CN114828005A - Enhanced inter-satellite networking authentication method based on location key - Google Patents
Enhanced inter-satellite networking authentication method based on location key Download PDFInfo
- Publication number
- CN114828005A CN114828005A CN202210571907.8A CN202210571907A CN114828005A CN 114828005 A CN114828005 A CN 114828005A CN 202210571907 A CN202210571907 A CN 202210571907A CN 114828005 A CN114828005 A CN 114828005A
- Authority
- CN
- China
- Prior art keywords
- satellite
- key
- authentication
- verification code
- message verification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 230000006855 networking Effects 0.000 title claims abstract description 77
- 238000012795 verification Methods 0.000 claims abstract description 186
- 230000007774 longterm Effects 0.000 claims abstract description 91
- 230000007246 mechanism Effects 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 238000004891 communication Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 12
- 238000012790 confirmation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000001010 compromised effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18521—Systems of inter linked satellites, i.e. inter satellite service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/60—Context-dependent security
- H04W12/63—Location-dependent; Proximity-dependent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/60—Context-dependent security
- H04W12/69—Identity-dependent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radio Relay Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星通信技术领域,具体涉及一种基于位置密钥的增强型星间组网认证方法。The invention belongs to the technical field of satellite communication, in particular to an enhanced inter-satellite networking authentication method based on a location key.
背景技术Background technique
随着科技的不断发展和智能终端的普及,移动通信技术已经发展到第五代(5G),以满足人们日益增长的通信需求。然而,在许多地方,如海洋、沙漠、极地、山区和山谷,由于昂贵的建设成本,无法实现地面网络的覆盖。最近的报告显示,全球移动用户已经达到52.7亿,移动服务的人口覆盖率约为67%。受制于技术限制和巨大的经济成本,只有20%的土地面积被移动服务覆盖,这还不到地球表面积的6%。在这种情况下,卫星网络由于具有快速部署、丰富的无线电频率资源、通信距离长、通信质量好、覆盖范围广、受地面网络干扰小等优点而受到广泛关注。此外,卫星网络在航空、航海或灾区等极端条件下提供通信服务方面具有良好的前景。因此,卫星网络可以作为地面网络的补充,以灵活的方式提供大面积的覆盖和网络连接。With the continuous development of science and technology and the popularization of intelligent terminals, mobile communication technology has developed to the fifth generation (5G) to meet people's increasing communication needs. However, in many places, such as oceans, deserts, polar regions, mountains and valleys, terrestrial network coverage cannot be achieved due to expensive construction costs. Recent reports show that global mobile subscribers have reached 5.27 billion, with mobile services covering approximately 67% of the population. Subject to technical limitations and huge economic costs, only 20% of the land area is covered by mobile services, which is less than 6% of the earth's surface area. In this case, satellite networks have attracted extensive attention due to their advantages of rapid deployment, abundant radio frequency resources, long communication distances, good communication quality, wide coverage, and little interference from terrestrial networks. In addition, satellite networks hold great promise in providing communication services in extreme conditions such as aviation, navigation or disaster areas. Thus, satellite networks can complement terrestrial networks to provide coverage and network connectivity over large areas in a flexible manner.
1945年克拉克发表了一篇富有远见的文章,首次提出了卫星通信的想法,并指出三个卫星站就可以提供完整的全球覆盖。第三代合作伙伴计划(3GPP)标准组一直致力于空间和地面之间的集成通信网络的标准化,以支持5G网络的发展。为了更好地整合卫星和地面网络,充分发挥卫星通信技术的优势,研究人员提出了几种架构,为卫星系统的设计提供了可能的前景。建设“天地一体化信息网络”,实现“全球覆盖、按需接入、按需服务、安全可信”的卫星网络体系成为新的高潮。Clark published a visionary article in 1945 that first proposed the idea of satellite communications, noting that just three satellite stations could provide complete global coverage. The 3rd Generation Partnership Project (3GPP) standards group has been working on the standardization of integrated communication networks between space and ground to support the development of 5G networks. In order to better integrate satellite and terrestrial networks and take full advantage of satellite communication technology, researchers have proposed several architectures that offer possible prospects for the design of satellite systems. The construction of an "integrated information network of space and earth" and the realization of a satellite network system with "global coverage, on-demand access, on-demand service, and safety and reliability" have become a new climax.
随着数据通信业务需求的增加,单颗卫星的工作模式难以满足日益旺盛的通信业务需要,多颗卫星组网为地面用户提供服务已成为未来通信发展的趋势。合理的卫星组网可以实现全球通信的连续覆盖,可以提高国防防御能力,实现空间通信的可视化。并且卫星组网可以在无关口站部署的区域实现卫星通信与覆盖。卫星实现星间组网可解耦卫星的用户侧与馈电侧,优化关口站的部署,仅在部分区域建设地面站便可实现面向全球的卫星服务。With the increasing demand for data communication services, the working mode of a single satellite is difficult to meet the growing demand for communication services. It has become the trend of future communication development to provide services for terrestrial users through a network of multiple satellites. Reasonable satellite networking can achieve continuous coverage of global communications, improve national defense and defense capabilities, and realize the visualization of space communications. And satellite networking can realize satellite communication and coverage in areas where there is no port station deployment. The realization of inter-satellite networking of satellites can decouple the user side and feeder side of satellites, optimize the deployment of gateway stations, and only build ground stations in some areas to achieve global satellite services.
然而,与传统网络不同,卫星网络的拓扑结构随着卫星的不断运动而变化。卫星网络比传统网络存在更多的安全风险。一方面,卫星网络的链路高度暴露,因此卫星网络中的信息容易受到非法窃听和恶意篡改。另一方面,卫星网络拓扑复杂且动态变化,难以维持稳定的卫星链路。However, unlike traditional networks, the topology of satellite networks changes with the constant motion of the satellites. Satellite networks present more security risks than traditional networks. On the one hand, the links of the satellite network are highly exposed, so the information in the satellite network is vulnerable to illegal eavesdropping and malicious tampering. On the other hand, the satellite network topology is complex and dynamic, making it difficult to maintain a stable satellite link.
因此,研究人员提出了卫星通信网络中的多种认证方法,然而在大部分的认证方案中,卫星充当中继节点,为地面用户、基站或服务器转发和处理消息,没有实现卫星之间的组网认证。除了这些方案,现有的星间组网认证方法主要存在以下问题:采用数字签名、公钥密码体制或对称密钥技术实现星间端到端认证,交互轮数多且计算复杂,信令开销和计算开销大,不适用于计算能力有限的卫星;低轨卫星组网方法中低轨卫星的认证依赖地面的关口站,而卫星和地面的通信时延较长,协议效率较低,认证用时过长;安全性不高,星间组网认证方法依赖共享的认证密钥,如果该密钥泄露了,那么星间会话密钥的安全性无法保证,无法实现前向安全性;没有对卫星的身份信息进行隐私保护,在星间组网认证过程中可能会泄露卫星的身份信息,进而导致针对卫星身份信息的攻击。Therefore, researchers have proposed a variety of authentication methods in satellite communication networks. However, in most of the authentication schemes, satellites act as relay nodes to forward and process messages for ground users, base stations or servers, and no grouping between satellites is realized. network authentication. In addition to these solutions, the existing inter-satellite networking authentication methods mainly have the following problems: using digital signature, public key cryptography or symmetric key technology to achieve end-to-end authentication between satellites, the number of interaction rounds is large and the calculation is complex, signaling overhead It is not suitable for satellites with limited computing power; in the low-orbit satellite networking method, the certification of low-orbit satellites relies on the gateway station on the ground, while the communication delay between satellite and ground is long, the protocol efficiency is low, and the certification takes time. Too long; the security is not high, the inter-satellite networking authentication method relies on the shared authentication key, if the key is leaked, the security of the inter-satellite session key cannot be guaranteed, and forward security cannot be achieved; The identity information of the satellite is protected for privacy, and the identity information of the satellite may be leaked during the inter-satellite networking authentication process, which will lead to attacks on the identity information of the satellite.
综上,如何设计一种安全、高效的星间认证机制,实现星间快速组网成为目前亟待解决的问题。To sum up, how to design a safe and efficient inter-satellite authentication mechanism and realize fast inter-satellite networking has become an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种基于位置密钥的增强型星间组网认证方法。本发明要解决的技术问题通过以下技术方法实现:In order to solve the above problems existing in the prior art, the present invention provides an enhanced inter-satellite networking authentication method based on a location key. The technical problem to be solved by the present invention is realized by the following technical methods:
本发明实施例提供了一种基于位置密钥的增强型星间组网认证方法,包括步骤:An embodiment of the present invention provides an enhanced inter-satellite networking authentication method based on a location key, comprising the steps of:
S1、地面控制中心分别为每个卫星生成真实身份和星地间长期共享密钥;S1. The ground control center generates a real identity and a long-term shared key between the satellite and the ground for each satellite;
S2、所述地面控制中心根据任一卫星发送的组网认证请求信息,利用所述每个卫星的真实身份和星地间长期共享密钥生成所述每个卫星的临时身份标识,结合随机数生成卫星间长期共享密钥,并获取每个卫星的轨道参数;S2. The ground control center generates the temporary identity of each satellite by using the real identity of each satellite and the long-term shared key between the satellite and the ground according to the networking authentication request information sent by any satellite, combined with the random number Generate long-term shared keys between satellites and obtain orbital parameters of each satellite;
S3、每个卫星均根据第一卫星的轨道参数计算第一卫星的第一位置密钥,并根据所述卫星间长期共享密钥、第一卫星临时身份标识和各自计算的第一位置密钥计算第一卫星的第一消息验证码;当第二卫星判断所述第二卫星计算的第一消息验证码和所述第一卫星计算的第一消息验证码一致时,所述第二卫星完成对所述第一卫星的认证;S3, each satellite calculates the first position key of the first satellite according to the orbit parameters of the first satellite, and calculates the first position key according to the long-term shared key between the satellites, the first satellite temporary identity and the respective calculated first position keys Calculate the first message verification code of the first satellite; when the second satellite determines that the first message verification code calculated by the second satellite is consistent with the first message verification code calculated by the first satellite, the second satellite completes certification of said first satellite;
S4、每个卫星均根据第二卫星的轨道参数计算第二卫星的第二位置密钥,并根据第二卫星临时身份标识和各自计算的第二位置密钥计算第二卫星的第二消息验证码;当所述第一卫星判断所述第一卫星计算的第二消息验证码和所述第二卫星计算的第二消息验证码一致时,所述第一卫星完成对所述第二卫星的认证。S4, each satellite calculates the second position key of the second satellite according to the orbit parameters of the second satellite, and calculates the second message verification of the second satellite according to the second satellite temporary identity and the second position key calculated respectively When the first satellite determines that the second message verification code calculated by the first satellite is consistent with the second message verification code calculated by the second satellite, the first satellite completes the verification of the second satellite. Certification.
在本发明的一个实施例中,步骤S2包括:In one embodiment of the present invention, step S2 includes:
S21、所述第一卫星获取第一当前时间戳,利用所述第一卫星的星地间长期共享密钥加密所述第一卫星的真实身份和所述第二卫星的真实身份,得到并发送所述组网认证请求信息;S21. The first satellite obtains a first current timestamp, encrypts the real identity of the first satellite and the real identity of the second satellite using the long-term shared key between the satellite and the ground of the first satellite, and obtains and sends it the networking authentication request information;
S22、所述地面控制中心对所述组网认证请求信息进行解密,并当判断所述第一当前时间戳新鲜时,在第二当前时间戳下利用所述第一卫星的真实身份和星地间长期共享密钥生成第一卫星临时身份标识,利用所述第二卫星的真实身份和星地间长期共享密钥生成第二卫星临时身份标识,结合随机数生成所述卫星间长期共享密钥,并获取第一卫星轨道参数和第二卫星轨道参数;S22. The ground control center decrypts the networking authentication request information, and when judging that the first current time stamp is fresh, uses the real identity and satellite ground of the first satellite under the second current time stamp The long-term shared key is used to generate the first satellite temporary identity, the real identity of the second satellite and the long-term shared key between satellites are used to generate the second satellite temporary identity, and the long-term shared key between satellites is generated in combination with random numbers. , and obtain the first satellite orbit parameter and the second satellite orbit parameter;
S23、所述地面控制中心利用所述第二卫星的星地间长期共享密钥对所述第二当前时间戳、所述第一卫星临时身份标识、所述第二卫星临时身份标识、所述卫星间长期共享密钥和所述第一卫星轨道参数进行加密,得到第一加密消息;并利用所述第一卫星的星地间长期共享密钥对所述第一加密消息、所述第二当前时间戳、所述第一卫星临时身份标识、所述第二卫星临时身份标识、所述卫星间长期共享密钥和所述第二卫星轨道参数进行加密,得到第二加密消息;S23. The ground control center uses the satellite-ground long-term shared key of the second satellite to pair the second current timestamp, the first satellite temporary identity, the second satellite temporary identity, the encrypting the inter-satellite long-term shared key and the first satellite orbit parameters to obtain a first encrypted message; and using the inter-satellite long-term shared key of the first satellite to encrypt the first encrypted message, the second encrypted message The current timestamp, the first satellite temporary identity, the second satellite temporary identity, the inter-satellite long-term shared key, and the second satellite orbit parameter are encrypted to obtain a second encrypted message;
S24、所述第一卫星对所述第二加密消息进行解密,当判断所述第二当前时间戳新鲜时存储所述第一卫星临时身份标识、所述第二卫星临时身份标识、所述卫星间长期共享密钥和所述第二卫星轨道参数,并将所述第一加密消息发送至所述第二卫星;S24. The first satellite decrypts the second encrypted message, and when the second current timestamp is determined to be fresh, stores the first satellite temporary identity, the second satellite temporary identity, the satellite long-term shared secret key and orbital parameters of the second satellite, and send the first encrypted message to the second satellite;
S25、所述第二卫星对所述第一加密消息进行解密,当判断所述第二当前时间戳新鲜时存储所述第一卫星临时身份标识、所述第二卫星临时身份标识、所述卫星间长期共享密钥和所述第一卫星轨道参数。S25. The second satellite decrypts the first encrypted message, and when the second current timestamp is determined to be fresh, stores the first satellite temporary identity, the second satellite temporary identity, the satellite long-term shared key and the first satellite orbit parameters.
在本发明的一个实施例中,步骤S3包括:In one embodiment of the present invention, step S3 includes:
S31、所述第一卫星在第三当前时间戳下利用所述第一卫星的轨道参数计算第一位置密钥;并根据所述卫星间长期共享密钥和所述第一位置密钥计算会话的加密密钥和完整性保护密钥,利用所述第一卫星临时身份、所述第一位置密钥和所述完整性保护密钥计算第一消息验证码,并生成所述第一卫星临时身份标识、所述第三当前时间戳和所述第一消息验证码的第一认证向量;S31. The first satellite calculates a first location key by using the orbital parameters of the first satellite under a third current timestamp; and calculates a session according to the long-term shared key between satellites and the first location key The encryption key and integrity protection key of the first satellite are used to calculate the first message verification code using the first satellite temporary identity, the first location key and the integrity protection key, and the first satellite temporary identity is generated. an identity identifier, the third current timestamp and the first authentication vector of the first message verification code;
S32、当所述第二卫星判断所述第一认证向量中的第一卫星临时身份标识与所述地面控制中心发送的第一卫星临时身份标识一致且第三当前时间戳新鲜时,利用所述第一卫星轨道参数计算新的第一位置密钥;并根据所述卫星间长期共享密钥和所述新的第一位置密钥计算会话新的加密密钥和新的完整性保护密钥,利用所述第一卫星临时身份标识、所述第一位置密钥和所述新的完整性保护密钥计算新的第一消息验证码;S32. When the second satellite determines that the first satellite temporary identity in the first authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the third current timestamp is fresh, use the The first satellite orbit parameter calculates a new first position key; and calculates a new encryption key and a new integrity protection key for the session according to the long-term shared key between the satellites and the new first position key, Calculate a new first message verification code using the first satellite temporary identity, the first location key and the new integrity protection key;
S33、当所述第二卫星判断所述新的第一消息验证码与所述第一消息验证码一致时,所述第二卫星完成对所述第一卫星的认证。S33. When the second satellite determines that the new first message verification code is consistent with the first message verification code, the second satellite completes the authentication of the first satellite.
在本发明的一个实施例中,步骤S4包括:In an embodiment of the present invention, step S4 includes:
S41、所述第二卫星在第四当前时间戳下利用第二卫星轨道参数计算第二位置密钥,并根据所述第二卫星临时身份标识、所述第二位置密钥和所述新的完整性保护密钥计算第二消息验证码,并生成所述第二卫星临时身份标识、所述第二消息验证码和所述第四当前时间戳的第二认证向量;S41. The second satellite uses the second satellite orbit parameter to calculate the second location key under the fourth current timestamp, and calculates the second location key according to the second satellite temporary identity, the second location key and the new The integrity protection key calculates the second message verification code, and generates the second satellite temporary identity identifier, the second message verification code and the second verification vector of the fourth current timestamp;
S42、当所述第一卫星判断所述第二认证向量中的第二卫星临时身份标识与所述地面控制中心发送的第二卫星临时身份标识一致且第四当前时间戳新鲜时,利用所述第二卫星轨道参数计算新的第二位置密钥,并根据所述第二卫星临时身份标识、所述新的第二位置密钥和所述完整性保护密钥计算新的第二消息验证码;S42. When the first satellite determines that the second satellite temporary identity in the second authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the fourth current timestamp is fresh, use the The second satellite orbit parameter calculates a new second position key, and calculates a new second message verification code according to the second satellite temporary identity, the new second position key and the integrity protection key ;
S43、当所述第一卫星判断所述新的第二消息验证码和所述第二消息验证码一致时,所述第一卫星完成对所述第二卫星的认证。S43. When the first satellite determines that the new second message verification code is consistent with the second message verification code, the first satellite completes the authentication of the second satellite.
在本发明的一个实施例中,步骤S4之后还包括:In an embodiment of the present invention, after step S4, it further includes:
S5、每个卫星均根据所述第一卫星的原始轨道参数计算第一卫星的第三位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第三位置密钥计算所述第一卫星的第三消息验证码;当所述第二卫星判断所述第二卫星计算的第三消息验证码和所述第一卫星计算的第三消息验证码一致时,所述第二卫星完成对所述第一卫星的认证更新;S5, each satellite calculates the third position key of the first satellite according to the original orbit parameters of the first satellite, and calculates the third position key according to the integrity protection key calculated by the last authentication and the third position key calculated respectively. the third message verification code of the first satellite; when the second satellite determines that the third message verification code calculated by the second satellite is consistent with the third message verification code calculated by the first satellite, the second The satellite completes the certification update for the first satellite;
S6、每个卫星均根据所述第二卫星的原始轨道参数计算第二卫星的第四位置密钥,并根据所述上次认证计算的完整性保护密钥和各自计算的第四位置密钥计算所述第二卫星的第四消息验证码;当所述第一卫星判断所述第一卫星计算的第四消息验证码和所述第二卫星计算的第四消息验证码一致时,所述第一卫星完成对所述第二卫星的认证更新。S6, each satellite calculates the fourth position key of the second satellite according to the original orbit parameters of the second satellite, and calculates the integrity protection key according to the last authentication and the calculated fourth position key. Calculate the fourth message verification code of the second satellite; when the first satellite determines that the fourth message verification code calculated by the first satellite is consistent with the fourth message verification code calculated by the second satellite, the The first satellite completes the authentication update for the second satellite.
在本发明的一个实施例中,步骤S5包括:In one embodiment of the present invention, step S5 includes:
S51、所述第一卫星在第五当前时间戳下利用所述第一卫星的原始轨道参数计算第三位置密钥,并根据所述第一卫星临时身份标识、所述上次认证计算的完整性保护密钥和所述第三位置密钥计算第三消息验证码,并生成所述第一卫星临时身份标识、所述第五当前时间戳和所述第三消息验证码的第三认证向量;S51. The first satellite uses the original orbit parameters of the first satellite to calculate a third location key under the fifth current timestamp, and calculates a third location key according to the temporary identity of the first satellite and the complete data of the last authentication calculation. calculates a third message verification code using the security protection key and the third location key, and generates a third verification vector of the first satellite temporary identity, the fifth current timestamp, and the third message verification code ;
S52、当所述第二卫星判断所述第三认证向量中的第一卫星临时身份标识与所述地面控制中心发送的第一卫星临时身份标识一致且第五当前时间戳新鲜时,利用所述第一卫星的原始轨道参数计算新的第三位置密钥,并根据所述第一卫星临时身份标识、所述上次认证计算的完整性保护密钥和所述新的第三位置密钥计算新的第三消息验证码;S52. When the second satellite determines that the first satellite temporary identity in the third authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the fifth current timestamp is fresh, use the Calculate a new third position key based on the original orbit parameters of the first satellite, and calculate the new third position key according to the temporary identity of the first satellite, the integrity protection key calculated by the last authentication and the new third position key New third message verification code;
S53、当所述第二卫星判断所述新的第三消息验证码和所述第三消息验证码一致时,所述第二卫星完成对所述第一卫星的认证更新。S53. When the second satellite determines that the new third message verification code is consistent with the third message verification code, the second satellite completes the authentication update for the first satellite.
在本发明的一个实施例中,步骤S6包括:In an embodiment of the present invention, step S6 includes:
S61、所述第二卫星在第六当前时间戳下利用所述第二卫星的原始轨道参数计算第四位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第二卫星临时身份标识和所述第四位置密钥计算第四消息验证码,并生成所述第二卫星临时身份标识、所述第四消息验证码和所述第六当前时间戳的第四认证向量,并利用所述卫星间长期共享密钥、所述第四位置密钥和所述新的第三位置密钥计算新的加密密钥和完整性保护密钥;S61. The second satellite calculates a fourth location key by using the original orbit parameters of the second satellite under the sixth current time stamp, and calculates the integrity protection key according to the The satellite temporary identification and the fourth location key calculate a fourth message verification code, and generate a fourth authentication vector of the second satellite temporary identification, the fourth message verification code and the sixth current timestamp , and use the long-term shared key between satellites, the fourth location key and the new third location key to calculate a new encryption key and an integrity protection key;
S62、当所述第一卫星判断所述第四认证向量中的第二卫星临时身份标识与所述地面控制中心发送的第二卫星临时身份标识一致且第六当前时间戳新鲜时,利用所述第二卫星的原始轨道参数计算新的第四位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第二卫星临时身份标识和所述新的第四位置密钥计算新的第四消息验证码;S62. When the first satellite determines that the second satellite temporary identity in the fourth authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the sixth current timestamp is fresh, use the A new fourth position key is calculated from the original orbital parameters of the second satellite, and is calculated according to the integrity protection key calculated in the last authentication, the temporary identity of the second satellite and the new fourth position key New fourth message verification code;
S63、当所述第一卫星判断所述新的第四消息验证码和所述第四消息验证码一致时,所述第一卫星完成对所述第二卫星的认证更新;所述第一卫星利用所述卫星间长期共享密钥、所述新的第四位置密钥和所述第三位置密钥计算新的加密密钥和完整性保护密钥。S63. When the first satellite determines that the new fourth message verification code is consistent with the fourth message verification code, the first satellite completes the authentication update for the second satellite; the first satellite A new encryption key and an integrity protection key are calculated using the inter-satellite long-term shared key, the new fourth position key and the third position key.
在本发明的一个实施例中,步骤S4之后还包括:In an embodiment of the present invention, after step S4, it further includes:
S5、每个卫星均根据所述第一卫星变化后的轨道参数计算所述第一卫星的第五位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第五位置密钥计算所述第一卫星的第五消息验证码;当所述第二卫星判断所述第二卫星计算的第五消息验证码和所述第一卫星计算的第五消息验证码一致时,所述第二卫星完成对所述第一卫星的认证更新;S5. Each satellite calculates the fifth position key of the first satellite according to the changed orbit parameters of the first satellite, and calculates the integrity protection key according to the last authentication and the calculated fifth position key. key to calculate the fifth message verification code of the first satellite; when the second satellite determines that the fifth message verification code calculated by the second satellite is consistent with the fifth message verification code calculated by the first satellite, the the second satellite completes the authentication update for the first satellite;
S6、每个卫星均根据所述第二卫星变化后的轨道参数计算所述第二卫星的第六位置密钥,并根据所述上次认证计算的完整性保护密钥和各自计算的第六位置密钥计算所述第二卫星的第六消息验证码;当所述第一卫星判断所述第一卫星计算的第六消息验证码和所述第二卫星计算的第六消息验证码一致时,所述第一卫星完成对所述第二卫星的认证更新。S6. Each satellite calculates the sixth position key of the second satellite according to the changed orbit parameters of the second satellite, and calculates the integrity protection key according to the last authentication calculation and the respectively calculated sixth position key. The location key calculates the sixth message verification code of the second satellite; when the first satellite determines that the sixth message verification code calculated by the first satellite is consistent with the sixth message verification code calculated by the second satellite , the first satellite completes the authentication update for the second satellite.
在本发明的一个实施例中,步骤S5包括:In one embodiment of the present invention, step S5 includes:
S51、所述第一卫星在第七当前时间戳下利用所述第一卫星变化后的轨道参数计算第五位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第一卫星临时身份标识和所述第五位置密钥计算第五消息验证码,使用上次认证计算的加密密钥加密所述第一卫星变化后的轨道参数,并生成所述第一卫星临时身份标识、所述第七当前时间戳、所述第五消息验证码和加密后的第一卫星变化后的轨道参数的第五认证向量;S51. The first satellite uses the changed orbit parameters of the first satellite to calculate a fifth position key under the seventh current timestamp, and calculates the integrity protection key according to the A satellite temporary identity identifier and the fifth position key are used to calculate the fifth message verification code, and the changed orbit parameters of the first satellite are encrypted using the encryption key calculated in the last authentication, and the first satellite temporary identity is generated. identification, the seventh current time stamp, the fifth message verification code, and the encrypted fifth authentication vector of the changed orbit parameters of the first satellite;
S52、当所述第二卫星判断所述第五认证向量中的第一卫星临时身份标识与所述地面控制中心发送的第一卫星临时身份标识一致且第七当前时间戳新鲜时,利用所述上次认证计算的加密密钥解密所述第五认证向量得到所述第一卫星变化后的轨道参数,利用所述第一卫星变化后的轨道参数计算新的第五位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第一卫星临时身份标识和所述新的第五位置密钥计算新的第五消息验证码;S52. When the second satellite determines that the first satellite temporary identity in the fifth authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the seventh current timestamp is fresh, use the The encryption key of the last authentication calculation decrypts the fifth authentication vector to obtain the changed orbit parameters of the first satellite, and uses the changed orbit parameters of the first satellite to calculate a new fifth position key, and according to the Calculate the new fifth message verification code using the integrity protection key of the last authentication calculation, the first satellite temporary identity identifier and the new fifth position key;
S53、当所述第二卫星判断所述新的第五消息验证码和所述第五消息验证码一致时,所述第二卫星完成对所述第一卫星的认证更新。S53. When the second satellite determines that the new fifth message verification code is consistent with the fifth message verification code, the second satellite completes the authentication update for the first satellite.
在本发明的一个实施例中,步骤S6包括:In one embodiment of the present invention, step S6 includes:
S61、所述第二卫星在第八当前时间戳下利用所述第二卫星变化后的轨道参数计算第六位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第二卫星临时身份标识和所述第六位置密钥计算第六消息验证码,使用所述上次认证计算的加密密钥加密所述第二卫星变化后的轨道参数,并生成所述第二卫星临时身份标识、所述第八当前时间戳、所述第六消息验证码和加密后的第二卫星变化后的轨道参数的第六认证向量,并利用所述卫星间长期共享密钥、所述第六位置密钥和所述新的第五位置密钥计算新的加密密钥和完整性保护密钥;S61. The second satellite calculates a sixth position key by using the changed orbit parameters of the second satellite under the eighth current timestamp, and calculates a sixth position key according to the The second satellite temporary identity identifier and the sixth position key are used to calculate a sixth message verification code, and the changed orbit parameters of the second satellite are encrypted using the encryption key calculated in the last authentication, and the second satellite is generated. The temporary identity identifier, the eighth current time stamp, the sixth message verification code, and the encrypted sixth authentication vector of the orbital parameters of the second satellite after changing, and using the long-term shared key between satellites, the The sixth location key and the new fifth location key calculate a new encryption key and an integrity protection key;
S62、当所述第一卫星判断所述第六认证向量中的第二卫星临时身份标识与所述地面控制中心发送的第二卫星临时身份标识一致且第八当前时间戳新鲜时,利用所述上次认证计算的加密密钥解密所述第六认证向量得到所述第二卫星变化后的轨道参数,利用所述第二卫星变化后的轨道参数计算新的第六位置密钥,并根据所述上次认证计算的完整性保护密钥、所述第二卫星临时身份标识和所述新的第六位置密钥计算新的第六消息验证码;S62. When the first satellite determines that the second satellite temporary identity in the sixth authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the eighth current time stamp is fresh, use the The encryption key calculated by the last authentication decrypts the sixth authentication vector to obtain the changed orbit parameters of the second satellite, calculates a new sixth position key by using the changed orbit parameters of the second satellite, and Calculate the new sixth message verification code by calculating the integrity protection key of the last authentication calculation, the second satellite temporary identity identifier and the new sixth position key;
S63、当所述第一卫星判断所述新的第六消息验证码和所述第六消息验证码一致时,所述第一卫星完成对所述第二卫星的认证更新;所述第一卫星利用所述卫星间长期共享密钥、所述新的第六位置密钥和所述第五位置密钥计算新的加密密钥和完整性保护密钥。S63. When the first satellite determines that the new sixth message verification code is consistent with the sixth message verification code, the first satellite completes the authentication update for the second satellite; the first satellite A new encryption key and an integrity protection key are calculated using the inter-satellite long-term shared key, the new sixth position key and the fifth position key.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
本发明的星间组网认证方法中,地面控制中心为组网认证的每个卫星生成临时身份标识和星地间长期共享密钥,保护卫星的真实身份;同时结合卫星轨迹固定的特点,为每个卫星生成卫星间长期共享密钥并获取每个卫星的轨道参数分发给卫星,每个卫星基于轨道参数计算彼此的位置密钥,然后利用位置密钥和卫星间长期共享密钥完成身份认证,并协商星间会话密钥,避免了主密钥泄露带来的风险;另外在认证过程中减少了地面控制中心的参与,降低了不必要的通信延迟,因此实现了安全、高效的星间认证机制,实现了星间快速组网。In the inter-satellite networking authentication method of the present invention, the ground control center generates a temporary identity identifier and a long-term shared key between the satellite and the ground for each satellite authenticated by the networking, so as to protect the true identity of the satellite; Each satellite generates an inter-satellite long-term shared key and obtains the orbital parameters of each satellite and distributes it to the satellites. Each satellite calculates each other's position key based on the orbital parameters, and then uses the position key and the inter-satellite long-term shared key to complete identity authentication. , and negotiate the inter-satellite session key, avoiding the risk of master key leakage; in addition, the participation of the ground control center in the authentication process is reduced, and unnecessary communication delays are reduced, thus realizing a safe and efficient inter-satellite The authentication mechanism realizes fast inter-satellite networking.
附图说明Description of drawings
图1为本发明实施例提供的一种基于位置密钥的增强型星间组网认证方法的流程示意图;1 is a schematic flowchart of a location key-based enhanced inter-satellite networking authentication method provided by an embodiment of the present invention;
图2为本发明实施例提供的一种天地一体化网络下基于位置密钥的增强型卫星安全组网认证方法架构图;2 is an architecture diagram of an enhanced satellite security networking authentication method based on a location key under a space-ground integrated network provided by an embodiment of the present invention;
图3为本发明实施例提供的一种星间共享密钥配置阶段流程图;FIG. 3 is a flowchart of an inter-satellite shared key configuration stage provided by an embodiment of the present invention;
图4为本发明实施例提供的一种星间初始组网认证阶段流程图;FIG. 4 is a flowchart of an initial inter-satellite networking authentication stage provided by an embodiment of the present invention;
图5为本发明实施例提供的一种卫星的轨道参数未发生变化时卫星位置密钥更新阶段流程图;5 is a flowchart of a satellite location key update phase when the orbital parameters of a satellite do not change according to an embodiment of the present invention;
图6为本发明实施例提供的一种卫星的轨道参数未发生变化时卫星位置密钥更新阶段流程图。FIG. 6 is a flowchart of a phase of updating a satellite location key when the orbital parameters of a satellite do not change according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
实施例一Example 1
请参见图1和图2,图1为本发明实施例提供的一种基于位置密钥的增强型星间组网认证方法的流程示意图,图2为本发明实施例提供的一种天地一体化网络下基于位置密钥的增强型卫星安全组网认证方法架构图。Please refer to FIG. 1 and FIG. 2. FIG. 1 is a schematic flowchart of an enhanced inter-satellite networking authentication method based on a location key provided by an embodiment of the present invention, and FIG. 2 is a heaven-earth integration provided by an embodiment of the present invention. The architecture diagram of the enhanced satellite security networking authentication method based on the location key under the network.
本实施例的方法是基于位置密钥实现身份认证和密钥协商的,几乎所有的卫星都可以满足该星间组网方法的需要。具体的,本实施例的方法可以适用于多种类型的卫星,包括低轨道卫星LEO、中轨道卫星MEO、高轨道卫星GEO中的任意两个卫星,如图2所示,以及不同机构发射的卫星;在两颗组网的卫星不具备共享密钥的情况下,本实施例的方法同样也适用。The method of this embodiment implements identity authentication and key negotiation based on the location key, and almost all satellites can meet the needs of the inter-satellite networking method. Specifically, the method in this embodiment can be applied to various types of satellites, including any two satellites among the low-orbit satellite LEO, the medium-orbit satellite MEO, and the high-orbit satellite GEO, as shown in FIG. Satellite: In the case where the two networked satellites do not have a shared key, the method in this embodiment is also applicable.
具体的,该基于位置密钥的增强型星间组网认证方法包括步骤:Specifically, the enhanced inter-satellite networking authentication method based on the location key includes the steps:
S1、系统初始化阶段:地面控制中心分别为每个卫星生成真实身份和星地间长期共享密钥。S1. System initialization stage: The ground control center generates a real identity and a long-term shared key between the satellite and the ground for each satellite.
具体的,在卫星发射准备阶段,地面控制中心触发系统初始化,为每颗卫星生成唯一的真实身份和星地间长期共享密钥。地面控制中心根据第一卫星A的生产批次、轨道参数、系统初始化的时间等信息为第一卫星A生成一个永久真实身份IDA,并基于该永久真实身份生成一个星地间长期共享密钥KA。类似地,地面控制中心根据第二卫星B的生产批次、轨道参数、系统初始化的时间等信息为第二卫星B生成一个永久真实身份IDB,并基于该永久真实身份生成一个星地间长期共享密钥KB。第二卫星B不知道KA,第一卫星A不知道KB。此外,假设KA和KB存储在受信任的环境中,不会被泄露。Specifically, in the satellite launch preparation stage, the ground control center triggers the initialization of the system to generate a unique real identity and a long-term shared key between the satellite and the ground for each satellite. The ground control center generates a permanent real identity ID A for the first satellite A according to the production batch, orbital parameters, system initialization time and other information of the first satellite A, and generates a long-term shared key between the satellite and the ground based on the permanent real identity K A . Similarly, the ground control center generates a permanent real identity ID B for the second satellite B according to the production batch, orbital parameters, system initialization time and other information of the second satellite B, and generates a long-term inter-satellite ID based on the permanent real identity. Shared key KB . The second satellite B does not know KA and the first satellite A does not know KB. Furthermore, it is assumed that KA and KB are stored in a trusted environment and cannot be compromised.
S2、星间共享密钥配置阶段:地面控制中心根据任一卫星发送的组网认证请求信息,利用每个卫星的真实身份和星地间长期共享密钥生成每个卫星的临时身份标识,结合随机数生成卫星间长期共享密钥,并获取每个卫星的轨道参数。S2. Inter-satellite shared key configuration stage: the ground control center generates the temporary identity of each satellite according to the networking authentication request information sent by any satellite, using the real identity of each satellite and the long-term shared key between the satellite and the ground, combined with A random number generates a long-term shared key between satellites and obtains orbital parameters for each satellite.
请参见图3,图3为本发明实施例提供的一种星间共享密钥配置阶段流程图。步骤S2具体包括步骤:Referring to FIG. 3, FIG. 3 is a flowchart of an inter-satellite shared key configuration stage provided by an embodiment of the present invention. Step S2 specifically includes steps:
S21、第一卫星获取第一当前时间戳,利用第一卫星的星地间长期共享密钥加密第一卫星的真实身份和第二卫星的真实身份,得到并发送组网认证请求信息。S21. The first satellite acquires the first current timestamp, encrypts the real identity of the first satellite and the real identity of the second satellite by using the long-term shared key between the satellite and the ground of the first satellite, and obtains and sends the networking authentication request information.
具体的,第一卫星A获取第一当前时间戳TA1,并使用第一卫星的星地间长期共享密钥KA加密第一卫星A和第二卫星B的真实身份,得到并发送组网认证请求信息然后卫星A向地面控制中心发送请求与卫星B进行组网认证。Specifically, the first satellite A obtains the first current timestamp T A1 , and encrypts the real identities of the first satellite A and the second satellite B by using the satellite-ground long-term shared key K A of the first satellite, and obtains and sends the network Authentication request information Then satellite A sends to the ground control center Request network authentication with satellite B.
S22、地面控制中心对组网认证请求信息进行解密,并当判断第一当前时间戳新鲜时,在第二当前时间戳下利用第一卫星的真实身份和星地间长期共享密钥生成第一卫星临时身份标识,利用第二卫星的真实身份和星地间长期共享密钥生成第二卫星临时身份标识,结合随机数生成卫星间长期共享密钥,并获取第一卫星轨道参数和第二卫星轨道参数。S22. The ground control center decrypts the networking authentication request information, and when judging that the first current timestamp is fresh, uses the real identity of the first satellite and the long-term shared key between the satellite and the ground to generate the first Satellite temporary identification, using the real identity of the second satellite and the long-term shared key between satellites to generate the second satellite temporary identification, combined with random numbers to generate the long-term shared key between satellites, and obtain the first satellite orbit parameters and the second satellite track parameters.
具体的,当地面控制中心接收到组网认证请求信息时,使用相同的密钥KA解密得到IDA、IDB、TA1。地面控制中心检查组网认证请求消息中的身份信息是否合法,并验证时间戳TA1是否新鲜,即TA1-Tt1<ΔT,其中Tt1为地面控制中心接收到第一卫星A消息的时间,ΔT是预先设定的有效时间间隔。如果通过检查,地面控制中心获得第二当前时间戳TTCC,并利用卫星A、B的真实身份信息和TTCC计算卫星的临时身份标识TIDA和TIDB。然后地面控制中心生成一个随机数RAND,为卫星A、B生成一个卫星间长期共享密钥KAB。上述计算过程如式(1)所示:Specifically, when the ground control center receives the networking authentication request information, it uses the same key KA to decrypt to obtain ID A , ID B , and T A1 . The ground control center checks whether the identity information in the networking authentication request message is legal, and verifies whether the timestamp T A1 is fresh, that is, T A1 -T t1 <ΔT, where T t1 is the time when the ground control center receives the first satellite A message , ΔT is the preset effective time interval. If it passes the inspection, the ground control center obtains the second current time stamp T TCC , and uses the real identity information of satellites A and B and T TCC to calculate the temporary identifications TID A and TID B of the satellites. Then the ground control center generates a random number RAND, and generates a long-term shared key K AB between satellites A and B for satellites A and B . The above calculation process is shown in formula (1):
其中,f1:{0,1}*→{0,1}k为卫星临时身份的生成函数,是一个单向哈希函数,h为哈希函数,KA为第一卫星A和地面控制中心之间的星地间长期共享密钥,KB为第二卫星B和地面控制中心之间的星地间长期共享密钥,IDA为第一卫星A的真实身份,IDB为第二卫星B的真实身份,RAND为随机数。Among them, f 1 :{0,1} * →{0,1} k is the generation function of the satellite temporary identity, which is a one-way hash function, h is the hash function, KA is the first satellite A and ground control The long-term shared key between the satellite and the ground between the centers, KB is the long-term shared key between the second satellite B and the ground control center, ID A is the real identity of the first satellite A, and ID B is the second satellite A. The real identity of satellite B, RAND is a random number.
接下来,地面控制中心检索卫星的轨道参数信息,得到第一卫星A此时的轨道参数PA,第二卫星B此时的轨道参数PB。Next, the ground control center retrieves the orbit parameter information of the satellite to obtain the orbit parameter P A of the first satellite A and the orbit parameter P B of the second satellite B at this time.
S23、地面控制中心利用第二卫星的星地间长期共享密钥对第二当前时间戳、第一卫星临时身份标识、第二卫星临时身份标识、卫星间长期共享密钥和第一卫星轨道参数进行加密,得到第一加密消息;并利用第一卫星的星地间长期共享密钥对第一加密消息、第二当前时间戳、第一卫星临时身份标识、第二卫星临时身份标识、卫星间长期共享密钥和第二卫星轨道参数进行加密,得到第二加密消息。S23. The ground control center uses the satellite-ground long-term shared key of the second satellite to pair the second current timestamp, the first satellite temporary identity, the second satellite temporary identity, the inter-satellite long-term shared key, and the first satellite orbit parameters Encryption is performed to obtain the first encrypted message; and the first encrypted message, the second current time stamp, the first satellite temporary identity, the second satellite temporary identity, the The long-term shared key and the second satellite orbit parameters are encrypted to obtain a second encrypted message.
具体的,地面控制中心使用KB对KAB、TIDA、TIDB、TTCC和PA进行加密得到将要发送给第二卫星B的第一加密消息,即地面控制中心使用KA对KAB、TIDA、TIDB、TTCC、PB,以及进行加密得到第二加密消息并发送给卫星A。假设卫星知道自己的轨道参数,所以地面控制中心不需要将卫星A的轨道参数发送给卫星A,也不需要将卫星B的轨道参数发送给卫星B。Specifically, the ground control center uses K B to encrypt K AB , TIDA , TIDB , T TCC and PA to obtain the first encrypted message to be sent to the second satellite B , that is, The ground control center uses K A for K AB , TID A , TID B , T TCC , P B , and Encrypt to get the second encrypted message and sent to satellite A. Assuming that the satellite knows its own orbital parameters, the ground control center does not need to send the orbital parameters of satellite A to satellite A, nor does it need to send the orbital parameters of satellite B to satellite B.
S24、第一卫星对第二加密消息进行解密,当判断第二当前时间戳新鲜时存储第一卫星临时身份标识、第二卫星临时身份标识、卫星间长期共享密钥和第二卫星轨道参数,并将第一加密消息发送至第二卫星。S24, the first satellite decrypts the second encrypted message, and when judging that the second current time stamp is fresh, the first satellite temporary identification, the second satellite temporary identification, the long-term shared key between satellites and the second satellite orbit parameter are stored, and send the first encrypted message to the second satellite.
具体的,在收到地面控制中心的第二加密消息后,卫星A使用共享密钥KA对其进行解密,获得KAB、TIDA、TIDB、TTCC、PB和然后卫星A验证时间戳TTCC的新鲜性,如果满足新鲜性要求,那么卫星A存储KAB、TIDA、TIDB、TTCC、PB,并将第一加密消息转发给卫星B;否则将终止认证。Specifically, after receiving the second encrypted message from the ground control center, satellite A decrypts it using the shared key KA to obtain K AB , TIDA , TIDB , TTCC , PB and Satellite A then verifies the freshness of the timestamp T TCC , and if the freshness requirement is met, then satellite A stores K AB , TID A , TID B , T TCC , P B , and encrypts the first encrypted message Forwarded to Satellite B; otherwise, the certification will be terminated.
S25、第二卫星对第一加密消息进行解密,当判断第二当前时间戳新鲜时存储第一卫星临时身份标识、第二卫星临时身份标识、卫星间长期共享密钥和第一卫星轨道参数。S25. The second satellite decrypts the first encrypted message, and stores the first satellite temporary ID, the second satellite temporary ID, the long-term shared key between satellites, and the first satellite orbit parameter when the second current timestamp is determined to be fresh.
具体的,卫星B接收到卫星A发来的信息,使用共享密钥KB解密得到KAB、TIDA、TIDB、TTCC、PA。卫星B验证时间戳TTCC的新鲜性,如果满足新鲜性要求,那么卫星B存储KAB、TIDA、TIDB、TTCC和PA,以便与卫星A进行组网认证。Specifically, satellite B receives the information sent by satellite A , and uses the shared key KB to decrypt to obtain K AB , TIDA , TIDB , TTCC , and PA . Satellite B verifies the freshness of the timestamp T TCC . If the freshness requirement is met, then satellite B stores K AB , TID A , TID B , T TCC and P A , so as to perform networking authentication with satellite A.
S3、星间初始组网认证阶段:每个卫星均根据第一卫星的轨道参数计算第一卫星的第一位置密钥,并根据卫星间长期共享密钥、第一卫星临时身份标识和各自计算的第一位置密钥计算第一卫星的第一消息验证码;当第二卫星判断第二卫星计算的第一消息验证码和第一卫星计算的第一消息验证码一致时,第二卫星完成对第一卫星的认证。S3, the initial networking authentication stage between satellites: each satellite calculates the first location key of the first satellite according to the orbital parameters of the first satellite, and calculates the first position key of the first satellite according to the long-term shared key between satellites, the temporary identity of the first satellite and their respective calculation The first location key of the first satellite calculates the first message verification code of the first satellite; when the second satellite determines that the first message verification code calculated by the second satellite is consistent with the first message verification code calculated by the first satellite, the second satellite completes the Certification of the first satellite.
请参见图4,图4为本发明实施例提供的一种星间初始组网认证阶段流程图。步骤S3具体包括:Referring to FIG. 4 , FIG. 4 is a flowchart of an initial inter-satellite networking authentication stage provided by an embodiment of the present invention. Step S3 specifically includes:
S31、第一卫星在第三当前时间戳下利用第一卫星的轨道参数计算第一位置密钥;并根据卫星间长期共享密钥和第一位置密钥计算会话的加密密钥和完整性保护密钥,利用第一卫星临时身份标识、第一位置密钥和完整性保护密钥计算第一消息验证码,并生成第一卫星临时身份标识、第三当前时间戳和第一消息验证码的第一认证向量。S31, the first satellite calculates the first location key using the orbital parameters of the first satellite under the third current timestamp; and calculates the encryption key and integrity protection of the session according to the long-term shared key between satellites and the first location key The key is to calculate the first message verification code by using the first satellite temporary identity identifier, the first location key and the integrity protection key, and generate a combination of the first satellite temporary identity identifier, the third current time stamp and the first message verification code. The first authentication vector.
具体的,卫星A获取第三当前时间戳TA2;根据全球定位系统(GPS)的卫星定位算法,利用第一卫星的轨道参数PA计算出第三当前时间戳TA2时刻的第一卫星坐标(xA,yA,zA)和第一卫星的第一位置密钥KL-A,接着卫星A根据卫星间长期共享密钥KAB和KL-A计算会话的加密密钥CK和完整性保护密钥IK,然后卫星A基于完整性保护密钥IK和第一位置密钥KL-A计算第一消息验证码MACA,最后生成第一认证向量AVA。上述计算过程如公式(2)所示:Specifically, satellite A obtains the third current time stamp T A2 ; according to the satellite positioning algorithm of the Global Positioning System (GPS), the orbit parameter P A of the first satellite is used to calculate the first satellite coordinates at the moment of the third current time stamp T A2 (x A , y A , z A ) and the first position key K LA of the first satellite, then satellite A calculates the encryption key CK and the integrity protection key of the session according to the long-term shared keys K AB and K LA between satellites Then the satellite A calculates the first message verification code MAC A based on the integrity protection key IK and the first location key K LA , and finally generates the first authentication vector AV A . The above calculation process is shown in formula (2):
其中,fP为卫星空间坐标的生成函数,PA为第一卫星A的轨道参数,f2:{0,1}*→{0,1}k为会话密钥的生成函数,是一个单向哈希函数,f3:{0,1}*→{0,1}k为消息验证码的生成函数,是一个单向哈希函数,KL-A为第一卫星A的第一位置密钥,KAB为卫星A和卫星B之间的卫星间长期共享密钥。Among them, f P is the generation function of satellite space coordinates, P A is the orbit parameter of the first satellite A, f 2 :{0,1} * →{0,1} k is the generation function of the session key, which is a single Hash function, f 3 :{0,1} * →{0,1} k is the generation function of the message verification code, which is a one-way hash function, K LA is the first location key of the first satellite A , K AB is the inter-satellite long-term shared key between satellite A and satellite B.
S32、当第二卫星判断第一认证向量中的第一卫星临时身份标识与地面控制中心发送的第一卫星临时身份标识一致且第三当前时间戳新鲜时,利用第一卫星轨道参数计算新的第一位置密钥;并根据卫星间长期共享密钥和新的第一位置密钥计算会话新的加密密钥和新的完整性保护密钥,利用第一卫星临时身份标识、第一位置密钥和新的完整性保护密钥计算新的第一消息验证码。S32, when the second satellite determines that the first satellite temporary identity in the first authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the third current timestamp is fresh, use the first satellite orbit parameter to calculate a new The first location key; and calculate a new encryption key and a new integrity protection key for the session according to the long-term shared key between satellites and the new first location key, using the first satellite temporary identity, the first location encryption key and the new integrity protection key to calculate a new first message authentication code.
具体的,卫星B将AVA中的TIDA与地面控制中心发送的TIDA进行比较,并验证时间戳TA2的新鲜性。如果两者TIDA一致并且TA2满足新鲜性要求,那么卫星B根据TA2和地面控制中心发送的第一卫星轨道参数PA,使用和卫星A一样的方法计算卫星A在TA2时刻的新的GPS坐标(x'A,y'A,y'A)和新的第一位置密钥K'L-A。接着卫星B利用卫星A的新的第一位置密钥K'L-A和卫星间长期共享密钥KAB计算新的加密密钥CK'和完整性保护密钥IK',进一步计算出新的第一消息验证码XMACA。Specifically, the satellite B compares the TID A in the AV A with the TID A sent by the ground control center, and verifies the freshness of the timestamp T A2 . If the two TID A are consistent and T A2 meets the freshness requirement, then satellite B uses the same method as satellite A to calculate the new satellite A at time T A2 according to the first satellite orbit parameter P A sent by T A2 and the ground control center. the GPS coordinates (x' A , y' A , y' A ) and the new first location key K' LA . Next, satellite B uses the new first location key K' LA of satellite A and the long-term shared key K AB between satellites to calculate a new encryption key CK' and an integrity protection key IK', and further calculates a new first Message Authentication Code XMAC A .
S33、当第二卫星判断新的第一消息验证码与第一消息验证码一致时,第二卫星完成对第一卫星的认证。S33. When the second satellite determines that the new first message verification code is consistent with the first message verification code, the second satellite completes the authentication of the first satellite.
具体的,卫星B将XMACA与卫星A发送的MACA进行比较,如果两者一致,完成对卫星A的身份认证,并保存CK'和IK'用于后续的星间会话;否则认证失败,结束认证。Specifically, satellite B compares XMAC A with the MAC A sent by satellite A, and if the two are consistent, completes the identity authentication of satellite A, and saves CK' and IK' for subsequent inter-satellite sessions; otherwise, the authentication fails, End authentication.
步骤S32和步骤S33的计算过程如公式(3)所示:The calculation process of step S32 and step S33 is shown as formula (3):
S4、每个卫星均根据第二卫星的轨道参数计算第二卫星的第二位置密钥,并根据第二卫星临时身份标识和各自计算的第二位置密钥计算第二卫星的第二消息验证码;当第一卫星判断第一卫星计算的第二消息验证码和第二卫星计算的第二消息验证码一致时,第一卫星完成对第二卫星的认证。具体包括:S4, each satellite calculates the second position key of the second satellite according to the orbit parameters of the second satellite, and calculates the second message verification of the second satellite according to the second satellite temporary identity and the second position key calculated respectively When the first satellite determines that the second message verification code calculated by the first satellite is consistent with the second message verification code calculated by the second satellite, the first satellite completes the authentication of the second satellite. Specifically include:
S41、第二卫星在第四当前时间戳下利用第二卫星轨道参数计算第二位置密钥,并根据第二卫星临时身份标识、第二位置密钥和新的完整性保护密钥计算第二消息验证码,并生成第二卫星临时身份标识、第二消息验证码和第四当前时间戳的第二认证向量。S41. The second satellite uses the second satellite orbit parameter to calculate the second position key under the fourth current timestamp, and calculates the second position key according to the second satellite temporary identity, the second position key and the new integrity protection key. message verification code, and generate the second satellite temporary identity identifier, the second message verification code and the second verification vector of the fourth current timestamp.
具体的,卫星B获取第四当前时间戳TB1,根据全球定位系统(GPS)的卫星定位算法,利用第二卫星的轨道参数PB计算出自身的GPS坐标(xB,yB,zB)和第二位置密钥KL-B,进而利用第二位置密钥KL-B、步骤S32计算的新的完整性保护密钥IK'和TIDB计算第二消息验证码MACB。最后卫星B生成第二认证向量AVB,并发送给卫星A。上述计算过程如公式(4)所示:Specifically, satellite B obtains the fourth current time stamp T B1 , and uses the orbit parameter P B of the second satellite to calculate its own GPS coordinates (x B , y B , z B according to the global positioning system (GPS) satellite positioning algorithm) ) and the second location key K LB , and then use the second location key K LB , the new integrity protection key IK' and TIDB calculated in step S32 to calculate the second message verification code MAC B . Finally, satellite B generates a second authentication vector AV B and sends it to satellite A. The above calculation process is shown in formula (4):
S42、当第一卫星判断第二认证向量中的第二卫星临时身份标识与地面控制中心发送的第二卫星临时身份标识一致且第四当前时间戳新鲜时,利用第二卫星轨道参数计算新的第二位置密钥,并根据第二卫星临时身份标识、新的第二位置密钥和完整性保护密钥计算新的第二消息验证码。S42, when the first satellite determines that the second satellite temporary identity in the second authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the fourth current timestamp is fresh, use the second satellite orbit parameter to calculate a new The second location key, and a new second message verification code is calculated according to the second satellite temporary identity identifier, the new second location key and the integrity protection key.
具体的,卫星A将第二认证向量AVB中的TIDB与地面控制中心发送的TIDB进行比较,并验证第四时间戳TB1的新鲜性。如果两者发送的TIDB一致并且TB1满足新鲜性要求,那么卫星A根据TB1和地面控制中心发送的第二卫星轨道参数PB,计算卫星B在TB1时刻的第二卫星新的GPS坐标(x'B,y'B,z'B)和新的第二位置密钥K'L-B;进而根据步骤S31中计算的IK和K'L-B计算新的第二消息验证码XMACB。Specifically, the satellite A compares the TID B in the second authentication vector AV B with the TID B sent by the ground control center, and verifies the freshness of the fourth timestamp T B1 . If the TID B sent by the two are consistent and T B1 meets the freshness requirement, then satellite A calculates the new GPS of the second satellite of satellite B at time T B1 according to the second satellite orbit parameter P B sent by T B1 and the ground control center coordinates (x' B , y' B , z' B ) and a new second location key K'LB; and then calculate a new second message verification code XMAC B according to the IK and K' LB calculated in step S31.
S43、当第一卫星判断新的第二消息验证码和第二消息验证码一致时,第一卫星完成对第二卫星的认证。S43. When the first satellite determines that the new second message verification code is consistent with the second message verification code, the first satellite completes the authentication of the second satellite.
具体的,如果新的第二消息验证码XMACB。与卫星B发送的第二消息验证码MACB一致,卫星A完成对卫星B的身份认证,卫星A保存步骤S31计算的CK和IK用于后续的星间会话;否则认证失败,结束认证。上述计算过程如公式(5)所示:Specifically, if the new second message verification code XMAC B . Consistent with the second message verification code MAC B sent by satellite B, satellite A completes the identity authentication of satellite B, and satellite A saves the CK and IK calculated in step S31 for subsequent inter-satellite sessions; otherwise, the authentication fails, and the authentication ends. The above calculation process is shown in formula (5):
本实施例的方法安全性分析如下:The method security analysis of this embodiment is as follows:
(1)相互认证和密钥协商:在上述方法中,卫星A和卫星B基于位置密钥KL-A、KL-B和卫星间长期共享密钥KAB实现相互认证和密钥协商。具体来说,地面控制中心首先为卫星生成卫星间长期共享密钥KAB,并在星间共享密钥配置阶段将其安全地分发给卫星A和卫星B。其次,卫星A从地面控制中心获得卫星B的轨道参数PB,卫星B从地面控制中心获得卫星A的轨道参数PA。然后卫星A和卫星B以相同的方式计算会话加密密钥CK和完整性保护密钥IK。卫星A利用IK和位置密钥KL-A计算出MACA,卫星B以同样的方式计算XMACA,验证卫星A的身份。反过来,卫星A以同样的方式验证卫星B的身份。对于位置密钥更新阶段,思路也是一样的。因此,卫星A和卫星B可以实现相互认证和密钥协商。(1) Mutual authentication and key agreement: In the above method, satellite A and satellite B realize mutual authentication and key agreement based on location keys K LA , K LB and long-term shared key K AB between satellites. Specifically, the ground control center first generates the inter-satellite long-term shared key K AB for the satellites, and distributes it securely to satellite A and satellite B in the inter-satellite shared key configuration stage. Secondly, satellite A obtains the orbit parameter P B of satellite B from the ground control center, and satellite B obtains the orbit parameter P A of satellite A from the ground control center. Then satellite A and satellite B calculate the session encryption key CK and the integrity protection key IK in the same way. Satellite A uses IK and the location key K LA to calculate MAC A , and satellite B calculates XMAC A in the same way to verify the identity of satellite A. In turn, Satellite A verifies the identity of Satellite B in the same way. For the location key update phase, the idea is the same. Therefore, satellite A and satellite B can achieve mutual authentication and key agreement.
(2)身份匿名性。在卫星初始认证阶段,卫星A向地面控制中心发送星间组网认证请求,地面控制中心根据卫星A的真实身份IDA和预置的共享密钥KA生成临时身份TIDA。同样地,地面控制中心根据卫星B的真实身份IDB和预置的共享密钥KB生成临时身份TIDB。卫星在组网认证过程中使用匿名的身份标识符,攻击者无法获取卫星的真实身份信息。(2) Identity anonymity. In the initial satellite authentication stage, satellite A sends an inter-satellite networking authentication request to the ground control center, and the ground control center generates a temporary identity TID A according to satellite A 's real identity ID A and the preset shared key KA. Similarly, the ground control center generates a temporary identity TID B according to the real identity ID B of the satellite B and the preset shared key KB. Satellites use anonymous identity identifiers in the network authentication process, and attackers cannot obtain the real identity information of satellites.
(3)密钥确认:在星间初始组网认证阶段,卫星A根据自己的轨道参数计算出位置密钥KL-A,从而利用共享密钥KAB和KL-A计算出会话密钥CK和IK。卫星A向卫星B发送组网认证请求,并使用IK和KL-A保护消息的完整性。卫星B以相同的方式计算KL-A和会话密钥,然后卫星B使用IK验证卫星A发送的认证请求。反过来,卫星A使用IK验证卫星B发送的认证消息,确认双方计算的会话密钥是一样的。因此,该方法能够实现密钥确认。(3) Key confirmation: in the initial inter-satellite networking authentication stage, satellite A calculates the location key K LA according to its own orbital parameters, and then uses the shared keys K AB and K LA to calculate the session keys CK and IK. Satellite A sends a networking authentication request to satellite B, and uses IK and K LA to protect the integrity of the message. Satellite B calculates K LA and session key in the same way, then Satellite B uses IK to verify the authentication request sent by Satellite A. In turn, satellite A uses the IK to verify the authentication message sent by satellite B, confirming that the session keys calculated by both parties are the same. Therefore, this method enables key confirmation.
(4)数据完整性保护:卫星网络的链路是高度开放的,容易遭受窃听、篡改和伪造等攻击。为了保护卫星之间传输的信息的完整性,卫星A和卫星B生成完整性保护密钥IK,以实现数据的完整性保护。(4) Data integrity protection: The link of the satellite network is highly open and vulnerable to eavesdropping, tampering and forgery attacks. In order to protect the integrity of information transmitted between satellites, satellite A and satellite B generate an integrity protection key IK to achieve data integrity protection.
(5)抗假冒攻击:参与组网认证的卫星根据特定的轨道参数计算出位置密钥KL-A、KL-B,然后生成会话的完整性保护密钥IK,之后星间发送的位置密钥等信息会受到IK的保护。这样可以防止攻击者篡改或伪造信息,即使攻击者篡改或伪造了一些数据,卫星也能立即发现。(5) Anti-counterfeiting attack: The satellites participating in the network authentication calculate the position keys K LA and K LB according to the specific orbit parameters, and then generate the integrity protection key IK of the session, and then send the information such as the position key between the satellites. will be protected by IK. This prevents attackers from tampering or falsifying information, and even if an attacker tampers or falsifies some data, the satellites can spot it immediately.
(6)抗中间人攻击。攻击者发动中间人攻击时,使卫星B误以为对面的卫星是卫星A,卫星A误以为对面的卫星是卫星B,导致卫星B和卫星A向攻击者发送大量私人信息。对于该星间认证方法,卫星A和卫星B根据位置密钥和共享密钥KAB得出会话密钥,保护传输数据的完整性。即使攻击者窃听到发送的信息,他也不能获得位置密钥的相关信息,也无法计算出正确的会话密钥。因此,该方法可以抵抗中间人攻击。(6) Anti-man-in-the-middle attack. When an attacker launches a man-in-the-middle attack, satellite B mistakenly thinks the opposite satellite is satellite A, and satellite A mistakenly thinks the opposite satellite is satellite B, which causes satellite B and satellite A to send a large amount of private information to the attacker. For this inter-satellite authentication method, satellite A and satellite B obtain the session key according to the location key and the shared key K AB to protect the integrity of the transmitted data. Even if an attacker eavesdrops on the information being sent, he cannot obtain information about the location key and cannot calculate the correct session key. Therefore, this method is resistant to man-in-the-middle attacks.
(7)抗重放攻击:在每一次的星间组网认证过程中,请求组网认证的卫星A获得时间戳,并计算出该时刻对应的位置密钥,最后将该时间戳添加到认证请求向量中发送给对面的卫星B。卫星B验证收到的时间戳是否新鲜,如果不符合新鲜性要求,那么卫星B认为认证请求向量已经过期并丢弃它。反过来,卫星A对卫星的时间戳B进行同样的验证。攻击者不能重放过期的认证向量来欺骗卫星。通过这种方式,该方法可以抵抗重放攻击。(7) Anti-replay attack: During each inter-satellite networking authentication process, the satellite A requesting networking authentication obtains a timestamp, calculates the location key corresponding to the moment, and finally adds the timestamp to the authentication The request vector is sent to the opposite satellite B. Satellite B verifies that the received timestamp is fresh, and if it does not meet the freshness requirements, then Satellite B considers the authentication request vector to be expired and discards it. In turn, satellite A performs the same verification on satellite B's timestamp. An attacker cannot replay an expired authentication vector to spoof the satellite. In this way, the method is resistant to replay attacks.
(8)抵抗内部人攻击:在该方法中,相互认证和密钥协商基于两个因素:卫星位置密钥和卫星间长期共享密钥。假设卫星A分别与卫星B和卫星C进行了组网认证,建立了两个安全的通道。卫星A从地面控制中心获得卫星B和卫星C的轨道参数。在它们的轨道参数有效期内,卫星A可以计算出任何时刻卫星B或卫星C的位置密钥,但是卫星A不能计算出卫星B和卫星C之间的会话密钥,因为它不能从地面控制中心获得共享密钥KBC。因此,卫星A不能窃听卫星B和C之间的会话。所以该方法可以抵抗内部人攻击。(8) Resist insider attack: In this method, mutual authentication and key agreement are based on two factors: the satellite location key and the long-term shared key between satellites. Assume that satellite A has performed networking authentication with satellite B and satellite C respectively, and established two secure channels. Satellite A obtains the orbital parameters of satellite B and satellite C from the ground control center. During the validity period of their orbital parameters, satellite A can calculate the position key of satellite B or satellite C at any time, but satellite A cannot calculate the session key between satellite B and satellite C because it cannot be obtained from the ground control center Obtain the shared key K BC . Therefore, satellite A cannot eavesdrop on the conversation between satellites B and C. So this method can resist insider attack.
(9)完美前向保密(PFS):在该方法中,卫星A和卫星B之间的会话密钥基于位置密钥和共享密钥KAB计算得到。即使共享密钥KAB被泄露,攻击者也无法计算正确的会话密钥。即使位置密钥在某一次组网认证过程中被暴露,如果攻击者不知道卫星的轨道参数,就不能得出之前的会话密钥。因此,该方法可以实现PFS。(9) Perfect Forward Secrecy (PFS): In this method, the session key between satellite A and satellite B is calculated based on the location key and the shared key K AB . Even if the shared key KAB is compromised, the attacker cannot compute the correct session key. Even if the location key is exposed during a certain networking authentication process, if the attacker does not know the orbital parameters of the satellite, the previous session key cannot be obtained. Therefore, this method can achieve PFS.
因此,该方法具有如下优点:(1)针对天地一体化网络中卫星网络的链路高度暴露、拓扑结构复杂多变、卫星计算能力和存储资源有限等特点,本实施例提出了一种轻量级的基于位置密钥和对称密钥的增强型星间组网认证方案,具体的,卫星在发射升空后,按照既定的轨道运行,本实施例通过验证卫星的位置来实现星间组网认证与密钥协商,仅需要进行哈希、异或运算,以及少量的共享密钥加解密,在保障安全的前提下降低了卫星的计算开销和存储开销,提高了星间组网认证的效率。(2)针对传统的星间组网认证过程中主密钥泄露的安全风险,本实施例同时使用位置密钥和共享密钥实现卫星的星间认证和密钥协商,解决了主密钥泄露带来的安全隐患。(3)针对卫星身份隐私的需求,本实施例在组网认证过程中使用哈希函数为卫星生成一个匿名身份信息即卫星的临时身份标识,有效保护了卫星身份的隐私。(4)针对不同卫星间的组网认证过程,本实施例为卫星分配不同的共享密钥,即使某一颗卫星被捕获,它也无法计算其他卫星间的会话密钥,因此它没有其他卫星间的共享密钥,避免了内部人攻击。(5)在两颗组网的卫星不具备地面控制中心分发的共享密钥的情况下,比如两颗待认证的卫星来自不同的机构或国家,本实施例的方法同样也是适用的。具体而言,卫星间可以只基于位置密钥进行身份认证和密钥协商,以实现快速星间组网认证。虽然可能存在一些安全隐患,比如内部人攻击,但是位置密钥的认证满足一定场景的安全需求,是一种可选的方案。(6)本实施例的方法对卫星的发射批次没有要求,即不同批次发射的卫星同样可以采用本方案实现星间组网认证和密钥协商。具体而言,当卫星需要组网认证时,在初始组网阶段可以在地面控制中心的帮助下生成共享密钥,并基于共享密钥和位置密钥实现认证;或者在无法生成共享密钥的情况下,可以只基于位置密钥来实现认证。Therefore, this method has the following advantages: (1) In view of the characteristics of the satellite network in the space-ground integrated network, the links are highly exposed, the topology is complex and changeable, and the satellite computing capability and storage resources are limited. A high-level enhanced inter-satellite networking authentication scheme based on location keys and symmetric keys. Specifically, after the satellite is launched, it runs according to a predetermined orbit. In this embodiment, the inter-satellite networking is realized by verifying the position of the satellite. Authentication and key negotiation only require hashing, XOR operations, and a small amount of shared key encryption and decryption, which reduces satellite computing overhead and storage overhead while ensuring security, and improves the efficiency of inter-satellite networking authentication . (2) Aiming at the security risk of master key leakage in the traditional inter-satellite networking authentication process, this embodiment uses both the location key and the shared key to implement satellite inter-satellite authentication and key negotiation, which solves the problem of master key leakage security risks. (3) In response to the requirement of satellite identity privacy, this embodiment uses a hash function to generate an anonymous identity information for the satellite, that is, a temporary identity identifier of the satellite, during the network authentication process, which effectively protects the privacy of the satellite identity. (4) For the networking authentication process between different satellites, this embodiment assigns different shared keys to satellites. Even if a certain satellite is captured, it cannot calculate the session keys between other satellites, so it does not have other satellites. The shared key between them avoids insider attacks. (5) In the case where the two networked satellites do not have the shared key distributed by the ground control center, for example, the two satellites to be authenticated are from different institutions or countries, the method of this embodiment is also applicable. Specifically, identity authentication and key negotiation between satellites can be performed only based on the location key to achieve fast inter-satellite networking authentication. Although there may be some security risks, such as insider attacks, the authentication of the location key meets the security requirements of certain scenarios and is an optional solution. (6) The method of this embodiment does not require the launch batches of satellites, that is, satellites launched in different batches can also use this solution to implement inter-satellite networking authentication and key negotiation. Specifically, when the satellite needs networking authentication, a shared key can be generated with the help of the ground control center in the initial networking stage, and authentication can be achieved based on the shared key and the location key; or if the shared key cannot be generated. In this case, authentication can be achieved based only on the location key.
综上,本发明的星间组网认证方法中,地面控制中心为组网认证的每个卫星生成临时身份标识和星地间长期共享密钥,保护卫星的真实身份;同时结合卫星轨迹固定的特点,为每个卫星生成卫星间长期共享密钥并获取每个卫星第轨道参数分发给卫星,每个卫星基于轨道参数计算彼此的位置密钥,然后利用位置密钥和卫星间共享密钥完成身份认证,并协商星间会话密钥,避免了主密钥泄露带来的风险;另外在认证过程中减少了地面控制中心的参与,降低了不必要的通信延迟,因此实现了安全、高效的星间认证机制,实现了星间快速组网。To sum up, in the inter-satellite networking authentication method of the present invention, the ground control center generates a temporary identity identifier and a long-term shared key between the satellite and the ground for each satellite authenticated by the networking, so as to protect the true identity of the satellite; Features: Generate a long-term shared key between satellites for each satellite and obtain the orbital parameters of each satellite and distribute them to the satellites. Each satellite calculates each other's location keys based on the orbital parameters, and then uses the location key and the inter-satellite shared key to complete Identity authentication and negotiation of the inter-satellite session key, avoiding the risk of master key leakage; in addition, the participation of the ground control center in the authentication process is reduced, and unnecessary communication delays are reduced, thus realizing a safe and efficient The inter-satellite authentication mechanism realizes fast inter-satellite networking.
实施例二
在实施例一的基础上,本实施例提供了一种星间初始组网认证阶段后,卫星的轨道参数未发生变化,星间组网断开重连的星间组网认证方法。本实施例中,卫星的轨道参数未发生变化是指第一卫星和第二卫星的轨道参数均未发生变化。On the basis of
具体的,该方法包括步骤:Specifically, the method includes the steps:
S1、地面控制中心分别为每个卫星生成真实身份和星地间长期共享密钥。S1. The ground control center generates a real identity and a long-term shared key between the satellite and the ground for each satellite.
S2、地面控制中心根据任一卫星发送的组网认证请求信息,利用每个卫星的真实身份和星地间长期共享密钥生成每个卫星的临时身份标识,结合随机数生成卫星间长期共享密钥,并获取每个卫星的轨道参数。S2. According to the networking authentication request information sent by any satellite, the ground control center uses the real identity of each satellite and the long-term shared key between satellites to generate the temporary identity of each satellite, and generates the long-term shared secret between satellites in combination with random numbers. key, and obtain the orbital parameters of each satellite.
S3、每个卫星均根据第一卫星的轨道参数计算第一卫星的第一位置密钥,并根据卫星间长期共享密钥、第一卫星临时身份标识和各自计算的第一位置密钥计算第一卫星的第一消息验证码;当第二卫星判断第二卫星计算的第一消息验证码和第一卫星计算的第一消息验证码一致时,第二卫星完成对第一卫星的认证。S3, each satellite calculates the first position key of the first satellite according to the orbital parameters of the first satellite, and calculates the first position key according to the long-term shared key between satellites, the first satellite temporary identity and the respectively calculated first position key The first message verification code of a satellite; when the second satellite determines that the first message verification code calculated by the second satellite is consistent with the first message verification code calculated by the first satellite, the second satellite completes the authentication of the first satellite.
S4、每个卫星均根据第二卫星的轨道参数计算第二卫星的第二位置密钥,并根据第二卫星临时身份标识和各自计算的第二位置密钥计算第二卫星的第二消息验证码;当第一卫星判断第一卫星计算的第二消息验证码和第二卫星计算的第二消息验证码一致时,第一卫星完成对第二卫星的认证。S4, each satellite calculates the second position key of the second satellite according to the orbit parameters of the second satellite, and calculates the second message verification of the second satellite according to the second satellite temporary identity and the second position key calculated respectively When the first satellite determines that the second message verification code calculated by the first satellite is consistent with the second message verification code calculated by the second satellite, the first satellite completes the authentication of the second satellite.
步骤S1~S4的具体实施方法请参见实施例一,本实施例不再赘述。For the specific implementation method of steps S1 to S4, please refer to
S5、卫星的轨道参数未发生变化时卫星位置密钥更新阶段:每个卫星均根据第一卫星的原始轨道参数计算第一卫星的第三位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第三位置密钥计算第一卫星的第三消息验证码;当第二卫星判断第二卫星计算的第三消息验证码和第一卫星计算的第三消息验证码一致时,第二卫星完成对第一卫星的认证更新。S5. The satellite location key update phase when the orbital parameters of the satellites have not changed: each satellite calculates the third location key of the first satellite according to the original orbital parameters of the first satellite, and calculates the integrity protection according to the last authentication calculation. The key and the third position key calculated respectively are used to calculate the third message verification code of the first satellite; when the second satellite determines that the third message verification code calculated by the second satellite is consistent with the third message verification code calculated by the first satellite , the second satellite completes the authentication update to the first satellite.
请参见图5,图5为本发明实施例提供的一种卫星的轨道参数未发生变化时卫星位置密钥更新阶段流程图。Please refer to FIG. 5. FIG. 5 is a flowchart of a phase of updating a satellite location key when the orbital parameters of a satellite do not change according to an embodiment of the present invention.
步骤S5包括:Step S5 includes:
S51、第一卫星在第五当前时间戳下利用第一卫星的原始轨道参数计算第三位置密钥,并根据第一卫星临时身份标识、上次认证计算的完整性保护密钥和第三位置密钥计算第三消息验证码,并生成第一卫星临时身份标识、第五当前时间戳和第三消息验证码的第三认证向量。S51, the first satellite uses the original orbit parameters of the first satellite to calculate the third position key under the fifth current time stamp, and calculates the third position key according to the temporary identity of the first satellite, the integrity protection key calculated in the last authentication and the third position The key calculates the third message verification code, and generates a third authentication vector of the first satellite temporary identity, the fifth current timestamp and the third message verification code.
具体的,卫星A获取第五当前时间戳TA3,根据全球定位系统(GPS)的卫星定位算法,利用第一卫星的原始轨道参数PA计算自身的第三GPS坐标(xA2,yA2,zA2)和第三位置密钥KL-A2。然后卫星A利用上次认证计算的完整性保护密钥IK和当前的第三位置密钥KL-A2计算第三消息验证码MACA2,最后卫星A创建第一卫星临时身份标识TIDA、第五当前时间戳TA3和第三消息验证码MACA2的第三认证向量AVA2,并发送给卫星B。Specifically, satellite A obtains the fifth current timestamp T A3 , and uses the original orbit parameter P A of the first satellite to calculate its own third GPS coordinates (x A2 , y A2 , z A2 ) and the third position key K L-A2 . Then satellite A calculates the third message verification code MAC A2 by using the integrity protection key IK and the current third location key K L-A2 calculated by the last authentication, and finally satellite A creates the first satellite temporary identity identifier TID A , the third message verification code MAC A2 5. The current timestamp T A3 and the third authentication vector AV A2 of the third message verification code MAC A2 are sent to satellite B.
上述计算过程如公式(6)所示:The above calculation process is shown in formula (6):
S52、当第二卫星判断第三认证向量中的第一卫星临时身份标识与地面控制中心发送的第一卫星临时身份标识一致且第五当前时间戳新鲜时,利用第一卫星的原始轨道参数计算新的第三位置密钥,并根据第一卫星临时身份标识、上次认证计算的完整性保护密钥和新的第三位置密钥计算新的第三消息验证码。S52, when the second satellite determines that the first satellite temporary identity in the third authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the fifth current timestamp is fresh, use the original orbit parameters of the first satellite to calculate A new third location key, and a new third message verification code is calculated according to the first satellite temporary identity, the integrity protection key calculated in the last authentication and the new third location key.
具体的,卫星B验证第三认证向量AVA2中第一卫星临时身份标识TIDA的合法性和第五当前时间戳TA3的新鲜性,如果满足要求,卫星B根据TA3和保存的第一卫星的原始轨道参数PA,计算卫星A在TA3时刻的新的第三GPS坐标(x'A2,y'A2,z'A2)和新的第三位置密钥K'L-A2。接着,卫星B利用上次认证计算的完整性保护密钥IK和当前的卫星A新的第三位置密钥K'L-A2计算新的第三消息验证码XMACA2。Specifically, satellite B verifies the validity of the first satellite temporary identity identifier TID A in the third authentication vector AV A2 and the freshness of the fifth current timestamp T A3 . If the requirements are met, the satellite B verifies the The original orbit parameter P A of the satellite is used to calculate the new third GPS coordinates (x' A2 , y' A2 , z' A2 ) and the new third position key K' L-A2 of the satellite A at time T A3 . Next, satellite B calculates a new third message verification code XMAC A2 by using the integrity protection key IK calculated in the last authentication and the current new third location key K' L-A2 of satellite A.
S53、当第二卫星判断新的第三消息验证码和第三消息验证码一致时,第二卫星完成对第一卫星的认证更新。S53. When the second satellite determines that the new third message verification code is consistent with the third message verification code, the second satellite completes the authentication update for the first satellite.
具体的,如果新的第三消息验证码XMACA2与卫星A发送的第三消息验证码MACA2一致,完成对卫星A的身份认证;否则认证失败,结束认证。Specifically, if the new third message verification code XMAC A2 is consistent with the third message verification code MAC A2 sent by satellite A, the identity authentication of satellite A is completed; otherwise, the authentication fails, and the authentication is ended.
步骤S52和S53的计算过程如公式(7)所示:The calculation process of steps S52 and S53 is shown in formula (7):
S6、每个卫星均根据第二卫星的原始轨道参数计算第二卫星的第四位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第四位置密钥计算第二卫星的第四消息验证码;当第一卫星判断第一卫星计算的第四消息验证码和第二卫星计算的第四消息验证码一致时,第一卫星完成对第二卫星的认证更新。S6, each satellite calculates the fourth position key of the second satellite according to the original orbit parameters of the second satellite, and calculates the second satellite according to the integrity protection key calculated by the last authentication and the fourth position key calculated respectively When the first satellite determines that the fourth message verification code calculated by the first satellite is consistent with the fourth message verification code calculated by the second satellite, the first satellite completes the authentication update for the second satellite.
具体包括:Specifically include:
S61、第二卫星在第六当前时间戳下利用第二卫星的原始轨道参数计算第四位置密钥,根据上次认证计算的完整性保护密钥、第二卫星临时身份标识和第四位置密钥计算第四消息验证码,生成第二卫星临时身份标识、第四消息验证码和第六当前时间戳的第四认证向量;并利用卫星间长期共享密钥、第四位置密钥和新的第三位置密钥计算新的加密密钥和完整性保护密钥。S61, the second satellite uses the original orbit parameters of the second satellite to calculate the fourth position key under the sixth current time stamp, and calculates the integrity protection key according to the last authentication, the temporary identity of the second satellite and the fourth position key key to calculate the fourth message verification code, to generate the second satellite temporary identity, the fourth message verification code and the fourth verification vector of the sixth current timestamp; and use the long-term shared key between satellites, the fourth position key and the new The third location key computes the new encryption key and integrity protection key.
具体的,卫星B获取第六当前时间戳TB2,根据全球定位系统(GPS)的卫星定位算法,利用第二卫星的轨道参数PB计算自身的第四GPS坐标(xB2,yB2,zB2)和第四位置密钥KL-B2,然后卫星B利用上次认证计算的完整性保护密钥IK和当前的第四位置密钥KL-B2计算第四消息验证码MACB2,创建第二卫星临时身份标识TIDB、第六当前时间戳TB2和第四消息验证码MACB2的第四认证向量AVB2,并发送给卫星A。最后,卫星B利用卫星间长期共享密钥KAB、新的第三位置密钥K'L-A2和第四位置密钥KL-B2计算新的会话加密密钥CK2和完整性保护密钥IK2,用于后续的星间会话。上述计算过程如公式(8)所示:Specifically, satellite B obtains the sixth current time stamp T B2 , and uses the orbit parameter P B of the second satellite to calculate its own fourth GPS coordinates (x B2 , y B2 , z according to the global positioning system (GPS) satellite positioning algorithm) B2 ) and the fourth location key KL -B2 , and then the satellite B calculates the fourth message verification code MAC B2 using the integrity protection key IK calculated in the last authentication and the current fourth location key KL - B2, and creates The second satellite temporary ID B , the sixth current time stamp T B2 and the fourth authentication vector AV B2 of the fourth message verification code MAC B2 are sent to the satellite A. Finally, satellite B uses the inter-satellite long-term shared key K AB , the new third position key K' L-A2 and the fourth position key K L-B2 to calculate a new session encryption key CK 2 and an integrity protection key The key IK 2 is used for subsequent inter-satellite sessions. The above calculation process is shown in formula (8):
S62、当第一卫星判断第四认证向量中的第二卫星临时身份标识与地面控制中心发送的第二卫星临时身份标识一致且第六当前时间戳新鲜时,利用第二卫星的原始轨道参数计算新的第四位置密钥,并根据上次认证计算的完整性保护密钥、第二卫星临时身份标识和新的第四位置密钥计算新的第四消息验证码。S62, when the first satellite determines that the second satellite temporary identity in the fourth authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the sixth current timestamp is fresh, use the original orbit parameters of the second satellite to calculate A new fourth location key, and a new fourth message verification code is calculated according to the integrity protection key calculated in the last authentication, the second satellite temporary identity identifier, and the new fourth location key.
具体的,卫星A验证第四认证向量AVB2中第二卫星临时身份标识TIDB的合法性和第六当前时间戳TB2的新鲜性,如果第四认证向量AVB2中第二卫星临时身份标识TIDB与地面控制中心发送的第二卫星临时身份标识TIDB一致且第六当前时间戳TB2新鲜,卫星A根据第六当前时间戳TB2和保存的第二卫星原始轨道参数PB,计算卫星B的新的第四GPS坐标(x'B2,y'B2,z'B2)和新的第四位置密钥K'L-B2。接着,卫星A利用上次认证计算的IK和新的第四位置密钥K'L-B2计算新的第四消息验证码XMACB2。Specifically, the satellite A verifies the validity of the second satellite temporary identity identifier TID B in the fourth authentication vector AV B2 and the freshness of the sixth current timestamp T B2 , if the second satellite temporary identity identifier in the fourth authentication vector AV B2 is TID B is consistent with the second satellite temporary identity identifier TID B sent by the ground control center and the sixth current time stamp T B2 is fresh. Satellite A calculates according to the sixth current time stamp T B2 and the saved original orbit parameter P B of the second satellite The new fourth GPS coordinates (x' B2 , y' B2 , z' B2 ) of satellite B and the new fourth position key K' L-B2 . Next, satellite A calculates a new fourth message verification code XMAC B2 by using the IK calculated in the last authentication and the new fourth location key K' L- B2.
S63、当第一卫星判断新的第四消息验证码和第四消息验证码一致时,第一卫星完成对第二卫星的认证更新;第一卫星利用卫星间长期共享密钥、新的第四位置密钥和第三位置密钥计算新的加密密钥和完整性保护密钥。S63, when the first satellite determines that the new fourth message verification code is consistent with the fourth message verification code, the first satellite completes the authentication update for the second satellite; the first satellite uses the long-term shared key between satellites, the new fourth The location key and the third location key compute new encryption keys and integrity protection keys.
具体的,如果新的第四消息验证码XMACB2与卫星B发送的第四消息验证码MACB2一致,卫星A完成对卫星B的身份认证;否则认证失败,结束认证。最后,卫星A利用卫星间长期共享密钥KAB、第三位置密钥KL-A2和新的第四位置密钥K'L-B2计算新的会话加密密钥CK2和完整性保护密钥IK2,用于后续的星间会话。Specifically, if the new fourth message verification code XMAC B2 is consistent with the fourth message verification code MAC B2 sent by the satellite B, the satellite A completes the identity authentication of the satellite B; otherwise, the authentication fails, and the authentication ends. Finally, satellite A uses the inter-satellite long-term shared key K AB , the third position key K L-A2 and the new fourth position key K' L-B2 to calculate a new session encryption key CK 2 and an integrity protection key The key IK 2 is used for subsequent inter-satellite sessions.
步骤S62和步骤S63的计算过程如公式(9)所示:The calculation process of step S62 and step S63 is shown as formula (9):
本实施例中,步骤S61和S63计算的新的会话加密密钥CK2和完整性保护密钥IK2是相同的,区别在于卫星A计算的加密密钥CK2和完整性保护密钥IK2保存在卫星A中,卫星B计算的加密密钥CK2和完整性保护密钥IK2保存在卫星B中。In this embodiment, the new session encryption key CK 2 and the integrity protection key IK 2 calculated in steps S61 and S63 are the same, and the difference lies in the encryption key CK 2 and the integrity protection key IK 2 calculated by satellite A It is stored in satellite A, and the encryption key CK 2 and the integrity protection key IK 2 calculated by satellite B are stored in satellite B.
本实施例中,面对星间链路断开重连,当卫星的轨道参数未发生变化时,卫星基于保存的轨道参数计算新的位置密钥,并实现会话密钥更新,在位置密钥更新阶段,不再执行密钥确认,减少了卫星的信令开销。In this embodiment, in the face of the disconnection and reconnection of the inter-satellite link, when the orbital parameters of the satellite do not change, the satellite calculates a new location key based on the saved orbital parameters, and realizes the update of the session key. In the update phase, key confirmation is no longer performed, which reduces the signaling overhead of the satellite.
实施例三Embodiment 3
在实施例一和实施例二的基础上,本实施例提供了一种星间初始组网认证阶段后,卫星的轨道参数发生变化,星间组网断开重连的星间组网认证方法。本实施例中,卫星的轨道参数发生变化是指第一卫星和第二卫星中任一卫星的轨道参数发生变化。On the basis of
具体的,该方法包括步骤:Specifically, the method includes the steps:
S1、地面控制中心分别为每个卫星生成真实身份和星地间长期共享密钥。S1. The ground control center generates a real identity and a long-term shared key between the satellite and the ground for each satellite.
S2、地面控制中心根据任一卫星发送的组网认证请求信息,利用每个卫星的真实身份和星地间长期共享密钥生成每个卫星的临时身份标识,结合随机数生成卫星间长期共享密钥,并获取每个卫星的轨道参数。S2. According to the networking authentication request information sent by any satellite, the ground control center uses the real identity of each satellite and the long-term shared key between satellites to generate the temporary identity of each satellite, and generates the long-term shared secret between satellites in combination with random numbers. key, and obtain the orbital parameters of each satellite.
S3、每个卫星均根据第一卫星的轨道参数计算第一卫星的第一位置密钥,并根据卫星间长期共享密钥、第一卫星临时身份标识和各自计算的第一位置密钥计算第一卫星的第一消息验证码;当第二卫星判断第二卫星计算的第一消息验证码和第一卫星计算的第一消息验证码一致时,第二卫星完成对第一卫星的认证。S3, each satellite calculates the first position key of the first satellite according to the orbital parameters of the first satellite, and calculates the first position key according to the long-term shared key between satellites, the first satellite temporary identity and the respectively calculated first position key The first message verification code of a satellite; when the second satellite determines that the first message verification code calculated by the second satellite is consistent with the first message verification code calculated by the first satellite, the second satellite completes the authentication of the first satellite.
S4、每个卫星均根据第二卫星的轨道参数计算第二卫星的第二位置密钥,并根据第二卫星临时身份标识和各自计算的第二位置密钥计算第二卫星的第二消息验证码;当第一卫星判断第一卫星计算的第二消息验证码和第二卫星计算的第二消息验证码一致时,第一卫星完成对第二卫星的认证。S4, each satellite calculates the second position key of the second satellite according to the orbit parameters of the second satellite, and calculates the second message verification of the second satellite according to the second satellite temporary identity and the second position key calculated respectively When the first satellite determines that the second message verification code calculated by the first satellite is consistent with the second message verification code calculated by the second satellite, the first satellite completes the authentication of the second satellite.
步骤S1~S4的具体实施方法请参见实施例一,本实施例不再赘述。For the specific implementation method of steps S1 to S4, please refer to
S5、每个卫星均根据第一卫星变化后的轨道参数计算第一卫星的第五位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第五位置密钥计算第一卫星的第五消息验证码;当第二卫星判断第二卫星计算的第五消息验证码和第一卫星计算的第五消息验证码一致时,第二卫星完成对第一卫星的认证更新。S5, each satellite calculates the fifth position key of the first satellite according to the changed orbit parameters of the first satellite, and calculates the first position key according to the integrity protection key calculated by the last authentication and the fifth position key calculated respectively The fifth message verification code of the satellite; when the second satellite determines that the fifth message verification code calculated by the second satellite is consistent with the fifth message verification code calculated by the first satellite, the second satellite completes the authentication update for the first satellite.
请参见图6,图6为本发明实施例提供的一种卫星的轨道参数未发生变化时卫星位置密钥更新阶段流程图。Please refer to FIG. 6. FIG. 6 is a flowchart of a phase of updating a satellite position key when the orbital parameters of a satellite do not change according to an embodiment of the present invention.
步骤S5包括:Step S5 includes:
S51、第一卫星在第七当前时间戳下利用第一卫星变化后的轨道参数计算第五位置密钥,并根据上次认证计算的完整性保护密钥、第一卫星临时身份标识和第五位置密钥计算第五消息验证码,使用上次认证计算的加密密钥加密第一卫星变化后的轨道参数,并生成第一卫星临时身份标识、第七当前时间戳、第五消息验证码和加密后的第一卫星变化后轨道参数的第五认证向量。S51, the first satellite calculates the fifth position key by using the changed orbit parameters of the first satellite under the seventh current time stamp, and calculates the integrity protection key according to the last authentication, the temporary identity of the first satellite and the fifth position key. The location key calculates the fifth message verification code, encrypts the changed orbit parameters of the first satellite using the encryption key calculated in the last certification, and generates the first satellite temporary identity, the seventh current time stamp, the fifth message verification code and The encrypted fifth authentication vector of the orbital parameters of the first satellite after changing.
具体的,卫星A获取第七当前时间戳TA3,并根据第一卫星变化后的轨道参数PA2计算自身的第五GPS坐标(xA2,yA2,zA2)和第五位置密钥KL-A2。然后卫星A利用上次认证计算的完整性保护密钥IK和当前的第五位置密钥KL-A2计算第五消息验证码MACA2,并使用上次认证计算的会话加密密钥CK加密卫星A的变化后的轨道参数PA2。最后卫星A创建第一卫星临时身份标识TIDA、第七当前时间戳TA3、第五消息验证码MACA2和加密后的第一卫星轨道参数EncCK(PA2)的第五认证向量AVA2,并发送给卫星B。Specifically, satellite A obtains the seventh current timestamp T A3 , and calculates its own fifth GPS coordinates (x A2 , y A2 , z A2 ) and fifth position key K according to the changed orbit parameter P A2 of the first satellite L-A2 . Then satellite A calculates the fifth message verification code MAC A2 using the integrity protection key IK calculated in the last authentication and the current fifth location key K L- A2, and encrypts the satellite using the session encryption key CK calculated in the last authentication A's changed orbital parameter P A2 . Finally, satellite A creates the first satellite temporary identity identifier TID A , the seventh current timestamp T A3 , the fifth message verification code MAC A2 and the fifth authentication vector AV A2 of the encrypted first satellite orbit parameter Enc CK (P A2 ) , and send it to satellite B.
上述计算过程如公式(10)所示:The above calculation process is shown in formula (10):
S52、当第二卫星判断第五认证向量中的第一卫星临时身份标识与地面控制中心发送的第一卫星临时身份标识一致且第七当前时间戳新鲜时,利用上次认证计算的加密密钥解密第五认证向量得到第一卫星变化后的轨道参数,利用第一卫星变化后的轨道参数计算新的第五位置密钥,并根据上次认证计算的完整性保护密钥、第一卫星临时身份标识和新的第五位置密钥计算新的第五消息验证码。S52, when the second satellite determines that the first satellite temporary identity in the fifth authentication vector is consistent with the first satellite temporary identity sent by the ground control center and the seventh current timestamp is fresh, use the encryption key calculated by the last authentication Decrypt the fifth authentication vector to obtain the changed orbit parameters of the first satellite, use the changed orbit parameters of the first satellite to calculate a new fifth position key, and calculate the integrity protection key according to the last authentication calculation, the first satellite temporary key The identity identifier and the new fifth location key calculate a new fifth message verification code.
具体的,卫星B验证第五认证向量中AVA2中第一卫星临时身份标识TIDA的合法性和第七当前时间戳TA3的新鲜性,如果二者均满足要求,卫星B使用上次认证计算的加密密钥CK解密第五认证向量消息得到卫星A当前变化后的轨道参数PA2,然后卫星B根据卫星A当前变化后的轨道参数PA2计算卫星A在第七当前时间戳TA3时刻的新的第五GPS坐标(x'A2,y'A2,z'A2)和新的第五位置密钥K'L-A2。接着,卫星B利用上次认证计算的完整性保护密钥IK和新的第五位置密钥K'L-A2计算新的第五消息验证码XMACA2。Specifically, satellite B verifies the validity of the first satellite temporary identity identifier TID A in AV A2 and the freshness of the seventh current timestamp T A3 in the fifth authentication vector. If both meet the requirements, satellite B uses the last authentication The calculated encryption key CK decrypts the fifth authentication vector message to obtain the current changed orbit parameter P A2 of satellite A, and then satellite B calculates satellite A at the seventh current time stamp T A3 according to the current changed orbit parameter P A2 of satellite A The new fifth GPS coordinates (x' A2 , y' A2 , z' A2 ) and the new fifth position key K' L-A2 . Next, satellite B calculates a new fifth message authentication code XMAC A2 by using the integrity protection key IK calculated in the last authentication and the new fifth location key K' L- A2.
S53、当第二卫星判断新的第五消息验证码和第五消息验证码一致时,第二卫星完成对第一卫星的认证更新。S53. When the second satellite determines that the new fifth message verification code is consistent with the fifth message verification code, the second satellite completes the authentication update for the first satellite.
具体的,如果新的第五消息验证码XMACA2与卫星A发送的第五消息验证码MACA2一致,卫星B完成对卫星A的身份认证;否则认证失败,结束认证。Specifically, if the new fifth message verification code XMAC A2 is consistent with the fifth message verification code MAC A2 sent by satellite A, satellite B completes the identity authentication of satellite A; otherwise, the authentication fails, and the authentication ends.
步骤S52和S53的计算过程如公式(11)所示:The calculation process of steps S52 and S53 is shown in formula (11):
S6、每个卫星均根据第二卫星变化后的轨道参数计算第二卫星的第六位置密钥,并根据上次认证计算的完整性保护密钥和各自计算的第六位置密钥计算第二卫星的第六消息验证码;当第一卫星判断第一卫星计算的第六消息验证码和第二卫星计算的第六消息验证码一致时,第一卫星完成对第二卫星的认证更新。具体包括步骤:S6, each satellite calculates the sixth position key of the second satellite according to the orbit parameters of the second satellite after the change, and calculates the second satellite according to the integrity protection key calculated by the last authentication and the sixth position key calculated respectively The sixth message verification code of the satellite; when the first satellite determines that the sixth message verification code calculated by the first satellite is consistent with the sixth message verification code calculated by the second satellite, the first satellite completes the authentication update for the second satellite. Specifically include steps:
S61、第二卫星在第八当前时间戳下利用第二卫星变化后的轨道参数计算第六位置密钥,并根据上次认证计算的完整性保护密钥、第二卫星临时身份标识和第六位置密钥计算第六消息验证码,使用上次认证计算的加密密钥加密第二卫星变化后的轨道参数,并生成第二卫星临时身份标识、第八当前时间戳、第六消息验证码和加密后的第二卫星轨道参数的第六认证向量。并利用卫星间长期共享密钥、第六位置密钥和新的第五位置密钥计算新的加密密钥和完整性保护密钥。S61, the second satellite calculates the sixth position key by using the orbital parameters of the second satellite after the change under the eighth current time stamp, and calculates the integrity protection key according to the last authentication, the temporary identity of the second satellite and the sixth position key. The location key calculates the sixth message verification code, encrypts the changed orbit parameters of the second satellite using the encryption key calculated in the previous certification, and generates the second satellite temporary identity, the eighth current time stamp, the sixth message verification code and The encrypted sixth authentication vector of the second satellite orbit parameter. And use the inter-satellite long-term shared key, the sixth position key and the new fifth position key to calculate a new encryption key and an integrity protection key.
具体的,卫星B获取第八当前时间戳TB2,根据当前第二卫星变化后的轨道参数PB2计算出自身的第六GPS坐标(xB2,yB2,zB2)和第六位置密钥KL-B2,然后卫星B利用上次认证计算的完整性保护密钥IK和第六位置密钥KL-B2计算第六消息验证码MACB2,并使用上次认证计算的加密密钥CK加密第二卫星变化后的轨道参数PB2,从而第二卫星临时身份标识TIDB、第八当前时间戳TB2和第六消息验证码MACB2创建认证向量AVB2,并发送给卫星A。最后,卫星B利用卫星间长期共享密钥KAB、新的第五位置密钥K'L-A2和第六位置密钥KL-B2计算新的会话加密密钥CK2和完整性保护密钥IK2,用于后续的星间会话。上述计算过程如公式(12)所示:Specifically, satellite B obtains the eighth current timestamp T B2 , and calculates its own sixth GPS coordinates (x B2 , y B2 , z B2 ) and sixth position key according to the changed orbit parameter P B2 of the current second satellite K L-B2 , and then satellite B calculates the sixth message verification code MAC B2 using the integrity protection key IK and the sixth position key K L-B2 calculated in the last authentication, and uses the encryption key CK calculated in the last authentication The changed orbit parameter P B2 of the second satellite is encrypted, so that the second satellite temporary ID B , the eighth current time stamp T B2 and the sixth message verification code MAC B2 create an authentication vector AV B2 and send it to satellite A. Finally, satellite B uses the inter-satellite long-term shared key K AB , the new fifth position key K' L-A2 and the sixth position key K L-B2 to calculate a new session encryption key CK 2 and an integrity protection key The key IK 2 is used for subsequent inter-satellite sessions. The above calculation process is shown in formula (12):
S62、当第一卫星判断第六认证向量中的第二卫星临时身份标识与地面控制中心发送的第二卫星临时身份标识一致且第八当前时间戳新鲜时,利用上次认证计算的加密密钥解密第六认证向量得到第二卫星变化后的轨道参数,利用第二卫星变化后的轨道参数计算新的第六位置密钥,并根据上次认证计算的完整性保护密钥、第二卫星临时身份标识和新的第六位置密钥计算新的第六消息验证码。S62, when the first satellite determines that the second satellite temporary identity in the sixth authentication vector is consistent with the second satellite temporary identity sent by the ground control center and the eighth current timestamp is fresh, use the encryption key calculated by the last authentication Decrypt the sixth authentication vector to obtain the changed orbit parameters of the second satellite, use the changed orbit parameters of the second satellite to calculate a new sixth position key, and calculate the integrity protection key according to the last authentication calculation, the second satellite temporary key The identity identifier and the new sixth location key calculate a new sixth message verification code.
具体的,卫星A验证第六认证向量AVB2中第二卫星临时身份标识TIDB的合法性和第八当前时间戳TB2的新鲜性,如果二者均满足要求,卫星A使用上次认证计算的加密密钥CK对第六认证向量信息进行解密,得到卫星B当前变化后的轨道参数PB2。然后卫星A利用变化后的轨道参数PB2计算卫星B在第八当前时间戳TB2时刻新的第六GPS坐标(x'A2,y'A2,z'A2)和新的第六位置密钥K'L-A2。接着,卫星A利用上次认证计算的完整性保护密钥IK和卫星B的新的第六位置密钥K'L-B2计算新的第六消息验证码XMACB2。Specifically, satellite A verifies the legitimacy of the second satellite temporary identity identifier TID B in the sixth authentication vector AV B2 and the freshness of the eighth current timestamp T B2 . If both meet the requirements, satellite A uses the last authentication calculation The encryption key CK decrypts the sixth authentication vector information, and obtains the orbit parameter P B2 of the satellite B after the current change. Then satellite A uses the changed orbit parameter P B2 to calculate the new sixth GPS coordinates (x' A2 , y' A2 , z' A2 ) and the new sixth position key of satellite B at the eighth current time stamp T B2 K'L -A2 . Next, satellite A calculates a new sixth message verification code XMAC B2 by using the integrity protection key IK calculated in the last authentication and the new sixth position key K' L-B2 of satellite B.
S63、当第一卫星判断新的第六消息验证码和第六消息验证码一致时,第一卫星完成对第二卫星的认证更新。第一卫星利用卫星间长期共享密钥、新的第六位置密钥和第五位置密钥计算新的加密密钥和完整性保护密钥。S63. When the first satellite determines that the new sixth message verification code is consistent with the sixth message verification code, the first satellite completes the authentication update for the second satellite. The first satellite calculates a new encryption key and an integrity protection key using the inter-satellite long-term shared key, the new sixth position key and the fifth position key.
具体的,如果新的第六消息验证码XMACB2与卫星B发送的第六消息验证码MACB2一致,卫星A完成对卫星B的身份认证;否则认证失败,结束认证。最后,卫星A利用卫星间长期共享密钥KAB、第五位置密钥KL-A2和新的第六位置密钥K'L-B2计算新的会话加密密钥CK2和完整性保护密钥IK2,用于后续的星间会话。Specifically, if the new sixth message verification code XMAC B2 is consistent with the sixth message verification code MAC B2 sent by satellite B, satellite A completes the identity authentication of satellite B; otherwise, the authentication fails, and the authentication ends. Finally, satellite A uses the inter-satellite long-term shared key K AB , the fifth position key K L-A2 and the new sixth position key K' L-B2 to calculate a new session encryption key CK 2 and an integrity protection key The key IK 2 is used for subsequent inter-satellite sessions.
步骤S62和步骤S63的计算过程如公式(13)所示:The calculation process of step S62 and step S63 is shown as formula (13):
本实施例中,步骤S61和S63计算的新的会话加密密钥CK2和完整性保护密钥IK2是相同的,区别在于卫星A计算的加密密钥CK2和完整性保护密钥IK2保存在卫星A中,卫星B计算的加密密钥CK2和完整性保护密钥IK2保存在卫星B中。In this embodiment, the new session encryption key CK 2 and the integrity protection key IK 2 calculated in steps S61 and S63 are the same, and the difference lies in the encryption key CK 2 and the integrity protection key IK 2 calculated by satellite A It is stored in satellite A, and the encryption key CK 2 and the integrity protection key IK 2 calculated by satellite B are stored in satellite B.
本实施例中,面对星间链路断开重连,当卫星的轨道参数参数发生变化时,卫星使用上次认证计算的会话密钥加密新的轨道参数发送给对方,然后双方基于新的轨道参数计算新的位置密钥,并实现会话密钥更新的流程,在位置密钥更新阶段,不再执行密钥确认,减少了卫星的信令开销。In this embodiment, when the inter-satellite link is disconnected and reconnected, when the orbit parameter of the satellite changes, the satellite encrypts the new orbit parameter using the session key calculated by the last authentication and sends it to the other party, and then the two parties use the new orbit parameter based on the new The orbit parameter calculates the new location key, and implements the process of updating the session key. In the location key updating stage, key confirmation is no longer performed, which reduces the signaling overhead of the satellite.
由于卫星高速运行,拓扑结构复杂多变,因此在实施例二和实施例三中,针对星间组网断开重连的情况,设计了两种位置密钥更新的方案,分别基于卫星轨道参数未发生变化和卫星轨道参数已经发生变化的情况,充分应对复杂变化的拓扑结构下卫星链路断开重连的情况。Due to the high-speed operation of satellites, the topology structure is complex and changeable. Therefore, in
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210571907.8A CN114828005A (en) | 2022-05-24 | 2022-05-24 | Enhanced inter-satellite networking authentication method based on location key |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210571907.8A CN114828005A (en) | 2022-05-24 | 2022-05-24 | Enhanced inter-satellite networking authentication method based on location key |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114828005A true CN114828005A (en) | 2022-07-29 |
Family
ID=82518090
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210571907.8A Pending CN114828005A (en) | 2022-05-24 | 2022-05-24 | Enhanced inter-satellite networking authentication method based on location key |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114828005A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119172081A (en) * | 2024-08-29 | 2024-12-20 | 中国空间技术研究院 | A satellite inter-satellite identity authentication method and system based on zero trust |
| CN119450463A (en) * | 2024-11-15 | 2025-02-14 | 长光卫星技术股份有限公司 | A lightweight method for encrypting and decrypting satellite constellation measurement and control instructions |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108055663A (en) * | 2017-12-08 | 2018-05-18 | 北京理工大学 | A kind of low rail constellation networking certification of lightweight and group key agreement agreement |
| CN108566240A (en) * | 2018-03-28 | 2018-09-21 | 西安电子科技大学 | Networking Verification System and method between a kind of star suitable for double layer minipellet |
| CN109547213A (en) * | 2018-12-14 | 2019-03-29 | 西安电子科技大学 | Suitable for networking Verification System and method between the star of low-track satellite network |
| CN112087750A (en) * | 2020-08-05 | 2020-12-15 | 西安电子科技大学 | Access and switching authentication method and system under satellite network intermittent communication scene |
| CN112953726A (en) * | 2021-03-01 | 2021-06-11 | 西安电子科技大学 | Method, system and application for fusing dual-layer satellite network satellite-ground and inter-satellite networking authentication |
| CN114466359A (en) * | 2022-01-07 | 2022-05-10 | 中国电子科技集团公司电子科学研究院 | Distributed user authentication system and authentication method suitable for low earth orbit satellite network |
-
2022
- 2022-05-24 CN CN202210571907.8A patent/CN114828005A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108055663A (en) * | 2017-12-08 | 2018-05-18 | 北京理工大学 | A kind of low rail constellation networking certification of lightweight and group key agreement agreement |
| CN108566240A (en) * | 2018-03-28 | 2018-09-21 | 西安电子科技大学 | Networking Verification System and method between a kind of star suitable for double layer minipellet |
| CN109547213A (en) * | 2018-12-14 | 2019-03-29 | 西安电子科技大学 | Suitable for networking Verification System and method between the star of low-track satellite network |
| CN112087750A (en) * | 2020-08-05 | 2020-12-15 | 西安电子科技大学 | Access and switching authentication method and system under satellite network intermittent communication scene |
| CN112953726A (en) * | 2021-03-01 | 2021-06-11 | 西安电子科技大学 | Method, system and application for fusing dual-layer satellite network satellite-ground and inter-satellite networking authentication |
| CN114466359A (en) * | 2022-01-07 | 2022-05-10 | 中国电子科技集团公司电子科学研究院 | Distributed user authentication system and authentication method suitable for low earth orbit satellite network |
Non-Patent Citations (1)
| Title |
|---|
| YUANYUAN YANG: "Lk-Aka: a lightweight location key-based authentication and key agreement protocol for s2s communication", pages 13 - 27, Retrieved from the Internet <URL:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4092905> * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119172081A (en) * | 2024-08-29 | 2024-12-20 | 中国空间技术研究院 | A satellite inter-satellite identity authentication method and system based on zero trust |
| CN119172081B (en) * | 2024-08-29 | 2025-10-03 | 中国空间技术研究院 | A zero-trust-based satellite inter-satellite identity authentication method and system |
| CN119450463A (en) * | 2024-11-15 | 2025-02-14 | 长光卫星技术股份有限公司 | A lightweight method for encrypting and decrypting satellite constellation measurement and control instructions |
| CN119450463B (en) * | 2024-11-15 | 2025-05-16 | 长光卫星技术股份有限公司 | Light satellite constellation measurement and control instruction encryption and decryption method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111371730B (en) | Lightweight authentication method supporting anonymous access of heterogeneous terminal in edge computing scene | |
| Cao et al. | Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network | |
| CN111416706B (en) | Quantum secret communication system based on secret sharing and communication method thereof | |
| CN112953726B (en) | Authentication method, system and application for satellite-to-ground and inter-satellite networking in a fusion double-layer satellite network | |
| CN102315937B (en) | System and method for secure transaction of data between wireless communication device and server | |
| US6633979B1 (en) | Methods and arrangements for secure linking of entity authentication and ciphering key generation | |
| CN116707791B (en) | Distributed authentication key negotiation method in intelligent vehicle-mounted networking system | |
| CN108540436B (en) | Communication system and communication method for realizing information encryption and decryption transmission based on quantum network | |
| CN115022879B (en) | Enhanced Beidou user terminal access authentication method and system based on location key | |
| US20060023887A1 (en) | Threshold and identity-based key management and authentication for wireless ad hoc networks | |
| Yao et al. | Toward secure and lightweight access authentication in SAGINs | |
| CN114339735B (en) | Method for authenticating anonymous access of world integrated network based on NTRU | |
| CN113037499B (en) | Block chain encryption communication method and system | |
| CN101119196A (en) | A two-way authentication method and system | |
| CN112564775A (en) | Spatial information network access control system and authentication method based on block chain | |
| CN108847928B (en) | Communication system and communication method for realizing information encryption and decryption transmission based on group type quantum key card | |
| CN101741555A (en) | Method and system for identity authentication and key agreement | |
| CN102469173A (en) | IPv6 network layer trusted transmission method and system based on combined public key algorithm | |
| CN112235792B (en) | A multi-type terminal access and handover authentication method, system, device and application | |
| CN118573408B (en) | End-to-end data encryption processing method | |
| CN114828005A (en) | Enhanced inter-satellite networking authentication method based on location key | |
| Lai et al. | Group-based handover authentication for space-air-ground integrated vehicular networks | |
| CN114978481B (en) | Anti-quantum computing communication system based on post-quantum cryptography CA | |
| CN116056080A (en) | Satellite switching authentication method for low-orbit satellite network | |
| Kong et al. | Achieving efficient and secure handover in LEO constellation-assisted beyond 5G networks |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220729 |