanolamine and sodium pyrophosphate, or Several, preferably one or more selected from oxalate, ethylenediaminetetraacetic acid or its salt and sodium tripolyphosphate, more preferably ethylenediaminetetraacetic acid or ethylenediaminetetraacetic acid sodium salt.
络合剂的添加量为含A元素的化合物摩尔量(本发明所述的摩尔量即摩尔数)的1~15倍,优选为2~10倍,更优选为4~7倍,例如5倍。The added amount of the complexing agent is 1 to 15 times the molar amount of the compound containing element A (the molar amount in the present invention is the number of moles), preferably 2 to 10 times, more preferably 4 to 7 times, such as 5 times .
如制备本发明所述的催化剂,其由包括以下步骤的方法制备:For preparing the catalyst according to the present invention, it is prepared by a method including the following steps:
步骤1、采用含A元素的化合物、催化剂载体和络合剂制备催化剂前驱体;Step 1. Prepare a catalyst precursor using a compound containing element A, a catalyst carrier and a complexing agent;
步骤2、经灼烧、还原,制备催化剂。Step 2: Prepare the catalyst through burning and reduction.
本发明的第二方面在于提供本发明第一方面所述的用于小直径体相单壁碳纳米管生长的催化剂的制备方法,所述方法包括以下步骤:A second aspect of the present invention is to provide a preparation method for the catalyst used for the growth of small-diameter bulk single-walled carbon nanotubes according to the first aspect of the present invention. The method includes the following steps:
步骤1、采用含A元素的化合物、催化剂载体和络合剂制备催化剂前驱体;Step 1. Prepare a catalyst precursor using a compound containing element A, a catalyst carrier and a complexing agent;
步骤2、经灼烧、还原,制备催化剂;Step 2: Prepare the catalyst through burning and reduction;
以下对该步骤进行具体描述和说明。This step is described and illustrated in detail below.
步骤1、采用含A元素的化合物、催化剂载体和络合剂制备催化剂前驱体。Step 1. Prepare a catalyst precursor using a compound containing element A, a catalyst carrier and a complexing agent.
催化剂前驱体由含A元素的化合物与催化剂载体经混合后后处理制得。在混合之前,需先将含A元素的化合物和催化剂载体溶于水后再进行混合。The catalyst precursor is prepared by mixing a compound containing element A and a catalyst carrier and then post-processing. Before mixing, the compound containing element A and the catalyst carrier need to be dissolved in water and then mixed.
所述含A元素的化合物溶于水后A元素的摩尔浓度为0.1~1mmol/mL,优选摩尔浓度为0.1~0.5mmol/mL,更优选摩尔浓度为0.1~0.2mmol/mL。After the compound containing element A is dissolved in water, the molar concentration of element A is 0.1-1 mmol/mL, preferably the molar concentration is 0.1-0.5 mmol/mL, and more preferably the molar concentration is 0.1-0.2 mmol/mL.
所述含A元素的化合物选自含A元素可溶于水的盐中的一种或几种,优选选自含A元素的硫酸盐、硝酸盐和乙酸盐中的一种或几种,更优选选自含A元素的硫酸盐。The compound containing element A is selected from one or more water-soluble salts containing element A, preferably one or more from the group consisting of sulfate, nitrate and acetate containing element A, More preferably, it is selected from sulfates containing element A.
在制备过程中,需先将含A元素的化合物溶于水中制成溶液后再与催化剂载体进行混合,因此,含A元素的化合物为可溶于水的盐,含A元素的化合物溶于水后在后期蒸发过程中会发生水解,水解程度越剧烈,团聚程度越严重,形成的催化剂颗粒尺寸越大,从而造成碳纳米管直径增大,硫酸盐的水解程度较低,制得的碳纳米管直径较小。During the preparation process, the compound containing element A needs to be dissolved in water to make a solution and then mixed with the catalyst carrier. Therefore, the compound containing element A is a water-soluble salt, and the compound containing element A is soluble in water. Later, hydrolysis will occur during the later evaporation process. The more severe the degree of hydrolysis, the more serious the degree of agglomeration, the larger the size of the catalyst particles formed, resulting in an increase in the diameter of the carbon nanotubes, a lower degree of hydrolysis of sulfate, and the resulting carbon nanotubes. The tube diameter is smaller.
本发明中的A元素选自铁、钴、镍、钼、铬、铜、钨、锰、银、金、钯、铂、钌、铱、铑、铼中的一种或几种,优选选自铁、钴、镍、铜、锰和钼中的一种或几种,更优选选自铁、钴和镍中的一种或两种。Element A in the present invention is selected from one or more of iron, cobalt, nickel, molybdenum, chromium, copper, tungsten, manganese, silver, gold, palladium, platinum, ruthenium, iridium, rhodium and rhenium, preferably selected from One or more of iron, cobalt, nickel, copper, manganese and molybdenum, more preferably one or two of iron, cobalt and nickel.
本发明人发现,采用双金属催化剂体系相较于单金属催化剂而言,例如铁和钴的双金属催化剂体系可有效提高碳纳米管的生长效率,同时减小碳纳米管的管径和管径分布。The inventor found that compared with a single metal catalyst, the use of a bimetallic catalyst system, such as a bimetallic catalyst system of iron and cobalt, can effectively improve the growth efficiency of carbon nanotubes while reducing the diameter and diameter of the carbon nanotubes. distributed.
所述催化剂载体选自氧化镁、氧化铝、氧化硅、氧化钙、碳酸镁、碳酸铝、碳酸硅、碳酸钙、沸石和氮化硼中的一种或几种,优选选自氧化镁、Y型沸石和氧化硅中的一种或几种,更优选为氧化镁。The catalyst carrier is selected from one or more of magnesium oxide, alumina, silicon oxide, calcium oxide, magnesium carbonate, aluminum carbonate, silicon carbonate, calcium carbonate, zeolite and boron nitride, preferably selected from magnesium oxide, Y One or more of zeolite and silica, more preferably magnesium oxide.
多孔催化剂载体可以通过纳米尺寸的孔道限制催化剂的大小,进而控制碳纳米管的管径,但沸石等多孔结构载体很难除去,给碳纳米管的后续应用带来了一定的不便,而氧化镁作为催化剂载体使用稀酸浸泡即可去除,非常简便,且制得的碳纳米管管径较小,同时氧化镁可有效控制铁、钴颗粒的尺寸,使制得的碳纳米管管径较小且分布较窄。Porous catalyst carriers can limit the size of the catalyst through nano-sized pores, thereby controlling the diameter of carbon nanotubes. However, porous structural carriers such as zeolites are difficult to remove, which brings certain inconveniences to the subsequent application of carbon nanotubes, and magnesium oxide As a catalyst carrier, it can be removed by soaking in dilute acid, which is very simple, and the diameter of the carbon nanotubes produced is smaller. At the same time, magnesium oxide can effectively control the size of iron and cobalt particles, making the diameter of the carbon nanotubes produced smaller. And the distribution is narrow.
将催化剂载体分散于水中,催化剂载体的浓度为0.05~1g/mL,优选催化剂载体的浓度为0.07~0.5g/mL,更优选催化剂载体的浓度为0.1~0.2g/mL。The catalyst carrier is dispersed in water, and the concentration of the catalyst carrier is 0.05-1g/mL, preferably the concentration of the catalyst carrier is 0.07-0.5g/mL, and more preferably the concentration of the catalyst carrier is 0.1-0.2g/mL.
所述催化剂载体与含A元素化合物的摩尔比为(30~70):1,优选摩尔比为(40~60):1,更优选摩尔比为(45~55):1。当所述催化剂选用双金属催化剂,两种金属的摩尔比优选为1:1。The molar ratio of the catalyst carrier to the compound containing element A is (30-70):1, preferably the molar ratio is (40-60):1, and more preferably the molar ratio is (45-55):1. When the catalyst is a bimetallic catalyst, the molar ratio of the two metals is preferably 1:1.
根据本发明一种优选地实施方式,在制备催化剂前驱体的过程中还加入络合剂,本发明人发现,加入的络合剂能与铁、钴等金属离子进行配位,从而抑制其水解,减少其团聚,可限制催化剂颗粒尺寸,使得制得的金属催化剂颗粒保持较小而均一的尺寸。According to a preferred embodiment of the present invention, a complexing agent is also added during the preparation of the catalyst precursor. The inventor found that the added complexing agent can coordinate with metal ions such as iron and cobalt, thereby inhibiting their hydrolysis. , reducing its agglomeration and limiting the size of the catalyst particles, so that the prepared metal catalyst particles maintain a small and uniform size.
络合剂选自氨水、甲胺、吡啶、草酸盐、邻菲罗啉、乙二胺、乙二胺四乙酸或其盐、三聚磷酸钠、三乙醇胺和焦磷酸钠中的一种或几种,优选选自草酸盐、乙二胺四乙酸或其盐和三聚磷酸钠中的一种或几种,更优选为乙二胺四乙酸或乙二胺四乙酸钠盐。The complexing agent is selected from one of ammonia, methylamine, pyridine, oxalate, o-phenanthroline, ethylenediamine, ethylenediaminetetraacetic acid or its salt, sodium tripolyphosphate, triethanolamine and sodium pyrophosphate, or Several, preferably one or more selected from oxalate, ethylenediaminetetraacetic acid or its salt and sodium tripolyphosphate, more preferably ethylenediaminetetraacetic acid or ethylenediaminetetraacetic acid sodium salt.
所述络合剂的添加量为含A元素的化合物摩尔量的1~15倍,优选为2~10倍,更优选为4~7倍。The added amount of the complexing agent is 1 to 15 times the molar amount of the compound containing element A, preferably 2 to 10 times, and more preferably 4 to 7 times.
含A元素的化合物与催化剂载体优选在搅拌下进行混合,所述搅拌时间优选为5~20min,更优选为10min。The compound containing element A and the catalyst carrier are preferably mixed under stirring, and the stirring time is preferably 5 to 20 minutes, more preferably 10 minutes.
搅拌后进行加热煮沸,煮沸时间优选为20~45min,更优选煮沸时间为30min。待冷却后进行后处理,所述后处理包括抽滤、洗涤和烘干。After stirring, heat and boil. The boiling time is preferably 20 to 45 minutes, and the boiling time is more preferably 30 minutes. After cooling, post-processing is performed, which includes suction filtration, washing and drying.
洗涤剂优选为水和乙醇,洗涤多次,优选为水和乙醇各洗涤1~3次,优选为各洗涤2次。The detergent is preferably water and ethanol, and the washing is performed multiple times, preferably 1 to 3 times each with water and 2 times with ethanol.
洗涤后进行烘干,烘干温度为100~150℃,烘干时间为10~15h,优选地,烘干温度为110~130℃,烘干时间为11~13h,更优选地,烘干温度为120℃,烘干时间为12h。After washing, drying is carried out. The drying temperature is 100-150°C and the drying time is 10-15h. Preferably, the drying temperature is 110-130°C and the drying time is 11-13h. More preferably, the drying temperature The temperature is 120℃ and the drying time is 12h.
步骤2、经灼烧、还原,制备催化剂。Step 2: Prepare the catalyst through burning and reduction.
将步骤1制得的催化剂前驱体依次进行灼烧和还原即得催化剂。灼烧和还原均在管式炉中进行。The catalyst precursor prepared in step 1 is burned and reduced in sequence to obtain the catalyst. Both ignition and reduction take place in a tube furnace.
所述灼烧优选在空气气氛下进行,灼烧温度为400~1200℃,优选灼烧温度为600~800℃,更优选灼烧温度为700℃。The burning is preferably carried out in an air atmosphere, the burning temperature is 400-1200°C, the burning temperature is preferably 600-800°C, and the burning temperature is more preferably 700°C.
灼烧时间为1~60min,优选灼烧时间为2~10min,更优选灼烧时间为3min。The burning time is 1 to 60 minutes, preferably the burning time is 2 to 10 minutes, and the burning time is more preferably 3 minutes.
灼烧后向管式炉中通入惰性气体以排出其中的空气,所述惰性气体优选为氩气,惰性气体的通入速率为100~300sccm,优选通入速率为150~250sccm,更优选通入速率为200sccm。After burning, an inert gas is introduced into the tube furnace to discharge the air therein. The inert gas is preferably argon. The introduction rate of the inert gas is 100-300 sccm, preferably the introduction rate is 150-250 sccm, and more preferably The input rate is 200sccm.
通入时间为2~15min,优选为3~10min,更优选为4min。The passing time is 2 to 15 minutes, preferably 3 to 10 minutes, more preferably 4 minutes.
所述还原优选在惰性气体和氢气的混合气氛中进行,惰性气体优选为氩气,惰性气体的通入速率为50~200sccm,优选为70~150sccm,更优选为100sccm。The reduction is preferably carried out in a mixed atmosphere of inert gas and hydrogen, and the inert gas is preferably argon. The introduction rate of the inert gas is 50 to 200 sccm, preferably 70 to 150 sccm, and more preferably 100 sccm.
氢气的通入速率为20~100sccm,优选为40~70sccm,更优选为50sccm。The hydrogen gas introduction rate is 20 to 100 sccm, preferably 40 to 70 sccm, and more preferably 50 sccm.
还原温度为500~1200℃,优选还原温度为800~1000℃,更优选还原温度为900℃。The reduction temperature is 500-1200°C, preferably the reduction temperature is 800-1000°C, and more preferably the reduction temperature is 900°C.
所述还原时间1~60min,优选为2~5min,更优选为3min。The reduction time is 1 to 60 minutes, preferably 2 to 5 minutes, and more preferably 3 minutes.
本发明的第三方面在于提供一种根据本发明第一方面所述催化剂或由本发明第二方面所述的制备方法制得的催化剂的用途,其可用于小直径体相单壁碳纳米管的制备。A third aspect of the present invention is to provide the use of a catalyst according to the first aspect of the present invention or a catalyst prepared by the preparation method of the second aspect of the present invention, which can be used for the production of small-diameter bulk single-walled carbon nanotubes. preparation.
本发明的第四方面在于提供一种小直径单壁碳纳米管的制备方法,所述方法包括以下步骤:A fourth aspect of the present invention is to provide a method for preparing small-diameter single-walled carbon nanotubes, which method includes the following steps:
步骤a、向管式炉中加入催化剂,升高炉温至碳纳米管生长温度。Step a: Add a catalyst to the tube furnace and raise the furnace temperature to the carbon nanotube growth temperature.
所述催化剂为本发明第一方面所述催化剂或根据本发明第二方面所述制备方法制得的催化剂,将制得的催化剂置于管式炉中。The catalyst is the catalyst described in the first aspect of the present invention or the catalyst prepared according to the preparation method described in the second aspect of the present invention, and the prepared catalyst is placed in a tube furnace.
将管式炉温度调整至碳纳米管的生长温度,调温过程在惰性气体的保护下进行,优选在氩气的保护下进行。The temperature of the tube furnace is adjusted to the growth temperature of the carbon nanotubes, and the temperature adjustment process is performed under the protection of an inert gas, preferably under the protection of argon gas.
氩气的通入量为100~300sccm,优选通入量为150~250sccm,更优选通入量为200sccm。The passing amount of argon gas is 100 to 300 sccm, preferably the passing amount is 150 to 250 sccm, and more preferably the passing amount is 200 sccm.
碳纳米管的生长温度为600~1000℃,优选生长温度为650~950℃,更优选生长温度为700~900℃。The growth temperature of carbon nanotubes is 600-1000°C, preferably the growth temperature is 650-950°C, and more preferably the growth temperature is 700-900°C.
碳纳米管的生长温度低于600℃或高于1000℃,碳纳米管的生长效率明显降低,在600~1000℃的范围内,随着温度逐渐升高,碳纳米管的平均管径逐渐增大。When the growth temperature of carbon nanotubes is lower than 600°C or higher than 1000°C, the growth efficiency of carbon nanotubes is significantly reduced. In the range of 600 to 1000°C, as the temperature gradually increases, the average diameter of carbon nanotubes gradually increases. big.
碳纳米管的生长时间为5~30min,优选生长时间为10~25min。更优选生长时间为15~20min。The growth time of carbon nanotubes is 5 to 30 minutes, and the preferred growth time is 10 to 25 minutes. More preferably, the growth time is 15 to 20 minutes.
步骤b、通入碳源进行碳纳米管的制备。Step b: pass in a carbon source to prepare carbon nanotubes.
在本发明中,碳源选自甲醇、甲烷、一氧化碳、乙醇、乙烯、乙炔、丙醇、甲苯和二甲苯中的一种或几种,优选选自甲醇、甲烷、一氧化碳、乙醇和甲苯中一种或几种,更优选选自甲烷和乙醇中一种或几种,例如乙醇。In the present invention, the carbon source is selected from one or more of methanol, methane, carbon monoxide, ethanol, ethylene, acetylene, propanol, toluene and xylene, and is preferably selected from one or more of methanol, methane, carbon monoxide, ethanol and toluene. One or more species, more preferably one or more species selected from methane and ethanol, such as ethanol.
碳源的种类对于碳纳米管的直径有很大影响,经试验发现,相同条件下,使用乙醇作为碳源生长的碳纳米管直径小于其他碳源生长的碳纳米管。The type of carbon source has a great influence on the diameter of carbon nanotubes. Experiments have found that under the same conditions, the diameter of carbon nanotubes grown using ethanol as a carbon source is smaller than that of carbon nanotubes grown with other carbon sources.
在本发明中,碳纳米管的生长还需加入惰性气体和氢气的混合气,惰性气体优选为氩气。In the present invention, the growth of carbon nanotubes also requires adding a mixture of inert gas and hydrogen, and the inert gas is preferably argon.
惰性气体的通入速率为100~300sccm,优选通入速率为150~250sccm,更优选通入速率为200sccm。The feed rate of the inert gas is 100 to 300 sccm, preferably the feed rate is 150 to 250 sccm, and more preferably the feed rate is 200 sccm.
氢气的通入速率为10~50sccm,优选为20~40sccm,更优选为30sccm。The hydrogen gas introduction rate is 10 to 50 sccm, preferably 20 to 40 sccm, and more preferably 30 sccm.
根据本发明,当碳源为气体时,碳源随惰性气体和氢气一同通入管式炉中,当碳源为液体时,优选将液态碳源置于鼓泡器中,惰性气体通过鼓泡器后通入管式炉中,惰性气体充当碳源的载气。According to the present invention, when the carbon source is a gas, the carbon source is passed into the tube furnace together with the inert gas and hydrogen. When the carbon source is a liquid, the liquid carbon source is preferably placed in a bubbler, and the inert gas is bubbled through After the furnace is passed into the tube furnace, the inert gas serves as the carrier gas of the carbon source.
所述液体碳源的惰性气体载气通入速率与氢气的通入速率之比为200:(5~100),优选通入速率之比为200:(10~80),更优选通入速率之比为200:(10~60)。The ratio of the inert gas carrier gas feed rate of the liquid carbon source to the hydrogen gas feed rate is 200: (5-100), the preferred feed rate ratio is 200: (10-80), the more preferred feed rate The ratio is 200: (10~60).
碳源与氢气的通入速率之比也对碳纳米管的管径存在影响,随着碳源与氢气通入比例的降低,碳纳米管的直径逐渐减小,通入比例过低时,即氢气通入速率过高时,碳纳米管的生长受到抑制,若碳源的通入速率过高,生长出的石墨化碳层很快将催化剂包覆,阻隔催化剂接触新的碳源分子,导致催化剂失活,因此,只有适宜的通入速率比才有利于小直径碳纳米管的生长制备。The ratio of the carbon source and hydrogen feed rates also affects the diameter of the carbon nanotubes. As the carbon source and hydrogen feed ratio decreases, the diameter of the carbon nanotubes gradually decreases. When the feed ratio is too low, that is, When the hydrogen feed rate is too high, the growth of carbon nanotubes is inhibited. If the carbon source feed rate is too high, the graphitized carbon layer that grows will quickly cover the catalyst, blocking the catalyst from contacting new carbon source molecules, resulting in The catalyst is deactivated. Therefore, only a suitable feed rate ratio is beneficial to the growth and preparation of small-diameter carbon nanotubes.
该小直径单壁碳纳米管的直径为0.9~1.2nm。适合应用于近红外生物荧光成像和量子器件单光子光源等领域中。The diameter of the small-diameter single-walled carbon nanotube is 0.9-1.2 nm. It is suitable for use in fields such as near-infrared biofluorescence imaging and quantum device single-photon light sources.
本发明所具有的有益效果:The beneficial effects of the present invention are:
(1)本发明所述的小直径体相单壁碳纳米管生长催化剂在制备过程中使用了络合剂,该催化剂可以有效限制催化剂颗粒的尺寸,从而实现小直径体相单壁碳纳米管的生长;(1) The small-diameter bulk single-walled carbon nanotube growth catalyst of the present invention uses a complexing agent during the preparation process. The catalyst can effectively limit the size of the catalyst particles, thereby realizing small-diameter bulk single-walled carbon nanotubes. growth;
(2)本发明所述的小直径体相单壁碳纳米管生长催化剂中催化剂载体的去除方法简单,只需使用稀酸浸泡即可去除,便于碳纳米管的后续应用;(2) The method for removing the catalyst carrier in the small-diameter bulk single-walled carbon nanotube growth catalyst of the present invention is simple and can be removed by soaking with dilute acid, which facilitates the subsequent application of carbon nanotubes;
(3)本发明所述碳纳米管制备方法制得的碳纳米管具有较小的直径,直径为0.9~1.2nm,适合应用于近红外生物荧光成像和量子器件单光子光源等领域中。(3) The carbon nanotubes produced by the carbon nanotube preparation method of the present invention have a smaller diameter, ranging from 0.9 to 1.2 nm, and are suitable for use in fields such as near-infrared biofluorescence imaging and quantum device single-photon light sources.
实施例Example
以下通过具体实例进一步阐述本发明,这些实施例仅限于说明本发明,而不用于限制本发明范围。The present invention will be further described below through specific examples. These examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
实施例1催化剂的制备Example 1 Preparation of Catalyst
分别称取0.83mmolCo(SO4)2·7H2O(纯度99.5%)和(NH4)2Fe(SO4)2·6H2O(纯度95%),分别溶解于7.0mL超纯水中,称取3.33g(83mmol)轻质MgO于33mL超纯水中,超声5min至均匀分散。在搅拌的条件下,先后将Co(SO4)2·7H2O溶液、(NH4)2Fe(SO4)2·6H2O溶液滴加至MgO悬浊液中(此时悬浊液中Fe、Co浓度均为0.16mol/L),然后再加入5倍于Fe、Co摩尔量之和的EDTA(乙二胺四乙酸),将悬浊液搅拌10min,再煮沸30min,冷却后抽滤,并用超纯水、无水乙醇各洗涤两次,然后置于烘箱中120℃干燥12h,得到摩尔比为Mg:Fe:Co=100:1:1的添加络合剂的FeCo/MgO催化剂前驱体。Weigh 0.83mmolCo(SO 4 ) 2 ·7H 2 O (purity 99.5%) and (NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O (purity 95%) respectively, and dissolve them in 7.0mL ultrapure water. , weigh 3.33g (83mmol) of light MgO into 33mL of ultrapure water, and sonicate for 5 minutes until evenly dispersed. Under stirring conditions, the Co(SO 4 ) 2 ·7H 2 O solution and the (NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O solution were added dropwise to the MgO suspension (at this time the suspension The concentrations of Fe and Co in the solution are both 0.16 mol/L), then add EDTA (ethylenediaminetetraacetic acid) 5 times the sum of the molar amounts of Fe and Co, stir the suspension for 10 minutes, boil for 30 minutes, cool and pump Filter, wash twice with ultrapure water and absolute ethanol, and then dry in an oven at 120°C for 12 hours to obtain a FeCo/MgO catalyst with a molar ratio of Mg:Fe:Co=100:1:1. Precursor.
称取50mg上述制得的催化剂前驱体于7cm*0.5cm的瓷舟中,推入管式炉中央,然后在空气气氛中升温至700℃灼烧3min,通入Ar气200sccm 4min,以排出管式炉中的空气,同时将炉温升至900℃,升至900℃后通入Ar气100sccm、H2 50sccm保持3min,还原得到催化剂。Weigh 50 mg of the catalyst precursor prepared above into a 7cm*0.5cm porcelain boat, push it into the center of the tube furnace, then heat it to 700°C for 3 minutes in an air atmosphere, and introduce Ar gas at 200 sccm for 4 minutes to discharge the tube. The air in the furnace was raised to 900°C at the same time. After rising to 900°C, 100 sccm of Ar gas and 50 sccm of H 2 were introduced for 3 min, and the catalyst was obtained by reduction.
实施例2碳纳米管的制备Example 2 Preparation of carbon nanotubes
将实施例1制得的催化剂置于管式炉中,在200sccm的Ar气保护下将炉温调整至900℃,使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 30sccm,在900℃保温15min,最后在Ar气和H2氛围的保护下降至室温,得到小直径单壁碳纳米管。The catalyst prepared in Example 1 was placed in a tube furnace, the furnace temperature was adjusted to 900°C under the protection of 200 sccm Ar gas, and 200 sccm Ar gas was passed through an ethanol (carbon source) bubbler (ice water bath constant temperature). Pour into the tube furnace and simultaneously add 30 sccm of H 2 , keep it at 900°C for 15 minutes, and finally drop to room temperature under the protection of Ar gas and H 2 atmosphere to obtain small-diameter single-walled carbon nanotubes.
对比例Comparative ratio
对比例1Comparative example 1
重复实施例1的制备过程,区别仅在于:不添加乙二胺四乙酸。Repeat the preparation process of Example 1, except that no ethylenediaminetetraacetic acid is added.
对比例2Comparative example 2
重复实施例2的制备过程,区别仅在于:采用对比例1制得的催化剂。The preparation process of Example 2 was repeated, with the only difference being that the catalyst prepared in Comparative Example 1 was used.
对比例3Comparative example 3
重复对比例2的制备过程,区别仅在于:碳源采用甲烷,在通入200sccm的Ar气下,同时通入CH4 325sccm和H2 30sccm进行碳纳米管的制备。Repeat the preparation process of Comparative Example 2, with the only difference being that methane is used as the carbon source, and while 200 sccm of Ar gas is introduced, CH 4 325 sccm and H 2 30 sccm are simultaneously introduced to prepare carbon nanotubes.
对比例4Comparative example 4
重复对比例2的制备过程,区别仅在于:称取0.83mmolCo(NO3)2·6H2O(纯度98.5%)和Fe(NO3)3·9H2O(纯度98.5%),分别溶解于7.0mL超纯水中。Repeat the preparation process of Comparative Example 2, the only difference is: weigh 0.83mmol Co(NO 3 ) 2 ·6H 2 O (purity 98.5%) and Fe(NO 3 ) 3 ·9H 2 O (purity 98.5%), and dissolve them in 7.0mL ultrapure water.
对比例5Comparative example 5
重复对比例2的制备过程,区别仅在于:称取0.83mmolCo(CH3COO)2·4H2O(纯度95%)和(NH4)2Fe(SO4)2·6H2O(纯度99.5%),分别溶解于7.0mL超纯水中。Repeat the preparation process of Comparative Example 2, the only difference is: weigh 0.83mmolCo(CH 3 COO) 2 ·4H 2 O (purity 95%) and (NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O (purity 99.5 %), respectively dissolved in 7.0 mL ultrapure water.
对比例6Comparative example 6
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 80sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 80 sccm of H 2 is introduced.
对比例7Comparative example 7
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 60sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 60 sccm of H 2 is introduced.
对比例8Comparative example 8
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 50sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 50 sccm of H 2 is introduced.
对比例9Comparative example 9
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 40sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 40 sccm of H 2 is introduced.
对比例10Comparative example 10
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 20sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 20 sccm of H 2 is introduced.
对比例11Comparative example 11
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,同时通入H2 10sccm。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tube furnace, and at the same time, 10 sccm of H 2 is introduced.
对比例12Comparative example 12
重复对比例2的制备过程,区别仅在于:使200sccm的Ar气经过乙醇(碳源)鼓泡器(冰水浴恒温)后通入管式炉中,不通氢气。Repeat the preparation process of Comparative Example 2, with the only difference being that 200 sccm of Ar gas is passed through an ethanol (carbon source) bubbler (ice-water bath constant temperature) and then introduced into the tubular furnace without hydrogen.
对比例13Comparative example 13
重复对比例2的制备过程,区别仅在于:生长碳纳米管的温度为1000℃。The preparation process of Comparative Example 2 was repeated, with the only difference being that the temperature for growing carbon nanotubes was 1000°C.
对比例14Comparative example 14
重复对比例2的制备过程,区别仅在于:生长碳纳米管的温度为900℃。The preparation process of Comparative Example 2 was repeated, with the only difference being that the temperature for growing carbon nanotubes was 900°C.
对比例15Comparative example 15
重复对比例2的制备过程,区别仅在于:生长碳纳米管的温度为800℃。The preparation process of Comparative Example 2 was repeated, with the only difference being that the temperature for growing carbon nanotubes was 800°C.
对比例16Comparative example 16
重复对比例2的制备过程,区别仅在于:生长碳纳米管的温度600℃。The preparation process of Comparative Example 2 was repeated, and the only difference was that the temperature for growing carbon nanotubes was 600°C.
实验例Experimental example
实验例1拉曼测试Experimental Example 1 Raman Test
使用Horiba Jobin–Yvon公司的LabRAM ARAMIS型拉曼光谱仪对对比例2和对比例3制得的碳纳米管分别在激光波长为532nm和633nm进行拉曼测试,激光波长为532nm的测试谱图如图1所示,激光波长为633nm的测试谱图如图2所示。The carbon nanotubes prepared in Comparative Example 2 and Comparative Example 3 were tested using the LabRAM ARAMIS Raman spectrometer of Horiba Jobin-Yvon Company at laser wavelengths of 532nm and 633nm, respectively. The test spectrum of the laser wavelength of 532nm is as shown in the figure. 1, the test spectrum with a laser wavelength of 633nm is shown in Figure 2.
由图1和图2可以看出,使用乙醇生长的碳纳米管RBM峰位明显高于甲烷生长的碳纳米管,说明甲烷生长的碳纳米管直径大于乙醇生长的碳纳米管直径。It can be seen from Figures 1 and 2 that the RBM peak position of carbon nanotubes grown with ethanol is significantly higher than that of carbon nanotubes grown with methane, indicating that the diameter of carbon nanotubes grown with methane is larger than that of carbon nanotubes grown with ethanol.
使用Horiba Jobin–Yvon公司的LabRAM ARAMIS型拉曼光谱仪对对比例2、对比例4和对比例5制得的碳纳米管分别在激光波长为532nm和633nm进行拉曼测试,激光波长为532nm的测试谱图如图3所示,激光波长为633nm的测试谱图如图4所示。The carbon nanotubes prepared in Comparative Example 2, Comparative Example 4 and Comparative Example 5 were subjected to Raman tests at laser wavelengths of 532nm and 633nm respectively using Horiba Jobin-Yvon's LabRAM ARAMIS Raman spectrometer, and the laser wavelength was 532nm. The spectrum is shown in Figure 3, and the test spectrum with a laser wavelength of 633nm is shown in Figure 4.
从图3和图4可以看出,使用硫酸盐前驱体生长的碳纳米管(实施例1制得)RBM峰出现在更高波数,也就是说碳纳米管的管径更小,乙酸盐生长的次之,硝酸盐生长的碳纳米管管径最大。It can be seen from Figure 3 and Figure 4 that the RBM peak of carbon nanotubes grown using sulfate precursor (prepared in Example 1) appears at a higher wave number, which means that the diameter of the carbon nanotubes is smaller. The carbon nanotubes grown on nitrate have the largest diameter.
使用Horiba Jobin–Yvon公司的LabRAM ARAMIS型拉曼光谱仪对对比例2、对比例6、对比例7、对比例8、对比例9、对比例10、对比例11和对比例12制得的碳纳米管分别在激光波长为532nm和633nm进行拉曼测试,激光波长为532nm的测试谱图如图5所示,激光波长为633nm的测试谱图如图6所示。The carbon nanometers prepared in Comparative Examples 2, 6, 7, 8, 9, 10, 11 and 12 were measured using Horiba Jobin-Yvon's LabRAM ARAMIS Raman spectrometer. The tubes were subjected to Raman testing at laser wavelengths of 532nm and 633nm respectively. The test spectrum of the laser wavelength of 532nm is shown in Figure 5, and the test spectrum of the laser wavelength of 633nm is shown in Figure 6.
由图5和图6可以看出,随着氢气流量由0开始逐渐增加,拉曼谱图中100~180cm-1的RBM峰逐渐减弱或消失(对应直径在2.4~1.3nm的单壁碳纳米管),而200cm-1以上的RBM峰逐渐增强(对应直径小于1.2nm的单壁碳纳米管),说明随着CVD气氛中碳氢比的降低,生长的碳纳米管直径逐渐减小。当碳氢比过低,即氢气流量过高时,拉曼谱图中不再出现RBM峰,碳纳米管的生长受到抑制。It can be seen from Figure 5 and Figure 6 that as the hydrogen flow rate gradually increases from 0, the RBM peak of 100-180cm -1 in the Raman spectrum gradually weakens or disappears (corresponding to single-walled carbon nanoparticles with a diameter of 2.4-1.3nm). tube), while the RBM peak above 200cm -1 gradually increases (corresponding to single-walled carbon nanotubes with a diameter less than 1.2nm), indicating that as the carbon-to-hydrogen ratio decreases in the CVD atmosphere, the diameter of the grown carbon nanotubes gradually decreases. When the carbon-to-hydrogen ratio is too low, that is, when the hydrogen flow rate is too high, the RBM peak no longer appears in the Raman spectrum, and the growth of carbon nanotubes is inhibited.
使用Horiba Jobin–Yvon公司的LabRAM ARAMIS型拉曼光谱仪对对比例2、对比例13、对比例14、对比例15和对比例16制得的碳纳米管分别在激光波长为532nm和633nm进行拉曼测试,激光波长为532nm的测试谱图如图7所示,激光波长为633nm的测试谱图如图8所示。The carbon nanotubes prepared in Comparative Example 2, Comparative Example 13, Comparative Example 14, Comparative Example 15 and Comparative Example 16 were used to perform Raman analysis at laser wavelengths of 532nm and 633nm respectively using the LabRAM ARAMIS Raman spectrometer of Horiba Jobin-Yvon Company. Test, the test spectrum with a laser wavelength of 532nm is shown in Figure 7, and the test spectrum with a laser wavelength of 633nm is shown in Figure 8.
图7和图8中随着碳纳米管的生长温度由700℃升高至900℃,拉曼谱图中较低波数的RBM峰的强度逐渐增加,意味着随着温度的升高,碳纳米管的管径逐渐增大,当生长温度为600℃和1000℃时,碳纳米管的生长效率明显降低,拉曼谱图中不再出现RBM峰。In Figures 7 and 8, as the growth temperature of carbon nanotubes increases from 700°C to 900°C, the intensity of the lower wavenumber RBM peak in the Raman spectrum gradually increases, which means that as the temperature increases, the carbon nanotubes grow. The diameter of the tube gradually increases. When the growth temperature is 600°C and 1000°C, the growth efficiency of carbon nanotubes decreases significantly, and the RBM peak no longer appears in the Raman spectrum.
使用Horiba Jobin–Yvon公司的LabRAM ARAMIS型拉曼光谱仪对对比例2和实施例2制得的碳纳米管分别在激光波长为532nm和633nm进行拉曼测试,激光波长为532nm的测试谱图如图9所示,激光波长为633nm的测试谱图如图10所示。Using the LabRAM ARAMIS Raman spectrometer of Horiba Jobin-Yvon Company, the carbon nanotubes prepared in Comparative Example 2 and Example 2 were subjected to Raman tests at laser wavelengths of 532nm and 633nm respectively. The test spectrum of the laser wavelength of 532nm is as shown in the figure. 9, the test spectrum with a laser wavelength of 633 nm is shown in Figure 10.
由图9和图10可以看出,加入EDTA后制得碳纳米管的拉曼谱图中的RBM峰明显蓝移,说明加入EDTA后碳纳米管的直径减小,从RBM峰位计算(根据Zhang,D.;Yang,J.;Li,Y.Small,2013,9,1284-1304.doi:10.1002/smll.201202986计算得到),加入EDTA后生长的碳纳米管直径在0.9~1.2nm范围内。It can be seen from Figures 9 and 10 that the RBM peak in the Raman spectrum of the carbon nanotubes prepared after adding EDTA is obviously blue-shifted, indicating that the diameter of the carbon nanotubes is reduced after adding EDTA, calculated from the RBM peak position (according to Zhang, D.; Yang, J.; Li, Y. Small, 2013, 9, 1284-1304.doi:10.1002/smll.201202986 calculated), the diameter of the carbon nanotubes grown after adding EDTA is in the range of 0.9~1.2nm Inside.
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。The present invention has been described in detail above with reference to specific embodiments and exemplary examples. However, these descriptions should not be construed as limitations of the present invention. Those skilled in the art understand that without departing from the spirit and scope of the invention, various equivalent substitutions, modifications or improvements can be made to the technical solution and its implementation of the invention, and these all fall within the scope of the invention. The scope of protection of the present invention is determined by the appended claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110082993.1A CN114797864B (en) | 2021-01-21 | 2021-01-21 | Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110082993.1A CN114797864B (en) | 2021-01-21 | 2021-01-21 | Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114797864A CN114797864A (en) | 2022-07-29 |
| CN114797864B true CN114797864B (en) | 2024-02-02 |
Family
ID=82524429
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110082993.1A Active CN114797864B (en) | 2021-01-21 | 2021-01-21 | Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114797864B (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115487798B (en) * | 2022-09-14 | 2024-04-05 | 福州大学 | Preparation method and application of Ru-based nanocluster catalyst promoted by additives |
| CN115504457A (en) * | 2022-10-09 | 2022-12-23 | 西南石油大学 | Method for preparing large-diameter single-walled carbon nanotubes with biomass silicon-based catalyst |
| CN115672345B (en) * | 2022-10-27 | 2023-12-15 | 深圳市飞墨科技有限公司 | Preparation method of single-walled carbon nanotube catalyst |
| CN115672335A (en) * | 2022-11-10 | 2023-02-03 | 无锡碳谷科技有限公司 | Preparation method of iron-nickel-aluminum ternary nano catalyst |
| CN116020489B (en) * | 2023-01-06 | 2024-06-07 | 厦门大学 | A catalyst with oriented magnesium oxide carrier crystals and its synthesis method and application |
| CN117181246A (en) * | 2023-09-09 | 2023-12-08 | 山东大展纳米材料有限公司 | A single-walled carbon nanotube growth catalyst and its preparation method and a continuous preparation method of single-walled carbon nanotubes |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106607097A (en) * | 2015-10-26 | 2017-05-03 | 中国石油化工股份有限公司 | Hydrogenation catalyst, and preparation method thereof |
| CN107500268A (en) * | 2017-10-19 | 2017-12-22 | 焦作集越纳米材料技术有限公司 | A kind of preparation method of CNT |
| CN107812525A (en) * | 2016-09-12 | 2018-03-20 | 中国石油化工股份有限公司 | A kind of hydrogenating catalyst composition and the method for hydrotreating |
| CN110339842A (en) * | 2019-06-26 | 2019-10-18 | 江西铜业技术研究院有限公司 | A kind of composite catalyst and preparation method thereof growing carbon nanotube |
| CN110801843A (en) * | 2019-11-11 | 2020-02-18 | 内蒙古骏成新能源科技有限公司 | Two-stage method for preparing high-magnification carbon nano tube with superfine tube diameter, catalyst and preparation method thereof |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103537293B (en) * | 2012-07-12 | 2015-12-16 | 北京大学 | For the preparation of Catalysts and its preparation method and the application of chiral selectivity and the selective SWCN of electric conductivity |
-
2021
- 2021-01-21 CN CN202110082993.1A patent/CN114797864B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106607097A (en) * | 2015-10-26 | 2017-05-03 | 中国石油化工股份有限公司 | Hydrogenation catalyst, and preparation method thereof |
| CN107812525A (en) * | 2016-09-12 | 2018-03-20 | 中国石油化工股份有限公司 | A kind of hydrogenating catalyst composition and the method for hydrotreating |
| CN107500268A (en) * | 2017-10-19 | 2017-12-22 | 焦作集越纳米材料技术有限公司 | A kind of preparation method of CNT |
| CN110339842A (en) * | 2019-06-26 | 2019-10-18 | 江西铜业技术研究院有限公司 | A kind of composite catalyst and preparation method thereof growing carbon nanotube |
| CN110801843A (en) * | 2019-11-11 | 2020-02-18 | 内蒙古骏成新能源科技有限公司 | Two-stage method for preparing high-magnification carbon nano tube with superfine tube diameter, catalyst and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114797864A (en) | 2022-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114797864B (en) | Preparation method for small-diameter bulk single-walled carbon nanotube growth catalyst | |
| Yu et al. | Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates | |
| JP6538115B2 (en) | Synthesis of high quality carbon single-walled nanotubes | |
| CN102267693B (en) | Low-temperature preparation method of carbon nanotube | |
| Tang et al. | Simple and high-yield method for synthesizing single-crystal GaN nanowires | |
| JP5102633B2 (en) | Method for growing long carbon single-walled nanotubes | |
| KR101446116B1 (en) | Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof | |
| CN108690609A (en) | Synthesis method of water-soluble or oil-soluble carbon dots and fluorescent carbon dots | |
| CN1978315A (en) | Method for preparing carbon nano tube array | |
| CN101389401A (en) | Catalyst for growing carbon nanostructure, method for producing carbon nanostructure, raw material gas and carrier gas for production, and apparatus for production | |
| JP2010137222A (en) | Metal nano catalyst, manufacturing method therefor, and adjusting method of growth mode of carbon nanotube using therewith | |
| WO2014008756A1 (en) | Catalyst for preparing chiral selective and conductive selective single-walled carbon nanotube, preparation method and application thereof | |
| Qin et al. | Europium-doped yttrium silicate nanophosphors prepared by flame synthesis | |
| CN113215551B (en) | Method for preparing TaC | |
| CN1768002B (en) | Method for preparing carbon nano-tube from liquid-phase carbon source | |
| CN114887646B (en) | Fe monoatomic supported porous carbon nitride photocatalytic material and preparation method and application thereof | |
| JP5585275B2 (en) | Carbon nanotube manufacturing method | |
| Dong et al. | Effects of hydrogen on the formation of aligned carbon nanotubes by chemical vapor deposition | |
| CN110002430A (en) | Carbon nanotube and its manufacturing method | |
| CN104609386A (en) | Positioning growth method of single-wall carbon nanotube | |
| Zhang et al. | Evolution of catalyst design for controlled synthesis of chiral single-walled carbon nanotubes | |
| KR101452728B1 (en) | Synthesis method of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition, and there of Carbon nanofibers | |
| JPWO2017170579A1 (en) | Method for producing carbon nanostructure aggregate and carbon nanostructure aggregate | |
| CN118179531A (en) | Silver-copper diatomic catalyst and preparation method and application thereof | |
| JP4964372B2 (en) | Carbon material manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |