CN114820951A - Wavelet and filter-based composite seabed geographic entity progressive decomposition method - Google Patents
Wavelet and filter-based composite seabed geographic entity progressive decomposition method Download PDFInfo
- Publication number
- CN114820951A CN114820951A CN202210732260.2A CN202210732260A CN114820951A CN 114820951 A CN114820951 A CN 114820951A CN 202210732260 A CN202210732260 A CN 202210732260A CN 114820951 A CN114820951 A CN 114820951A
- Authority
- CN
- China
- Prior art keywords
- seabed
- water depth
- geographic
- model
- geographic entity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
- G01C13/008—Surveying specially adapted to open water, e.g. sea, lake, river or canal measuring depth of open water
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Processing Or Creating Images (AREA)
Abstract
本发明公开了一种基于小波和滤波器的复合海底地理实体逐级分解方法,包括数据预处理、复合海底地理实体分离和特征提取三大步骤。首先,原始多波束水深数据通过预处理工作,完成地形地貌建模,构建得到水深模型;其次,将处理得到的水深模型,采用离散小波变换进行复合地形的逐级分解,确定分解级数,重构分离结果,从而分离出不同等级的海底地理实体;最后,通过海底地理实体界限确定和形态特征参数提取,构建海底地理实体的要素信息表。该方法将小波变换应用于海底地理实体的分解,有效解决了复杂海底地理实体难以界定、量化分析等难题。本发明可在海底地理实体划定、海洋测绘学、海洋工程建设等领域具有重要的实际应用价值。
The invention discloses a step-by-step decomposition method for composite seabed geographic entities based on wavelets and filters, which includes three steps of data preprocessing, separation of composite seabed geographic entities and feature extraction. First, the original multi-beam bathymetry data is preprocessed to complete the topography and landform modeling, and a bathymetry model is constructed; secondly, the obtained bathymetry model is decomposed step by step using discrete wavelet transform, and the decomposition level is determined. The results of structure separation are used to separate different levels of seabed geographic entities. Finally, the element information table of seabed geographic entities is constructed through the determination of the boundaries of seabed geographic entities and the extraction of morphological characteristic parameters. This method applies wavelet transform to the decomposition of seabed geographic entities, which effectively solves the difficult problems of difficult definition and quantitative analysis of complex seabed geographic entities. The invention can have important practical application value in the fields of seabed geographic entity delineation, marine surveying and mapping, marine engineering construction and the like.
Description
技术领域technical field
本发明涉及海底地理实体划定、海洋测绘、海底地形地貌(不规则的表面或轮廓的计量)、海洋地质、海洋制图与图像数据处理、深海采矿和海洋工程建设等技术领域。The invention relates to the technical fields of seabed geographic entity delineation, marine surveying and mapping, seabed topography (measurement of irregular surface or contour), marine geology, marine mapping and image data processing, deep sea mining and marine engineering construction.
背景技术Background technique
海洋约占地球面积的71%,蕴藏丰富的人类赖以生存的资源。详细和精确的全球海底地形地貌信息将对我们认知、开发和利用海洋起到重要作用。然而,根据全球最大的海底地形测绘数据收集项目—“海底2030”的统计,目前只有约21%的全球海底已完成了地形地貌的高精度测绘,对海底地形的认知程度尚不及对火星、月球表面地形的认知。The ocean occupies about 71% of the earth's area and contains abundant resources for human survival. Detailed and precise global seafloor topography information will play an important role in our understanding, development and utilization of the ocean. However, according to the statistics of "Seabed 2030", the world's largest seabed topographic mapping data collection project, only about 21% of the global seabed has completed high-precision topographic mapping, and the understanding of seabed topography is not as good as that of Mars, Cognition of the topography of the lunar surface.
近半个世纪以来,在已掌握的高精度地形地貌信息的全球海底部分,人类通过将其划定为可测量、具有确定界线的地理实体,即海底地理实体,并依据相应的标准和规则,对这些地理实体进行识别、分类与命名。根据国际海底地名数据库统计,目前全球已完成4700多个海底地理实体的识别与命名工作。For nearly half a century, in the global seabed part of the high-precision topographic and geomorphological information that has been mastered, human beings have delineated it as a measurable and definite geographical entity with a definite boundary, that is, a seabed geographical entity, and according to corresponding standards and rules, Identify, classify, and name these geographic entities. According to statistics from the International Seabed Geographical Names Database, the identification and naming of more than 4,700 seabed geographic entities has been completed worldwide.
按照规模大小和主从关系,可以将海底地理实体可划分为多个级别。然而,尺度更小的次一级的海底地理实体往往叠加发育在尺度更大的上一级的海底地理实体上,产生一种形态异常复杂且包含多种级别实体的复合型海底地理实体。难以圈定、海底地理实体形态参数难以提取等问题,在开展实体划定前必须对其进行逐级分解,进而开展地理实体的量化研究。According to the scale and the master-slave relationship, the seabed geographic entities can be divided into multiple levels. However, the smaller-scale sub-level seabed geographic entities are often superimposed and developed on the larger-scale upper-level seabed geographic entities, resulting in a complex seafloor geographic entity that contains multiple levels of entities. It is difficult to delineate and extract the morphological parameters of seabed geographic entities. Before carrying out entity delineation, it must be decomposed step by step, and then carry out quantitative research on geographic entities.
针对多尺度地形分解的问题,国内外学者开展了一些相关研究。如Gutierrez等使用连续小波变换,结合鲁棒样条滤波器,对多种尺度的海底沙波进行了分解和分类,但是没有对分解后的各个尺度的沙波进行形态学方面的计算。同时,这种小尺度地形的分解方法难以直接应用到较大尺度的海底地理实体的逐级分解。For the problem of multi-scale terrain decomposition, domestic and foreign scholars have carried out some related research. For example, Gutierrez et al. used continuous wavelet transform, combined with robust spline filter, to decompose and classify seabed sand waves of various scales, but did not perform morphological calculations on the decomposed sand waves of various scales. At the same time, this small-scale terrain decomposition method is difficult to directly apply to the step-by-step decomposition of larger-scale seafloor geographic entities.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明的目的是提供一种基于小波和滤波器的复合海底地理实体逐级分解方法。In order to overcome the deficiencies of the prior art, the purpose of the present invention is to provide a step-by-step decomposition method for composite seabed geographic entities based on wavelets and filters.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种基于小波和滤波器的复合海底地理实体逐级分解方法,包括数据预处理、复合海底地理实体分离和特征提取三大步骤:首先,数据预处理包括多波束水深数据预处理和地形地貌建模,构建得到水深模型;其次,复合海底地理实体分离包括采用离散小波变换进行复合地形的逐级分解、分解级数确定和分离结果重构,从而分离出不同等级的海底地理实体;最后,特征提取包括海底地理实体范围确定、形态特征参数提取和要素信息表构建。A step-by-step decomposition method for composite seabed geographic entities based on wavelets and filters, including three steps: data preprocessing, separation of composite seabed geographic entities, and feature extraction. secondly, the separation of complex seabed geographic entities includes the step-by-step decomposition of the composite terrain using discrete wavelet transform, the determination of the decomposition series and the reconstruction of the separation results, so as to separate different levels of seabed geographic entities; finally, the features The extraction includes determination of the range of seabed geographic entities, extraction of morphological feature parameters, and construction of element information tables.
所述的多波束水深数据预处理:对原始多波束水深数据进行CUBE滤波、声速改正、 异常值剔除处理,得到处理后的多波束水深数据集,其中x m 和y m 分别为全部多波束测深点的平面位置坐标值,为该多波束测深点的深度值,为 测深点数,和均为自然数。 The multi-beam bathymetry data preprocessing: CUBE filtering, sound velocity correction, and outlier elimination processing are performed on the original multi-beam bathymetry data to obtain a processed multi-beam bathymetry data set. , where x m and y m are the plane position coordinates of all multi-beam sounding points, respectively, is the depth value of the multi-beam sounding point, is the number of sounding points, and All are natural numbers.
所述的地形地貌建模:基于处理后的多波束水深数据集,采用样条函数内插法,构建得到原始水深模型,其中,X s,l 和Y s,l 分别为原始水深模型的第行、第列的平面位置坐标值,为原始水深模型中该 位置的深度值,和分别为该原始水深模型的总行数和总列数,、、和均为自然数。 Terrain modeling as described: based on processed multibeam bathymetry datasets , using the spline function interpolation method to construct the original water depth model , where X s,l and Y s,l are the original water depth models, respectively First row, the plane position coordinate value of the column, for the original bathymetric model the depth value at that location in , and are the total number of rows and columns of the original water depth model, respectively, , , and All are natural numbers.
所述的采用离散小波变换进行复合地形的逐级分解:基于原始水深模型进行离散小波变换,通过Mallat算法与滤波器结合,实现小波多尺度分析, 将复合地形分解为低频的地形近似分量和高频的地形细节分量,每经过一次分解,近似分 量被分解为低一级的地形近似分量和地形细节分量,数据总量保持不变;分解算法表述为 公式:其中,为离散采样数据个 数,和分别为为分解过程采用的低通和高通滤波器系数,和分别为第级小 波分解得到的地形近似分量和地形细节分量。 The described step-by-step decomposition of composite terrain using discrete wavelet transform: based on the original water depth model Perform discrete wavelet transform, and combine the Mallat algorithm with filters to realize wavelet multi-scale analysis, and decompose the composite terrain into low-frequency terrain approximate components and high-frequency terrain detail components. After each decomposition, the approximate components are decomposed into a lower level. The terrain approximation component and terrain detail component of , the total amount of data remains unchanged; the decomposition algorithm is expressed as the formula: in, is the number of discrete sampling data, and are the low-pass and high-pass filter coefficients used for the decomposition process, respectively, and respectively The terrain approximation component and terrain detail component obtained by the wavelet decomposition.
所述的分解级数确定和分离结果重构:基于分解出的地形近似分量和地形 细节分量,依据频率分析信息,确定分解级数,并对分离结果进行 重构,重构式如下:,其中,和分 别为和的共轭,也即重列各滤波器组的系数,最终得到分离后的水深模型和,从而分离出不同等级的海底地理实体。 The described decomposition series determination and separation result reconstruction: based on the decomposed terrain approximation components and terrain detail components , according to the frequency analysis information, determine the decomposition level , and reconstruct the separation result, the reconstruction formula is as follows: ,in, and respectively and The conjugate of , that is, the coefficients of each filter bank are rearranged, and finally the separated water depth model is obtained. and , so as to separate different levels of seabed geographic entities.
所述的海底地理实体范围确定:The scope of the said seabed geographic entity is determined:
(a)基于分离后的水深模型,按照海底地理实体的水深范围,确定海底地理实体范围,其中,和分别 为处于海底地理实体界限上的水深点的平面位置坐标值,为处于海底地理实体界限上的 水深点总数;基于海底地理实体范围对原始水深模型进行范围 截取并输出,得到截取后的水深模型, 其中,X s,l 和Y s,l 分别为截取后的水深模型的第行、第列的平面位置坐标 值,为截取后的水深模型中该平面位置的深度值,为截取后的 水深模型的最小水深,为截取后的水深模型 的最大水深,和分别为截取后的水深模型的总行数和总列数,、、和均为自然数; (a) Based on the separated water depth model , according to the depth range of the seabed geographic entity , to determine the extent of seabed geographic entities ,in, and are the coordinates of the plane position of the water depth point on the boundary of the seabed geographic entity, respectively, is the total number of bathymetric points that lie on the boundaries of the seabed geographic entity; based on the extent of the seabed geographic entity for the original bathymetric model Perform range interception and output to obtain the intercepted water depth model , where X s,l and Y s,l are the intercepted water depth models, respectively First row, the plane position coordinate value of the column, is the intercepted water depth model The depth value of the plane position in , is the intercepted water depth model minimum water depth, is the intercepted water depth model the maximum water depth, and are the intercepted water depth models, respectively The total number of rows and total columns of , , , and are all natural numbers;
(b)基于分离后的水深模型,求取其坡度模型,其中,X s,l 和Y s,l 分别为坡度模型的第行、第列的平面位置坐标值,为坡度模型中 该平面位置的坡度值;基于坡度模型,按照海底地理实体的坡度范围,确定海底地理实体范围,其中,和分别为处于海底地理实体界限上的坡度点的平面位置坐标值,为处于海底地理实体 界限上的坡度点总数;基于海底地理实体范围对原始水深模型进行范围截取并输出,得到截取后的水深模型,其中,X s,l 和Y s,l 分别为截 取后的水深模型的第行、第列的平面位置坐标值,为截取后 的水深模型中该平面位置的深度值,为截取后的水深模型的最小坡度,为截取后的水深模型的最大 坡度,和分别为截取后的水深模型的总行数和总列数,、、 和均为自然数。 (b) Based on the separated water depth model , find its slope model , where X s,l and Y s,l are the slope models, respectively First row, the plane position coordinate value of the column, for the slope model Slope value at the location of this plane in ; based on the slope model , according to the slope extent of the seafloor geographic entity , to determine the extent of seabed geographic entities ,in, and are the plane position coordinates of the slope point on the boundary of the seabed geographic entity, respectively, is the total number of slope points that lie on the boundaries of the seafloor geo-entity; based on the seafloor geo-entity extent for the original bathymetric model Perform range interception and output to obtain the intercepted water depth model , where X s,l and Y s,l are the intercepted water depth models, respectively First row, the plane position coordinate value of the column, is the intercepted water depth model The depth value of the plane position in , is the intercepted water depth model the minimum slope of , is the intercepted water depth model the maximum slope of , and are the intercepted water depth models, respectively The total number of rows and total columns of , , , and All are natural numbers.
所述的形态特征参数提取:基于截取后的水深模型,应用GIS软件 提取该海底地理实体的形态特征参数, 其中和分别代表该海底地理实体的长度和宽度,和分别代表该海底地 理实体的最大水深和最小水深,代表该海底地理实体的平均坡度,表示为局部地表坡 面的倾斜程度,当进行坡度计算时可表述为简化的差分公式:其中,,是x方向高程或水深变化率;,是y方向高程或水深变化率;基于该海底地理实体的形态特征参数判定该海底地理实体的等级和类型。 The morphological feature parameter extraction: based on the intercepted water depth model , using GIS software to extract the morphological characteristic parameters of the seabed geographic entity , in and represent the length and width of the seabed geographic entity, respectively, and represent the maximum and minimum water depths of the seabed geographic entity, respectively, Represents the average slope of the seabed geographic entity, expressed as the slope of the local surface slope, and can be expressed as a simplified difference formula when calculating the slope: in, , is the rate of change in the x -direction elevation or water depth; , is the y -direction elevation or water depth change rate; based on the morphological characteristic parameters of the seabed geographic entity Determining the class of the seabed geographic entity and type .
所述的要素信息表构建:基于海底地理实体范围、海底地理实体的形态特征 参数、海底地理实体的等级和类型,构建该海底地理实体的要 素信息表。 The described feature information table construction: based on the range of seabed geographic entities , morphological characteristic parameters of seabed geographic entities , the level of seabed geographic entities and type , construct the feature information table of the seabed geographic entity .
本发明有益效果是:The beneficial effects of the present invention are:
本发明基于实测多波束水深数据,提供了一种针对复合海底地理实体的分解方法,采用离散小波变换进行复合地形的逐级分解,将复合型海底地理实体分解成不同等级的地貌单元,解决了复杂海底地理实体难以界定、量化分析等难题。Based on the measured multi-beam water depth data, the present invention provides a decomposition method for composite seabed geographic entities. The discrete wavelet transform is used to perform the step-by-step decomposition of the composite terrain, and the composite seabed geographic entities are decomposed into different levels of landform units. It is difficult to define and quantitatively analyze complex seabed geographic entities.
本发明可在海底地理实体划定、海洋测绘学、海底工程建设等方面具有重要的实际应用价值。The invention can have important practical application value in delineation of seabed geographical entities, marine surveying and mapping, seabed engineering construction and the like.
附图说明Description of drawings
图1是本发明的基于小波和滤波器的复合海底地理实体逐级分解方法的一种流程图。FIG. 1 is a flow chart of a method for decomposing a composite seabed geographic entity step by step based on a wavelet and a filter of the present invention.
图2是原始水深模型。Figure 2 is the original water depth model.
图3是一级海底地理实体分离结果图。Figure 3 is a diagram of the separation results of the first-level seabed geographic entities.
图4是二级海底地理实体分离结果图。Figure 4 is a diagram of the separation results of secondary seabed geographic entities.
图5是经过水深范围截取后的海底地理实体的水深模型。Fig. 5 is the water depth model of the seabed geographic entity after the interception of the water depth range.
图6是经过坡度范围截取后的海底地理实体的水深模型。Fig. 6 is a water depth model of the seabed geographic entity intercepted by the slope range.
具体实施方式Detailed ways
下面结合实例和附图对本发明作具体阐述。The present invention will be described in detail below with reference to examples and accompanying drawings.
实施例1典型陆坡地形为例的具体应用Example 1 Specific application of typical land slope terrain as an example
如附图1所示,本实例描述的是基于小波和滤波器的复合海底地理实体逐级分解方法,包括数据预处理、复合海底地理实体分离和特征提取三大步骤。As shown in FIG. 1 , this example describes a method for decomposing composite seabed geographical entities step by step based on wavelets and filters, including three steps of data preprocessing, separation of composite seabed geographical entities and feature extraction.
首先,数据预处理包括多波束水深数据预处理和地形地貌建模,构建得到水深模型;其次,复合海底地理实体分离包括采用离散小波变换进行复合地形的逐级分解、分解级数确定和分离结果重构,从而分离出不同等级的海底地理实体;最后,特征提取包括海底地理实体范围确定、形态特征参数提取和要素信息表构建。First, data preprocessing includes multi-beam bathymetry data preprocessing and topographic modeling, and a bathymetric model is constructed; secondly, the separation of composite seabed geographic entities includes the step-by-step decomposition of composite terrain using discrete wavelet transform, the determination of decomposition levels, and the separation results Reconstruction to separate different levels of seabed geographic entities; finally, feature extraction includes the determination of the scope of seabed geographic entities, the extraction of morphological feature parameters, and the construction of element information tables.
数据预处理包括多波束水深数据预处理和地形地貌建模,构建得到水深模型,图2展示了基于258万个测深点原始多波束测深数据利用样条函数内插法建模得到包含386行、470列的原始水深模型,具体步骤包括:Data preprocessing includes multi-beam bathymetry data preprocessing and topography modeling, and a bathymetric model is constructed. Figure 2 shows the original multi-beam bathymetry data based on 2.58 million sounding points. The original water depth model with 470 rows and 470 columns, the specific steps include:
(i)多波束水深数据预处理:(i) Multi-beam bathymetry data preprocessing:
对原始多波束水深数据进行CUBE滤波、声速改正、异常值剔除处理,得到处理后的 多波束水深数据集,其中 xm和ym分别为全部多波 束测深点的平面位置坐标值,为该多波束测深点的深度值。 Perform CUBE filtering, sound velocity correction, and outlier removal processing on the original multi-beam bathymetry data to obtain the processed multi-beam bathymetry data set , where x m and y m are the plane position coordinates of all multi-beam sounding points, respectively, is the depth value of the multi-beam sounding point.
(ii)地形地貌建模:(ii) Terrain modeling:
基于处理后的多波束水深数据集,采用样 条函数内插法,构建得到原始水深模型, 其中X s,l 和Y s,l 分别为原始水深模型的第行、第列的平面位置坐标值,为原始水深模型中该位置的深度值,该原始水深模型的总行数为 386行和总列数为470列,构建得到的原始水深模型见图2。 Based on processed multi-beam bathymetry dataset , using the spline function interpolation method to construct the original water depth model , where X s,l and Y s,l are the original water depth model, respectively First row, the plane position coordinate value of the column, for the original bathymetric model The depth value at this location in the total number of rows of the original bathymetry model for 386 rows and total columns For 470 columns, the constructed original water depth model is shown in Figure 2.
复合海底地理实体分离包括采用离散小波变换进行复合地形的逐级分解、分解级数确定和分离结果重构,从而分离出不同等级的海底地理实体,图3和图4展示了复合海底地理实体的分离结果,分别为一级海底地理实体:大陆坡;二级海底地理实体:海山、海丘和海底峡谷,具体步骤包括:The separation of composite seabed geographic entities includes the step-by-step decomposition of the composite terrain by discrete wavelet transform, the determination of the decomposition level and the reconstruction of the separation results, so as to separate different levels of seabed geographic entities. Figures 3 and 4 show the composite seabed geographic entities The separation results are as follows: first-level seabed geographic entities: continental slope; second-level seabed geographic entities: seamounts, sea mounds and submarine canyons. The specific steps include:
(i)采用离散小波变换进行复合地形的逐级分解:(i) Step-by-step decomposition of composite terrain using discrete wavelet transform:
基于原始水深模型进行离散 小波变换,通过Mallat算法与滤波器结合,实现小波多尺度分析,将复合地形分解为低频的 地形近似分量和高频的地形细节分量,每经过一次分解,近似分量被分解为低一级的地形 近似分量和地形细节分量,数据总量保持不变。分解算法表述为公式:其中,为离散采样数据个数, 和分别为分解过程采用的低通和高通滤波器系数,和分别为第级小波分解 得到的地形近似分量和地形细节分量。 Based on original water depth model The discrete wavelet transform is performed, and the Mallat algorithm is combined with the filter to realize multi-scale wavelet analysis, and the composite terrain is decomposed into low-frequency terrain approximate components and high-frequency terrain detail components. After each decomposition, the approximate components are decomposed into a lower level The terrain approximation component and terrain detail component of , the total amount of data remains the same. The decomposition algorithm is expressed as the formula: in, is the number of discrete sampling data, and are the low-pass and high-pass filter coefficients used in the decomposition process, respectively, and respectively The terrain approximation component and terrain detail component obtained by the wavelet decomposition.
(ii)分解级数确定和分离结果重构:(ii) Decomposition series determination and separation result reconstruction:
基于分解出的地形近似分量和地形细节分量,依据频率分析信息,确 定分解级数为6级,并对分离结果进行重构,分离结果重构是分解算法 的逆过程,其原理就是利用地形近似分量和地形细节分量复原分离结果,重构 式如下:,其中,和分别为和的共轭,也即重列各滤波器组的系数,最终得到分离后的水深模型和,从而分离出不同等级的海底地理实体。 Based on the decomposed terrain approximation components and terrain detail components , according to the frequency analysis information, determine the decomposition level It is level 6, and the separation result is reconstructed. The reconstruction of the separation result is the inverse process of the decomposition algorithm. The principle is to use the terrain approximation component. and terrain detail components To restore the separation result, the reconstruction formula is as follows: ,in, and respectively and The conjugate of , that is, the coefficients of each filter bank are rearranged, and finally the separated water depth model is obtained. and , so as to separate different levels of seabed geographic entities.
特征提取包括海底地理实体范围确定、形态特征参数提取和要素信息表构建,图5展示了经过水深范围截取后的海底地理实体的水深模型,附表1展示了该海底地理实体的要素信息表,具体步骤包括:Feature extraction includes determination of the scope of seabed geographic entities, extraction of morphological feature parameters, and construction of element information tables. Figure 5 shows the water depth model of the seabed geographic entities after the interception of the water depth range. Attached Table 1 shows the element information table of the seabed geographic entities. Specific steps include:
(i)海底地理实体范围确定:(i) Determination of the extent of seabed geographic entities:
基于分离后的水深模型,确定海底地理实体水深范围为[200 m, 3600 m],确定海底地理实体范围,其中,和分别为处于海底地理实体界限上的水深点的平面位置坐标值,为处于海底地理 实体界限上的水深点总数; Based on the separated water depth model , determine the depth range of the seabed geographic entity as [200 m, 3600 m], and determine the scope of the seabed geographic entity ,in, and are the coordinates of the plane position of the water depth point on the boundary of the seabed geographic entity, respectively, is the total number of bathymetric points that lie on the boundaries of the geographical entity of the seabed;
基于海底地理实体范围对原始水深模型进 行范围截取并输出,得到截取后的水深模型,其中,X s,l 和Y s,l 分别为截 取后的水深模型的第行、第列的平面位置坐标值,为截取后 的水深模型中该平面位置的深度值,截取后的水深模型见图5。 Based on the extent of seabed geographic entities for the original bathymetric model Perform range interception and output to obtain the intercepted water depth model , where X s,l and Y s,l are the intercepted water depth models, respectively First row, the plane position coordinate value of the column, is the intercepted water depth model The depth value of the plane position in the middle, the water depth model after interception is shown in Figure 5.
(ii)形态特征参数提取:(ii) Extraction of morphological feature parameters:
基于截取后的水深模型应用GIS软件提取该海底地理实体 的形态特征参数,其中和分别 代表该海底地理实体的长度和宽度,和分别代表该海底地理实体的最大水深和 最小水深,代表该海底地理实体的平均坡度,表示为局部地表坡面的倾斜程度,当进行 坡度计算时可表述为简化的差分公式:其中,,是x方向高程或水深变化率;,是y方向高程或水深变化率;得 到该海底地理实体长度=527 km,宽度=271 km,最大水深= 3600 m,最小水深= 200 m,平均坡度= 0.65°。 Based on the intercepted water depth model Using GIS software to extract the morphological characteristic parameters of the seabed geographic entity ,in and represent the length and width of the seabed geographic entity, respectively, and represent the maximum and minimum water depths of the seabed geographic entity, respectively, Represents the average slope of the seabed geographic entity, expressed as the slope of the local surface slope, and can be expressed as a simplified difference formula when calculating the slope: in, , is the rate of change in the x -direction elevation or water depth; , is the rate of change of elevation or water depth in the y direction; get the length of the seabed geographic entity =527 km, width =271 km, maximum water depth = 3600 m, minimum water depth = 200 m, average slope = 0.65°.
基于该海底地理实体的形态特征参数判定该海底地理实体的等级为一级和类型为大陆坡。 Based on the morphological characteristic parameters of the seabed geographic entity Determining the class of the seabed geographic entity for level and type for the continental slope.
(iii)要素信息表构建:(iii) Construction of element information table:
基于海底地理实体范围、海底地理实体的形态特征参数、海 底地理实体的等级和类型,构建该海底地理实体的要素信息表Manifest= {Grade,Type,Area,Parameters}={一级,大陆坡,[200,3600],km,km,3600m,200m,0.65°}, 构建得到的海底地理实体的要素信息表见下表1: Based on the extent of seabed geographic entities , morphological characteristic parameters of seabed geographic entities , the level of seabed geographic entities and type , construct the element information table Manifest= {Grade, Type, Area, Parameters} = {first class, continental slope, [200, 3600], km, km, 3600m, 200m, 0.65°}, constructed The element information table of seabed geographic entities is shown in Table 1 below:
实施例2 以典型海山地形为例的具体应用Example 2 Specific application of typical seamount topography as an example
如图1所示,本实例描述的是基于小波和滤波器的复合海底地理实体逐级分解方法,包括数据预处理、复合海底地理实体分离和特征提取三大步骤。As shown in Figure 1, this example describes a step-by-step decomposition method of composite seabed geographic entities based on wavelets and filters, including three steps: data preprocessing, separation of composite seabed geographic entities, and feature extraction.
首先,数据预处理包括多波束水深数据预处理和地形地貌建模,构建得到水深模型;其次,复合海底地理实体分离包括采用离散小波变换进行复合地形的逐级分解、分解级数确定和分离结果重构,从而分离出不同等级的海底地理实体;最后,特征提取包括海底地理实体范围确定、形态特征参数提取和要素信息表构建。First, data preprocessing includes multi-beam bathymetry data preprocessing and topographic modeling, and a bathymetric model is constructed; secondly, the separation of composite seabed geographic entities includes the step-by-step decomposition of composite terrain using discrete wavelet transform, the determination of decomposition levels, and the separation results Reconstruction to separate different levels of seabed geographic entities; finally, feature extraction includes the determination of the scope of seabed geographic entities, the extraction of morphological feature parameters, and the construction of element information tables.
数据预处理包括多波束水深数据预处理和地形地貌建模,构建得到水深模型,图2展示了基于258万个测深点原始多波束测深数据利用样条函数内插法建模得到包含386行、470列的原始水深模型,具体步骤包括:Data preprocessing includes multi-beam bathymetry data preprocessing and topography modeling, and a bathymetric model is constructed. Figure 2 shows the original multi-beam bathymetry data based on 2.58 million sounding points. The original water depth model with 470 rows and 470 columns, the specific steps include:
(i)多波束水深数据预处理:(i) Multi-beam bathymetry data preprocessing:
对原始多波束水深数据进行CUBE滤波、声速改正、异常值剔除处理,得到处理后的 多波束水深数据集,其中xm和ym分别为全部多波 束测深点的平面位置坐标值,为该多波束测深点的深度值。 Perform CUBE filtering, sound velocity correction, and outlier removal processing on the original multi-beam bathymetry data to obtain the processed multi-beam bathymetry data set , where x m and y m are the plane position coordinates of all multi-beam sounding points, respectively, is the depth value of the multi-beam sounding point.
(ii)地形地貌建模:(ii) Terrain modeling:
基于处理后的多波束水深数据集,采用样 条函数内插法,构建得到原始水深模型, 其中X s,l 和Y s,l 分别为原始水深模型的第行、第列的平面位置坐标值,为原始水深模型中该位置的深度值,该原始水深模型的总行数为 386行和总列数为470列,构建得到的原始水深模型见图2。 Based on processed multi-beam bathymetry dataset , using the spline function interpolation method to construct the original water depth model , where X s,l and Y s,l are the original water depth model, respectively First row, the plane position coordinate value of the column, for the original bathymetric model The depth value at this location in the total number of rows of the original bathymetry model for 386 rows and total columns For 470 columns, the constructed original water depth model is shown in Figure 2.
复合海底地理实体分离包括采用离散小波变换进行复合地形的逐级分解、分解级数确定和分离结果重构,从而分离出不同等级的海底地理实体,图3和图4展示了复合海底地理实体的分离结果,分别为一级海底地理实体:大陆坡;二级海底地理实体:海山、海丘和海底峡谷,具体步骤包括:The separation of composite seabed geographic entities includes the step-by-step decomposition of the composite terrain by discrete wavelet transform, the determination of the decomposition level and the reconstruction of the separation results, so as to separate different levels of seabed geographic entities. Figures 3 and 4 show the composite seabed geographic entities The separation results are as follows: first-level seabed geographic entities: continental slope; second-level seabed geographic entities: seamounts, sea mounds and submarine canyons. The specific steps include:
(i)采用离散小波变换进行复合地形的逐级分解:(i) Step-by-step decomposition of composite terrain using discrete wavelet transform:
基于原始水深模型进行离散 小波变换,通过Mallat算法与滤波器结合,实现小波多尺度分析,将复合地形分解为低频的 地形近似分量和高频的地形细节分量,每经过一次分解,近似分量被分解为低一级的地形 近似分量和地形细节分量,数据总量保持不变。分解算法表述为公式:其中,为离散采样数据个数,和分别为分解过程采用的低通和高通滤波器系数,和分别为第级小波分解得 到的地形近似分量和地形细节分量。 Based on original water depth model The discrete wavelet transform is performed, and the Mallat algorithm is combined with the filter to realize multi-scale wavelet analysis, and the composite terrain is decomposed into low-frequency terrain approximate components and high-frequency terrain detail components. After each decomposition, the approximate components are decomposed into a lower level The terrain approximation component and terrain detail component of , the total amount of data remains the same. The decomposition algorithm is expressed as the formula: in, is the number of discrete sampling data, and are the low-pass and high-pass filter coefficients used in the decomposition process, respectively, and respectively The terrain approximation component and terrain detail component obtained by the wavelet decomposition.
ii)分解级数确定和分离结果重构:ii) Decomposition series determination and separation result reconstruction:
基于分解出的地形近似分量和地形细节分量,依据频率分析信息,确 定分解级数为6级,并对分离结果进行重构,分离结果重构是分解算法 的逆过程,其原理就是利用地形近似分量和地形细节分量复原分离结果,重构 式如下:,其中,和分别为 和的共轭,也即重列各滤波器组的系数,最终得到分离后的水深模型和,从而分离出不同等级的海底地理实体。 Based on the decomposed terrain approximation components and terrain detail components , according to the frequency analysis information, determine the decomposition level It is level 6, and the separation result is reconstructed. The reconstruction of the separation result is the inverse process of the decomposition algorithm. The principle is to use the terrain approximation component. and terrain detail components To restore the separation result, the reconstruction formula is as follows: ,in, and respectively and The conjugate of , that is, the coefficients of each filter bank are rearranged, and finally the separated water depth model is obtained. and , so as to separate different levels of seabed geographic entities.
分离结果重构是分解算法的逆过程,其原理就是利用地形近似分量和地形 细节分量复原分离结果,重构式如下:, 其中,和分别为和的共轭,也即重列各滤波器组的系数。 The reconstruction of the separation result is the inverse process of the decomposition algorithm, and its principle is to use the terrain approximation components and terrain detail components To restore the separation result, the reconstruction formula is as follows: , in, and respectively and The conjugate of , that is, the coefficients of each filter bank are rearranged.
特征提取包括海底地理实体范围确定、形态特征参数提取和要素信息表构建,图6展示了经过坡度范围截取后的海底地理实体的水深模型,,具体步骤包括:Feature extraction includes determination of the range of seabed geographic entities, extraction of morphological feature parameters, and construction of element information tables. Figure 6 shows the water depth model of seabed geographic entities after interception by the slope range. The specific steps include:
(i)海底地理实体范围确定:(i) Determination of the extent of seabed geographic entities:
基于分离后的水深模型,求取其坡度模型,其中,X s,l 和Y s,l 分别为坡度模型的第行、第列的平面位置坐标值,为坡度模型中该平面位置的坡度值。 Based on the separated water depth model , find its slope model , where X s,l and Y s,l are the slope models, respectively First row, the plane position coordinate value of the column, for the slope model The slope value at the location of this plane in .
基于坡度模型,按照海底地理实体的坡度范围,确 定海底地理实体范围,其中,和分别为处于 海底地理实体界限上的坡度点的平面位置坐标值,为处于海底地理实体界限上的坡度点 总数。 Slope based model , according to the slope extent of the seafloor geographic entity , to determine the extent of seabed geographic entities ,in, and are the plane position coordinates of the slope point on the boundary of the seabed geographic entity, respectively, is the total number of slope points that lie on the boundaries of the seafloor geographic entity.
基于海底地理实体范围对原始水深模型进行范 围截取并输出,得到截取后的水深模型, 其中,分别为截取后的水深模型的第行、第列的平面位置坐 标值,为截取后的水深模型中该平面位置的深度值,截取后的水深模 型见附图6。 Based on the extent of seabed geographic entities for the original bathymetric model Perform range interception and output to obtain the intercepted water depth model , in, are the intercepted water depth models, respectively First row, the plane position coordinate value of the column, is the intercepted water depth model The depth value of the plane position in the middle, and the water depth model after interception is shown in Figure 6.
(ii)形态特征参数提取: (ii) Extraction of morphological feature parameters:
基于截取后的水深模型应用GIS软件提取该海底地理实体的形态 特征参数,其中和分别代表 该海底地理实体的长度和宽度,和分别代表该海底地理实体的最大水深和最小 水深,代表该海底地理实体的平均坡度,表示为局部地表坡面的倾斜程度,当进行坡 度计算时可表述为简化的差分公式:其中,,是x方向高程或水深变化率;,是y方向高程或水深变化率;得到该 海底地理实体长度= 2150 m,宽度= 2060 m,最大水深= 2350 m,最小水深= 370 m,平均坡度= 12.35°。 Based on the intercepted water depth model Using GIS software to extract the morphological characteristic parameters of the seabed geographic entity ,in and represent the length and width of the seabed geographic entity, respectively, and represent the maximum and minimum water depths of the seabed geographic entity, respectively, Represents the average slope of the seabed geographic entity, expressed as the slope of the local surface slope, and can be expressed as a simplified difference formula when calculating the slope: in, , is the rate of change in the x -direction elevation or water depth; , is the rate of change of elevation or water depth in the y direction; get the length of the seabed geographic entity = 2150 m, width = 2060 m, maximum water depth = 2350 m, minimum water depth = 370 m, average slope = 12.35°.
基于该海底地理实体的形态特征参数判定该海底地理实体的等级为二级和类型为海山。 Based on the morphological characteristic parameters of the seabed geographic entity Determining the class of the seabed geographic entity for secondary and type for seamounts.
(iii)要素信息表构建: (iii) Construction of element information table:
基于海底地理实体范围、海底地理实体的形态特征参数、海 底地理实体的等级和类型,构建该海底地理实体的要素信息表,Manifest= {Grade,Type,Area,Parameters}={二级,海山, [5°,15°],2150m,2060m,2350m,370m, 12.35°},构建得到的海底地理实体的要素信息表见下表2:Based on the extent of seabed geographic entities , morphological characteristic parameters of seabed geographic entities , the level of seabed geographic entities and type , construct the feature information table of the seabed geographic entity, Manifest= {Grade, Type, Area, Parameters} = {Secondary, Seamount, [5°, 15°], 2150m, 2060m, 2350m, 370m, 12.35°}, construct The element information table of the obtained seabed geographic entities is shown in Table 2 below:
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the scope of the invention. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the appended claims.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210732260.2A CN114820951A (en) | 2022-06-27 | 2022-06-27 | Wavelet and filter-based composite seabed geographic entity progressive decomposition method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210732260.2A CN114820951A (en) | 2022-06-27 | 2022-06-27 | Wavelet and filter-based composite seabed geographic entity progressive decomposition method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114820951A true CN114820951A (en) | 2022-07-29 |
Family
ID=82520786
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210732260.2A Pending CN114820951A (en) | 2022-06-27 | 2022-06-27 | Wavelet and filter-based composite seabed geographic entity progressive decomposition method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114820951A (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013055236A1 (en) * | 2011-10-13 | 2013-04-18 | Institute Of Geological & Nuclear Sciences Limited | System and method for modelling multibeam backscatter from a seafloor |
| CN103400405A (en) * | 2013-08-01 | 2013-11-20 | 国家海洋局第二海洋研究所 | Multi-beam bathymetric chart construction method based on seabed digital depth model feature extraction |
| CN104613945A (en) * | 2015-02-11 | 2015-05-13 | 国家海洋局第二海洋研究所 | Reconstruction method for terrain of shallow-sea large-sized complicated sand wave area |
| US20150243074A1 (en) * | 2013-07-08 | 2015-08-27 | The Second Institute Of Oceanography, Soa | Submarine topography construction method based on multi-source water depth data integration |
| US20190339414A1 (en) * | 2017-02-15 | 2019-11-07 | Halliburton Energy Services, Inc. | Evaluating subsea geodetic data |
| CN110532615A (en) * | 2019-07-26 | 2019-12-03 | 自然资源部第二海洋研究所 | A kind of decomposition method step by step of shallow sea complicated landform |
| CN114663640A (en) * | 2022-05-20 | 2022-06-24 | 自然资源部第二海洋研究所 | Delineation and classification of seabed geographic entities based on topographic and tectonic features |
-
2022
- 2022-06-27 CN CN202210732260.2A patent/CN114820951A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013055236A1 (en) * | 2011-10-13 | 2013-04-18 | Institute Of Geological & Nuclear Sciences Limited | System and method for modelling multibeam backscatter from a seafloor |
| US20150243074A1 (en) * | 2013-07-08 | 2015-08-27 | The Second Institute Of Oceanography, Soa | Submarine topography construction method based on multi-source water depth data integration |
| CN103400405A (en) * | 2013-08-01 | 2013-11-20 | 国家海洋局第二海洋研究所 | Multi-beam bathymetric chart construction method based on seabed digital depth model feature extraction |
| CN104613945A (en) * | 2015-02-11 | 2015-05-13 | 国家海洋局第二海洋研究所 | Reconstruction method for terrain of shallow-sea large-sized complicated sand wave area |
| US20190339414A1 (en) * | 2017-02-15 | 2019-11-07 | Halliburton Energy Services, Inc. | Evaluating subsea geodetic data |
| CN110532615A (en) * | 2019-07-26 | 2019-12-03 | 自然资源部第二海洋研究所 | A kind of decomposition method step by step of shallow sea complicated landform |
| CN114663640A (en) * | 2022-05-20 | 2022-06-24 | 自然资源部第二海洋研究所 | Delineation and classification of seabed geographic entities based on topographic and tectonic features |
Non-Patent Citations (4)
| Title |
|---|
| 夏伟等: "基于正交小波变换的海底地形复杂程度分类方法研究", 《武汉大学学报(信息科学版)》 * |
| 张伙带等: "基于多波束数据的南海海盆洋壳区海山地形特征", 《海洋地质与第四纪地质》 * |
| 汪九尧 等: "基于近底原位观测的小尺度海底沙波地形小波分解", 《海洋学研究》 * |
| 贾帅东等: "基于CUBE算法的多波束水深异常值剔除", 《测绘科学》 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sagar et al. | Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations | |
| CN113341476B (en) | Method for improving ocean gravity spatial resolution based on submarine topography-gravity combination | |
| CN113834547B (en) | River virtual station water level time sequence reconstruction method and system | |
| Smith | The navigation surface: A multipurpose bathymetric database | |
| CN110532615B (en) | Progressive decomposition method for shallow sea complex terrain | |
| CN116187168A (en) | Method for Improving Water Depth Inversion Accuracy Based on Neural Network-Gravity Information Wavelet Decomposition | |
| Carbó et al. | Gravity analysis offshore the Canary Islands from a systematic survey | |
| Golyandina et al. | Filtering of digital terrain models by 2D singular spectrum analysis | |
| Bilaşco et al. | Implementation of the USLE model using GIS techniques. Case study the Someşean Plateau | |
| CN116861955A (en) | A method of using machine learning to invert seafloor topography based on terrain unit partitioning | |
| CN112861719A (en) | Coastline extraction method based on multi-temporal high-resolution remote sensing image | |
| CN118348594A (en) | Multi-scale gravity inversion density method and system | |
| Zieger et al. | Mapping reef features from multibeam sonar data using multiscale morphometric analysis | |
| CN108919345B (en) | Submarine cable land detection noise attenuation method | |
| Barrile et al. | Analysis of hydraulic risk territories: comparison between LIDAR and other different techniques for 3D modeling | |
| CN114820951A (en) | Wavelet and filter-based composite seabed geographic entity progressive decomposition method | |
| CN113158830A (en) | Residual gravity abnormal field separation method | |
| CN114663640B (en) | Delineation and classification of seabed geographic entities based on topographic and tectonic features | |
| CN114723911B (en) | Automatic identification method of seabed geographic entity boundary based on D-P algorithm and optimal path | |
| CN109782346A (en) | A kind of acquisition footprint drawing method based on anatomic element analysis | |
| CN116630823A (en) | A processing method for water body elevation editing of InSAR topographic products | |
| Zhu et al. | Estimating seafloor topography of the South China Sea using SWOT wide-swath altimetry data | |
| Wu et al. | Seafloor topography modeling by fusing ICESat-2 lidar, echo sounding, and airborne and altimetric gravity data from spherical radial basis functions | |
| Lee et al. | Efficient seismic numerical modeling technique using the yolov2-based expanding domain method | |
| CN119761185A (en) | A method for seafloor topography inversion based on fully connected deep neural network |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220729 |
|
| WD01 | Invention patent application deemed withdrawn after publication |