CN114839664A - Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof - Google Patents
Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof Download PDFInfo
- Publication number
- CN114839664A CN114839664A CN202210459833.9A CN202210459833A CN114839664A CN 114839664 A CN114839664 A CN 114839664A CN 202210459833 A CN202210459833 A CN 202210459833A CN 114839664 A CN114839664 A CN 114839664A
- Authority
- CN
- China
- Prior art keywords
- scintillation crystal
- array
- resolution
- submillimeter
- scintillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 293
- 238000002360 preparation method Methods 0.000 title abstract description 20
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 239000000835 fiber Substances 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 18
- 239000000155 melt Substances 0.000 claims description 17
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- 229910052765 Lutetium Inorganic materials 0.000 claims description 14
- 229910052741 iridium Inorganic materials 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 14
- 229910052693 Europium Inorganic materials 0.000 claims description 12
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 11
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 10
- 150000004645 aluminates Chemical class 0.000 claims description 10
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 10
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 10
- -1 rare earth bromide Chemical class 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 9
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 claims description 8
- 229920000647 polyepoxide Polymers 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- 229910001516 alkali metal iodide Inorganic materials 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 6
- 239000004809 Teflon Substances 0.000 claims description 6
- 229920006362 Teflon® Polymers 0.000 claims description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 6
- 229910001619 alkaline earth metal iodide Inorganic materials 0.000 claims description 6
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 6
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 229910052706 scandium Inorganic materials 0.000 claims description 6
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 6
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000002310 reflectometry Methods 0.000 claims description 5
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 4
- 239000011358 absorbing material Substances 0.000 claims description 3
- 238000002059 diagnostic imaging Methods 0.000 claims description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- 239000004038 photonic crystal Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920002050 silicone resin Polymers 0.000 claims description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims 1
- 150000001342 alkaline earth metals Chemical class 0.000 claims 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 238000010899 nucleation Methods 0.000 description 15
- 238000003491 array Methods 0.000 description 14
- 238000004093 laser heating Methods 0.000 description 12
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000006698 induction Effects 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/34—Edge-defined film-fed crystal-growth using dies or slits
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/62—Whiskers or needles
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种亚毫米级高分辨闪烁晶体阵列及其制备方法和应用,属于辐射探测高分辨成像技术领域。The invention relates to a submillimeter-level high-resolution scintillation crystal array, a preparation method and application thereof, and belongs to the technical field of radiation detection high-resolution imaging.
背景技术Background technique
闪烁晶体是现代材料中具有重大军事和科技意义的基础材料之一。在闪烁晶体近70年的发展历程里,一系列性能优良的新型闪烁晶体被陆续研发问世,氧化物闪烁晶体家族先后诞生了诸如BGO、CWO、PWO、LYSO、La-GPS:Ce、GAGG、ZnO:Ga等性能优良的闪烁晶体,卤化物闪烁晶体家族则先后诞生了诸如NaI:Tl、CsI:Tl、BaF2:Y、LaBr3:Ce、SrI2:Eu、CsBa2I5:Eu等性能优良的闪烁晶体。它作为一类重要的辐射探测材料,可广泛应用于高能物理、空间物理、核医学成像、安检以及油井勘探、矿物在线分选等领域,全球市场份额每年高达数十亿元。而且,实现高空间分辨、高灵敏度、快响应、稳定耐久、多幅在线辐射探测成像技术是当下及未来的发展趋势,通过将块体闪烁晶体像素化制备亚毫米级高分辨闪烁晶体阵列是一种实现上述应用需求的重要途径。Scintillation crystal is one of the basic materials with great military and technological significance in modern materials. During the nearly 70 years of development of scintillation crystals, a series of new scintillation crystals with excellent performance have been successively developed. The oxide scintillation crystal family has successively been born such as BGO, CWO, PWO, LYSO, La-GPS:Ce, GAGG, ZnO :Ga and other scintillation crystals with excellent performance, and the halide scintillation crystal family has successively born such as NaI:Tl, CsI:Tl, BaF 2 :Y, LaBr 3 :Ce, SrI 2 :Eu, CsBa2I 5 :Eu and other excellent scintillation crystals Scintillation crystals. As an important radiation detection material, it can be widely used in high-energy physics, space physics, nuclear medicine imaging, security inspection, oil well exploration, online mineral sorting and other fields, and its global market share is as high as billions of yuan every year. Moreover, it is the current and future development trend to achieve high spatial resolution, high sensitivity, fast response, stability and durability, and multiple online radiation detection imaging technologies. The preparation of submillimeter-scale high-resolution scintillation crystal arrays by pixelating bulk scintillation crystals is an important technology. It is an important way to realize the above application requirements.
然而,现有的闪烁晶体阵列的制备技术是:将块状晶体经切割、研磨、抛光、镀膜多个工序协调并反复进行最终组装出闪烁晶体阵列,对于亚毫米级像素尺寸的晶柱加工需耗费巨大的人力物力且良品率很低。通过机械加工将闪烁晶体像素化至亚毫米级伴随着各种复杂性问题,特别是对于硬、脆和吸湿材料。例如,医学成像界感兴趣的硬脆闪烁晶体LYSO,已知在热应力和机械应力下会破裂;具有大长径比的像素晶柱的材利用率很低将导致其产量迅速下降,成本大幅增加。而且加工和组装尺寸小于1mm的离散晶体非常具有挑战性,因此,亚毫米级晶体阵列通常非常昂贵。这些阵列的质量在很大程度上取决于供应商的技能,并不总是满足要求。像素化后需要在闪烁体柱之间插入反射材料来分离阵列中的单个晶体,若其厚度固定(假设为0.1mm),则闪烁晶体像素晶柱的尺寸越小,阵列中晶体的填充因子越小,系统的灵敏度越小。However, the existing technology for preparing scintillation crystal arrays is to coordinate and repeat multiple processes of cutting, grinding, polishing, and coating the bulk crystals to finally assemble the scintillation crystal array. It consumes huge manpower and material resources and the yield rate is very low. Pixelation of scintillation crystals by machining to the sub-millimeter scale comes with various complications, especially for hard, brittle, and hygroscopic materials. For example, LYSO, a hard and brittle scintillation crystal of interest to the medical imaging community, is known to crack under thermal and mechanical stress; the low material utilization of pixel pillars with large aspect ratios will result in a rapid drop in yield and significant cost. Increase. Also, it is very challenging to process and assemble discrete crystals smaller than 1 mm in size, so submillimeter-scale crystal arrays are often very expensive. The quality of these arrays depends heavily on the skill of the vendor and does not always meet the requirements. After pixelation, a reflective material needs to be inserted between the scintillator columns to separate the individual crystals in the array. If its thickness is fixed (assumed to be 0.1mm), the smaller the size of the scintillation crystal pixel column, the better the filling factor of the crystals in the array. Smaller, the smaller the sensitivity of the system.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提供了一种亚毫米级高分辨闪烁晶体阵列及其制备方法和应用。In view of the above problems, the present invention provides a sub-millimeter high-resolution scintillation crystal array and a preparation method and application thereof.
一方面,本发明提供了一种亚毫米级高分辨闪烁晶体阵列,包括:由多个直径或边长0.1~1mm的闪烁晶体像素晶柱组成的阵列、用于隔开每个闪烁晶体像素晶柱的高反射介质层和隔光介质层、以及用于排列和固定闪烁晶体像素晶柱形成阵列的模具或用于排列和固定闪烁晶体像素晶柱形成阵列且分布在阵列间隔内部的粘结基质。In one aspect, the present invention provides a sub-millimeter high-resolution scintillation crystal array, comprising: an array composed of a plurality of scintillation crystal pixel columns with a diameter or side length of 0.1-1 mm, which are used to separate each scintillation crystal pixel crystal. High-reflection medium layer and light-blocking medium layer of pillars, and a mold for arranging and fixing scintillation crystal pixel pillars to form an array or a bonding matrix for arranging and fixing scintillation crystal pixel pillars to form an array and distributed inside the array space .
本公开中,亚毫米级(0.1~1mm)的闪烁晶体阵列意味着其在成像领域具有极高的像素,极大地改善闪烁探测器的空间分辨本领。In the present disclosure, the scintillation crystal array of sub-millimeter scale (0.1-1 mm) means that it has extremely high pixels in the imaging field, which greatly improves the spatial resolution of the scintillation detector.
较佳的,所述闪烁晶体像素晶柱的组成包括:稀土倍半氧化物基闪烁晶体RE2O3、硅酸盐基闪烁晶体、铝酸盐基闪烁晶体、铝镓酸盐基闪烁晶体RE3Al5xGa5-5xO12、锗酸铋基闪烁晶体Bi4Ge3O12、钨酸盐基闪烁晶体、碱土金属氟化物基闪烁晶体、稀土溴化物基闪烁晶体REBr3、碱金属碘化物基闪烁晶体、碱土金属碘化物基闪烁晶体中至少一种;其中,RE为稀土离子包括镧(La)、铈(Ce)、镨(Pr)、铕(Eu)、钆(Gd)、镱(Yb)、镥(Lu)、钪(Sc)、钇(Y)中至少一种。Preferably, the composition of the scintillation crystal pixel crystal column includes: rare earth sesquioxide-based scintillation crystal RE 2 O 3 , silicate-based scintillation crystal, aluminate-based scintillation crystal, and aluminum gallate-based scintillation crystal RE 3 Al 5x Ga 5-5x O 12 , bismuth germanate-based scintillation crystal Bi 4 Ge 3 O 12 , tungstate-based scintillation crystal, alkaline earth metal fluoride-based scintillation crystal, rare earth bromide-based scintillation crystal REBr 3 , alkali metal iodine At least one of compound-based scintillation crystal and alkaline earth metal iodide-based scintillation crystal; wherein, RE is rare earth ion including lanthanum (La), cerium (Ce), praseodymium (Pr), europium (Eu), gadolinium (Gd), ytterbium At least one of (Yb), lutetium (Lu), scandium (Sc), and yttrium (Y).
较佳的,所述硅酸盐基闪烁晶体为RE2SiO5、RE2Si2O7中的至少一种;Preferably, the silicate-based scintillation crystal is at least one of RE 2 SiO 5 and RE 2 Si 2 O 7 ;
所述铝酸盐基闪烁晶体为RE3Al5O12、REAlO3中的至少一种;The aluminate-based scintillation crystal is at least one of RE 3 Al 5 O 12 and REAlO 3 ;
所述钨酸盐基闪烁晶体为PbWO4、CdWO4、ZnWO4、CaWO4中的至少一种;The tungstate-based scintillation crystal is at least one of PbWO 4 , CdWO 4 , ZnWO 4 , and CaWO 4 ;
所述碱土金属氟化物基闪烁晶体为CaF2、BaF2中的至少一种;The alkaline earth metal fluoride-based scintillation crystal is at least one of CaF 2 and BaF 2 ;
所述碱金属碘化物基闪烁晶体为NaI、CsI中的至少一种;The alkali metal iodide-based scintillation crystal is at least one of NaI and CsI;
所述碱土金属碘化物基闪烁晶体为SrI2。The alkaline earth metal iodide-based scintillation crystal is SrI 2 .
较佳的,当稀土倍半氧化物基闪烁晶体RE2O3中RE选自镧(La)、钆(Gd)、镥(Lu)、钪(Sc)、钇(Y)中至少一种和铈(Ce)、镨(Pr)、铕(Eu)中至少一种时,所述铈(Ce)、镨(Pr)、铕(Eu)中至少一种的总含量0.01~5at.%;Preferably, when RE in the rare earth sesquioxide-based scintillation crystal RE 2 O 3 is selected from at least one of lanthanum (La), gadolinium (Gd), lutetium (Lu), scandium (Sc), yttrium (Y) and When at least one of cerium (Ce), praseodymium (Pr), and europium (Eu), the total content of at least one of cerium (Ce), praseodymium (Pr), and europium (Eu) is 0.01 to 5 at.%;
当硅酸盐基闪烁晶体、铝酸盐基闪烁晶体、铝镓酸盐基闪烁晶体、稀土溴化物(REBr3)基闪烁晶体中RE选自镧(La)、钆(Gd)、镥(Lu)、钪(Sc)、钇(Y)中至少一种和铈(Ce)、镨(Pr)、铕(Eu)、镱(Yb)中至少一种时,所述铈(Ce)、镨(Pr)、铕(Eu)、镱(Yb)中至少一种的总含量0.01~5at.%;When the silicate-based scintillation crystal, aluminate-based scintillation crystal, alumino-gallate-based scintillation crystal, rare earth bromide (REBr 3 )-based scintillation crystal, RE is selected from lanthanum (La), gadolinium (Gd), lutetium (Lu) ), scandium (Sc), yttrium (Y) and at least one of cerium (Ce), praseodymium (Pr), europium (Eu), and ytterbium (Yb), the cerium (Ce), praseodymium ( The total content of at least one of Pr), europium (Eu), and ytterbium (Yb) is 0.01 to 5 at.%;
所述碱金属碘化物基闪烁晶体、碱土金属碘化物基闪烁晶体中掺杂铊(Tl)、铕(Eu)中至少一种,所述铊(Tl)、铕(Eu)中至少一种的总含量0~5at.%。The alkali metal iodide-based scintillation crystal and the alkaline earth metal iodide-based scintillation crystal are doped with at least one of thallium (Tl) and europium (Eu). The total content is 0~5at.%.
较佳的,所述闪烁晶体像素晶柱的截面形状为圆形、方形、矩形,优选为方形。Preferably, the cross-sectional shape of the scintillation crystal pixel column is a circle, a square or a rectangle, preferably a square.
较佳的,所述高反射介质层的组成选自可见光区反射率≥95%的材料,包括金属、硫酸钡、二氧化钛、光子晶体、特氟龙、ESR反射膜中至少一种,所述金属为镁、铝、镓、铟、锡、锌、银、铂、钌、锇、铱、铼中至少一种;所述高反射介质层的厚度0.1~500微米;Preferably, the composition of the high-reflection medium layer is selected from materials with a reflectivity of ≥95% in the visible light region, including at least one of metals, barium sulfate, titanium dioxide, photonic crystals, Teflon, and ESR reflective films. It is at least one of magnesium, aluminum, gallium, indium, tin, zinc, silver, platinum, ruthenium, osmium, iridium, and rhenium; the thickness of the high-reflection medium layer is 0.1-500 microns;
所述隔光介质层为高原子系数吸光材料,选自铅、钨、钽中至少一种;所述隔光介质层的厚度0~500微米。The light-shielding medium layer is a high atomic coefficient light-absorbing material, at least one selected from lead, tungsten, and tantalum; the light-shielding medium layer has a thickness of 0-500 microns.
较佳的,所述模具的材质选自钨、铅、钽、钌、锇、铱、铼、特氟龙、聚氯乙烯中至少一种Preferably, the material of the mold is selected from at least one of tungsten, lead, tantalum, ruthenium, osmium, iridium, rhenium, Teflon, and polyvinyl chloride.
较佳的,所述粘结基质选自环氧树脂、有机硅树脂、聚丙烯酸树脂、聚乙二醇树脂、聚乙烯醇缩丁醛树脂、聚乙烯醇树脂、聚酰亚胺树脂中的至少一种;所述粘结基质的厚度1~200微米。Preferably, the bonding matrix is at least selected from epoxy resin, silicone resin, polyacrylic resin, polyethylene glycol resin, polyvinyl butyral resin, polyvinyl alcohol resin, and polyimide resin. One; the thickness of the bonding matrix is 1-200 microns.
第二方面,本发明提供了一种亚毫米级高分辨闪烁晶体阵列的制备方法,包括:In a second aspect, the present invention provides a method for preparing a sub-millimeter high-resolution scintillation crystal array, comprising:
(1)利用单晶生长技术一步生长出尺寸0.1~1mm的细长状闪烁晶体光纤作为闪烁晶体像素晶柱;(1) Using the single crystal growth technology to grow an elongated scintillation crystal fiber with a size of 0.1 to 1 mm in one step as a scintillation crystal pixel column;
(2)通过原位生长或二次加工的方法在闪烁晶体像素晶柱表面制备高反射介质层和隔光介质层;(2) preparing a high-reflection medium layer and a light-shielding medium layer on the surface of the scintillation crystal pixel crystal column by in-situ growth or secondary processing;
(3)将带有高反射介质层和隔光介质层的闪烁晶体像素晶柱通过粘结基质捆扎粘结或模具固定排列形成阵列,即得亚毫米级高分辨闪烁晶体阵列。(3) The scintillation crystal pixel crystal columns with the high reflection medium layer and the light-shielding medium layer are bundled and bonded by a bonding matrix or fixedly arranged by a mold to form an array, that is, a submillimeter high-resolution scintillation crystal array is obtained.
第三方面,本发明提供了一种亚毫米级高分辨闪烁晶体阵列的制备方法,包括:In a third aspect, the present invention provides a method for preparing a sub-millimeter high-resolution scintillation crystal array, comprising:
(1)利用亚毫米级高分辨闪烁晶体阵列的结构制备具有亚毫米孔径阵列结构骨架的模具,所述具有亚毫米孔径阵列结构骨架的模具的组成为高反射介质层和隔光介质层中至少一种,且所述具有亚毫米孔径阵列结构骨架的模具的熔点>闪烁晶体像素晶柱的熔点;(1) Using the structure of a submillimeter high-resolution scintillation crystal array to prepare a mold with a submillimeter aperture array structure skeleton, the mold with a submillimeter aperture array structure skeleton is composed of at least one of the high reflection medium layer and the light blocking medium layer. One, and the melting point of the mold with the sub-millimeter aperture array structure skeleton > the melting point of the scintillation crystal pixel crystal column;
(2)将具有亚毫米孔径阵列结构骨架的模具浸渍于闪烁晶体像素晶柱的熔体中,通过一步法生长出具有高反射介质或隔光介质的亚毫米级高分辨闪烁晶体阵列。(2) Immerse the mold with the submillimeter aperture array structure skeleton in the melt of the scintillation crystal pixel crystal column, and grow the submillimeter high-resolution scintillation crystal array with a high reflection medium or a light-shielding medium by a one-step method.
第四方面,本发明提供了一种亚毫米级高分辨闪烁晶体阵列在X射线闪光照相和医疗影像中的应用。In a fourth aspect, the present invention provides an application of a sub-millimeter high-resolution scintillation crystal array in X-ray flash photography and medical imaging.
有益效果:Beneficial effects:
1、本发明制备的亚毫米级高分辨闪烁晶体阵列极大地提高闪烁探测器的位置(空间)分辨率,将在辐射探测与高分辨成像领域中展现广阔的应用前景;1. The sub-millimeter high-resolution scintillation crystal array prepared by the present invention greatly improves the position (spatial) resolution of the scintillation detector, and will show broad application prospects in the fields of radiation detection and high-resolution imaging;
2、利用特定的单晶生长技术一步地制备亚毫米级表面光滑的闪烁晶体光纤作为像素晶柱,避免了将块状晶体经切割、研磨、抛光、镀膜、组装多个工序协调并反复进行所需的巨大人力物力且良品率很低的现状;2. Using a specific single crystal growth technology to prepare a sub-millimeter-level scintillation crystal fiber with a smooth surface as a pixel crystal column in one step, it avoids the need to coordinate and repeat the multiple processes of cutting, grinding, polishing, coating, and assembling the bulk crystal. The current situation that huge manpower and material resources are needed and the yield rate is very low;
3、极其简便快捷的工艺步骤利于实现亚毫米级高分辨闪烁晶体阵列的流水线自动化生产,全过程基本不存在切割、研磨损耗,大大提升闪烁晶体材料的利用率。3. The extremely simple and quick process steps are conducive to the automatic production of sub-millimeter high-resolution scintillation crystal arrays. There is basically no cutting and grinding loss in the whole process, which greatly improves the utilization rate of scintillation crystal materials.
附图说明Description of drawings
图1为实施例3中激光加热基座法制备的铝酸盐(RE3Al5O12,RE为Y和Lu混合,Y:Lu=0.9:0.1)基柱状闪烁晶体光纤;Figure 1 is an aluminate (RE 3 Al 5 O 12 , RE is a mixture of Y and Lu, Y:Lu=0.9:0.1)-based columnar scintillation crystal fiber prepared by a laser heating pedestal method in Example 3;
图2为实施例9中微下拉法制备的硅酸盐(RE2SiO5,RE为Lu和Gd和Ce混合,Lu:Gd:Ce=0.949:0.05:0.001)基柱状闪烁晶体光纤所组装的亚毫米级高分辨闪烁晶体阵列;Figure 2 shows the assembled silicate (RE 2 SiO 5 , RE is a mixture of Lu, Gd and Ce, Lu:Gd:Ce=0.949:0.05:0.001)-based columnar scintillation crystal fiber prepared by the micro-pull-down method in Example 9 Submillimeter high-resolution scintillation crystal array;
图3为实施例9中微下拉法制备的硅酸盐(RE2SiO5,RE为Lu和Gd和Ce混合,Lu:Gd:Ce=0.949:0.05:0.001)基柱状闪烁晶体光纤所组装的亚毫米级高分辨闪烁晶体阵列。Figure 3 shows the assembled silicate (RE 2 SiO 5 , RE is a mixture of Lu, Gd and Ce, Lu:Gd:Ce=0.949:0.05:0.001)-based columnar scintillation crystal fiber prepared by the micro-pull-down method in Example 9 Submillimeter-scale high-resolution scintillation crystal arrays.
具体实施方式Detailed ways
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention is further described below through the following embodiments, and it should be understood that the following embodiments are only used to illustrate the present invention, but not to limit the present invention.
本发明中,亚毫米级高分辨闪烁晶体阵列,包括:由多个直径/边长0.1~1mm的闪烁晶体像素晶柱组成的阵列,用于隔开每个闪烁晶体像素晶柱的高反射介质层和隔光介质层,以及用于排列且固定闪烁晶体像素晶柱形成阵列的模具或粘结基质。常规的机械加工手段制备的,该方法的局限是晶体材料损耗大,加工周期长,成本远高于本发明中直接制备0.1~1mm的闪烁晶体的方法。In the present invention, the sub-millimeter high-resolution scintillation crystal array includes: an array composed of a plurality of scintillation crystal pixel columns with a diameter/side length of 0.1-1 mm, a high-reflection medium used to separate each scintillation crystal pixel column layer and light-blocking medium layer, and a mold or bonding matrix for arranging and fixing the scintillation crystal pixel pillars to form an array. It is prepared by conventional mechanical processing methods. The limitation of this method is that the crystal material loss is large, the processing cycle is long, and the cost is much higher than that of the method of directly preparing 0.1-1 mm scintillation crystals in the present invention.
以下示例性地说明亚毫米级高分辨闪烁晶体阵列的制备方法。The following exemplarily illustrates the preparation method of the sub-millimeter high-resolution scintillation crystal array.
方法一:method one:
利用特定的单晶生长技术一步地生长出闪烁晶体像素晶柱尺寸0.1~1mm的细长状闪烁晶体光纤。其中,所述特定的单晶生长技术包括激光加热基座法、微下拉法、导模法、熔融拉丝法中至少一种。较佳的,对生长出的闪烁晶体光纤进行表面抛光。The scintillation crystal fiber with the size of the scintillation crystal pixel crystal column of 0.1-1 mm is grown in one step by using a specific single crystal growth technology. Wherein, the specific single crystal growth technique includes at least one of a laser heating pedestal method, a micro-draw down method, a guided mode method, and a fusion wire drawing method. Preferably, surface polishing is performed on the grown scintillation crystal fiber.
通过原位生长或再次加工的方法在晶体光纤表面制备一层高反射率介质层(反射率≥99%),随后制备隔光介质层。具体地,原位生长高反射率介质层,即利用单晶生长时存在的温度梯度,在高温区熔化反射介质并在较低温区凝固形成反射介质层,其特征在于,所述原位生长包括金属、硫酸钡、特氟龙介质中至少一种,厚度0.1-500微米。再次加工(二次加工)的方法即在闪烁晶体光纤表面通过磁控溅射法、真空蒸镀法、化学气相沉积法、电镀法、溶液浸渍法、涂布法、喷涂法、胶合法中至少一种,将高反射率介质制备于闪烁晶体光纤表面,厚度0.1-500微米。隔光介质层在高反射率介质层表面通过磁控溅射法、真空蒸镀法、化学气相沉积法、电镀法、溶液浸渍法、涂布法、喷涂法、胶合法中至少一种,将高原子系数吸光材料制备于闪烁晶体光纤最外层用于阻挡闪烁光及射线在像素晶柱间的串扰,厚度0~500微米;较佳的,所述高反射介质采用溶液浸渍法、涂布法、喷涂法、胶合法需配合使用粘结基质。A high-reflection medium layer (reflectivity≥99%) is prepared on the surface of the crystal fiber by in-situ growth or reprocessing, and then a light-shielding medium layer is prepared. Specifically, the in-situ growth of the high-reflection medium layer, that is, using the temperature gradient existing during single crystal growth, the reflective medium is melted in a high-temperature region and solidified in a lower-temperature region to form a reflective medium layer, characterized in that the in-situ growth includes: At least one of metal, barium sulfate, and Teflon medium, with a thickness of 0.1-500 microns. The method of reprocessing (secondary processing) is to use magnetron sputtering method, vacuum evaporation method, chemical vapor deposition method, electroplating method, solution dipping method, coating method, spraying method and glue method on the surface of scintillation crystal fiber at least. One, the high reflectivity medium is prepared on the surface of the scintillation crystal fiber, with a thickness of 0.1-500 microns. The light-shielding medium layer adopts at least one of magnetron sputtering method, vacuum evaporation method, chemical vapor deposition method, electroplating method, solution dipping method, coating method, spraying method and gluing method on the surface of the high reflectivity medium layer, The high atomic coefficient light-absorbing material is prepared on the outermost layer of the scintillation crystal fiber to block the crosstalk of scintillation light and rays between the pixel crystal columns, with a thickness of 0-500 microns; preferably, the high-reflection medium adopts a solution dipping method, coating Method, spray method and glue method need to be used in conjunction with bonding matrix.
将带有介质层的闪烁晶体光纤通过粘结基质将晶体光纤捆扎粘结或模具固定排列形成阵列,即得亚毫米级高分辨闪烁晶体阵列。其中,捆扎粘结或模具固定的方式将晶体光纤排列成阵列,其特征在于,所述捆扎方式需要限定夹具;所述模具固定的方式为采用CNC方法或激光雕刻法制作与具有介质层的闪烁晶体光纤尺寸接近的微孔阵列模具,并将具有介质层的闪烁晶体光纤插入模具的微孔中并固定,得到亚毫米级高分辨闪烁晶体阵列。本发明所用的模具无需分离,最终成为闪烁晶体阵列的一部分,可作为隔光防串扰材料或高反射材料。The scintillation crystal fiber with the dielectric layer is bundled and bonded by the bonding matrix or the mold is fixedly arranged to form an array, that is, a submillimeter-level high-resolution scintillation crystal array is obtained. Among them, the crystal fibers are arranged in an array by means of bundling and bonding or mold fixing, and it is characterized in that, the bundling method needs to limit the clamp; the method of fixing the mold is to use the CNC method or the laser engraving method to make the scintillation with the dielectric layer. A micro-hole array mold with similar crystal fibers in size is inserted, and the scintillation crystal fiber with a dielectric layer is inserted into the micro-holes of the mold and fixed to obtain a sub-millimeter high-resolution scintillation crystal array. The mold used in the present invention does not need to be separated, and finally becomes a part of the scintillation crystal array, which can be used as a light-shielding and anti-crosstalk material or a high-reflection material.
方法二:将特定结构的模具浸渍于熔体中一步地生长出具有高反射介质或隔光介质的亚毫米级高分辨闪烁晶体阵列。其中,特定结构的模具为具有亚毫米孔径阵列结构的骨架用以实现晶体生长时的尺寸限域,选自于高反射介质或隔光介质中至少一种,熔点高于所制备的像素晶柱的熔点。该技术的主要目的是将熔体填充于特定结构的模具中并缓慢凝固形成亚毫米级高分辨闪烁晶体阵列,熔体的填充与凝固方法包括浸泡凝固、流入凝固、提拉凝固,关键参数为精准地控制降温速率(凝固初期小于10℃/h)以保证高质量的闪烁晶体像素晶柱的形成,优选浸泡凝固与提拉凝固。本发明所用的模具无需分离,最终成为闪烁晶体阵列的一部分,可作为隔光防串扰材料或高反射材料。Method 2: Sub-millimeter high-resolution scintillation crystal arrays with high-reflection medium or light-shielding medium are grown in one step by dipping a mold with a specific structure into the melt. Wherein, the mold with a specific structure is a skeleton with a sub-millimeter aperture array structure to realize the size limit during crystal growth, and is selected from at least one of high-reflection medium or light-shielding medium, and the melting point is higher than that of the prepared pixel crystal column. melting point. The main purpose of this technology is to fill the melt into a mold with a specific structure and slowly solidify to form a sub-millimeter high-resolution scintillation crystal array. The filling and solidification methods of the melt include immersion solidification, inflow solidification, and pull solidification. The key parameters are: Precisely control the cooling rate (less than 10°C/h in the initial stage of solidification) to ensure the formation of high-quality scintillation crystal pixel columns, preferably immersion solidification and pulling solidification. The mold used in the present invention does not need to be separated, and finally becomes a part of the scintillation crystal array, which can be used as a light-shielding and anti-crosstalk material or a high-reflection material.
本发明中,容易实现自动化闪烁晶体阵列的流水线生产:材料从熔体中凝固为目标尺寸的晶体,免去了大量的需要人工的加工步骤;后续工艺,包括在晶体表面制备反射层、闪烁晶体像素晶柱的排列均显著优于目前的工艺方法,是批量制备亚毫米级高分辨闪烁晶体阵列的关键技术。本发明的制备成本显著低于目前的常规工艺且生产效率大幅提高。极其简便的工艺步骤,可一步制备目前至少需要4个工艺协同完成的闪烁晶体阵列制备。In the present invention, it is easy to realize the automated production line of the scintillation crystal array: the material is solidified from the melt into a crystal of the target size, eliminating a large number of manual processing steps; the subsequent process includes preparing a reflective layer and a scintillation crystal on the surface of the crystal. The arrangement of the pixel crystal columns is significantly better than the current process method, which is the key technology for batch preparation of sub-millimeter high-resolution scintillation crystal arrays. The preparation cost of the present invention is significantly lower than the current conventional process and the production efficiency is greatly improved. The extremely simple process steps can be used to prepare a scintillation crystal array that currently requires at least four processes to be coordinated in one step.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。The following further examples are given to illustrate the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above content of the present invention belong to the present invention. scope of protection. The specific process parameters and the like in the following examples are only an example of a suitable range, that is, those skilled in the art can make selections within the suitable range through the description herein, and are not intended to be limited to the specific numerical values exemplified below.
实施例1Example 1
采用激光加热基座法制备硅酸盐(RE2SiO5,RE为Lu和Y和Ce混合,Lu:Y:Ce=0.899:0.1:0.001)基柱状闪烁晶体光纤,其制备过程包括:将Lu2O3、Y2O3、CeO2、SiO2按化学式比例配制,混合均匀,随后将其制成直径0.5~2mm的料柱并在200Mpa的等静压机中压实成型。置于马弗炉中1600℃保温10h,随后取出料柱放入激光加热基座样品台上,将聚焦的激光束照射到料柱的一端使其熔化,随后用直径约1mm左右的籽晶完成接种和引晶,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~0.5mm范围,长度以50~500mm为宜。后续步骤以所得柱状闪烁晶体光纤的平均直径为0.3mm,长度为100mm为例。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列,其制备方法包括:将闪烁晶体光纤表面抛光并通过磁控溅射的方法在其外表面上沉积一层厚度200nm的高反射率银涂层,随后采用电镀的方法在银层外沉积一层20μm厚的铅作为隔光介质,采用在隔光介质外围涂覆20μm厚的环氧树脂作为粘结基质将闪烁晶体光纤捆扎粘结成阵列,待其固化后沿晶体光纤走向的垂直方向将其按预定阵列厚度尺寸采用金刚石线切割割开,并将割开的阵列拼接至同一个面,获得亚毫米级高分辨闪烁晶体阵列。A silicate (RE 2 SiO 5 , RE is a mixture of Lu, Y and Ce, Lu:Y:Ce=0.899:0.1:0.001)-based columnar scintillation crystal fiber is prepared by a laser heating pedestal method. The preparation process includes: 2 O 3 , Y 2 O 3 , CeO 2 , and SiO 2 are prepared according to the chemical formula ratio, mixed uniformly, and then made into a material column with a diameter of 0.5-2mm and compacted in a 200Mpa isostatic press. Put it in a muffle furnace at 1600°C for 10h, then take out the material column and put it on the sample stage of the laser heating base, irradiate the focused laser beam to one end of the material column to melt it, and then use a seed crystal with a diameter of about 1mm to complete it. For seeding and seeding, the diameter of the obtained scintillation crystal optical fiber is controlled by adjusting the pulling speed to be in the range of 0.1-0.5 mm, and the length is preferably 50-500 mm. In the subsequent steps, the average diameter of the obtained columnar scintillation crystal fiber is 0.3 mm and the length is 100 mm as an example. The obtained columnar scintillation crystal fiber is prepared into a sub-millimeter high-resolution scintillation crystal array. Silver coating, then electroplating is used to deposit a layer of lead with a thickness of 20 μm on the outside of the silver layer as a light shielding medium, and a 20 μm thick epoxy resin is coated on the periphery of the light shielding medium as a bonding matrix to bind the scintillation crystal fiber. After solidification, the crystal fiber is cut along the vertical direction of the crystal fiber by diamond wire cutting according to the predetermined thickness of the array, and the cut arrays are spliced to the same surface to obtain a sub-millimeter high-resolution scintillation crystal array.
实施例2Example 2
将实施例1制备的柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列:将闪烁晶体光纤表面抛光后直接插入浸渍在硫酸钡固含量60wt%以上的聚乙烯醇缩丁醛树脂中的钨模具中固定并待其固化,随后将其切割拼接为所需阵列尺寸。或者,将柱状闪烁晶体光纤预先切割为所需阵列厚度尺寸随后插入已满足目标尺寸的钨模具中固定并待其固化,获得亚毫米级高分辨闪烁晶体阵列。The columnar scintillation crystal fiber prepared in Example 1 was prepared into a sub-millimeter high-resolution scintillation crystal array: the surface of the scintillation crystal fiber was polished and directly inserted into tungsten dipped in polyvinyl butyral resin with a barium sulfate solid content of more than 60 wt%. It is fixed in the mold and allowed to cure, then it is cut and spliced to the desired array size. Alternatively, the columnar scintillation crystal fiber is pre-cut to the required array thickness size and then inserted into a tungsten mold that has met the target size to be fixed and cured to obtain a submillimeter-scale high-resolution scintillation crystal array.
实施例3Example 3
采用激光加热基座法制备铝酸盐(RE3Al5O12,RE为Y和Lu混合,Y:Lu=0.9:0.1)基柱状闪烁晶体光纤,其制备过程包括:将Y2O3、Lu2O3、Al2O3按化学式比例配制,混合均匀,随后将其制成直径0.5~2mm的料柱并在200Mpa的等静压机中压实成型。置于马弗炉中1400℃保温10h,随后取出料柱放入激光加热基座样品台上,将聚焦的激光束照射到料柱的一端使其熔化,随后用直径约1mm左右的籽晶完成接种和引晶,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~1mm范围,长度以50~500mm为宜。后续步骤以所得柱状闪烁晶体光纤的平均直径为0.1mm,长度为150mm为例。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列,其制备方法包括:将闪烁晶体光纤表面抛光并通过环氧树脂作为胶合剂在其外壁胶合一层ESR,采用在隔光介质外围涂覆20μm厚的环氧树脂作为粘结基质将闪烁晶体光纤捆扎粘结成阵列,待其固化后沿晶体光纤走向的垂直方向将其按预定阵列厚度尺寸采用金刚石线切割割开,并将割开的阵列拼接至同一个面,获得亚毫米级高分辨闪烁晶体阵列。Aluminate (RE 3 Al 5 O 12 , RE is a mixture of Y and Lu, Y:Lu=0.9:0.1)-based columnar scintillation crystal fiber is prepared by a laser heating pedestal method. The preparation process includes: Y 2 O 3 , Lu 2 O 3 and Al 2 O 3 are prepared according to the chemical formula ratio, mixed uniformly, and then made into a material column with a diameter of 0.5-2 mm and compacted in a 200 Mpa isostatic press. Put it in a muffle furnace at 1400°C for 10h, then take out the material column and put it on the sample stage of the laser heating base, irradiate the focused laser beam to one end of the material column to melt it, and then use a seed crystal with a diameter of about 1mm to complete For seeding and seeding, the diameter of the obtained scintillation crystal fiber is controlled by adjusting the pulling speed to be in the range of 0.1-1 mm, and the length is preferably 50-500 mm. In the subsequent steps, the average diameter of the obtained columnar scintillation crystal fiber is 0.1 mm and the length is 150 mm as an example. The obtained columnar scintillation crystal fiber is prepared into a sub-millimeter high-resolution scintillation crystal array, and the preparation method includes: polishing the surface of the scintillation crystal fiber and gluing a layer of ESR on the outer wall of the scintillation crystal fiber by using epoxy resin as a glue, and using epoxy resin as a glue on the outer wall of the scintillation medium. Coating 20μm thick epoxy resin as a bonding matrix to bundle and bond the scintillation crystal fiber into an array. After curing, the crystal fiber is cut along the vertical direction of the direction of the crystal fiber according to the predetermined thickness of the array by diamond wire cutting. The open arrays are spliced to the same surface to obtain a sub-millimeter high-resolution scintillation crystal array.
实施例4Example 4
采用激光加热基座法制备稀土倍半氧化物(RE2O3,RE为Lu和Eu混合,Lu:Eu=0.95:0.05)基柱状闪烁晶体光纤,其制备过程包括:将Lu2O3、Eu2O3按化学式比例配制,混合均匀,随后将其制成直径0.5~2mm的料柱并在200Mpa的等静压机中压实成型。置于马弗炉中1600℃保温10h,随后取出料柱放入激光加热基座样品台上,将聚焦的激光束照射到料柱的一端使其熔化,随后用直径约1mm左右的籽晶完成接种和引晶,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~0.4mm范围,长度以50~500mm为宜。后续步骤以所得柱状闪烁晶体光纤的平均直径为0.4mm,长度为50mm为例。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列,其制备方法包括:将闪烁晶体光纤表面抛光并在其外壁裹上聚四氟乙烯,将其插入浸渍在二氧化钛固含量60wt%以上的环氧树脂中的钽模具中固定并待其固化,随后将其切割拼接为所需阵列尺寸。Rare earth sesquioxide (RE 2 O 3 , RE is a mixture of Lu and Eu, Lu:Eu=0.95:0.05)-based columnar scintillation crystal fiber is prepared by a laser heating pedestal method. The preparation process includes: mixing Lu 2 O 3 , Eu 2 O 3 is prepared according to the chemical formula ratio, mixed uniformly, and then made into a material column with a diameter of 0.5-2 mm and compacted in a 200 Mpa isostatic press. Put it in a muffle furnace at 1600°C for 10h, then take out the material column and put it on the sample stage of the laser heating base, irradiate the focused laser beam to one end of the material column to melt it, and then use a seed crystal with a diameter of about 1mm to complete it. For seeding and seeding, the diameter of the obtained scintillation crystal fiber is controlled by adjusting the pulling speed to be in the range of 0.1-0.4 mm, and the length is preferably 50-500 mm. In the subsequent steps, the average diameter of the obtained columnar scintillation crystal fiber is 0.4 mm and the length is 50 mm as an example. The obtained columnar scintillation crystal fiber is prepared into a sub-millimeter high-resolution scintillation crystal array, and the preparation method includes: polishing the surface of the scintillation crystal fiber, wrapping the outer wall of the scintillation crystal fiber with polytetrafluoroethylene, inserting the scintillation crystal fiber into the scintillation crystal fiber with a solid content of more than 60wt% The epoxy resin is fixed in a tantalum mold and allowed to cure, then it is cut and spliced to the desired array size.
实施例5Example 5
采用激光加热基座法制备锗酸铋(Bi4Ge3O12)基柱状闪烁晶体光纤,其制备过程包括:将Bi2O3、GeO2按化学式比例配制,混合均匀,随后将其制成直径0.5~2mm的料柱并在200Mpa的等静压机中压实成型。置于马弗炉中800℃保温10h,随后取出料柱放入激光加热基座样品台上,将聚焦的激光束照射到料柱的一端使其熔化,随后用直径约1mm左右的籽晶完成接种和引晶,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~1mm范围,长度以50~500mm为宜。后续步骤以所得柱状闪烁晶体光纤的平均直径为0.8mm,长度为200mm为例。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列,其制备方法包括:将闪烁晶体光纤表面抛光并通过磁控溅射的方法在其外表面上构建周期性的光子晶体反射层,随后将其插入浸渍在二氧化钛的聚酰亚胺树脂中的铅模具中固定并待其固化,待其固化后沿晶体光纤走向的垂直方向将其按预定阵列厚度尺寸采用金刚石线切割割开,并将割开的阵列拼接至同一个面,获得亚毫米级高分辨闪烁晶体阵列。The bismuth germanate (Bi 4 Ge 3 O 12 )-based columnar scintillation crystal fiber is prepared by a laser heating pedestal method. The preparation process includes: preparing Bi 2 O 3 and GeO 2 according to chemical formula ratios, mixing them uniformly, and then making them into The material column with a diameter of 0.5-2mm is compacted in a 200Mpa isostatic press. Put it in a muffle furnace at 800°C for 10h, then take out the material column and put it on the sample stage of the laser heating base, irradiate the focused laser beam to one end of the material column to melt it, and then use a seed crystal with a diameter of about 1mm to complete it. For seeding and seeding, the diameter of the obtained scintillation crystal fiber is controlled by adjusting the pulling speed to be in the range of 0.1-1 mm, and the length is preferably 50-500 mm. In the subsequent steps, the average diameter of the obtained columnar scintillation crystal fiber is 0.8 mm and the length is 200 mm as an example. The obtained columnar scintillation crystal fiber is prepared into a sub-millimeter high-resolution scintillation crystal array. Then insert it into a lead mold dipped in titanium dioxide polyimide resin to fix it and wait for it to be cured. After it is cured, the crystal fiber is cut along the vertical direction of the direction of the crystal fiber according to the predetermined thickness of the array by diamond wire cutting. The split arrays are spliced to the same plane to obtain sub-millimeter high-resolution scintillation crystal arrays.
实施例6Example 6
采用激光加热基座法制备碱土金属氟化物(BaF2)基柱状闪烁晶体光纤,其制备过程包括:将BaF2制成直径0.5~2mm的料柱并在200Mpa的等静压机中压实成型。随后将料柱放入激光加热基座样品台上,将聚焦的激光束照射到料柱的一端使其熔化,随后用直径约1mm左右的BaF2籽晶完成接种和引晶,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~1mm范围,长度以50~500mm为宜。后续步骤以所得柱状闪烁晶体光纤的平均直径为0.2mm,长度为200mm为例。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例1。Alkaline earth metal fluoride (BaF 2 )-based columnar scintillation crystal fiber is prepared by laser heating pedestal method. The preparation process includes: making BaF 2 into a column with a diameter of 0.5-2 mm and compacting it in a 200Mpa isostatic press. . Then put the material column on the sample stage of the laser heating base, irradiate the focused laser beam to one end of the material column to melt it, and then complete the seeding and seeding with a BaF 2 seed crystal with a diameter of about 1mm. By adjusting the pulling speed The diameter of the obtained scintillation crystal fiber is controlled to be in the range of 0.1-1 mm, and the length is preferably 50-500 mm. In the subsequent steps, the average diameter of the obtained columnar scintillation crystal fiber is 0.2 mm and the length is 200 mm as an example. Refer to Example 1 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例7Example 7
采用微下拉法制备铝镓酸盐(RE3Al5xGa(5-5x)O12,RE为Gd和Ce混合,Gd:Ce=0.995:0.005,x=0.4)基柱状闪烁晶体光纤,其制备过程包括:将Gd2O3、CeO2、Al2O3、Ga2O3按化学式比例配制,混合均匀,随后将其装入下端开有直径0.8mm的铱坩埚中,随后在坩埚下端晶体生长所需经过的区域设置氧化锆舟并在底部留有略大于1mm的小孔,舟中装有银金属。直径约1mm左右的籽晶穿过氧化锆舟和其中盛有的银金属并尽可能靠近铱坩埚下部小孔并对准。随后,通过感应线圈加热使铱坩埚中料熔化并完成接种和引晶,通过调节氧化锆舟的位置使其中的金属熔化并能存着晶体的下拉包裹在晶体外壁上凝结,调节施加于感应线圈上的功率保持生长过程中晶体质量线性增长,所得闪烁晶体光纤的直径大小为0.8mm,长度以50~500mm为宜,银包层厚度0.1~1mm范围。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例2。Aluminogallate (RE 3 Al 5x Ga (5-5x) O 12 , RE is a mixture of Gd and Ce, Gd:Ce=0.995:0.005, x=0.4)-based columnar scintillation crystal fiber was prepared by micro-pull-down method. The process includes: preparing Gd 2 O 3 , CeO 2 , Al 2 O 3 , Ga 2 O 3 according to the chemical formula ratio, mixing them evenly, then putting them into an iridium crucible with a diameter of 0.8 mm at the lower end, and then crystallizing the lower end of the crucible A zirconia boat is set in the area that the growth needs to pass through and a small hole slightly larger than 1 mm is left at the bottom, and the boat is filled with silver metal. The seed crystal with a diameter of about 1mm passes through the zirconia boat and the silver metal contained in it and is as close as possible to the small hole in the lower part of the iridium crucible and aligned. Subsequently, the material in the iridium crucible is heated by the induction coil to melt and complete the inoculation and seeding. By adjusting the position of the zirconia boat, the metal in it is melted and can be deposited on the outer wall of the crystal by the pull-down of the crystal. Adjustment applied to the induction coil The power above keeps the crystal quality linearly increasing during the growth process. The diameter of the obtained scintillation crystal fiber is 0.8 mm, the length is preferably 50-500 mm, and the thickness of the silver cladding is in the range of 0.1-1 mm. Refer to Example 2 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例8Example 8
采用微下拉法制备铝酸盐(RE3Al5O12,RE为Y和Pr混合,Y:Pr=0.999:0.001)基柱状闪烁晶体光纤,其制备过程包括:将Y2O3、Pr6O11、Al2O3按化学式比例配制,混合均匀,随后将其装入下端开有均匀间隔的多个(以500个为例)边长0.5mm方孔的铱坩埚中并通过感应线圈加热使坩埚中料熔化,随后用直径与坩埚底面总直径接近的籽晶完成接种和引晶,通过调节施加于感应线圈上的功率保持生长过程中晶体质量线性增长,所得500根闪烁晶体光纤的横截面边长为0.5mm,长度以50~500mm为宜。闪烁晶体光纤制备的数量依据坩埚下端开孔的数量决定可实现数根乃至数千根的同步生长。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例1。Aluminate (RE 3 Al 5 O 12 , RE is a mixture of Y and Pr, Y:Pr=0.999:0.001)-based columnar scintillation crystal fiber was prepared by micro-pull-down method. The preparation process includes: Y 2 O 3 , Pr 6 O 11 and Al 2 O 3 are prepared according to the chemical formula ratio, mixed evenly, and then put them into an iridium crucible with a number of (500 as an example) square holes with a side length of 0.5mm with a uniform interval at the lower end and heated by an induction coil The material in the crucible was melted, followed by seeding and seeding with seed crystals with a diameter close to the total diameter of the bottom surface of the crucible, and the linear growth of the crystal quality during the growth process was maintained by adjusting the power applied to the induction coil. The side length of the section is 0.5mm, and the length is preferably 50-500mm. The number of scintillation crystal fibers prepared depends on the number of openings at the lower end of the crucible, and the simultaneous growth of several or even thousands of fibers can be achieved. Refer to Example 1 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例9Example 9
采用微下拉法制备硅酸盐(RE2SiO5,RE为Lu和Gd和Ce混合,Lu:Gd:Ce=0.949:0.05:0.001)基柱状闪烁晶体光纤,其制备过程包括:将Lu2O3、Gd2O3、CeO2、SiO2按化学式比例配制,混合均匀,随后将其装入下端开有边长0.3mm的铱坩埚中并通过感应线圈加热使其熔化,随后用直径约0.5mm左右的籽晶完成接种和引晶,通过调节施加于感应线圈上的功率保持生长过程中晶体质量线性增长,所得闪烁晶体光纤的横截面边长为0.3mm,长度以50~500mm为宜。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列,其制备方法包括:将闪烁晶体光纤表面抛光并在其外壁采用磁控溅射厚度200nm的二氧化钛介质反射膜,并将其捆扎浸渍于二氧化钛固含量60wt%以上的环氧树脂中待其固化,随后将其切割拼接为所需阵列尺寸。A silicate (RE 2 SiO 5 , RE is a mixture of Lu, Gd and Ce, Lu:Gd:Ce=0.949:0.05:0.001)-based columnar scintillation crystal fiber is prepared by a micro-pull-down method. The preparation process includes: mixing Lu 2 O 3. Gd 2 O 3 , CeO 2 and SiO 2 are prepared according to the chemical formula ratio, mixed evenly, then put them into an iridium crucible with a side length of 0.3 mm at the lower end and heated by an induction coil to melt them, and then use a diameter of about 0.5 mm to melt them. The seed crystal of about mm is inoculated and seeded, and the linear growth of crystal quality is maintained by adjusting the power applied to the induction coil. The cross-sectional side length of the obtained scintillation crystal fiber is 0.3 mm, and the length is preferably 50-500 mm. The obtained columnar scintillation crystal fiber is prepared into a sub-millimeter high-resolution scintillation crystal array. It is cured in an epoxy resin with a solid content of titanium dioxide above 60 wt%, and then it is cut and spliced into a desired array size.
实施例10Example 10
采用微下拉法制备碱金属碘化物(CsI:0.05%Tl)基柱状闪烁晶体光纤,其制备过程包括:将CsI、TlI按化学式比例配制,混合均匀,随后将其装入下端开有直径0.8mm的石英坩埚中,随后在坩埚下端晶体生长所需经过的区域设置石英舟并在底部留有略大于1mm的小孔,舟中装有聚四氟乙烯。直径约1mm左右的籽晶穿过石英舟和其中盛有的聚四氟乙烯并尽可能靠近坩埚下部小孔并对准。随后,通过电阻加热使坩埚中料熔化并完成接种和引晶,通过调节石英舟的位置使其中的聚四氟乙烯熔化并能存着晶体的下拉包裹在晶体外壁上凝结,所得闪烁晶体光纤的直径大小为0.8mm,长度以50~500mm为宜,聚四氟乙烯包层厚度0.1~1mm范围。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例4。Alkali metal iodide (CsI: 0.05%Tl)-based columnar scintillation crystal fiber is prepared by micro-pull-down method. The preparation process includes: preparing CsI and TlI according to the chemical formula ratio, mixing them evenly, and then loading them into a 0.8mm diameter opening at the lower end. In the quartz crucible, a quartz boat is then set in the area where the crystal growth at the lower end of the crucible needs to pass, and a small hole slightly larger than 1 mm is left at the bottom, and the boat is filled with Teflon. Seed crystals with a diameter of about 1 mm pass through the quartz boat and the Teflon contained in it, as close as possible to the small hole in the lower part of the crucible and align. Subsequently, the material in the crucible was melted by resistance heating to complete inoculation and seeding. By adjusting the position of the quartz boat, the polytetrafluoroethylene in the crucible was melted and condensed on the outer wall of the crystal while the crystal was pulled down. The obtained scintillation crystal fiber had The diameter is 0.8mm, the length is preferably 50-500mm, and the thickness of the polytetrafluoroethylene cladding is in the range of 0.1-1mm. Refer to Example 4 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例11Example 11
采用导模法制备硅酸盐(RE2SiO5,RE为Lu和Y和Ce混合,Lu:Y:Ce=0.899:0.1:0.001)基柱状闪烁晶体光纤,其制备过程包括:将Lu2O3、Y2O3、CeO2、SiO2按化学式比例配制,混合均匀,随后将其装入铱坩埚中并在坩埚上方放置具有多个(以100个为例)边长0.9mm方孔凸起的铱材质模具并通过感应线圈加热使铱坩埚中料熔化,将铱模具浸润到熔体中,随后用一直径与模具截面相当的籽晶对准模具完成接种和引晶,得到横截面边长为0.9mm的100根闪烁晶体光纤的,长度以50~500mm为宜。闪烁晶体光纤制备的数量依据模具凸起孔的数量决定可实现数根乃至数千根的同步生长。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例5。A silicate (RE 2 SiO 5 , RE is a mixture of Lu, Y and Ce, Lu:Y:Ce=0.899:0.1:0.001)-based columnar scintillation crystal fiber is prepared by the guided mode method. The preparation process includes: mixing Lu 2 O 3. Y 2 O 3 , CeO 2 , SiO 2 are prepared according to the chemical formula ratio, mixed evenly, then put into the iridium crucible and placed above the crucible with a plurality of (100 as an example) square holes with a side length of 0.9mm convex The raised iridium material mold is heated by an induction coil to melt the material in the iridium crucible, and the iridium mold is infiltrated into the melt, and then a seed crystal with a diameter equivalent to the mold section is used to align the mold to complete inoculation and seeding to obtain a cross-sectional edge. For 100 scintillation crystal fibers with a length of 0.9 mm, the length is preferably 50 to 500 mm. The number of scintillation crystal fibers prepared depends on the number of protruding holes in the mold, which can achieve simultaneous growth of several or even thousands of fibers. Refer to Example 5 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例12Example 12
采用熔融拉丝法制备铝酸盐(RE3Al5O12,RE为Lu和Ce混合,Lu:Ce=0.995:0.005)基柱状闪烁晶体光纤,其制备过程包括:将Lu2O3、Al2O3、CeO2按化学式比例配制,混合均匀,随后将其制成直径0.5~2mm的预制棒并在200Mpa的等静压机中压实成型。置于马弗炉中1400℃保温10h,随后取出用高温胶粘接在刚玉陶瓷杆上,将预制棒伸入钨发热管套中并在感应作用下升温使预制棒末端熔化,随后用直径约1mm左右的籽晶完成接种和拉丝,通过调节拉速来控制所得闪烁晶体光纤的直径大小为0.1~1mm范围,长度不限。拉丝管路的下端设置涂覆器用于涂覆高反射介质,并设置收丝轮将闪烁晶体光纤缠绕成卷。将所得柱状闪烁晶体光纤制备为亚毫米级高分辨闪烁晶体阵列方法参照实施例2。Aluminate (RE 3 Al 5 O 12 , RE is a mixture of Lu and Ce, Lu:Ce=0.995:0.005)-based columnar scintillation crystal fiber is prepared by melting drawing method, and the preparation process includes: Lu 2 O 3 , Al 2 O 3 and CeO 2 are prepared according to chemical formula ratios, mixed uniformly, and then made into preforms with a diameter of 0.5-2 mm and compacted in a 200Mpa isostatic press. Put it in a muffle furnace at 1400°C for 10 hours, then take it out and bond it to the corundum ceramic rod with high temperature glue, insert the preform into the tungsten heating tube sleeve and heat up under the action of induction to melt the end of the preform, and then use a diameter of about Seed crystals of about 1 mm are inoculated and drawn, and the diameter of the obtained scintillation crystal fiber is controlled to be in the range of 0.1 to 1 mm by adjusting the pulling speed, and the length is not limited. The lower end of the wire drawing pipeline is provided with a coater for coating a high-reflection medium, and a take-up wheel is provided to wind the scintillation crystal fiber into a roll. Refer to Example 2 for the method of preparing the obtained columnar scintillation crystal fiber into a submillimeter-scale high-resolution scintillation crystal array.
实施例13Example 13
采用特定结构的模具基于浸泡凝固法从熔体中一步生长出亚毫米级高分辨锗酸铋(Bi4Ge3O12)基闪烁晶体阵列。将长度30mm的0.2mm铂丝按一定间距均匀排列在同等宽度的0.2mm铂片上,每层100根排列100层,并将其压制成块体,将其置于马弗炉中1400℃保温10h取出后将其浸渍于装有Bi4Ge3O12熔体的铂坩埚中,随后缓慢下降铂坩埚使其内熔体凝结形成晶体,待其全部凝固,降温冷却从中取出铂限域生长的Bi4Ge3O12亚毫米级高分辨闪烁晶体阵列。铂丝(直径0.1~1mm、长度5-500mm)、铂片尺寸(厚度0.1~1mm、宽度5-500mm)、排列层数(数层至数千层)、排列间距(0.1~1mm)可任意设计,以满足高分辨闪烁晶体阵列像素要求。A sub-millimeter high-resolution bismuth germanate (Bi 4 Ge 3 O 12 )-based scintillation crystal array was grown from the melt in one step using a mold with a specific structure based on the immersion solidification method. Arrange 0.2mm platinum wires with a length of 30mm on a 0.2mm platinum sheet of the same width evenly at a certain distance, with 100 pieces per layer arranged in 100 layers, press them into blocks, and place them in a muffle furnace at 1400 °C for 10 hours. After taking it out, it was immersed in a platinum crucible containing Bi 4 Ge 3 O 12 melt, and then the platinum crucible was slowly lowered to make the melt in it solidify to form a crystal. 4 Ge 3 O 12 sub-millimeter high-resolution scintillation crystal array. Platinum wire (diameter 0.1-1mm, length 5-500mm), platinum sheet size (thickness 0.1-1mm, width 5-500mm), number of layers (several to thousands of layers), and spacing (0.1-1mm) can be arbitrary Designed to meet high resolution scintillation crystal array pixel requirements.
实施例14Example 14
采用特定结构的模具浸渍于熔体中一步生长出亚毫米级高分辨碱金属碘化物(NaI)基闪烁晶体阵列。将银粉末成型为200×200×50mm3的块体,并置于200Mpa的等静压机中压实,采用打孔机在其上按一定间距打出边长0.5mm的方形贯穿孔,将其置于氮气氛中800℃保温10h取出后将其浸渍于装有NaI熔体的石英坩埚中,随后缓慢下降石英坩埚使其内熔体凝结形成晶体,待其全部凝固,降温冷却从中取出银限域生长的NaI亚毫米级高分辨闪烁晶体阵列。Submillimeter-scale high-resolution alkali metal iodide (NaI)-based scintillation crystal arrays were grown in one step by immersing a mold with a specific structure in the melt. The silver powder is formed into a block of 200×200×50mm 3 and placed in a 200Mpa isostatic press for compaction, and a square through hole with a side length of 0.5mm is punched out by a punching machine at a certain distance. Put it in a nitrogen atmosphere at 800 °C for 10 hours, and then take it out, immerse it in a quartz crucible containing NaI melt, and then slowly lower the quartz crucible to condense the melt to form crystals. Domain-grown NaI submillimeter-scale high-resolution scintillation crystal arrays.
实施例15Example 15
采用特定结构的模具基于提拉凝固法从熔体中一步生长出亚毫米级高分辨硅酸盐(RE2SiO5,RE为Lu和Y和Ce混合,Lu:Y:Ce=0.899:0.1:0.001)基闪烁晶体阵列。将铱粉末成型为300×300×20mm3的块体,并置于200Mpa的等静压机中压实,采用打孔机在其上按一定间距打出边长0.9mm的方形贯穿孔,将其置于氮气氛中1600℃保温10h取出后将其浸渍于装有RE2SiO5熔体的铱坩埚中,随后缓慢拉出让孔洞中熔体凝结形成晶体,待其全部从熔体中拉出,降温冷却即获得亚毫米级高分辨闪烁晶体阵列。Submillimeter-scale high-resolution silicates (RE 2 SiO 5 , RE is a mixture of Lu, Y and Ce, Lu:Y:Ce=0.899:0.1: 0.001) based scintillation crystal array. The iridium powder is formed into a block of 300×300×20mm 3 and placed in a 200Mpa isostatic press for compaction, and a square through hole with a side length of 0.9mm is punched out by a punching machine at a certain distance. Put it in a nitrogen atmosphere at 1600 °C for 10 hours, take it out, immerse it in an iridium crucible containing RE 2 SiO 5 melt, and then slowly pull it out to let the melt in the hole condense to form a crystal, and wait until it is all pulled out of the melt, After cooling down, a sub-millimeter high-resolution scintillation crystal array is obtained.
实施例16Example 16
采用特定结构的模具基于提拉凝固法从熔体中一步生长出亚毫米级高分辨铝酸盐(RE3Al5O12,RE为Lu和Ce混合,Lu:Ce=0.995:0.005)基闪烁晶体阵列。将钨粉末成型为500×500×50mm3的块体,并置于200Mpa的等静压机中压实,采用钻孔机在其上按一定间距打出直径0.2mm的同深度的非贯穿孔,将其置于真空炉中1500℃保温2h,随后升至2200℃保温5h,取出后将其浸渍于装有RE3Al5O12熔体的钨坩埚中,随后缓慢拉出让孔洞中熔体凝结形成晶体,待其全部从熔体中拉出,降温冷却后,将未打孔的模具面研磨并露出闪烁晶体像素晶柱,即获得亚毫米级高分辨闪烁晶体阵列。Submillimeter-scale high-resolution aluminate (RE 3 Al 5 O 12 , RE is a mixture of Lu and Ce, Lu:Ce=0.995:0.005)-based scintillation is grown from the melt in one step using a mold with a specific structure based on the pull solidification method crystal array. The tungsten powder is formed into a block of 500×500×50mm 3 and placed in a 200Mpa isostatic press for compaction, and a drilling machine is used to punch non-penetrating holes of the same depth with a diameter of 0.2mm at a certain interval. It was placed in a vacuum furnace at 1500 °C for 2 hours, then raised to 2200 °C for 5 hours, taken out and immersed in a tungsten crucible containing RE 3 Al 5 O 12 melt, and then slowly pulled out to allow the melt in the hole to condense After forming crystals, all of them are pulled out from the melt, and after cooling down, grinding the unperforated mold surface to expose the scintillation crystal pixel columns, thus obtaining a sub-millimeter high-resolution scintillation crystal array.
实施例17Example 17
采用特定结构的模具基于流入凝固法从熔体中一步生长出亚毫米级高分辨稀土倍半氧化物(RE2O3,RE为Lu、Eu、Pr混合,Lu:Eu:Pr=0.945:0.05:0.005)基闪烁晶体阵列。将铼粉末成型为100×100×10mm3的块体,并置于200Mpa的等静压机中压实,采用钻孔机在其上按一定间距打出直径0.3mm的同深度的非贯穿孔,将其置于真空炉中1500℃保温2h,随后升至2500℃保温5h,取出后在其有孔一端放置RE2O3陶瓷,通过感应加热使孔上方RE2O3陶瓷熔化后逐渐流入孔中并填满所有的孔,随后缓慢降温让孔洞中熔体凝结形成晶体,降温冷却后,将未打孔的模具面研磨并露出闪烁晶体像素晶柱,即获得亚毫米级高分辨闪烁晶体阵列。Submillimeter-scale high-resolution rare earth sesquioxide (RE 2 O 3 , RE is a mixture of Lu, Eu, and Pr, Lu:Eu:Pr=0.945:0.05) : 0.005) based scintillation crystal array. The rhenium powder is formed into a block of 100×100×10mm 3 and placed in a 200Mpa isostatic press for compaction, and a drilling machine is used to punch non-penetrating holes of the same depth with a diameter of 0.3mm at a certain interval. It was placed in a vacuum furnace at 1500 °C for 2 hours, and then raised to 2500 °C for 5 hours. After taking it out, put RE 2 O 3 ceramics on the end with holes, and through induction heating, the RE 2 O 3 ceramics above the holes were melted and gradually flowed into the holes. Fill all the holes, and then slowly cool down to allow the melt in the holes to condense to form crystals. After cooling and cooling, grind the unperforated mold surface to expose the scintillation crystal pixel pillars to obtain a sub-millimeter high-resolution scintillation crystal array. .
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210459833.9A CN114839664A (en) | 2022-04-28 | 2022-04-28 | Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210459833.9A CN114839664A (en) | 2022-04-28 | 2022-04-28 | Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114839664A true CN114839664A (en) | 2022-08-02 |
Family
ID=82566968
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210459833.9A Pending CN114839664A (en) | 2022-04-28 | 2022-04-28 | Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114839664A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090014662A1 (en) * | 2007-05-09 | 2009-01-15 | Avraham Suhami | Directional Neutron Detector |
| JP2009058453A (en) * | 2007-09-03 | 2009-03-19 | Tohoku Univ | Array manufacturing method, scintillator array |
| CN108139490A (en) * | 2015-09-30 | 2018-06-08 | 瓦里安医疗系统公司 | It is used to prepare the method for pixelated scintillators |
| CN216338067U (en) * | 2021-02-08 | 2022-04-19 | 杭州富加镓业科技有限公司 | Die and device for crystal growth by die guide method |
-
2022
- 2022-04-28 CN CN202210459833.9A patent/CN114839664A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090014662A1 (en) * | 2007-05-09 | 2009-01-15 | Avraham Suhami | Directional Neutron Detector |
| JP2009058453A (en) * | 2007-09-03 | 2009-03-19 | Tohoku Univ | Array manufacturing method, scintillator array |
| CN108139490A (en) * | 2015-09-30 | 2018-06-08 | 瓦里安医疗系统公司 | It is used to prepare the method for pixelated scintillators |
| CN216338067U (en) * | 2021-02-08 | 2022-04-19 | 杭州富加镓业科技有限公司 | Die and device for crystal growth by die guide method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2739991B1 (en) | Scintillator having a phase separation structure and radiation detector using the same | |
| US9551793B2 (en) | Ordering structure of scintillator and fabrication method | |
| CN106947480B (en) | Ceramic phosphor laminates with fused optical elements, methods of making the same, and articles comprising the same | |
| US20150219860A1 (en) | Methods of securing one or more optical fibers to a ferrule | |
| WO2017058538A1 (en) | Method for fabricating pixelated scintillators | |
| US20210054272A1 (en) | Methods and devices for growing scintillation crystals with short decay time | |
| CN108821565A (en) | Preparation method of micro-array substrate for micro-channel plate | |
| JP2005350672A (en) | Composition for scintillator array and method | |
| CN114839664A (en) | Submillimeter-level high-resolution scintillation crystal array and preparation method and application thereof | |
| CN115367766B (en) | Lithium sodium lutetium borate, rare earth doped compound and crystal thereof, and preparation method and application thereof | |
| JP6356352B2 (en) | Pixelated scintillator with optimized efficiency | |
| US20140105545A1 (en) | Graded composition for optical waveguide ferrule | |
| CN106698925A (en) | Terbium ion-activated scintillating optical fiber panel and preparation method thereof | |
| WO2015007229A1 (en) | Ultrabright csi:tl scintillators with reduced afterglow: fabrication and application | |
| CN111003946B (en) | Preparation method of glass/gadolinium gallium aluminum garnet composite material | |
| EP0185534B1 (en) | Radiation image storage panel | |
| JP7674638B2 (en) | Method for making optical fiber light emitter | |
| US11827826B2 (en) | Methods and devices for growing scintillation crystals | |
| JP2006083272A (en) | Inorganic scintillator and method for producing the same | |
| CN110451798A (en) | A kind of divalent europium activation lithium borate salts scintillation glass and preparation method thereof | |
| Faraj | Growth and characterization of Ce doped LuAG single crystal fibers by the micropulling down technique | |
| US11947056B1 (en) | Pixelated, large active area scintillating screens | |
| JP2013024597A (en) | Method of manufacturing composite scintillator | |
| RU2841892C2 (en) | Fibre-optic light emitter, beam of light emitters, device for measuring radiation and method of manufacturing fibre-optic light emitter | |
| CN210575954U (en) | Photoelectric conversion device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |