CN114814488A - A method and device for locating UHF partial discharge defects - Google Patents
A method and device for locating UHF partial discharge defects Download PDFInfo
- Publication number
- CN114814488A CN114814488A CN202210410017.9A CN202210410017A CN114814488A CN 114814488 A CN114814488 A CN 114814488A CN 202210410017 A CN202210410017 A CN 202210410017A CN 114814488 A CN114814488 A CN 114814488A
- Authority
- CN
- China
- Prior art keywords
- signal
- noise reduction
- partial discharge
- time delay
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1209—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- General Physics & Mathematics (AREA)
- Testing Relating To Insulation (AREA)
- Locating Faults (AREA)
Abstract
本申请提供一种特高频局部放电缺陷定位方法及装置,所述方法包括:对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;根据所述放电时延信号确定特高频局部放电缺陷的所在位置。本申请能够对特高频局部放电缺陷进行精确定位。
The present application provides a method and device for locating UHF partial discharge defects. The method includes: performing wavelet noise reduction processing on an obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal; The noise signal is subjected to secondary correlation weighting processing to obtain a discharge time delay signal; the location of the UHF partial discharge defect is determined according to the discharge time delay signal. The present application can precisely locate UHF partial discharge defects.
Description
技术领域technical field
本申请涉及电气设备检修领域,具体是一种特高频局部放电缺陷定位方法及装置。The present application relates to the field of electrical equipment maintenance, in particular to a method and device for locating UHF partial discharge defects.
背景技术Background technique
近些年,气体绝缘封闭式组合电器(Gas Insulated Switchgear,以下简称GIS)在电力系统中得到推广应用,保障其安全稳定的运行日趋重要。由于GIS内部场强较高且绝缘裕度较小,在制造、运输及安装等环节很容易出现微小缺陷。在GIS设备的运行中,这些微小缺陷可能会导致局部放电现象,形成放电通道,劣化绝缘,甚至引发击穿放电事故。In recent years, Gas Insulated Switchgear (hereinafter referred to as GIS) has been popularized and applied in power systems, and it is increasingly important to ensure its safe and stable operation. Due to the high internal field strength and small insulation margin of GIS, minor defects are prone to occur in manufacturing, transportation and installation. In the operation of GIS equipment, these tiny defects may cause partial discharge, form discharge channels, deteriorate insulation, and even cause breakdown discharge accidents.
局部放电信号一般以声、电、光等波的形式向外辐射,现有技术可通过超声波检测法、特高频检测法及声电联合检测法等实现局放放电缺陷定位。其中,特高频一般指300MHz-3GHz的电磁波信号,相对于超声波检测法,特高频检测法具有较强的抗干扰性能及极高的灵敏度,但应用特高频检测法进行局部放电缺陷定位时通常采用时差定位法实现,因此,时延估算的精确度直接影响着故障定位的准确性。在实际工程应用中,现有技术往往将特高频传感器采集到的信号直接进行粗略的时差对比,而并未在比对前进行信号处理,导致故障定位误差很大。The partial discharge signal generally radiates outward in the form of sound, electricity, light and other waves. The existing technology can realize partial discharge defect location by ultrasonic detection method, UHF detection method and combined sound and electricity detection method. Among them, UHF generally refers to the electromagnetic wave signal of 300MHz-3GHz. Compared with the ultrasonic detection method, the UHF detection method has strong anti-interference performance and extremely high sensitivity, but the UHF detection method is used for partial discharge defect location. The time difference location method is usually used to realize the time difference. Therefore, the accuracy of time delay estimation directly affects the accuracy of fault location. In practical engineering applications, the prior art often directly performs rough time difference comparison on the signals collected by the UHF sensor, but does not perform signal processing before the comparison, resulting in a large fault location error.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的问题,本申请提供一种特高频局部放电缺陷定位方法及装置,能够对特高频局部放电缺陷进行精确定位。In view of the problems in the prior art, the present application provides a method and device for locating UHF partial discharge defects, which can accurately locate UHF partial discharge defects.
为解决上述技术问题,本申请提供以下技术方案:In order to solve the above-mentioned technical problems, the application provides the following technical solutions:
第一方面,本申请提供一种特高频局部放电缺陷定位方法,包括:In a first aspect, the present application provides a method for locating UHF partial discharge defects, including:
对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;Perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain the corresponding discharge noise reduction signal;
对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;performing secondary correlation weighting processing on the discharge noise reduction signal to obtain a discharge time delay signal;
根据所述放电时延信号确定特高频局部放电缺陷的所在位置。The location of the UHF partial discharge defect is determined according to the discharge time delay signal.
进一步地,所述的特高频局部放电缺陷定位方法,包括:所述对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号,包括:Further, the method for locating UHF partial discharge defects includes: performing wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal, including:
利用小波基对所述特高频局部放电信号进行小波变换,得到对应的小波信号;Wavelet transform is performed on the UHF partial discharge signal by using a wavelet basis to obtain a corresponding wavelet signal;
对所述小波信号进行滤波降噪处理,得到对应的滤波信号;Perform filtering and noise reduction processing on the wavelet signal to obtain a corresponding filtered signal;
对所述滤波信号进行逆小波变换,得到所述放电降噪信号。Inverse wavelet transform is performed on the filtered signal to obtain the discharge noise reduction signal.
进一步地,所述的特高频局部放电缺陷定位方法,包括:所述放电降噪信号包括:第一放电降噪信号及第二放电降噪信号;所述对所述放电降噪信号进行二次相关加权处理,得到放电时延信号,包括:Further, the method for locating UHF partial discharge defects includes: the discharge noise reduction signal includes: a first discharge noise reduction signal and a second discharge noise reduction signal; Sub-correlation weighting process to obtain the discharge delay signal, including:
对所述第一放电降噪信号进行自相关运算,得到自相关运算结果;performing an autocorrelation operation on the first discharge noise reduction signal to obtain an autocorrelation operation result;
对所述第一放电降噪信号与第二放电降噪信号进行互相关运算,得到互相关运算结果;performing a cross-correlation operation on the first discharge noise reduction signal and the second discharge noise reduction signal to obtain a cross-correlation operation result;
利用广义加权函数对所述自相关运算结果与所述互相关运算结果进行二次互相关加权运算,得到互相关加权运算结果;Use a generalized weighting function to perform secondary cross-correlation weighting operation on the autocorrelation operation result and the cross-correlation operation result, to obtain a cross-correlation weighting operation result;
将所述互相关加权运算结果输入功率谱函数,得到对应的功率谱;Inputting the cross-correlation weighted operation result into a power spectrum function to obtain a corresponding power spectrum;
对所述功率谱进行快速傅里叶逆变换,得到所述放电时延信号。Inverse fast Fourier transform is performed on the power spectrum to obtain the discharge time delay signal.
进一步地,所述的特高频局部放电缺陷定位方法,包括:所述根据所述放电时延信号确定特高频局部放电缺陷的所在位置,包括:Further, the method for locating the UHF partial discharge defect includes: determining the location of the UHF partial discharge defect according to the discharge time delay signal, including:
对所述放电时延信号进行三次样条插值处理,得到插值结果;performing cubic spline interpolation processing on the discharge time delay signal to obtain an interpolation result;
对所述插值结果进行时延峰值检测,确定对应的时延峰值;performing delay peak detection on the interpolation result to determine a corresponding delay peak;
根据所述时延峰值确定所述特高频局部放电缺陷的所在位置。The location of the UHF partial discharge defect is determined according to the time delay peak value.
第二方面,本申请提供一种特高频局部放电缺陷定位装置,包括:In a second aspect, the present application provides a UHF partial discharge defect locating device, comprising:
降噪处理单元,用于对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;A noise reduction processing unit, configured to perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal;
时延处理单元,用于对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;a time delay processing unit, configured to perform secondary correlation weighting processing on the discharge noise reduction signal to obtain a discharge time delay signal;
缺陷定位单元,用于根据所述放电时延信号确定特高频局部放电缺陷的所在位置。The defect locating unit is configured to determine the location of the UHF partial discharge defect according to the discharge time delay signal.
进一步地,所述降噪处理单元,包括:Further, the noise reduction processing unit includes:
小波变换模块,用于利用小波基对所述特高频局部放电信号进行小波变换,得到对应的小波信号;a wavelet transform module, configured to perform wavelet transform on the UHF partial discharge signal by using a wavelet basis to obtain a corresponding wavelet signal;
滤波模块,用于对所述小波信号进行滤波降噪处理,得到对应的滤波信号;a filtering module, configured to perform filtering and noise reduction processing on the wavelet signal to obtain a corresponding filtered signal;
降噪模块,用于对所述滤波信号进行逆小波变换,得到所述放电降噪信号。A noise reduction module, configured to perform inverse wavelet transform on the filtered signal to obtain the discharge noise reduction signal.
进一步地,所述放电降噪信号包括:第一放电降噪信号及第二放电降噪信号;所述时延处理单元,包括:Further, the discharge noise reduction signal includes: a first discharge noise reduction signal and a second discharge noise reduction signal; the delay processing unit includes:
自相关运算模块,用于对所述第一放电降噪信号进行自相关运算,得到自相关运算结果;An autocorrelation operation module, configured to perform an autocorrelation operation on the first discharge noise reduction signal to obtain an autocorrelation operation result;
互相关运算模块,用于对所述第一放电降噪信号与第二放电降噪信号进行互相关运算,得到互相关运算结果;以及利用广义加权函数对所述自相关运算结果与所述互相关运算结果进行二次互相关加权运算,得到互相关加权运算结果;A cross-correlation operation module for performing cross-correlation operation on the first discharge noise reduction signal and the second discharge noise reduction signal to obtain a cross-correlation operation result; The correlation operation result is subjected to a second cross-correlation weighting operation to obtain a cross-correlation weighting operation result;
功率谱确定模块,用于将所述互相关加权运算结果输入功率谱函数,得到对应的功率谱;a power spectrum determination module, configured to input the cross-correlation weighted operation result into a power spectrum function to obtain a corresponding power spectrum;
时延处理模块,用于对所述功率谱进行快速傅里叶逆变换,得到所述放电时延信号。A delay processing module, configured to perform inverse fast Fourier transform on the power spectrum to obtain the discharge delay signal.
进一步地,所述缺陷定位单元,包括:Further, the defect locating unit includes:
插值处理模块,用于对所述放电时延信号进行三次样条插值处理,得到插值结果;an interpolation processing module, configured to perform cubic spline interpolation processing on the discharge delay signal to obtain an interpolation result;
峰值确定模块,用于对所述插值结果进行时延峰值检测,确定对应的时延峰值;a peak determination module, configured to perform delay peak detection on the interpolation result, and determine a corresponding delay peak;
缺陷定位模块,用于根据所述时延峰值确定所述特高频局部放电缺陷的所在位置。A defect location module, configured to determine the location of the UHF partial discharge defect according to the time delay peak value.
第三方面,本申请提供一种电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述特高频局部放电缺陷定位方法的步骤。In a third aspect, the present application provides an electronic device including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the UHF partial discharge defect when executing the program The steps of the positioning method.
第四方面,本申请提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述特高频局部放电缺陷定位方法的步骤。In a fourth aspect, the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the UHF partial discharge defect location method.
针对现有技术中的问题,本申请提供的特高频局部放电缺陷定位方法及装置,能够基于小波变换对采集到的特高频局部放电信号进行降噪处理,使得该信号更加纯净,提高了信噪比;对降噪处理后的特高频局部放电信号进行互相关运算,然后基于SCOT函数加权后进行二次相关运算,使其在低信噪比条件下,谱峰更加凸显和真实;对互相关运算结果的时延进行三次样条插值运算,并平滑时延结果,提高了峰值取值的准确性。综上所述,本申请提供的特高频局部放电缺陷定位方法及装置能够提高现场GIS特高频局部放电缺陷定位的精度,为开展现场缺陷检测及故障分析提供了可靠依据。In view of the problems in the prior art, the method and device for locating UHF partial discharge defects provided by the present application can perform noise reduction processing on the collected UHF partial discharge signal based on wavelet transform, so that the signal is more pure and improves the performance of the signal. Signal-to-noise ratio: perform cross-correlation operation on the UHF partial discharge signal after noise reduction, and then perform a quadratic correlation operation after weighting based on the SCOT function, so that the spectral peaks are more prominent and real under the condition of low signal-to-noise ratio; The cubic spline interpolation operation is performed on the time delay of the cross-correlation operation result, and the time delay result is smoothed, which improves the accuracy of peak value selection. To sum up, the method and device for locating UHF partial discharge defects provided by this application can improve the accuracy of on-site GIS UHF partial discharge defect locating, and provide a reliable basis for on-site defect detection and fault analysis.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本申请实施例中特高频局部放电缺陷定位方法的流程图;1 is a flowchart of a method for locating a UHF partial discharge defect in an embodiment of the application;
图2为本申请实施例中生成放电降噪信号的流程图;2 is a flowchart of generating a discharge noise reduction signal in an embodiment of the application;
图3为本申请实施例中生成放电时延信号的流程图;3 is a flowchart of generating a discharge delay signal in an embodiment of the application;
图4为本申请实施例中确定特高频局部放电缺陷的所在位置的流程图;FIG. 4 is a flowchart of determining the location of a UHF partial discharge defect in an embodiment of the application;
图5为本申请实施例中特高频局部放电缺陷定位装置的结构图;5 is a structural diagram of a UHF partial discharge defect locating device in an embodiment of the application;
图6为本申请实施例中降噪处理单元的结构图;6 is a structural diagram of a noise reduction processing unit in an embodiment of the present application;
图7为本申请实施例中时延处理单元的结构图;FIG. 7 is a structural diagram of a delay processing unit in an embodiment of the present application;
图8为本申请实施例中缺陷定位单元的结构图;8 is a structural diagram of a defect locating unit in an embodiment of the present application;
图9为本申请实施例中的电子设备的结构示意图;FIG. 9 is a schematic structural diagram of an electronic device in an embodiment of the application;
图10为本申请实施例中生成放电降噪信号的示意图;10 is a schematic diagram of generating a discharge noise reduction signal in an embodiment of the application;
图11为本申请实施例中生成放电时延信号的示意图;11 is a schematic diagram of generating a discharge delay signal in an embodiment of the application;
图12为本申请实施例中确定特高频局部放电缺陷的所在位置的示意图;12 is a schematic diagram of determining the location of a UHF partial discharge defect in an embodiment of the application;
图13为本申请实施例中隔离开关特高频CH1和CH2传感器与放电点位置的示意图;13 is a schematic diagram of the UHF CH1 and CH2 sensors of the isolation switch and the positions of the discharge points in the embodiment of the application;
图14为本申请实施例中降噪处理后的CH1和CH2传感器信号的示意图;14 is a schematic diagram of the CH1 and CH2 sensor signals after noise reduction processing in an embodiment of the application;
图15为本申请实施例中插值互相关处理后的峰值信号的示意图。FIG. 15 is a schematic diagram of a peak signal after interpolation cross-correlation processing in an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
近些年,气体绝缘封闭式组合电器(Gas Insulated Switchgear,以下简称GIS)在电力系统中得到推广应用,保障其安全稳定的运行日趋重要。由于GIS内部场强较高且绝缘裕度较小,在制造、运输及安装等环节很容易出现微小缺陷。在GIS设备的运行中,这些微小缺陷可能会导致局部放电现象,形成放电通道,劣化绝缘,甚至引发击穿放电事故。In recent years, Gas Insulated Switchgear (hereinafter referred to as GIS) has been popularized and applied in power systems, and it is increasingly important to ensure its safe and stable operation. Due to the high internal field strength and small insulation margin of GIS, minor defects are prone to occur in manufacturing, transportation and installation. In the operation of GIS equipment, these tiny defects may cause partial discharge, form discharge channels, deteriorate insulation, and even cause breakdown discharge accidents.
一实施例中,参见图1,为了能够对特高频局部放电缺陷进行精确定位,本申请提供一种特高频局部放电缺陷定位方法,包括:In one embodiment, referring to FIG. 1 , in order to accurately locate UHF partial discharge defects, the present application provides a method for locating UHF partial discharge defects, including:
S101:对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;S101: Perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal;
S102:对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;S102: Perform secondary correlation weighting processing on the discharge noise reduction signal to obtain a discharge time delay signal;
S103:根据所述放电时延信号确定特高频局部放电缺陷的所在位置。S103: Determine the location of the UHF partial discharge defect according to the discharge delay signal.
可以理解的是,本申请提供的特高频局部放电缺陷定位方法,通过对特高频局部放电信号进行采集、处理及取值等方面的处理,对特高频局部放电信号的时延进行精确计算,在低信噪比环境中能够表现出良好的抗噪能力,同时可保障在工程现场GIS系统硬件采样速率较低的情况下,获得精确的时延估计值,从而实现故障信号的精确定位。It can be understood that the UHF partial discharge defect location method provided by this application can accurately determine the time delay of the UHF partial discharge signal by collecting, processing and valuing the UHF partial discharge signal. It can show good anti-noise ability in a low signal-to-noise ratio environment, and at the same time, it can ensure that accurate time delay estimates can be obtained when the hardware sampling rate of the GIS system in the engineering site is low, so as to achieve accurate positioning of fault signals. .
进一步地,在信号采集阶段,当GIS系统内部发生特高频局部放电时,多通道特高频传感器可以采集到特高频局部放电信号,经小波降噪处理后可以通过电缆传送至时延处理单元;初步降噪的特高频局部放电信号经基于广义函数(例如SCOT函数)加权的二次相关算法处理后,可以获取信号相似程度的时延波形并将处理后的信号传送至缺陷定位单元进行峰值检测;经广义函数处理后的信号采用三次样条插值的方法对其峰值做进一步的拟合处理,最终读取的峰值时延即为信号时差;根据该信号时差能够计算并输出GIS内部局部放电缺陷所在的位置。Further, in the signal acquisition stage, when UHF partial discharge occurs inside the GIS system, the multi-channel UHF sensor can collect the UHF partial discharge signal, which can be transmitted to the delay processing through the cable after wavelet noise reduction processing. unit; after the preliminary denoised UHF partial discharge signal is processed by a quadratic correlation algorithm weighted based on a generalized function (such as SCOT function), the time delay waveform of the signal similarity degree can be obtained and the processed signal can be sent to the defect location unit Perform peak detection; the signal processed by the generalized function uses the cubic spline interpolation method to further fit its peak value, and the final read peak time delay is the signal time difference; according to the signal time difference, it can be calculated and output inside the GIS The location of the partial discharge defect.
从上述描述可知,本申请提供的特高频局部放电缺陷定位方法,能够基于小波变换对采集到的特高频局部放电信号进行降噪处理,使得该信号更加纯净,提高了信噪比;对降噪处理后的特高频局部放电信号进行互相关运算,然后基于SCOT函数加权后进行二次相关运算,使其在低信噪比条件下,谱峰更加凸显和真实;对互相关运算结果的时延进行三次样条插值运算,并平滑时延结果,提高了峰值取值的准确性。综上所述,本申请提供的特高频局部放电缺陷定位方法及装置能够提高现场GIS特高频局部放电缺陷定位的精度,为开展现场缺陷检测及故障分析提供了可靠依据。It can be seen from the above description that the method for locating UHF partial discharge defects provided by the present application can perform noise reduction processing on the collected UHF partial discharge signal based on wavelet transform, so that the signal is purer and the signal-to-noise ratio is improved; The UHF partial discharge signal after noise reduction is subjected to cross-correlation operation, and then weighted based on the SCOT function to carry out quadratic correlation operation, so that under the condition of low signal-to-noise ratio, the spectral peaks are more prominent and true; The time delay is calculated by cubic spline interpolation, and the time delay result is smoothed, which improves the accuracy of peak value selection. To sum up, the method and device for locating UHF partial discharge defects provided by this application can improve the accuracy of on-site GIS UHF partial discharge defect locating, and provide a reliable basis for on-site defect detection and fault analysis.
一实施例中,参见图2,所述对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号,包括:In an embodiment, referring to FIG. 2 , the wavelet noise reduction processing is performed on the obtained UHF partial discharge signal to obtain the corresponding discharge noise reduction signal, including:
S201:利用小波基对所述特高频局部放电信号进行小波变换,得到对应的小波信号;S201: Use wavelet basis to perform wavelet transformation on the UHF partial discharge signal to obtain a corresponding wavelet signal;
S202:对所述小波信号进行滤波降噪处理,得到对应的滤波信号;S202: Perform filtering and noise reduction processing on the wavelet signal to obtain a corresponding filtered signal;
S203:对所述滤波信号进行逆小波变换,得到所述放电降噪信号。S203: Perform inverse wavelet transform on the filtered signal to obtain the discharge noise reduction signal.
可以理解的是,对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号可以通过步骤S201至步骤S203实现。It can be understood that, performing wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal can be achieved through steps S201 to S203.
需要说明的是,采集到的特高频局部放电信号往往比较微弱,容易受到电磁波通信及高频信号保护等脉冲型信号的干扰,因此,在步骤S201至步骤S203阶段,需要对通过特高频传感器采集到的特高频局部放电信号进行小波降噪处理,参见图10。It should be noted that the collected UHF partial discharge signals are often weak and easily interfered by pulsed signals such as electromagnetic wave communication and high-frequency signal protection. The UHF partial discharge signal collected by the sensor is subjected to wavelet noise reduction processing, see Figure 10.
具体分为三个步骤:It is divided into three steps:
(1)小波分解:在本申请实施例中,小波基选取“db4”,对于原信号进行3层分解,得到小波系数,其功能在于使信号重构过程更加光滑,频域的局部化更好;(1) Wavelet decomposition: In the embodiment of the present application, the wavelet base is selected as "db4", and the original signal is decomposed in three layers to obtain wavelet coefficients. Its function is to make the signal reconstruction process smoother and the localization in the frequency domain better. ;
(2)阈值处理:根据特高频局部放电信号中噪声的水平估计阈值,阈值选取无偏似然估计,将信号x(n)中的每一个元素取绝对值,再由小到大排序,将各个元素取平方得到新的信号序列f(k),其功能在于当噪声在高频段分布较少时,该阈值估计方法可较好的将微弱信号提取出来。(2) Threshold value processing: The threshold value is estimated according to the level of noise in the UHF partial discharge signal, the threshold value is selected as unbiased likelihood estimation, the absolute value of each element in the signal x(n) is taken, and then sorted from small to large. The new signal sequence f(k) is obtained by taking the square of each element. Its function is that when the noise is less distributed in the high frequency band, the threshold estimation method can better extract the weak signal.
f(k)=(sort(|x|))2,k=(0,1,...,N-1)f(k)=(sort(|x|)) 2 , k=(0,1,...,N-1)
式中,sort是排序命令,N为原始特高频信号的采样长度。In the formula, sort is the sorting order, and N is the sampling length of the original UHF signal.
若取新信号序列f(k)的第k个元素的平方根为给定阈值λk,即:If the square root of the kth element of the new signal sequence f(k) is taken as the given threshold λ k , namely:
则该阈值产生的风险为:Then the risk generated by this threshold is:
根据所得到的风险曲线Rish(k),记其最小风险点所对应的值为kmin,那么rigrsure阈值为:According to the obtained risk curve Rish(k), record the value corresponding to the minimum risk point k min , then the rigrsure threshold is:
(3)小波重构:阈值函数的选择为wthresh中的软阈值去噪方法,其功能在于使小波系数整体连续性较好,从而使估计信号不会产生附加震荡。当小波系数w的绝对值小于给定的阈值时,将其置为零;当大于阈值时,将其都减去阈值,即:(3) Wavelet reconstruction: The selection of the threshold function is the soft threshold denoising method in wthresh. Its function is to make the overall continuity of the wavelet coefficients better, so that the estimated signal will not generate additional oscillations. When the absolute value of the wavelet coefficient w is less than the given threshold, it is set to zero; when it is greater than the threshold, it is subtracted from the threshold, namely:
式中,wλ为施加阈值后的小波系数。In the formula, w λ is the wavelet coefficient after the threshold is applied.
经过上述步骤的处理,能够完成对特高频局部放电信号的小波降噪处理。After the processing of the above steps, the wavelet noise reduction processing of the UHF partial discharge signal can be completed.
从上述描述可知,本申请提供的特高频局部放电缺陷定位方法,能够对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号。It can be seen from the above description that the method for locating UHF partial discharge defects provided by the present application can perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal.
一实施例中,参见图3,所述放电降噪信号包括:第一放电降噪信号及第二放电降噪信号;所述对所述放电降噪信号进行二次相关加权处理,得到放电时延信号,包括:In one embodiment, referring to FIG. 3 , the discharge noise reduction signal includes: a first discharge noise reduction signal and a second discharge noise reduction signal; the discharge noise reduction signal is subjected to secondary correlation weighting processing to obtain the discharge time delayed signals, including:
S301:对所述第一放电降噪信号进行自相关运算,得到自相关运算结果R11;S301: Perform an autocorrelation operation on the first discharge noise reduction signal to obtain an autocorrelation operation result R 11 ;
S302:对所述第一放电降噪信号与第二放电降噪信号进行互相关运算,得到互相关运算结果R12;S302: Perform a cross-correlation operation on the first discharge noise reduction signal and the second discharge noise reduction signal to obtain a cross-correlation operation result R 12 ;
S303:利用广义加权函数(本申请实施例采用SCOT函数)对所述自相关运算结果R11与所述互相关运算结果R12进行二次互相关加权运算,得到互相关加权运算结果RR11R12;S303: use a generalized weighting function (the SCOT function is used in the embodiment of the present application) to perform a secondary cross-correlation weighting operation on the autocorrelation operation result R11 and the cross-correlation operation result R12 , and obtain a cross-correlation weighting operation result R R11R12 ;
S304:将所述互相关加权运算结果RR11R12输入功率谱函数,得到对应的功率谱;S304: Input the cross-correlation weighted operation result R R11R12 into a power spectrum function to obtain a corresponding power spectrum;
S305:对所述功率谱进行快速傅里叶逆变换,得到所述放电时延信号。S305: Perform inverse fast Fourier transform on the power spectrum to obtain the discharge delay signal.
可以理解的是,该阶段对信号的处理基于SCOT函数加权的二次相关运算实现。在低信噪比的情况下,上述S301至S305的处理过程具有良好的抗噪效果,可获得能够反应缺陷真实情况的时延信号时域图,算法过程参见图11所示。It can be understood that the processing of the signal at this stage is implemented based on the secondary correlation operation weighted by the SCOT function. In the case of a low signal-to-noise ratio, the above-mentioned processing procedures from S301 to S305 have a good anti-noise effect, and a time-domain diagram of the time-delay signal that can reflect the real situation of the defect can be obtained. The algorithm process is shown in FIG. 11 .
具体地,将小波降噪后的信号(也就是放电降噪信号)通过傅里叶变换分别进行自相关运算与互相关运算,并对互相关运算结果RR11R12进行基于SCOT函数的加权处理,然后对自相关结果与加权处理互相关结果RR11R12进行二次相关算法处理。Specifically, the signal after wavelet noise reduction (that is, the discharge noise reduction signal) is respectively subjected to autocorrelation operation and cross-correlation operation through Fourier transform, and the cross-correlation operation result R R11R12 is subjected to weighting processing based on the SCOT function, and then The quadratic correlation algorithm is performed on the autocorrelation result and the weighted cross-correlation result R R11R12 .
具体地,当信号的信噪比较差或噪声之间存在相关性时,单纯的互相关结果往往会造成不准确的时延估计。SCOT函数可对互相关结果的主峰部分进行平滑滤波,其功能在于有效凸显互相关结果主峰,抑制噪声干扰。基于自相关结果R11与加权处理的互相关结果RR11R12进行二次相关处理,可以获得更准确的时延估计。具体参见如下公式:Specifically, when the signal-to-noise ratio of the signal is poor or there is correlation between noises, the simple cross-correlation result often results in inaccurate time delay estimation. The SCOT function can smooth and filter the main peak part of the cross-correlation result, and its function is to effectively highlight the main peak of the cross-correlation result and suppress noise interference. A more accurate time delay estimation can be obtained by performing quadratic correlation processing based on the autocorrelation result R11 and the cross-correlation result R R11R12 of the weighting process. See the following formula for details:
其中,R11(τ)为信号x1'(n)的自相关函数,R12(τ)为信号x1'(n)和x'2(n)的互相关函数;W11(ω)为信号x1'(n)的自功率谱;W12(ω)为信号x1'(n)和x'2(n)的互功率谱;R12(τ)'为广义加权后的互相关结果,为SCOT加权函数:Among them, R 11 (τ) is the autocorrelation function of the signal x 1 '(n), R 12 (τ) is the cross-correlation function of the signals x 1 '(n) and x' 2 (n); W 11 (ω) is the self-power spectrum of the signal x 1 '(n); W 12 (ω) is the cross-power spectrum of the signals x 1 '(n) and x' 2 (n); R 12 (τ)' is the generalized weighted cross-power spectrum related results, Weighting function for SCOT:
其中,W1(ω)和W2(ω)为两个信号x1'(n)和x'2(n)的功率谱。where W 1 (ω) and W 2 (ω) are the power spectra of the two signals x 1 '(n) and x' 2 (n).
经过上述步骤的处理,能够完成对放电降噪信号进行二次相关加权处理,得到放电时延信号。After the processing in the above steps, the secondary correlation weighting processing on the discharge noise reduction signal can be completed to obtain the discharge time delay signal.
一实施例中,参见图4,所述根据所述放电时延信号确定特高频局部放电缺陷的所在位置,包括:In an embodiment, referring to FIG. 4 , the determining the location of the UHF partial discharge defect according to the discharge time delay signal includes:
S401:对所述放电时延信号进行三次样条插值处理,得到插值结果;S401: Perform cubic spline interpolation processing on the discharge delay signal to obtain an interpolation result;
S402:对所述插值结果进行时延峰值检测,确定对应的时延峰值;S402: Perform delay peak detection on the interpolation result to determine a corresponding delay peak;
S403:根据所述时延峰值确定所述特高频局部放电缺陷的所在位置。S403: Determine the location of the UHF partial discharge defect according to the time delay peak value.
可以理解的是,对经二次相关算法处理后的时延结果进行三次样条插值处理,对峰值附近数据进行平滑与拟合,能够提高峰值取点的准确率,最后根据峰值时间计算距离差,输出GIS局部放电故障点的位置,具体实现过程参见图12所示。It can be understood that the cubic spline interpolation processing is performed on the time delay result processed by the quadratic correlation algorithm, and the data near the peak is smoothed and fitted, which can improve the accuracy of the peak point selection, and finally calculate the distance difference according to the peak time. , and output the position of the partial discharge fault point of the GIS. The specific implementation process is shown in Figure 12.
具体地,所谓进行三次样条插值运算,就是针对信号长度为N的互相关处理后的时延结果,在区间[p,q]上进行m次分段,将每一段区间的时延结果进行三次样条插值处理。由于三次样条插值函数具有较好的稳定性及收敛性,可以对互相关处理后的时延结果进行拟合,在保持峰值的同时,时延估计也能更加准确。Specifically, the so-called cubic spline interpolation operation is to perform m times of segmentation on the interval [p, q] for the time delay result after the cross-correlation processing of the signal length of N, and the delay result of each segment is performed. Cubic spline interpolation processing. Because the cubic spline interpolation function has good stability and convergence, it can fit the delay result after cross-correlation processing, and the delay estimation can be more accurate while maintaining the peak value.
进一步地,设f(x)为处理后的时延结果,它在区间[p,q]上为一个连续可微函数,并在此区间给出:Further, let f(x) be the processed delay result, which is a continuously differentiable function on the interval [p, q], and is given in this interval:
p=x0<x1<x2<…<xm=qp=x 0 <x 1 <x 2 <…<x m =q
设在区间[xi-1,xi]上的三次样条函数g(x)为:Let the cubic spline function g(x) on the interval [x i-1 , x i ] be:
g(xi)=aix3+bix2+cix+di,x∈(xi-1,xi),i=1,2,…,mg(x i )=a i x 3 +b i x 2 +c i x+d i ,x∈(x i-1 ,x i ),i=1,2,...,m
式中,ai,bi,ci,di是未定系数,达到插值条件需满足:In the formula, a i , b i , c i , d i are undetermined coefficients, and the interpolation conditions must be satisfied:
f(xi)=g(xi),(i=0,1,…,m)f(x i )=g(x i ),(i=0,1,...,m)
求解出区间[xi-1,xi]中的4个未定系数后才能得到子区间上的插值函数g(xi),共分割成m个子区间,所以需要求解4m个系数,因f(x)在区间[p,q]中的二阶导数是连续的,所以样条的节点处应满足:After solving the four undetermined coefficients in the interval [ xi-1 , x i ], the interpolation function g( xi ) on the sub-interval can be obtained, which is divided into m sub-intervals, so 4m coefficients need to be solved, because f( The second derivative of x) in the interval [p, q] is continuous, so the nodes of the spline should satisfy:
此时距离确定函数g(x)还需2个条件,可选择区间端点值作为2个边界条件,x0=p,xm=q,可得:At this time, two conditions are needed to determine the distance function g(x). The endpoint value of the interval can be selected as the two boundary conditions, x 0 =p, x m =q, we can get:
已知x0=p,xm=q时的一阶导数:The first derivative when x 0 =p and x m =q are known:
已知x0=p,xm=q时的二阶导数:The second derivative when x 0 =p and x m =q are known:
即自然边界条件为:That is, the natural boundary conditions are:
g”(xm)=f”(xm)=0g"(x m )=f"(x m )=0
综上联合求解可得三次样条插值函数g(xi)。To sum up, the joint solution can obtain the cubic spline interpolation function g(x i ).
从上述描述可知,本申请所述的特高频局部放电缺陷定位方法,能够根据所述放电时延信号确定特高频局部放电缺陷的所在位置。It can be seen from the above description that the UHF partial discharge defect location method described in the present application can determine the location of the UHF partial discharge defect according to the discharge time delay signal.
为了更加清楚的说明本申请所述的特高频局部放电缺陷定位方法,现举一实际例子。In order to illustrate the UHF partial discharge defect location method described in this application more clearly, an actual example is now given.
某变电站GIS存在局部放电缺陷。现场通过特高频带电检测获取信号,初步判断为T0321隔离开关存在局部放电缺陷。对该隔离开关两侧安装外置特高频局放传感器,参见图13所示。人工对信号分析时差为2.2ns,距离差为66cm,参见图14及图15所示。利用数据分析及信号处理软件对本申请所述的方法进行模拟,可以分析计算得出时差为3.8ns,距离差为114cm,峰值参见图5所示。GIS设备经返厂解体后,实测故障差距离约为135cm,证实了本申请所述方法的准确性及可用性。There is a partial discharge defect in a substation GIS. The signal was obtained through the electrical detection of the ultra-high frequency band at the scene, and it was preliminarily judged that the T0321 isolation switch had partial discharge defects. Install external UHF PD sensors on both sides of the isolation switch, as shown in Figure 13. The time difference of manual signal analysis is 2.2ns, and the distance difference is 66cm, as shown in Figure 14 and Figure 15. Using the data analysis and signal processing software to simulate the method described in this application, it can be analyzed and calculated that the time difference is 3.8 ns, the distance difference is 114 cm, and the peak value is shown in FIG. 5 . After the GIS equipment was disassembled after returning to the factory, the measured fault difference distance was about 135cm, which confirmed the accuracy and usability of the method described in this application.
基于同一发明构思,本申请实施例还提供了一种特高频局部放电缺陷定位装置,可以用于实现上述实施例所描述的方法,如下面的实施例所述。由于特高频局部放电缺陷定位装置解决问题的原理与特高频局部放电缺陷定位方法相似,因此特高频局部放电缺陷定位装置的实施可以参见基于软件性能基准确定方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的系统较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。Based on the same inventive concept, an embodiment of the present application further provides a device for locating a UHF partial discharge defect, which can be used to implement the methods described in the foregoing embodiments, as described in the following embodiments. Since the principle of the UHF partial discharge defect locating device to solve the problem is similar to the UHF partial discharge defect locating method, the implementation of the UHF partial discharge defect locating device can refer to the implementation of the determination method based on the software performance benchmark. Repeat. As used below, the term "unit" or "module" may be a combination of software and/or hardware that implements a predetermined function. Although the systems described in the following embodiments are preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
一实施例中,参见图5,为了能够对特高频局部放电缺陷进行精确定位,本申请提供一种特高频局部放电缺陷定位装置,包括:降噪处理单元501、时延处理单元502及缺陷定位单元503。In one embodiment, referring to FIG. 5 , in order to accurately locate UHF partial discharge defects, the present application provides a UHF partial discharge defect locating device, including: a noise
降噪处理单元501,用于对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;A noise
时延处理单元502,用于对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;A
缺陷定位单元503,用于根据所述放电时延信号确定特高频局部放电缺陷的所在位置。The
一实施例中,参见图6,所述降噪处理单元501,包括:小波变换模块601、滤波模块602及降噪模块603。In an embodiment, referring to FIG. 6 , the noise
小波变换模块601,用于利用小波基对所述特高频局部放电信号进行小波变换,得到对应的小波信号;A
滤波模块602,用于对所述小波信号进行滤波降噪处理,得到对应的滤波信号;A
降噪模块603,用于对所述滤波信号进行逆小波变换,得到所述放电降噪信号。The
一实施例中,参见图7,所述放电降噪信号包括:第一放电降噪信号及第二放电降噪信号;所述时延处理单元502,包括:自相关运算模块701、互相关运算模块702、功率谱确定模块703及时延处理模块704。In an embodiment, referring to FIG. 7 , the discharge noise reduction signal includes: a first discharge noise reduction signal and a second discharge noise reduction signal; the
自相关运算模块701,用于对所述第一放电降噪信号进行自相关运算,得到自相关运算结果;The
互相关运算模块702,用于对所述第一放电降噪信号与第二放电降噪信号进行互相关运算,得到互相关运算结果;以及利用广义加权函数对所述自相关运算结果与所述互相关运算结果进行二次互相关加权运算,得到互相关加权运算结果;A
功率谱确定模块703,用于将所述互相关加权运算结果输入功率谱函数,得到对应的功率谱;a power
时延处理模块704,用于对所述功率谱进行快速傅里叶逆变换,得到所述放电时延信号。A
一实施例中,参见图8,所述缺陷定位单元503,包括:插值处理模块801、峰值确定模块802及缺陷定位模块803。In an embodiment, referring to FIG. 8 , the
插值处理模块801,用于对所述放电时延信号进行三次样条插值处理,得到插值结果;An
峰值确定模块802,用于对所述插值结果进行时延峰值检测,确定对应的时延峰值;a
缺陷定位模块803,用于根据所述时延峰值确定所述特高频局部放电缺陷的所在位置。The
从硬件层面来说,为了能够对特高频局部放电缺陷进行精确定位,本申请提供一种用于实现所述特高频局部放电缺陷定位方法中的全部或部分内容的电子设备的实施例,所述电子设备具体包含有如下内容:From a hardware perspective, in order to accurately locate UHF partial discharge defects, the present application provides an embodiment of an electronic device for implementing all or part of the UHF partial discharge defect localization method, The electronic equipment specifically includes the following contents:
处理器(Processor)、存储器(Memory)、通讯接口(Communications Interface)和总线;其中,所述处理器、存储器、通讯接口通过所述总线完成相互间的通讯;所述通讯接口用于实现所述特高频局部放电缺陷定位装置与核心业务系统、用户终端以及相关数据库等相关设备之间的信息传输;该逻辑控制器可以是台式计算机、平板电脑及移动终端等,本实施例不限于此。在本实施例中,该逻辑控制器可以参照实施例中的特高频局部放电缺陷定位方法的实施例,以及特高频局部放电缺陷定位装置的实施例进行实施,其内容被合并于此,重复之处不再赘述。a processor, a memory, a communications interface, and a bus; wherein, the processor, memory, and communication interface communicate with each other through the bus; the communication interface is used to implement the Information transmission between the UHF partial discharge defect locating device and related equipment such as core business systems, user terminals, and related databases; the logic controller may be a desktop computer, a tablet computer, a mobile terminal, etc., and this embodiment is not limited thereto. In this embodiment, the logic controller may be implemented with reference to the embodiment of the method for locating UHF partial discharge defects and the embodiment of the device for locating UHF partial discharge defects in the embodiment, the contents of which are incorporated herein. The repetition will not be repeated.
可以理解的是,所述用户终端可以包括智能手机、平板电子设备、网络机顶盒、便携式计算机、台式电脑、个人数字助理(PDA)、车载设备、智能穿戴设备等。其中,所述智能穿戴设备可以包括智能眼镜、智能手表、智能手环等。It can be understood that the user terminal may include a smart phone, a tablet electronic device, a network set-top box, a portable computer, a desktop computer, a personal digital assistant (PDA), a vehicle-mounted device, a smart wearable device, and the like. Wherein, the smart wearable device may include smart glasses, smart watches, smart bracelets, and the like.
在实际应用中,特高频局部放电缺陷定位方法的部分可以在如上述内容所述的电子设备侧执行,也可以所有的操作都在所述客户端设备中完成。具体可以根据所述客户端设备的处理能力,以及用户使用场景的限制等进行选择。本申请对此不作限定。若所有的操作都在所述客户端设备中完成,所述客户端设备还可以包括处理器。In practical applications, part of the method for locating UHF partial discharge defects may be performed on the side of the electronic device as described above, or all operations may be completed in the client device. Specifically, the selection can be made according to the processing capability of the client device and the limitations of the user's usage scenario. This application does not limit this. The client device may also include a processor if all operations are performed in the client device.
上述的客户端设备可以具有通讯模块(即通讯单元),可以与远程的服务器进行通讯连接,实现与所述服务器的数据传输。所述服务器可以包括任务调度中心一侧的服务器,其他的实施场景中也可以包括中间平台的服务器,例如与任务调度中心服务器有通讯链接的第三方服务器平台的服务器。所述的服务器可以包括单台计算机设备,也可以包括多个服务器组成的服务器集群,或者分布式装置的服务器结构。The above-mentioned client device may have a communication module (ie, a communication unit), which may be connected in communication with a remote server to realize data transmission with the server. The server may include a server on the side of the task scheduling center, and other implementation scenarios may also include a server on an intermediate platform, such as a server on a third-party server platform that has a communication link with the task scheduling center server. The server may include a single computer device, a server cluster composed of multiple servers, or a server structure of a distributed device.
图9为本申请实施例的电子设备9600的系统构成的示意框图。如图9所示,该电子设备9600可以包括中央处理器9100和存储器9140;存储器9140耦合到中央处理器9100。值得注意的是,该图9是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。FIG. 9 is a schematic block diagram of a system configuration of an
一实施例中,特高频局部放电缺陷定位方法功能可以被集成到中央处理器9100中。其中,中央处理器9100可以被配置为进行如下控制:In one embodiment, the function of the UHF partial discharge defect location method may be integrated into the
S101:对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;S101: Perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal;
S102:对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;S102: Perform secondary correlation weighting processing on the discharge noise reduction signal to obtain a discharge time delay signal;
S103:根据所述放电时延信号确定特高频局部放电缺陷的所在位置。S103: Determine the location of the UHF partial discharge defect according to the discharge delay signal.
从上述描述可知,本申请提供的特高频局部放电缺陷定位方法及装置,能够基于小波变换对采集到的特高频局部放电信号进行降噪处理,使得该信号更加纯净,提高了信噪比;对降噪处理后的特高频局部放电信号进行互相关运算,然后基于SCOT函数加权后进行二次相关运算,使其在低信噪比条件下,谱峰更加凸显和真实;对互相关运算结果的时延进行三次样条插值运算,并平滑时延结果,提高了峰值取值的准确性。综上所述,本申请提供的特高频局部放电缺陷定位方法及装置能够提高现场GIS特高频局部放电缺陷定位的精度,为开展现场缺陷检测及故障分析提供了可靠依据。It can be seen from the above description that the method and device for locating UHF partial discharge defects provided by the present application can perform noise reduction processing on the collected UHF partial discharge signal based on wavelet transform, so that the signal is more pure and the signal-to-noise ratio is improved. ; Perform cross-correlation operation on the UHF partial discharge signal after noise reduction, and then perform secondary correlation operation after weighting based on the SCOT function, so that the spectral peaks are more prominent and true under the condition of low signal-to-noise ratio; The time delay of the operation result is subjected to cubic spline interpolation operation, and the time delay result is smoothed, which improves the accuracy of peak value selection. To sum up, the method and device for locating UHF partial discharge defects provided by the present application can improve the accuracy of on-site GIS UHF partial discharge defect locating, and provide a reliable basis for on-site defect detection and fault analysis.
在另一个实施方式中,特高频局部放电缺陷定位装置可以与中央处理器9100分开配置,例如可以将数据复合传输装置特高频局部放电缺陷定位装置配置为与中央处理器9100连接的芯片,通过中央处理器的控制来实现特高频局部放电缺陷定位方法的功能。In another embodiment, the UHF partial discharge defect locating device may be configured separately from the
如图9所示,该电子设备9600还可以包括:通讯模块9110、输入单元9120、音频处理器9130、显示器9160、电源9170。值得注意的是,电子设备9600也并不是必须要包括图9中所示的所有部件;此外,电子设备9600还可以包括图9中没有示出的部件,可以参考现有技术。As shown in FIG. 9 , the
如图9所示,中央处理器9100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器9100接收输入并控制电子设备9600的各个部件的操作。As shown in FIG. 9 , a
其中,存储器9140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器9100可执行该存储器9140存储的该程序,以实现信息存储或处理等。The
输入单元9120向中央处理器9100提供输入。该输入单元9120例如为按键或触摸输入装置。电源9170用于向电子设备9600提供电力。显示器9160用于进行图像和文字等显示对象的显示。该显示器例如可为LCD显示器,但并不限于此。The
该存储器9140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,该存储器的示例有时被称为EPROM等。存储器9140还可以是某种其它类型的装置。存储器9140包括缓冲存储器9141(有时被称为缓冲器)。存储器9140可以包括应用/功能存储部9142,该应用/功能存储部9142用于存储应用程序和功能程序或用于通过中央处理器9100执行电子设备9600的操作的流程。The
存储器9140还可以包括数据存储部9143,该数据存储部9143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器9140的驱动程序存储部9144可以包括电子设备的用于通讯功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。The
通讯模块9110即为经由天线9111发送和接收信号的发送机/接收机9110。通讯模块(发送机/接收机)9110耦合到中央处理器9100,以提供输入信号和接收输出信号,这可以和常规移动通讯终端的情况相同。The
基于不同的通讯技术,在同一电子设备中,可以设置有多个通讯模块9110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通讯模块(发送机/接收机)9110还经由音频处理器9130耦合到扬声器9131和麦克风9132,以经由扬声器9131提供音频输出,并接收来自麦克风9132的音频输入,从而实现通常的电信功能。音频处理器9130可以包括任何合适的缓冲器、解码器、放大器等。另外,音频处理器9130还耦合到中央处理器9100,从而使得可以通过麦克风9132能够在本机上录音,且使得可以通过扬声器9131来播放本机上存储的声音。Based on different communication technologies,
本申请的实施例还提供能够实现上述实施例中的执行主体为服务器或客户端的特高频局部放电缺陷定位方法中全部步骤的一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的执行主体为服务器或客户端的特高频局部放电缺陷定位方法的全部步骤,例如,所述处理器执行所述计算机程序时实现下述步骤:The embodiments of the present application also provide a computer-readable storage medium capable of implementing all the steps in the UHF partial discharge defect location method in which the execution body is the server or the client in the above-mentioned embodiments, and the computer-readable storage medium stores There is a computer program, when the computer program is executed by the processor, it realizes all the steps of the UHF partial discharge defect location method in the above-mentioned embodiment where the execution body is the server or the client. For example, when the processor executes the computer program, it realizes The following steps:
S101:对获取到的特高频局部放电信号进行小波降噪处理,得到对应的放电降噪信号;S101: Perform wavelet noise reduction processing on the obtained UHF partial discharge signal to obtain a corresponding discharge noise reduction signal;
S102:对所述放电降噪信号进行二次相关加权处理,得到放电时延信号;S102: Perform secondary correlation weighting processing on the discharge noise reduction signal to obtain a discharge time delay signal;
S103:根据所述放电时延信号确定特高频局部放电缺陷的所在位置。S103: Determine the location of the UHF partial discharge defect according to the discharge delay signal.
从上述描述可知,本申请提供的特高频局部放电缺陷定位方法及装置,能够基于小波变换对采集到的特高频局部放电信号进行降噪处理,使得该信号更加纯净,提高了信噪比;对降噪处理后的特高频局部放电信号进行互相关运算,然后基于SCOT函数加权后进行二次相关运算,使其在低信噪比条件下,谱峰更加凸显和真实;对互相关运算结果的时延进行三次样条插值运算,并平滑时延结果,提高了峰值取值的准确性。综上所述,本申请提供的特高频局部放电缺陷定位方法及装置能够提高现场GIS特高频局部放电缺陷定位的精度,为开展现场缺陷检测及故障分析提供了可靠依据。It can be seen from the above description that the method and device for locating UHF partial discharge defects provided by the present application can perform noise reduction processing on the collected UHF partial discharge signal based on wavelet transform, so that the signal is more pure and the signal-to-noise ratio is improved. ; Perform cross-correlation operation on the UHF partial discharge signal after noise reduction, and then perform secondary correlation operation after weighting based on the SCOT function, so that the spectral peaks are more prominent and real under the condition of low signal-to-noise ratio; The time delay of the operation result is subjected to cubic spline interpolation operation, and the time delay result is smoothed, which improves the accuracy of peak value selection. To sum up, the method and device for locating UHF partial discharge defects provided by this application can improve the accuracy of on-site GIS UHF partial discharge defect locating, and provide a reliable basis for on-site defect detection and fault analysis.
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, apparatus, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明是参照根据本发明实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (apparatus), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, the principles and implementations of the present invention are described by using specific embodiments, and the descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; The idea of the invention will have changes in the specific embodiments and application scope. To sum up, the contents of this specification should not be construed as limiting the invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210410017.9A CN114814488A (en) | 2022-04-19 | 2022-04-19 | A method and device for locating UHF partial discharge defects |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210410017.9A CN114814488A (en) | 2022-04-19 | 2022-04-19 | A method and device for locating UHF partial discharge defects |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114814488A true CN114814488A (en) | 2022-07-29 |
Family
ID=82505212
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210410017.9A Pending CN114814488A (en) | 2022-04-19 | 2022-04-19 | A method and device for locating UHF partial discharge defects |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114814488A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119716393A (en) * | 2024-12-17 | 2025-03-28 | 重庆邮电大学 | Noise-resistant enhanced power distribution network cable fault detection and positioning method |
| CN120370121A (en) * | 2025-06-30 | 2025-07-25 | 清华四川能源互联网研究院 | Ultrahigh frequency filtering method based on dynamic coherent average of original waveform |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104198901A (en) * | 2014-08-13 | 2014-12-10 | 广东电网公司电力科学研究院 | Locating method and system for partial discharge signal of substation |
| CN108037410A (en) * | 2017-11-24 | 2018-05-15 | 华北电力大学 | A kind of shelf depreciation method for ultrasonic locating and device based on controllable responding power |
| CN109557429A (en) * | 2018-11-07 | 2019-04-02 | 国网浙江省电力有限公司电力科学研究院 | Based on the GIS partial discharge fault detection method for improving wavelet threshold denoising |
| CN112698271A (en) * | 2019-10-22 | 2021-04-23 | 安徽师范大学 | A Time Delay Estimation Method for Low Signal-to-Noise Ratio Signals |
| CN113820568A (en) * | 2021-07-14 | 2021-12-21 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Partial discharge localization method, device, computer equipment and storage medium for cables |
-
2022
- 2022-04-19 CN CN202210410017.9A patent/CN114814488A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104198901A (en) * | 2014-08-13 | 2014-12-10 | 广东电网公司电力科学研究院 | Locating method and system for partial discharge signal of substation |
| CN108037410A (en) * | 2017-11-24 | 2018-05-15 | 华北电力大学 | A kind of shelf depreciation method for ultrasonic locating and device based on controllable responding power |
| CN109557429A (en) * | 2018-11-07 | 2019-04-02 | 国网浙江省电力有限公司电力科学研究院 | Based on the GIS partial discharge fault detection method for improving wavelet threshold denoising |
| CN112698271A (en) * | 2019-10-22 | 2021-04-23 | 安徽师范大学 | A Time Delay Estimation Method for Low Signal-to-Noise Ratio Signals |
| CN113820568A (en) * | 2021-07-14 | 2021-12-21 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Partial discharge localization method, device, computer equipment and storage medium for cables |
Non-Patent Citations (2)
| Title |
|---|
| 尚宇 等: "开关柜局部放电UHF信号时延估计的 小波改进双谱法研究", 江西电力, no. 4, 30 April 2018 (2018-04-30), pages 19 - 23 * |
| 汤林 等: "基于插值相关法的局部放电特高频脉冲信号时延估计", 高电压技术, vol. 41, no. 10, 31 October 2015 (2015-10-31), pages 3320 - 3325 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119716393A (en) * | 2024-12-17 | 2025-03-28 | 重庆邮电大学 | Noise-resistant enhanced power distribution network cable fault detection and positioning method |
| CN120370121A (en) * | 2025-06-30 | 2025-07-25 | 清华四川能源互联网研究院 | Ultrahigh frequency filtering method based on dynamic coherent average of original waveform |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11323807B2 (en) | Echo cancellation method and apparatus based on time delay estimation | |
| Korkali et al. | Traveling-wave-based fault-location technique for transmission grids via wide-area synchronized voltage measurements | |
| CN114814488A (en) | A method and device for locating UHF partial discharge defects | |
| CN105277921B (en) | A kind of passive acoustic localization method based on smart mobile phone | |
| CN102832908A (en) | Wavelet transform and variable-step-size LMS (least mean square) adaptive filtering based signal denoising method | |
| US11930331B2 (en) | Method, apparatus and device for processing sound signals | |
| CN114441897A (en) | A method for identifying the arrival time difference of partial discharge pulses in distribution cable lines | |
| US20220132262A1 (en) | Method for interpolating a sound field, corresponding computer program product and device. | |
| CN113035223A (en) | Audio processing method, device, equipment and storage medium | |
| Morrison et al. | Super-resolution modeling of the indoor radio propagation channel | |
| CN112904412B (en) | Mine microseismic signal P-wave first arrival time extraction method and system | |
| CN116015492A (en) | Radio station fault diagnosis method, system and equipment | |
| CN105721090B (en) | A kind of detection and recognition methods of illegal f-m broadcast station | |
| CN117176265B (en) | A scene channel simulation playback method, system and equipment | |
| Al-Sheikh et al. | Sound source direction estimation in horizontal plane using microphone array | |
| US20150248893A1 (en) | Sinusoidal interpolation across missing data | |
| CN108241106A (en) | Time delay estimation method and device | |
| CN109639318B (en) | Method, device, equipment and storage medium for eliminating interference pulse of aviation communication | |
| Guo et al. | An adaptive beamforming algorithm for sound source localisation via hybrid compressive sensing reconstruction | |
| Dou et al. | A new TDOA estimation method in Three-satellite interference localisation | |
| CN116545496A (en) | Terahertz space channel characteristic extraction method | |
| CN113591537A (en) | Double-iteration non-orthogonal joint block diagonalization convolution blind source separation method | |
| Mao et al. | A new grid frequency estimation algorithm based on the fractional FFT for IoT nodes time stamps | |
| Takahashi et al. | Phase response of transfer functions and coherent field in a reverberation room | |
| Li et al. | Optimal amplitude weighting for near-field passive source localization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |