CN114824385B - Fuel cell hydrogen supply system and control method - Google Patents
Fuel cell hydrogen supply system and control method Download PDFInfo
- Publication number
- CN114824385B CN114824385B CN202210412910.5A CN202210412910A CN114824385B CN 114824385 B CN114824385 B CN 114824385B CN 202210412910 A CN202210412910 A CN 202210412910A CN 114824385 B CN114824385 B CN 114824385B
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- cell stack
- hydrogen
- inlet
- humidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 196
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 136
- 239000001257 hydrogen Substances 0.000 title claims abstract description 124
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 36
- 230000002159 abnormal effect Effects 0.000 claims abstract description 15
- 238000002347 injection Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 12
- 230000001276 controlling effect Effects 0.000 claims description 9
- 230000001965 increasing effect Effects 0.000 claims description 9
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 230000006872 improvement Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域Technical field
本发明涉及燃料电池技术领域,尤其是一种燃料电池供氢系统及控制方法。The invention relates to the technical field of fuel cells, in particular to a fuel cell hydrogen supply system and a control method.
背景技术Background technique
燃料电池因其功率密度高、能量转化率高的特点,成为氢能利用的主要方式之一,燃料电池系统包含了氢气循环子系统,该系统持续向电堆提供一定压力和流量的氢气,保证电堆高效运行,可以说氢气循环系统对燃料电池的效率、可靠性、寿命等都有着很大的影响。Fuel cells have become one of the main ways to utilize hydrogen energy due to their high power density and high energy conversion rate. The fuel cell system includes a hydrogen circulation subsystem, which continuously provides a certain pressure and flow rate of hydrogen to the stack to ensure The stack operates efficiently, and it can be said that the hydrogen circulation system has a great impact on the efficiency, reliability, and life of the fuel cell.
供氢系统向燃料电池阳极提供过量的纯氢气,阳极发生反应后,通常会有未反应的氢气从阳极排气口排出。燃料电池电堆阳极排出的氢气通常有流通模式、死端模式、循环模式三种处理方式。流通模式下,阳极排出的氢气通过排气阀直接进入大气,会造成氢气的浪费,并且会污染环境;死端模式则是关闭氢气的排气阀,该模式下,过量的氢气能完全发生反应,但是产生的水汽会不断累积,容易造成燃料电池的水淹现象,降低燃料电池的效率与寿命;循环模式则是将未反应的氢气再次输送到阳极氢气入口处,对氢气再次利用,提高了燃料电池电堆的效率,可以说循环模式是供氢系统的一个发展方向。The hydrogen supply system provides excess pure hydrogen to the anode of the fuel cell. After the anode reacts, unreacted hydrogen is usually discharged from the anode exhaust port. The hydrogen gas discharged from the anode of the fuel cell stack usually has three processing methods: flow mode, dead-end mode, and circulation mode. In the flow mode, the hydrogen discharged from the anode directly enters the atmosphere through the exhaust valve, which will cause a waste of hydrogen and pollute the environment; in the dead-end mode, the hydrogen exhaust valve is closed. In this mode, the excess hydrogen can completely react. , but the water vapor generated will continue to accumulate, which can easily cause flooding of the fuel cell and reduce the efficiency and life of the fuel cell; the circulation mode is to transport the unreacted hydrogen to the anode hydrogen inlet again to reuse the hydrogen and improve the efficiency of the fuel cell. Regarding the efficiency of the fuel cell stack, it can be said that the circulation mode is a development direction of the hydrogen supply system.
然而,现有的供氢系统的循环模式是采用单个燃料电池电堆对氢气循环处理,单个燃料电池电堆的系统不能实现供氢的主动调节,当气体流量下降时,引射器的性能也会随之衰退,另外,燃料电池电堆在将氢气排出后,需要对氢气进行汽水分离的处理,当氢气再次输送至燃料电池电堆的阳极入口时还要进行加湿处理,工序繁多。However, the current circulation mode of the hydrogen supply system uses a single fuel cell stack to circulate hydrogen. The system of a single fuel cell stack cannot achieve active regulation of hydrogen supply. When the gas flow rate decreases, the performance of the ejector also deteriorates. It will decline accordingly. In addition, after the fuel cell stack discharges the hydrogen, it needs to be separated from steam and water. When the hydrogen is transported to the anode inlet of the fuel cell stack again, it must be humidified. There are many processes.
发明内容Contents of the invention
本发明的目的是提供一种燃料电池供氢系统及控制方法,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。The purpose of the present invention is to provide a fuel cell hydrogen supply system and a control method to solve one or more technical problems existing in the prior art, and at least provide a beneficial choice or create conditions.
第一方面,提供一种燃料电池供氢系统,包括:In the first aspect, a fuel cell hydrogen supply system is provided, including:
至少两个引射器,所述引射器配置有第一引射入口和第二引射入口,所述第一引射入口用于接入干燥的氢气源,所述引射器用于输出从第一引射入口和第二引射入口接入的氢气;At least two ejector, the ejector is configured with a first ejector inlet and a second ejector inlet, the first ejector inlet is used to access a dry hydrogen source, the ejector is used to output from Hydrogen gas introduced into the first injection inlet and the second injection inlet;
至少两个燃料电池电堆,一所述燃料电池电堆的阳极入气口与一引射器的输出端对应连接,各所述燃料电池电堆的阳极出气口相互连通,所述燃料电池电堆发生反应时,所述燃料电池电堆的阳极出气口将过量的氢气输出至向各第二引射入口;There are at least two fuel cell stacks. The anode air inlet of one fuel cell stack is correspondingly connected to the output end of an ejector. The anode air outlets of each fuel cell stack are connected to each other. The fuel cell stacks When a reaction occurs, the anode outlet of the fuel cell stack outputs excess hydrogen to each second injection inlet;
控制模块,所述控制模块根据燃料电池电堆的内部氢气湿度调控燃料电池电堆的阳极入气口的氢气混合比例。A control module that regulates the hydrogen mixing ratio of the anode air inlet of the fuel cell stack according to the internal hydrogen humidity of the fuel cell stack.
作为上述实施例的改进,所述第一引射入口和氢气源之间设置有第一气流阀,所述第二引射入口和燃料电池电堆的阳极出气口设置有第二气流阀。As an improvement of the above embodiment, a first gas flow valve is provided between the first injection inlet and the hydrogen source, and a second gas flow valve is provided between the second injection inlet and the anode gas outlet of the fuel cell stack.
作为上述实施例的改进,燃料电池供氢系统还包括阻抗检测模块,所述检测模块检测燃料电池电堆的膜电极电阻,所述控制模块根据检测得到的膜电极电阻确定燃料电池电堆的内部氢气湿度。As an improvement to the above embodiment, the fuel cell hydrogen supply system further includes an impedance detection module, which detects the membrane electrode resistance of the fuel cell stack, and the control module determines the internal resistance of the fuel cell stack based on the detected membrane electrode resistance. Hydrogen humidity.
作为上述实施例的改进,燃料电池电堆的阳极出气口设置有排气支路,所述排气支路设置有排气阀。As an improvement of the above embodiment, the anode outlet of the fuel cell stack is provided with an exhaust branch, and the exhaust branch is provided with an exhaust valve.
作为上述实施例的改进,第一引射入口连接有压力调节器,所述燃料电池电堆的阳极入气口设置有压力传感器,所述控制器根据压力传感器的气压检测数据调控压力调节器。As an improvement of the above embodiment, a pressure regulator is connected to the first injection inlet, a pressure sensor is provided at the anode air inlet of the fuel cell stack, and the controller regulates the pressure regulator according to the air pressure detection data of the pressure sensor.
作为上述实施例的改进,第一引射入口和压力调节器之间设置有温度传感器和湿度传感器。As an improvement of the above embodiment, a temperature sensor and a humidity sensor are provided between the first injection inlet and the pressure regulator.
作为上述实施例的改进,燃料电池电堆的阳极入气口和阳极出气口分别设置有湿度传感器,所述控制模块根据阳极入气口和阳极出气口的湿度检测数据调控燃料电池电堆的阳极入气口的氢气混合比例。As an improvement to the above embodiment, the anode air inlet and the anode air outlet of the fuel cell stack are respectively provided with humidity sensors, and the control module regulates the anode air inlet of the fuel cell stack based on the humidity detection data of the anode air inlet and the anode air outlet. hydrogen mixing ratio.
第二方面,提供一种燃料电池供氢方法,通过第一方面的燃料电池供氢系统实施,所述燃料电池供氢方法包括以下步骤:In a second aspect, a fuel cell hydrogen supply method is provided, which is implemented by the fuel cell hydrogen supply system of the first aspect. The fuel cell hydrogen supply method includes the following steps:
获取各燃料电池电堆的内部氢气湿度;Obtain the internal hydrogen humidity of each fuel cell stack;
判断燃料电池电堆的内部氢气湿度是否处于湿度设定范围内;Determine whether the internal hydrogen humidity of the fuel cell stack is within the humidity setting range;
若否,根据异常燃料电池电堆的内部氢气湿度的偏离程度调控其他燃料电池电堆的反应速率。If not, the reaction rates of other fuel cell stacks are adjusted according to the deviation degree of the internal hydrogen humidity of the abnormal fuel cell stack.
作为上述实施例的改进,所述根据异常燃料电池电堆的内部氢气湿度的偏离程度调控其他燃料电池电堆的反应速率,具体包括以下步骤:As an improvement of the above embodiment, regulating the reaction rates of other fuel cell stacks based on the deviation of the internal hydrogen humidity of the abnormal fuel cell stack specifically includes the following steps:
异常燃料电池电堆的内部氢气湿度低于湿度设定范围时,控制其他燃料电池电堆提高反应速率;异常燃料电池电堆的内部氢气湿度高于湿度设定范围时,控制其他燃料电池电堆降低反应速率。When the internal hydrogen humidity of the abnormal fuel cell stack is lower than the humidity setting range, control other fuel cell stacks to increase the reaction rate; when the internal hydrogen humidity of the abnormal fuel cell stack is higher than the humidity setting range, control other fuel cell stacks Reduce reaction rate.
作为上述实施例的改进,所述燃料电池供氢方法还包括以下步骤:As an improvement of the above embodiment, the fuel cell hydrogen supply method further includes the following steps:
根据根据燃料电池电堆的内部氢气湿度的偏离程度调控引射器的氢气混合比例。The hydrogen mixing ratio of the ejector is adjusted according to the deviation of the internal hydrogen humidity of the fuel cell stack.
本发明的有益效果:通过连接多个燃料电池电堆,使氢气在多个燃料电池电堆间循环,省略加湿器并提高氢气的利用率,当某一个或几个燃料电池电堆入口处氢气处于异常状态时,能够利用正常运行的燃料电池电堆调节异常的燃料电池电堆,实现各个电堆之间的相互主动调节。The beneficial effects of the present invention are: by connecting multiple fuel cell stacks, hydrogen gas is circulated among multiple fuel cell stacks, thereby eliminating the need for a humidifier and improving the utilization rate of hydrogen. When in an abnormal state, the normally operating fuel cell stack can be used to adjust the abnormal fuel cell stack to achieve active adjustment between each stack.
附图说明Description of the drawings
图1是本发明燃料电池供氢系统的结构示意图。Figure 1 is a schematic structural diagram of the fuel cell hydrogen supply system of the present invention.
图2是本发明燃料电池供氢方法的第一个实施例流程图。Figure 2 is a flow chart of the first embodiment of the fuel cell hydrogen supply method of the present invention.
图3是本发明燃料电池供氢方法的第二个实施例流程图。Figure 3 is a flow chart of the second embodiment of the fuel cell hydrogen supply method of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清晰,下面将结合实施例和附图,对本发明作进一步的描述。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the present invention will be further described below with reference to the embodiments and drawings.
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. When the following description refers to the drawings, the same numbers in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the present disclosure. Rather, they are merely examples of apparatus and methods consistent with aspects of the disclosure as detailed in the appended claims.
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that orientation descriptions, such as up, down, front, back, left, right, etc., are based on the orientation or position relationships shown in the drawings and are only In order to facilitate the description of the present invention and simplify the description, it is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation of the present invention.
在本发明的描述中,若干的含义是不定量,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。另外,全文中出现的和/或,表示三个并列方案,例如,A和/或B表示A满足的方案、B满足的方案或者A和B同时满足的方案。In the description of the present invention, several means an indefinite amount, plural means two or more, greater than, less than, exceeding, etc. are understood to exclude the original number, and above, below, within, etc. are understood to include the original number. If there is a description of first and second, it is only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying the relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the order of indicated technical features. relation. In addition, and/or appearing throughout the text represents three parallel solutions. For example, A and/or B represents the solution that A satisfies, the solution that B satisfies, or the solution that A and B satisfy at the same time.
在本发明的描述中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。In the description of the present invention, the terms "comprises", "comprising" or any other variation thereof are intended to cover a non-exclusive inclusion of elements other than those listed, but also the inclusion of other elements not expressly listed.
参阅图1,图1展示了本发明一种燃料电池供氢系统的具体地结构,所述燃料电池供氢系统包括引射器100、燃料电池电堆200和控制模块300,其中,引射器100和燃料电池电堆200的数量均为至少两个且在数量上相互适配,具体地:Referring to Figure 1, Figure 1 shows the specific structure of a fuel cell hydrogen supply system of the present invention. The fuel cell hydrogen supply system includes an ejector 100, a fuel cell stack 200 and a control module 300. The ejector The number of 100 and fuel cell stack 200 is at least two and they are adapted to each other in quantity, specifically:
引射器100配置有第一引射入口和第二引射入口,第一引射入口用于接入干燥的氢气源,引射器100用于输出从第一引射入口和第二引射入口接入的氢气;The ejector 100 is configured with a first ejector inlet and a second ejector inlet. The first ejector inlet is used to access a dry hydrogen source, and the ejector 100 is used to output the ejector from the first ejector inlet and the second ejector inlet. Hydrogen gas connected to the inlet;
一燃料电池电堆200的阳极入气口与一引射器100的输出端对应连接,各燃料电池电堆200的阳极出气口相互连通,燃料电池电堆200发生反应时,燃料电池电堆200的阳极出气口将过量的氢气输出至向各第二引射入口;The anode air inlet of a fuel cell stack 200 is connected to the output end of an ejector 100. The anode air outlets of each fuel cell stack 200 are connected to each other. When the fuel cell stack 200 reacts, the anode air inlet of the fuel cell stack 200 reacts. The anode gas outlet outputs excess hydrogen to each second injection inlet;
控制模块300根据燃料电池电堆200的内部氢气湿度调控燃料电池电堆200的阳极入气口的氢气混合比例。The control module 300 regulates the hydrogen mixing ratio of the anode air inlet of the fuel cell stack 200 according to the internal hydrogen humidity of the fuel cell stack 200 .
引射器100是利用一股高速高能流(液流、气流或其他物质流)引射另一股低速低能流的装置,射流经收缩形喷嘴迸入混合室,其周围是被引射流,通过边界的参混作用,引射流将能量传递给被引射流,掺混形成的混合区逐渐扩大而充满整个混合室,再经过一段混合过程,至混合室出口,流动几乎成为均匀流。本实施例所述的引射器100通过其第一引射入口和第二引射入口分别接入不同来源的氢气并进行混合输出。The injector 100 is a device that uses a high-speed and high-energy flow (liquid flow, air flow or other material flow) to inject another low-speed, low-energy flow. The jet flows into the mixing chamber through the shrinking nozzle, and is surrounded by the guided jet flow. Due to the mixing effect of the boundary, the inducing jet transfers energy to the induced jet. The mixing zone formed by the mixing gradually expands and fills the entire mixing chamber. After a period of mixing process, the flow becomes almost uniform at the exit of the mixing chamber. The ejector 100 described in this embodiment receives hydrogen gas from different sources through its first ejector inlet and second ejector inlet respectively and performs mixed output.
燃料电池电堆200由多个燃料电池单体以串联方式层叠组合构成,燃料电池电堆200是发生电化学反应场所,为燃料电池系统(或燃料电池发动机)核心部分。工作时,氢气和氧气分别经电堆气体主通道分配至各单电池的双极板,经双极板导流均匀分配至电极,通过电极支撑体与催化剂接触进行电化学反应,氢气和氧气发生的电化学反应会产生水,燃料电池电堆200内部需要保证适当的湿度,但过量氢气输入时会产生大量水汽,造成燃料电池电堆200的水淹现象,降低燃料电池电堆200的效率与寿命。The fuel cell stack 200 is composed of a plurality of fuel cell units stacked in series. The fuel cell stack 200 is a place where electrochemical reactions occur and is the core part of the fuel cell system (or fuel cell engine). During operation, hydrogen and oxygen are distributed to the bipolar plates of each single cell through the main gas channel of the stack, and are evenly distributed to the electrodes through the bipolar plates. The electrode support contacts the catalyst for electrochemical reaction, and hydrogen and oxygen are generated. The electrochemical reaction will produce water, and appropriate humidity needs to be ensured inside the fuel cell stack 200. However, when excessive hydrogen is input, a large amount of water vapor will be generated, causing flooding of the fuel cell stack 200 and reducing the efficiency and efficiency of the fuel cell stack 200. life.
实际使用时,氢气源向第一引射入口输送干燥氢气,各燃料电池电堆200向第二引射入口输送以往反应产生的湿润氢气,高速流入的干燥氢气引射低速流入的湿润氢气,两者在引射器100的混合区内充分混合,混合后的氢气输出至对应的燃料电池电堆200的阳极入气口,以供燃料电池电堆200进行电化学反应。燃料电池电堆200的阳极出气口通过管道相互连通,各个燃料电池电堆200将反应后的湿润氢气汇总输送至各个引射器100的第二引射入口,控制模块300获取各个燃料电池电堆200的内部氢气湿度,通过控制流入各个引射器100中湿润氢气的流量,从而调控燃料电池电堆200的阳极入气口的氢气混合比例,达到向燃料电池电堆200输送湿润氢气的效果。通过控制氢气的输入量,还可以调控各个燃料电池电堆200的反应速率,增大氢气输入流量,则加快燃料电池电堆200的反应速率,燃料电池电堆200的内部湿度上升,反之,燃料电池电堆200的内部湿度下降,使各个燃料电池电堆200的内部湿度均处于湿度设定范围内。In actual use, the hydrogen source transports dry hydrogen to the first injection inlet, and each fuel cell stack 200 transports moist hydrogen produced by past reactions to the second injection inlet. The dry hydrogen flowing in at a high speed injects the moist hydrogen gas flowing in at a low speed. The hydrogen gas is fully mixed in the mixing zone of the ejector 100, and the mixed hydrogen gas is output to the anode inlet of the corresponding fuel cell stack 200, so that the fuel cell stack 200 can perform electrochemical reactions. The anode outlets of the fuel cell stacks 200 are connected to each other through pipelines. Each fuel cell stack 200 collects and transports the reacted moist hydrogen to the second injection inlet of each ejector 100. The control module 300 obtains the information from each fuel cell stack. 200, by controlling the flow rate of moist hydrogen into each ejector 100, thereby regulating the hydrogen mixing ratio at the anode inlet of the fuel cell stack 200, to achieve the effect of delivering moist hydrogen to the fuel cell stack 200. By controlling the input amount of hydrogen, the reaction rate of each fuel cell stack 200 can also be controlled. Increasing the input flow rate of hydrogen will speed up the reaction rate of the fuel cell stack 200 and increase the internal humidity of the fuel cell stack 200. On the contrary, the fuel The internal humidity of the battery stack 200 decreases, so that the internal humidity of each fuel cell stack 200 is within the humidity setting range.
进一步,第一引射入口和氢气源之间设置有第一气流阀410,第二引射入口和燃料电池电堆200的阳极出气口设置有第二气流阀420。Furthermore, a first gas flow valve 410 is provided between the first injection inlet and the hydrogen source, and a second gas flow valve 420 is provided between the second injection inlet and the anode gas outlet of the fuel cell stack 200 .
相应地,第一气流阀410和第二气流阀420选用电磁阀,第一气流阀410和第二气流阀420分别用于调控第一引射入口和第二引射入口的气体流量,控制模块300分别连接第一气流阀410和第二气流阀420,通过控制第一气流阀410和/或第二气流阀420的打开程度,调控燃料电池电堆200的阳极入气口的氢气混合比例。Correspondingly, the first air flow valve 410 and the second air flow valve 420 are electromagnetic valves. The first air flow valve 410 and the second air flow valve 420 are used to regulate the gas flow of the first injection inlet and the second injection inlet respectively. The control module 300 is respectively connected to the first gas flow valve 410 and the second gas flow valve 420. By controlling the opening degree of the first gas flow valve 410 and/or the second gas flow valve 420, the hydrogen gas mixing ratio of the anode inlet of the fuel cell stack 200 is regulated.
进一步,燃料电池供氢系统还包括阻抗检测模块500,检测模块检测燃料电池电堆200的膜电极电阻,控制模块300根据检测得到的膜电极电阻确定燃料电池电堆200的内部氢气湿度。Furthermore, the fuel cell hydrogen supply system also includes an impedance detection module 500. The detection module detects the membrane electrode resistance of the fuel cell stack 200. The control module 300 determines the internal hydrogen humidity of the fuel cell stack 200 based on the detected membrane electrode resistance.
需要说明的是,控制模块300基于交流阻抗测试原理检测膜电极电阻,并根据检测得到的膜电极电阻确定燃料电池电堆200的内部氢气湿度。交流阻抗也叫做电化学阻抗谱(Electrochemical Impedance Spectroscopy,简写为EIS),当电极系统受到一个正弦波形电压(电流)的交流讯号的扰动时,会产生一个相应的电流(电压)响应讯号,由这些讯号可以得到电极的阻抗或导纳。本实施例所述的阻抗检测模块500检测燃料电池电堆200的膜电极电阻,以使控制模块300根据检测得到的膜电极电阻确定燃料电池电堆200的内部氢气湿度。It should be noted that the control module 300 detects the membrane electrode resistance based on the AC impedance testing principle, and determines the internal hydrogen humidity of the fuel cell stack 200 based on the detected membrane electrode resistance. AC impedance is also called electrochemical impedance spectroscopy (EIS). When the electrode system is perturbed by an AC signal with a sinusoidal waveform voltage (current), a corresponding current (voltage) response signal will be generated. These are The signal can be obtained from the impedance or admittance of the electrode. The impedance detection module 500 in this embodiment detects the membrane electrode resistance of the fuel cell stack 200, so that the control module 300 determines the internal hydrogen humidity of the fuel cell stack 200 based on the detected membrane electrode resistance.
例如,以不同频率的小幅值正弦波扰动信号作用于燃料电池电堆200,由燃料电池电堆200的响应与扰动信号之间的关系得到的电极阻抗,推测膜电极的等效电路,进而可以分析燃料电池电堆200所包含的动力学过程及其机理,由等效电路中有关元件的参数值估算燃料电池电堆200的动力学参数,如电极双电层电容,电荷转移过程的反应电阻,扩散传质过程参数以及燃料电池电堆200的内部氢气湿度等。For example, small-amplitude sine wave disturbance signals of different frequencies are applied to the fuel cell stack 200, and the equivalent circuit of the membrane electrode is estimated based on the electrode impedance obtained from the relationship between the response of the fuel cell stack 200 and the disturbance signal, and then The dynamic processes and mechanisms involved in the fuel cell stack 200 can be analyzed, and the dynamic parameters of the fuel cell stack 200 can be estimated from the parameter values of relevant components in the equivalent circuit, such as the electrode double layer capacitance and the reaction of the charge transfer process. resistance, diffusion mass transfer process parameters, and internal hydrogen humidity of the fuel cell stack 200, etc.
进一步,燃料电池电堆200的阳极出气口设置有排气支路610,排气支路610设置有排气阀620。排气支路610和排气阀620用于排除系统回路中的杂质,排气阀620受控制模块300控制,系统正常运转时,排气阀620关闭,当系统管路中杂质过多时,控制模块300触发排气阀620导通,对系统管路进行吹扫,以使杂质从排气支路610吹走。Furthermore, the anode outlet of the fuel cell stack 200 is provided with an exhaust branch 610 , and the exhaust branch 610 is provided with an exhaust valve 620 . The exhaust branch 610 and the exhaust valve 620 are used to eliminate impurities in the system loop. The exhaust valve 620 is controlled by the control module 300. When the system is operating normally, the exhaust valve 620 is closed. When there are too many impurities in the system pipeline, the exhaust valve 620 is controlled by the control module 300. The module 300 triggers the exhaust valve 620 to conduct, and purges the system pipeline to blow away impurities from the exhaust branch 610 .
进一步,第一引射入口连接有压力调节器710,燃料电池电堆200的阳极入气口设置有压力传感器720,控制器根据压力传感器720的气压检测数据调控压力调节器710。氢气源的干燥氢气经过压力调节器710后进入引射器100,压力调节器710用于调节第一引射入口的气压,使氢气输入压力处于系统所要求的范围内。Further, a pressure regulator 710 is connected to the first injection inlet, and a pressure sensor 720 is provided at the anode air inlet of the fuel cell stack 200. The controller regulates the pressure regulator 710 based on the air pressure detection data of the pressure sensor 720. The dry hydrogen from the hydrogen source enters the ejector 100 after passing through the pressure regulator 710. The pressure regulator 710 is used to adjust the air pressure of the first ejector inlet so that the hydrogen input pressure is within the range required by the system.
进一步,第一引射入口和压力调节器710之间设置有温度传感器800和湿度传感器900。Furthermore, a temperature sensor 800 and a humidity sensor 900 are provided between the first injection inlet and the pressure regulator 710 .
进一步,燃料电池电堆200的阳极入气口和阳极出气口分别设置有湿度传感器900,控制模块300根据阳极入气口和阳极出气口的湿度检测数据调控燃料电池电堆200的阳极入气口的氢气混合比例。Furthermore, the anode air inlet and the anode air outlet of the fuel cell stack 200 are respectively provided with humidity sensors 900, and the control module 300 regulates the hydrogen mixing at the anode air inlet of the fuel cell stack 200 based on the humidity detection data of the anode air inlet and the anode air outlet. Proportion.
实际使用中,控制模块300根据阳极入气口和阳极出气口的湿度差来调控燃料电池电堆200的阳极入气口的氢气混合比例。当前燃料电池电堆200的阳极入气口和阳极出气口的湿度差超出湿度差预设值情况下,阳极出气口的湿度大于阳极入气口的湿度,增大对应其他燃料电池电堆200的引射器100的第二引射入口的打开程度,以使其他燃料电池电堆200消耗湿润氢气,或者是进一步减少当前燃料电池电堆200的引射器100的第二引射入口的打开程度,以使当前燃料电池电堆200降低反应速率;当前燃料电池电堆200的阳极入气口和阳极出气口的湿度差超出湿度差预设值情况下,,阳极出气口的湿度小于阳极入气口的湿度,增大对应当前燃料电池电堆200的引射器100的第二引射入口的打开程度,以使当前燃料电池电堆200消耗湿润氢气。In actual use, the control module 300 regulates the hydrogen mixing ratio of the anode air inlet of the fuel cell stack 200 based on the humidity difference between the anode air inlet and the anode air outlet. When the humidity difference between the anode air inlet and the anode air outlet of the current fuel cell stack 200 exceeds the preset value of the humidity difference, the humidity of the anode air outlet is greater than the humidity of the anode air inlet, which increases the radiation corresponding to other fuel cell stacks 200 The degree of opening of the second injection inlet of the ejector 100 of the current fuel cell stack 200 can be further reduced to allow other fuel cell stacks 200 to consume humidified hydrogen, or the degree of opening of the second injection inlet of the ejector 100 of the current fuel cell stack 200 can be further reduced. Reduce the reaction rate of the current fuel cell stack 200; when the humidity difference between the anode air inlet and the anode air outlet of the current fuel cell stack 200 exceeds the preset value of the humidity difference, the humidity of the anode air outlet is less than the humidity of the anode air inlet, The opening degree of the second injection inlet of the ejector 100 corresponding to the current fuel cell stack 200 is increased, so that the current fuel cell stack 200 consumes moist hydrogen.
下面结合具体的步骤详细说明本发明燃料电池供氢系统的工作原理。The working principle of the fuel cell hydrogen supply system of the present invention will be described in detail below with reference to specific steps.
参阅图1和图2,图2展示了本发明一种燃料电池供氢方法的具体步骤,所述燃料电池供氢方法包括以下步骤:Referring to Figures 1 and 2, Figure 2 shows the specific steps of a fuel cell hydrogen supply method of the present invention. The fuel cell hydrogen supply method includes the following steps:
步骤S1、获取各燃料电池电堆200的内部氢气湿度。Step S1: Obtain the internal hydrogen gas humidity of each fuel cell stack 200.
其中,可以是通过交流阻抗测试原理检测膜电极电阻。Among them, the membrane electrode resistance can be detected through the AC impedance testing principle.
步骤S2、判断燃料电池电堆200的内部氢气湿度是否处于湿度设定范围内。若是,执行步骤S3;若否,执行步骤S4。Step S2: Determine whether the internal hydrogen humidity of the fuel cell stack 200 is within the humidity setting range. If yes, execute step S3; if not, execute step S4.
步骤S3、维持各燃料电池电堆200的反应速率。Step S3: Maintain the reaction rate of each fuel cell stack 200.
步骤S4、根据异常燃料电池电堆200的内部氢气湿度的偏离程度调控其他燃料电池电堆200的反应速率。Step S4: Regulate the reaction rates of other fuel cell stacks 200 according to the deviation degree of the internal hydrogen humidity of the abnormal fuel cell stack 200.
进一步,所述根据异常燃料电池电堆200的内部氢气湿度的偏离程度调控其他燃料电池电堆200的反应速率,具体包括以下步骤:Further, regulating the reaction rates of other fuel cell stacks 200 according to the deviation degree of the internal hydrogen humidity of the abnormal fuel cell stack 200 specifically includes the following steps:
异常燃料电池电堆200的内部氢气湿度低于湿度设定范围时,控制其他燃料电池电堆200提高反应速率;异常燃料电池电堆200的内部氢气湿度高于湿度设定范围时,控制其他燃料电池电堆200降低反应速率。When the internal hydrogen humidity of the abnormal fuel cell stack 200 is lower than the humidity setting range, other fuel cell stacks 200 are controlled to increase the reaction rate; when the internal hydrogen humidity of the abnormal fuel cell stack 200 is higher than the humidity setting range, other fuels are controlled The battery stack 200 reduces the reaction rate.
相应地,燃料电池供氢系统执行以上方法时,当判断结果为各燃料电池电堆200的内部氢气湿度均处于湿度设定范围内时,各个燃料电池电堆200所对应的引射器100的第二引射入口的进气流量根据各燃料电池电堆200的运行功率来决定,相互独立不受影响,可以是通过调节各个第二气流阀420的打开程度来进行控制;当判断结果为存在燃料电池电堆200的阳极入气口的氢气湿度较低时,提高其他处于正常状态的燃料电池电堆200的反应速率,提高处于正常状态燃料电池电堆200排出湿润氢气的流量,进而提高流入引射器100湿润氢气的流量;当判断结果为存在燃料电池电堆200的阳极入气口的氢气湿度较高时,降低其他处于正常状态的燃料电池电堆200的反应速率,降低处于正常状态燃料电池电堆200排出湿润氢气的流量,进而降低流入引射器100湿润氢气的流量。Correspondingly, when the fuel cell hydrogen supply system performs the above method, when the judgment result is that the internal hydrogen humidity of each fuel cell stack 200 is within the humidity setting range, the ejector 100 corresponding to each fuel cell stack 200 will The air intake flow rate of the second injection inlet is determined according to the operating power of each fuel cell stack 200 and is independent of each other. It can be controlled by adjusting the opening degree of each second air flow valve 420; when the judgment result is that there is When the humidity of the hydrogen gas at the anode inlet of the fuel cell stack 200 is low, the reaction rate of other fuel cell stacks 200 in the normal state is increased, and the flow rate of the humidified hydrogen discharged from the fuel cell stack 200 in the normal state is increased, thereby increasing the inflow of the hydrogen gas. The flow rate of humidified hydrogen in the ejector 100; when the judgment result is that the hydrogen humidity in the anode inlet of the fuel cell stack 200 is high, the reaction rate of other fuel cell stacks 200 in the normal state is reduced, and the reaction rate of the fuel cell stack 200 in the normal state is reduced. The stack 200 discharges the flow rate of humid hydrogen gas, thereby reducing the flow rate of humid hydrogen gas flowing into the ejector 100 .
进一步,如图3所示,上述燃料电池供氢方法还包括以下步骤:Further, as shown in Figure 3, the above fuel cell hydrogen supply method also includes the following steps:
步骤S5、根据根据燃料电池电堆200的内部氢气湿度的偏离程度调控引射器100的氢气混合比例。Step S5: Adjust the hydrogen mixing ratio of the ejector 100 according to the degree of deviation of the internal hydrogen humidity of the fuel cell stack 200.
相应地,当判断结果为存在燃料电池电堆200的阳极入气口的氢气湿度较低时,通过调节第二气流阀420的打开程度来提升该燃料电池电堆200对应的引射器100的第二引射入口的进气流量,增加流入引射器100的湿氢气的流量;当判断结果为存在燃料电池电堆200的阳极入气口的氢气湿度较高时,通过调节第二气流阀420的打开程度来降低该燃料电池电堆200对应的引射器100的第二引射入口的进气流量,降低流入引射器100的湿氢气的流量。通过上述方法,实现了燃料电池电堆200之间的相互主动控制。Correspondingly, when the determination result is that the hydrogen gas humidity at the anode inlet of the fuel cell stack 200 is low, the opening degree of the second air flow valve 420 is adjusted to increase the third ejector 100 corresponding to the fuel cell stack 200 . The air inlet flow rate of the second ejector inlet increases the flow rate of the wet hydrogen gas flowing into the ejector 100; when the judgment result is that there is a high humidity of hydrogen gas at the anode air inlet of the fuel cell stack 200, by adjusting the second air flow valve 420 The degree of opening is used to reduce the air intake flow rate of the second injection inlet of the ejector 100 corresponding to the fuel cell stack 200 and to reduce the flow rate of wet hydrogen gas flowing into the ejector 100 . Through the above method, mutual active control between the fuel cell stacks 200 is achieved.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be covered by the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210412910.5A CN114824385B (en) | 2022-04-19 | 2022-04-19 | Fuel cell hydrogen supply system and control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210412910.5A CN114824385B (en) | 2022-04-19 | 2022-04-19 | Fuel cell hydrogen supply system and control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114824385A CN114824385A (en) | 2022-07-29 |
| CN114824385B true CN114824385B (en) | 2023-10-20 |
Family
ID=82505669
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210412910.5A Active CN114824385B (en) | 2022-04-19 | 2022-04-19 | Fuel cell hydrogen supply system and control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114824385B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115172806B (en) * | 2022-07-29 | 2023-07-04 | 爱德曼(淄博)氢能科技有限公司 | Hydrogen fuel cell stack |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4167457A (en) * | 1978-05-05 | 1979-09-11 | Giner, Inc. | Passive electrolytic separator |
| CN104521050A (en) * | 2012-05-04 | 2015-04-15 | 水吉能公司 | System and method for controlling fuel cell module |
| CN112599817A (en) * | 2020-10-27 | 2021-04-02 | 智新科技股份有限公司 | Hydrogen tail gas recycling system of fuel cell |
| CN112820912A (en) * | 2021-03-16 | 2021-05-18 | 中山大洋电机股份有限公司 | Fuel cell system and control method thereof |
| CN113130941A (en) * | 2021-04-20 | 2021-07-16 | 北京亦嘉洁驱系统科技有限公司 | Hydrogen supply system of proton exchange membrane hydrogen fuel cell and control method |
| CN113903951A (en) * | 2021-10-14 | 2022-01-07 | 上海重塑能源科技有限公司 | A hydrogen supply integrated device for a multi-stack fuel cell system |
| CN114142065A (en) * | 2021-11-30 | 2022-03-04 | 新源动力股份有限公司 | Proton exchange membrane fuel cell stack pretreatment activation method |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4886170B2 (en) * | 2003-03-18 | 2012-02-29 | 本田技研工業株式会社 | Fuel cell system |
| JP4647236B2 (en) * | 2003-11-28 | 2011-03-09 | 本田技研工業株式会社 | Fuel cell reactive gas supply device |
| US20100266923A1 (en) * | 2009-04-15 | 2010-10-21 | Bloom Energy Corporation | Fuel cell system with electrochemical hydrogen pump and method of operating same |
-
2022
- 2022-04-19 CN CN202210412910.5A patent/CN114824385B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4167457A (en) * | 1978-05-05 | 1979-09-11 | Giner, Inc. | Passive electrolytic separator |
| CN104521050A (en) * | 2012-05-04 | 2015-04-15 | 水吉能公司 | System and method for controlling fuel cell module |
| CN112599817A (en) * | 2020-10-27 | 2021-04-02 | 智新科技股份有限公司 | Hydrogen tail gas recycling system of fuel cell |
| CN112820912A (en) * | 2021-03-16 | 2021-05-18 | 中山大洋电机股份有限公司 | Fuel cell system and control method thereof |
| CN113130941A (en) * | 2021-04-20 | 2021-07-16 | 北京亦嘉洁驱系统科技有限公司 | Hydrogen supply system of proton exchange membrane hydrogen fuel cell and control method |
| CN113903951A (en) * | 2021-10-14 | 2022-01-07 | 上海重塑能源科技有限公司 | A hydrogen supply integrated device for a multi-stack fuel cell system |
| CN114142065A (en) * | 2021-11-30 | 2022-03-04 | 新源动力股份有限公司 | Proton exchange membrane fuel cell stack pretreatment activation method |
Non-Patent Citations (1)
| Title |
|---|
| 质子交换膜燃料电池系统引射器的氢气循环特性;周苏等;《同济大学学报(自然科学版)》;第46卷(第8期);1115-1121、1130 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114824385A (en) | 2022-07-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rodatz et al. | Operational aspects of a large PEFC stack under practical conditions | |
| CN101233643B (en) | Fuel cell system | |
| EP2075866B1 (en) | Fuel cell system | |
| CN114068997A (en) | A high-efficiency and energy-saving fuel cell stack test system | |
| CN100570939C (en) | Fuel cell system and method for operating fuel cell | |
| US9070921B2 (en) | Subzero ambient shutdown purge operating strategy for PEM fuel cell system | |
| US7348083B2 (en) | Fuel cell system | |
| CA2389197C (en) | Fuel cell and method of operating same | |
| JP2003151593A (en) | Fuel cell system | |
| JP2009016170A (en) | FUEL CELL SYSTEM AND CONTROL DEVICE FOR FUEL CELL SYSTEM | |
| CN112909309A (en) | Multi-stack fuel cell system with constant-pressure homogeneous supply distributor | |
| CN109902435A (en) | Proton exchange membrane fuel cell modeling method, storage medium and computer equipment | |
| US20060263651A1 (en) | Relative humidity profile control strategy for high current density stack operation | |
| US20040091761A1 (en) | Fuel cell and method of controlling same | |
| CN213520054U (en) | Off-line calibration rack for fuel cell hydrogen system | |
| US20090061270A1 (en) | Fuel cell system and method of operating the fuel cell system | |
| CN114824385B (en) | Fuel cell hydrogen supply system and control method | |
| CN100517842C (en) | A fuel cell with hydrogen air temperature and humidity adjustment device | |
| US20240021856A1 (en) | Systems and methods of using an energy storage device to assist an ejector | |
| CN219350276U (en) | Fuel cell air system | |
| JP4603920B2 (en) | Humidifier for fuel cell and fuel cell system provided with the same | |
| JP2012182096A (en) | Fuel cell system and control method thereof | |
| CN117438608A (en) | Air-cooled fuel cell system | |
| JP3879409B2 (en) | Fuel cell system | |
| CN115882008A (en) | Air humidity adjusting system of fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |