CN114865912A - Voltage holding device for unmanned vehicle and unmanned vehicle - Google Patents
Voltage holding device for unmanned vehicle and unmanned vehicle Download PDFInfo
- Publication number
- CN114865912A CN114865912A CN202210619649.6A CN202210619649A CN114865912A CN 114865912 A CN114865912 A CN 114865912A CN 202210619649 A CN202210619649 A CN 202210619649A CN 114865912 A CN114865912 A CN 114865912A
- Authority
- CN
- China
- Prior art keywords
- voltage
- field effect
- effect transistor
- resistor
- energy storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D63/00—Motor vehicles or trailers not otherwise provided for
- B62D63/02—Motor vehicles
- B62D63/025—Modular vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
技术领域technical field
本公开涉及无人驾驶技术领域,更具体地,涉及一种用于无人车的电压保持装置及无人车。The present disclosure relates to the technical field of unmanned driving, and more particularly, to a voltage maintaining device for unmanned vehicles and unmanned vehicles.
背景技术Background technique
随着无人驾驶技术的快速发展,无人车被越来越多地应用于工农业生产、建筑、物流和日常生活等诸多领域。由于应用环境和需要实现的功能越来越复杂,无人车需要装载的负载也越来越多,负载的功耗也随之增大。With the rapid development of unmanned technology, unmanned vehicles are increasingly used in many fields such as industrial and agricultural production, construction, logistics and daily life. As the application environment and the functions that need to be implemented become more and more complex, the unmanned vehicle needs to load more and more loads, and the power consumption of the load also increases.
在实现本公开构思的过程中,发明人发现相关技术中至少存在如下问题:无人车的电源电压骤降会影响负载的正常工作,进而影响无人车的运行安全。In the process of realizing the concept of the present disclosure, the inventor found that there are at least the following problems in the related art: the sudden drop of the power supply voltage of the unmanned vehicle will affect the normal operation of the load, thereby affecting the operation safety of the unmanned vehicle.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开提供了一种用于无人车的电压保持装置及无人车。In view of this, the present disclosure provides a voltage holding device for an unmanned vehicle and an unmanned vehicle.
本公开的一个方面提供了一种用于无人车的电压保持装置,包括:第一场效应管,包括第一源极、第一漏极和第一栅极,上述第一源极被配置为连接无人车的电源的正极,上述第一漏极被配置为连接储能模块,上述第一栅极被配置为连接控制模块;上述控制模块,被配置为与上述第一场效应管并联,上述控制模块被配置为控制上述第一场效应管处于导通状态或截止状态;以及上述储能模块,被配置为与上述无人车的负载并联,上述储能模块被配置为储存来自上述电源的电能;其中,在上述电源的电压骤降的情况下,上述控制模块被配置为响应于上述第一源极的电压和上述第一漏极的电压满足第一电压阈值条件,控制上述第一场效应管处于截止状态,上述储能模块被配置为响应于上述第一场效应管处于截止状态,向上述负载供电。One aspect of the present disclosure provides a voltage holding device for an unmanned vehicle, including: a first field effect transistor including a first source electrode, a first drain electrode and a first gate electrode, the first source electrode being configured In order to connect the positive pole of the power supply of the unmanned vehicle, the first drain is configured to be connected to an energy storage module, the first grid is configured to be connected to a control module; the control module is configured to be connected in parallel with the first field effect transistor , the above-mentioned control module is configured to control the above-mentioned first field effect transistor to be in an on state or an off state; and the above-mentioned energy storage module is configured to be connected in parallel with the load of the above-mentioned unmanned vehicle, and the above-mentioned energy storage module is configured to store the energy from the above-mentioned The electric energy of the power supply; wherein, in the case of a voltage dip of the power supply, the control module is configured to control the first voltage threshold condition in response to the voltage of the first source and the voltage of the first drain satisfying a first voltage threshold condition, control the first The field effect transistor is in the off state, and the energy storage module is configured to supply power to the load in response to the first field effect transistor being in the off state.
根据本公开的实施例,上述控制模块包括:第一分压单元,包括串联的第一电阻和第二电阻,上述第一分压单元被配置为与上述电源并联;第二分压单元,包括串联的第三电阻和第四电阻,上述第二分压单元被配置为与上述电源并联;第一集成运放,包括第一正输入端、第一负输入端和第一输出端,上述第一正输入端被配置为连接上述第一电阻和上述第二电阻,上述第一负输入端被配置为连接上述第三电阻和上述第四电阻,上述第一输出端被配置为通过第五电阻连接上述第一栅极;以及升压单元,被配置为向上述第一集成运放供电,其中,上述电源被配置为通过第一二极管向上述升压单元供电,上述储能模块被配置为通过第二二极管向上述升压单元供电。According to an embodiment of the present disclosure, the control module includes: a first voltage dividing unit, including a first resistor and a second resistor connected in series, the first voltage dividing unit is configured to be connected in parallel with the power supply; a second voltage dividing unit, including The third resistor and the fourth resistor are connected in series, the second voltage dividing unit is configured to be connected in parallel with the power supply; the first integrated operational amplifier includes a first positive input terminal, a first negative input terminal and a first output terminal, the above-mentioned first A positive input terminal is configured to connect the first resistor and the second resistor, the first negative input terminal is configured to connect the third resistor and the fourth resistor, and the first output terminal is configured to pass through the fifth resistor connecting the first gate; and a boosting unit configured to supply power to the first integrated operational amplifier, wherein the power supply is configured to supply power to the boosting unit through a first diode, and the energy storage module is configured For supplying power to the above boosting unit through the second diode.
根据本公开的实施例,上述第一分压单元被配置为基于上述第一源极的电压,向上述第一正输入端提供第一分压信号;上述第二分压单元被配置为基于上述第一漏极的电压,向上述第一负输入端提供第二分压信号;上述第一集成运放被配置为基于上述第一分压信号和上述第二分压信号,在上述第一输出端生成第一控制信号,其中,在上述电源的电压骤降的情况下,上述第一控制信号表征为低电平信号,上述第一控制信号被配置为控制上述第一场效应管处于截止状态。According to an embodiment of the present disclosure, the first voltage dividing unit is configured to provide a first voltage dividing signal to the first positive input terminal based on the voltage of the first source electrode; the second voltage dividing unit is configured to be based on the above The voltage of the first drain provides a second voltage division signal to the first negative input terminal; the first integrated operational amplifier is configured to be based on the first voltage division signal and the second voltage division signal, at the first output The terminal generates a first control signal, wherein, in the case of a voltage drop of the power supply, the first control signal is characterized as a low-level signal, and the first control signal is configured to control the first field effect transistor to be in an off state .
根据本公开的实施例,上述控制模块还包括:第二集成运放,包括第二正输入端、第二负输入端和第二输出端,上述第二正输入端被配置为连接上述第一负输入端,上述第二负输入端被配置为连接上述第一正输入端,上述第二输出端被配置为连接第二场效应管的第二栅极;以及上述第二场效应管,包括第二源极、第二漏极和上述第二栅极,上述第二源极被配置为连接上述第一源极,上述第二漏极被配置为连接上述第一栅极;其中,上述升压单元被配置为向上述第二集成运放供电。According to an embodiment of the present disclosure, the above control module further includes: a second integrated operational amplifier, including a second positive input terminal, a second negative input terminal and a second output terminal, the second positive input terminal is configured to be connected to the first a negative input terminal, the second negative input terminal is configured to be connected to the first positive input terminal, the second output terminal is configured to be connected to the second gate of the second field effect transistor; and the second field effect transistor includes A second source electrode, a second drain electrode, and the second gate electrode, the second source electrode is configured to be connected to the first source electrode, and the second drain electrode is configured to be connected to the first gate electrode; wherein the rise The voltage unit is configured to supply power to the second integrated operational amplifier described above.
根据本公开的实施例,上述第一分压单元被配置为向上述第二负输入端提供第一分压信号;上述第二分压单元被配置为向上述第二正输入端提供第二分压信号;上述第二集成运放被配置为基于上述第一分压信号和上述第二分压信号,在上述第二输出端生成第二控制信号,其中,在上述电源的电压骤降的情况下,上述第二控制信号表征为高电平信号,上述第二控制信号被配置为控制上述第二场效应管处于导通状态;上述第一场效应管被配置为响应于上述第二场效应管处于导通状态而转换至截止状态。According to an embodiment of the present disclosure, the first voltage dividing unit is configured to provide a first voltage dividing signal to the second negative input terminal; the second voltage dividing unit is configured to provide a second voltage dividing signal to the second positive input terminal. voltage signal; the second integrated operational amplifier is configured to generate a second control signal at the second output terminal based on the first voltage divider signal and the second voltage divider signal, wherein in the case of a voltage drop of the power supply , the above-mentioned second control signal is characterized as a high-level signal, and the above-mentioned second control signal is configured to control the above-mentioned second field effect transistor to be in a conducting state; the above-mentioned first field-effect transistor is configured to respond to the above-mentioned second field effect transistor. The tube is turned on and switched to the off state.
根据本公开的实施例,上述装置还包括:软启动模块,被配置为连接上述第一场效应管和上述储能模块;其中,上述软启动模块包括:充电单元,包括第六电阻、第七电阻和电容,上述第六电阻被配置为与上述第七电阻串联,上述电容被配置为与上述第六电阻并联;以及第三场效应管,包括第三源极、第三漏极和第三栅极,上述第三源极被配置为连接上述第一漏极,上述第三漏极被配置为连接上述储能模块,上述第三栅极被配置为连接上述第六电阻、上述第七电阻和上述电容。According to an embodiment of the present disclosure, the above-mentioned device further includes: a soft-start module configured to connect the above-mentioned first field effect transistor and the above-mentioned energy storage module; wherein, the above-mentioned soft-start module includes: a charging unit including a sixth resistor, a seventh a resistor and a capacitor, the sixth resistor is configured in series with the seventh resistor, the capacitor is configured in parallel with the sixth resistor; and a third field effect transistor, including a third source, a third drain and a third a gate, the third source is configured to be connected to the first drain, the third drain is configured to be connected to the energy storage module, the third gate is configured to be connected to the sixth resistor and the seventh resistor and the above capacitance.
根据本公开的实施例,上述充电单元被配置为响应于上述第一场效应管处于截止状态,控制上述第三栅极的电压在预设时间内逐渐降低,其中,上述第三场效应管被配置为响应于上述第三栅极的电压满足第二电压阈值条件而转换为截止状态。According to an embodiment of the present disclosure, the charging unit is configured to control the voltage of the third grid to gradually decrease within a preset time in response to the first field effect transistor being in an off state, wherein the third field effect transistor is is configured to transition to the off state in response to the voltage of the third gate satisfies the second voltage threshold condition.
根据本公开的实施例,上述装置还包括:放电模块,被配置为与上述储能模块并联;其中,上述放电模块包括:稳压单元,包括串联的稳压二极管和第八电阻,上述稳压二极管的阳极被配置为与上述第八电阻连接,上述稳压二极管的阴极被配置为与上述第一漏极连接;三极管,包括集电极、基极和发射极,上述集电极被配置为通过第九电阻连接上述稳压二极管的阴极,上述基极被配置为连接上述稳压二极管的阳极和上述第八电阻,上述发射极被配置为接地;以及放电单元,包括串联的第十电阻和第四场效应管,上述第四场效应管包括第四漏极、第四源极和第四栅极,上述第四漏极被配置为连接上述第十电阻,上述第四源极被配置为接地,上述第四栅极被配置为连接上述集电极。According to an embodiment of the present disclosure, the above-mentioned device further includes: a discharge module configured to be connected in parallel with the above-mentioned energy storage module; wherein, the above-mentioned discharge module includes: a voltage-stabilizing unit including a series-connected voltage-stabilizing diode and an eighth resistor, the voltage-stabilizing unit The anode of the diode is configured to be connected to the above-mentioned eighth resistor, and the cathode of the above-mentioned Zener diode is configured to be connected to the above-mentioned first drain; the triode includes a collector, a base and an emitter, and the above-mentioned collector is configured to pass through the first drain. Nine resistors are connected to the cathode of the zener diode, the base is configured to connect the anode of the zener diode and the eighth resistor, the emitter is configured to be grounded; and a discharge unit includes a tenth resistor and a fourth resistor connected in series a field effect transistor, the fourth field effect transistor includes a fourth drain, a fourth source and a fourth gate, the fourth drain is configured to be connected to the tenth resistor, the fourth source is configured to be grounded, The above-mentioned fourth gate electrode is configured to be connected to the above-mentioned collector electrode.
根据本公开的实施例,上述稳压单元被配置为在上述储能模块的供电电压满足第三电压阈值条件的情况下,向上述基极提供表征为低电平的使能信号,其中,上述使能信号被配置为控制上述三极管处于截止状态;以及上述第四场效应管被配置为响应于上述三极管处于截止状态而转换为导通状态,以便于上述储能模块通过上述放电单元进行放电。According to an embodiment of the present disclosure, the voltage regulator unit is configured to provide an enable signal characterized as a low level to the base electrode when the power supply voltage of the energy storage module satisfies the third voltage threshold condition, wherein the above The enable signal is configured to control the triode to be in an off state; and the fourth field effect transistor is configured to switch to an on state in response to the triode being in the off state, so that the energy storage module is discharged through the discharge unit.
根据本公开的实施例,上述第一场效应管、第二场效应管和第四场效应管为N沟道增强型场效应管;第三场效应管为P沟道增强型场效应管;三极管为NPN型三极管。According to the embodiment of the present disclosure, the above-mentioned first field effect transistor, second field effect transistor and fourth field effect transistor are N-channel enhancement type field effect transistors; the third field effect transistor is P channel enhancement type field effect transistor; The triode is an NPN type triode.
本公开的另一个方面提供了一种无人车,包括:电池装置;动力装置;传感装置;以及电压保持装置,被配置为连接上述电池装置和上述传感装置,上述电压保持装置包括第一场效应管、控制模块和储能模块;其中,上述第一场效应管,包括第一源极、第一漏极和第一栅极,上述第一源极连接被配置为上述电池装置的正极,上述第一漏极被配置为连接储能模块,上述第一栅极被配置为连接控制模块;上述控制模块,被配置为与上述第一场效应管并联,上述控制模块被配置为控制上述第一场效应管处于导通状态或截止状态;以及上述储能模块,被配置为与上述传感装置并联,上述储能模块被配置为储存来自上述电池装置的电能;其中,在上述电池装置的电压骤降的情况下,上述控制模块被配置为响应于上述第一源极的电压和上述第一漏极的电压满足第一电压阈值条件,控制上述第一场效应管处于截止状态,上述储能模块被配置为响应于上述第一场效应管处于截止状态,向上述传感装置供电。Another aspect of the present disclosure provides an unmanned vehicle, including: a battery device; a power device; a sensing device; and a voltage maintaining device configured to connect the battery device and the sensing device, the voltage maintaining device comprising a first A field effect transistor, a control module, and an energy storage module; wherein, the first field effect transistor includes a first source, a first drain and a first gate, and the first source connection is configured as a Anode, the first drain is configured to be connected to an energy storage module, the first grid is configured to be connected to a control module; the control module is configured to be connected in parallel with the first FET, and the control module is configured to control The first field effect transistor is in an on state or an off state; and the energy storage module is configured to be connected in parallel with the sensing device, and the energy storage module is configured to store electrical energy from the battery device; wherein, in the battery In the case of a voltage dip of the device, the control module is configured to control the first field effect transistor to be in an off state in response to the voltage of the first source and the voltage of the first drain meeting a first voltage threshold condition, The energy storage module is configured to supply power to the sensing device in response to the first field effect transistor being in an off state.
根据本公开的实施例,上述电池装置,包括电池和电源管理模块,上述电池被配置为通过上述电源管理模块向上述动力装置和上述传感装置供电;上述传感装置,包括传感器和核心处理单元套件,上述传感装置被配置为连接上述动力装置,上述传感装置被配置为向上述动力装置发送运动控制信号;以及上述动力装置,被配置为响应于上述运动控制信号而控制上述无人车运动。According to an embodiment of the present disclosure, the battery device includes a battery and a power management module, the battery is configured to supply power to the power device and the sensing device through the power management module; the sensing device includes a sensor and a core processing unit Kit, said sensing device configured to connect to said powered device, said sensing device configured to send a motion control signal to said powered device; and said powered device configured to control said unmanned vehicle in response to said motion control signal sports.
根据本公开的实施例,在无人车的电源正常工作时,控制模块可以控制第一场效应管处于导通状态,电源可以向储能模块充电;在无人车的电源骤降时,由于电势差,储能模块可以向负载进行供电,以确保负载在电源骤降的一段时间内可以正常工作,所以至少部分地克服了相关技术中无人车的电源电压骤降会影响负载的正常工作,进而影响无人车的运行安全的技术问题,通过保障负载的工作稳定性,有效提高了无人车运行时的安全性;另一方面,由于电源骤降会导致第一场效应管的第一源极的电压和第一漏极的电压满足第一电压阈值条件,因而控制模块可以控制第一场效应管处于截止状态,从而使得储能模块和电源之间的回路处于开路状态,储能模块中的电能不会流向电源,进而有效抑制了储能模块中的电能的浪费,提高了负载的工作稳定性。According to the embodiment of the present disclosure, when the power supply of the unmanned vehicle is working normally, the control module can control the first field effect transistor to be in a conducting state, and the power supply can charge the energy storage module; when the power supply of the unmanned vehicle suddenly drops, due to the Potential difference, the energy storage module can supply power to the load to ensure that the load can work normally during a period of time when the power supply sags, so at least partially overcomes the power supply voltage dip of the unmanned vehicle in the related art, which will affect the normal operation of the load. In turn, the technical problems that affect the operation safety of unmanned vehicles can effectively improve the safety of unmanned vehicles during operation by ensuring the working stability of the load. The voltage of the source and the voltage of the first drain satisfy the first voltage threshold condition, so the control module can control the first field effect transistor to be in an off state, so that the loop between the energy storage module and the power supply is in an open state, and the energy storage module The electric energy in the energy storage module will not flow to the power supply, thereby effectively suppressing the waste of electric energy in the energy storage module and improving the working stability of the load.
附图说明Description of drawings
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
图1示意性示出了电源骤降过程中电源电压和负载端电压的时序示意图。FIG. 1 schematically shows a time sequence diagram of a power supply voltage and a load terminal voltage during a power dip.
图2示意性示出了根据本公开实施例的用于无人车的电压保持装置的示意图。FIG. 2 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to an embodiment of the present disclosure.
图3A示意性示出了根据本公开实施例的控制模块的示意图。FIG. 3A schematically shows a schematic diagram of a control module according to an embodiment of the present disclosure.
图3B示意性示出了根据本公开另一实施例的控制模块的示意图。FIG. 3B schematically shows a schematic diagram of a control module according to another embodiment of the present disclosure.
图4示意性示出了根据本公开另一实施例的用于无人车的电压保持装置的示意图。FIG. 4 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to another embodiment of the present disclosure.
图5示意性示出了根据本公开又一实施例的用于无人车的电压保持装置的示意图。FIG. 5 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to yet another embodiment of the present disclosure.
图6A示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的示意图。FIG. 6A schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
图6B示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的电压时序示意图。FIG. 6B schematically shows a voltage timing diagram of a voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
图6C示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的又一电压时序示意图。FIG. 6C schematically shows still another voltage timing diagram of the voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
图7示意性示出了根据本公开实施例的无人车的示意图。FIG. 7 schematically shows a schematic diagram of an unmanned vehicle according to an embodiment of the present disclosure.
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. In the following detailed description, for convenience of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent, however, that one or more embodiments may be practiced without these specific details. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present disclosure. The terms "comprising", "comprising" and the like as used herein indicate the presence of stated features, steps, operations and/or components, but do not preclude the presence or addition of one or more other features, steps, operations or components.
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meaning as commonly understood by one of ordinary skill in the art, unless otherwise defined. It should be noted that terms used herein should be construed to have meanings consistent with the context of the present specification and should not be construed in an idealized or overly rigid manner.
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。Where expressions like "at least one of A, B, and C, etc.," are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (eg, "has A, B, and C") At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ). Where expressions like "at least one of A, B, or C, etc.," are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (eg, "has A, B, or C, etc." At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ).
无人车在运行过程中,若出现某一回路短路,会造成熔断器元件熔化,而熔断器元件的熔化会造成无人车电源电压的骤降,通常熔断器熔化过程需要几微秒或者数十微秒。During the operation of the unmanned vehicle, if there is a short circuit in a certain circuit, the fuse element will melt, and the melting of the fuse element will cause a sudden drop in the power supply voltage of the unmanned vehicle. Usually, the fuse melting process takes several microseconds or several days. ten microseconds.
图1示意性示出了电源骤降过程中电源电压和负载端电压的时序示意图。FIG. 1 schematically shows a time sequence diagram of a power supply voltage and a load terminal voltage during a power dip.
如图1所示,在熔断器熔化过程中,无人车的电源电压会骤降至0V或者一个较低的电压值。该较低的电压值可以是供电回路中的其他供电器件或储能器件的电压值。在电源电压骤降后,由于负载中配置的电容,负载端电压会在一定时间内逐步降低,即负载可以在该一定时间内保持工作。该一定时间可以由负载的功耗和负载中配置的电容的容值来确定。As shown in Figure 1, during the melting process of the fuse, the power supply voltage of the unmanned vehicle will drop to 0V or a lower voltage value. The lower voltage value may be the voltage value of other power supply devices or energy storage devices in the power supply loop. After the power supply voltage drops sharply, the load terminal voltage will gradually decrease within a certain period of time due to the capacitance configured in the load, that is, the load can keep working within the certain period of time. The certain time can be determined by the power consumption of the load and the capacitance value of the capacitor configured in the load.
为了使无人车安全运行,按照GBT/28046中EMC安全标准规定,需要保证熔断器熔断过程,无人车的负载处于正常工作状态。即在100ms内电源电压骤降不能对无人车造成系统重启、复位等影响。In order to make the unmanned vehicle run safely, according to the EMC safety standard in GBT/28046, it is necessary to ensure that the fuse is blown and the load of the unmanned vehicle is in a normal working state. That is, the power supply voltage dip within 100ms cannot cause system restart or reset of the unmanned vehicle.
而随着应用环境和需要实现的功能越来越复杂,无人车的负载的功耗也越来越大,由于板卡面积的限制,以及大电容会导致上电瞬间浪涌电流较大的问题,负载中配置的电容的容值是有限的,负载中配置的电容已无法满足越来越大的功耗的需求。例如,在负载的功耗达到100W时,负载中配置的电容一般只能维持负载在5ms内保持正常工作。而负载在关闭后重启一般会消耗较多的时间,在这段时间内,无人车的运行是缺乏安全保障的。因此,相关技术中的无人车的电路设计无法满足电压骤降时无人车正常运行的要求。As the application environment and the functions that need to be implemented become more and more complex, the power consumption of the load of the unmanned vehicle is also increasing. Due to the limitation of the board area and the large capacitance, it will lead to a large surge current at the moment of power-on. The problem is that the capacitance value of the capacitor configured in the load is limited, and the capacitor configured in the load can no longer meet the requirements of increasing power consumption. For example, when the power consumption of the load reaches 100W, the capacitor configured in the load can generally only maintain the normal operation of the load within 5ms. However, the restart of the load after shutdown generally consumes a lot of time. During this period, the operation of the unmanned vehicle lacks safety guarantee. Therefore, the circuit design of the unmanned vehicle in the related art cannot meet the requirements for the normal operation of the unmanned vehicle when the voltage sags.
有鉴于此,本公开的实施例针对无人车因短路或者其他原因造成的电压骤降,通过在电源和负载之间配置电压保持装置的方式,可使负载在电压骤降的过程中正常运行,避免因电压骤降造成负载复位、重启等对无人车的运行安全造成影响。In view of this, the embodiments of the present disclosure are aimed at the voltage sag of the unmanned vehicle due to a short circuit or other reasons, and by configuring a voltage holding device between the power supply and the load, the load can be normally operated during the voltage sag. , to avoid the impact of load reset and restart caused by voltage sag on the operation safety of the unmanned vehicle.
具体地,本公开的实施例提供了一种用于无人车的电压保持装置及无人车。该用于无人车的电压保持装置包括:第一场效应管,包括第一源极、第一漏极和第一栅极,第一源极被配置为连接无人车的电源的正极,第一漏极被配置为连接储能模块,第一栅极被配置为连接控制模块;控制模块,被配置为与第一场效应管并联,控制模块用于控制第一场效应管处于导通状态或截止状态;以及储能模块,被配置为与无人车的负载并联,储能模块用于储存来自电源的电能;其中,在电源的电压骤降的情况下,控制模块用于响应于第一源极的电压和第一漏极的电压满足第一电压阈值条件,控制第一场效应管处于截止状态,储能模块用于响应于第一场效应管处于截止状态,向负载供电。Specifically, embodiments of the present disclosure provide a voltage holding device for an unmanned vehicle and an unmanned vehicle. The voltage holding device for an unmanned vehicle includes: a first field effect transistor including a first source electrode, a first drain electrode and a first grid electrode, the first source electrode is configured to be connected to the positive electrode of the power supply of the unmanned vehicle, The first drain is configured to be connected to the energy storage module, and the first gate is configured to be connected to the control module; the control module is configured to be connected in parallel with the first field effect transistor, and the control module is used to control the first field effect transistor to be turned on state or cut-off state; and an energy storage module configured to be connected in parallel with the load of the unmanned vehicle, the energy storage module for storing electrical energy from the power source; wherein, in the event of a voltage dip in the power source, the control module for responding to The voltage of the first source electrode and the voltage of the first drain electrode satisfy the first voltage threshold condition, the first field effect transistor is controlled to be in an off state, and the energy storage module is used for supplying power to the load in response to the first field effect transistor being in the off state.
图2示意性示出了根据本公开实施例的用于无人车的电压保持装置的示意图。FIG. 2 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to an embodiment of the present disclosure.
如图2所示,用于无人车的电压保持装置可以与无人车的电源110和负载120连接。电压保持装置可以包括第一场效应管200、控制模块300和储能模块400。As shown in FIG. 2 , the voltage maintaining device for the unmanned vehicle may be connected to the
根据本公开的实施例,第一场效应管200可以包括第一源极S1、第一漏极D1和第一漏极G1,第一源极S1被配置为连接无人车的电源110的正极,第一漏极D1被配置为连接储能模块400,第一漏极G1被配置为连接控制模块300。According to an embodiment of the present disclosure, the first
根据本公开的实施例,第一场效应管200可以是任意的功率场效应管,其型号可以根据具体应用场景进行选择,其规格可以根据电源110的额定电压和负载120的额定功率来确定,在此不作限定。According to the embodiment of the present disclosure, the first
根据本公开的实施例,第一场效应管200的第一源极S1和第一漏极D1之间可以有寄生二极管。电路中产生的瞬间反向电流可以通过寄生二极管导出,从而保证第一场效应管200不被击穿,提高了第一场效应管200的使用寿命。According to an embodiment of the present disclosure, there may be a parasitic diode between the first source S1 and the first drain D1 of the first
根据本公开的实施例,控制模块300可以被配置为与第一场效应管200并联,控制模块300被配置为控制第一场效应管200处于导通状态或截止状态。According to an embodiment of the present disclosure, the
根据本公开的实施例,通过将控制模块300配置为与第一场效应管200并联,控制模块300的两个输入端可以分别与第一源极S1和第一漏极D1连接,即控制模块300的两个输入端的电压可以分别为第一源极S1的电压和第一漏极D1的电压。According to the embodiment of the present disclosure, by configuring the
根据本公开的实施例,控制模块300可以通过与第一漏极G1连接的信号输出端口,向第一漏极G1输出低电平信号或高电平信号,从而控制第一场效应管200处于导通状态或截止状态。以第一场效应管200为N沟道增强型场效应管为例,在控制模块300输出低电平信号的情况下,第一场效应管200的栅源电压可以小于第一场效应管200的开启电压,从而使得第一场效应管200处于截止状态;在控制模块300输出高电平信号的情况下,第一场效应管200的栅源电压可以大于第一场效应管200的开启电压,从而使得第一场效应管200处于导通状态。低电平信号可以指电压值为0V的电压信号,即0信号,也可以电压值小于低压阈值的电压信号,该低压阈值可以根据具体电路设计来确定,例如,根据第一场效应管200的开启电压来设置。高电平信号可以指电压值大于高压阈值的电压信号,即1信号,该高压阈值可以根据具体电路设计来确定。According to an embodiment of the present disclosure, the
根据本公开的实施例,控制模块300可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,控制模块300可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。According to embodiments of the present disclosure, the
根据本公开的实施例,储能模块400可以被配置为与无人车的负载并联,储能模块400被配置为储存来自电源的电能。储能模块400可以是任意能够储蓄电能并根据电势差进行放电的组件,如电容组、蓄电池等,在此不作限定。According to an embodiment of the present disclosure, the
根据本公开的实施例,在电源110正常供电的情况下,控制模块300可以被配置为控制第一场效应管200处于导通状态,电源110可以被配置为通过第一场效应管200向储能模块400和负载120供电,此时,储能模块400可以储蓄电能。According to an embodiment of the present disclosure, when the
根据本公开的实施例,在电源110的电压骤降的情况下,控制模块300可以被配置为响应于第一源极S1的电压和第一漏极D1的电压满足第一电压阈值条件,控制第一场效应管200处于截止状态,储能模块400被配置为响应于第一场效应管200处于截止状态,向负载120供电。According to an embodiment of the present disclosure, in the case of a voltage dip of the
根据本公开的实施例,第一电压阈值条件可以根据具体应用场景进行设置,例如可以设置为第一漏极D1的电压大于第一源极S1的电压,或者,也可以设置为第一源极S1的电压值为0,在此不作限定。According to an embodiment of the present disclosure, the first voltage threshold condition can be set according to specific application scenarios, for example, it can be set so that the voltage of the first drain electrode D1 is greater than the voltage of the first source electrode S1, or it can also be set as the first source electrode The voltage value of S1 is 0, which is not limited here.
根据本公开的实施例,在无人车的电源正常工作时,控制模块可以控制第一场效应管处于导通状态,电源可以向储能模块充电;在无人车的电源骤降时,由于电势差,储能模块可以向负载进行供电,以确保负载在电源骤降的一段时间内可以正常工作,所以至少部分地克服了相关技术中无人车的电源电压骤降会影响负载的正常工作,进而影响无人车的运行安全的技术问题,通过保障负载的工作稳定性,有效提高了无人车运行时的安全性;另一方面,由于电源骤降会导致第一场效应管的第一源极的电压和第一漏极的电压满足第一电压阈值条件,因而控制模块可以控制第一场效应管处于截止状态,从而使得储能模块和电源之间的回路处于开路状态,储能模块中的电能不会流向电源,进而有效抑制了储能模块中的电能的浪费,提高了负载的工作稳定性。According to the embodiment of the present disclosure, when the power supply of the unmanned vehicle is working normally, the control module can control the first field effect transistor to be in a conducting state, and the power supply can charge the energy storage module; when the power supply of the unmanned vehicle suddenly drops, due to the Potential difference, the energy storage module can supply power to the load to ensure that the load can work normally during a period of time when the power supply sags, so at least partially overcomes the power supply voltage dip of the unmanned vehicle in the related art, which will affect the normal operation of the load. In turn, the technical problems that affect the operation safety of unmanned vehicles can effectively improve the safety of unmanned vehicles during operation by ensuring the working stability of the load. The voltage of the source and the voltage of the first drain satisfy the first voltage threshold condition, so the control module can control the first field effect transistor to be in an off state, so that the loop between the energy storage module and the power supply is in an open state, and the energy storage module The electric energy in the energy storage module will not flow to the power supply, thereby effectively suppressing the waste of electric energy in the energy storage module and improving the working stability of the load.
下面参考图3A~图3B、图4~图5和图6A~图6C,结合具体实施例对图2所示的用于无人车的电压保持装置做进一步说明。3A to 3B, 4 to 5 and 6A to 6C, the voltage holding device for an unmanned vehicle shown in FIG. 2 will be further described in conjunction with specific embodiments.
根据本公开的实施例,第一场效应管200可以是N沟道增强型场效应管。According to an embodiment of the present disclosure, the first
图3A示意性示出了根据本公开实施例的控制模块的示意图。FIG. 3A schematically shows a schematic diagram of a control module according to an embodiment of the present disclosure.
如图3A所示,控制模块300可以包括第一分压单元310、第二分压单元320、第一集成运放330和升压单元340。As shown in FIG. 3A , the
根据本公开的实施例,第一分压单元310可以包括串联的第一电阻311和第二电阻312,第一分压单元310可以被配置为与电源110并联。According to an embodiment of the present disclosure, the first
根据本公开的实施例,第二分压单元320可以包括串联的第三电阻321和第四电阻322,第二分压单元320可以被配置为与电源110并联。According to an embodiment of the present disclosure, the second
根据本公开的实施例,第一集成运放330可以包括第一正输入端、第一负输入端和第一输出端,第一正输入端可以被配置为连接第一电阻311和第二电阻312,第一负输入端可以被配置为连接第三电阻321和第四电阻322,第一输出端可以被配置为通过第五电阻334连接第一漏极G1。According to an embodiment of the present disclosure, the first integrated
根据本公开的实施例,升压单元340可以被配置为向第一集成运放330供电,其中,电源110被配置为通过第一二极管341向升压单元340供电,储能模块400被配置为通过第二二极管342向升压单元340供电。According to an embodiment of the present disclosure, the boosting
根据本公开的实施例,第一电阻311、第二电阻312、第三电阻321和第四电阻322可以是单个电阻,也可以是由多个电阻进行串联或并联形成的电阻组,在此不作限定。According to the embodiment of the present disclosure, the
根据本公开的实施例,第一电阻311、第二电阻312、第三电阻321和第四电阻322可以是任意类型的固定电阻,例如可以是贴片电阻、碳膜电阻、金属膜电阻、线绕电阻等。According to an embodiment of the present disclosure, the
根据本公开的实施例,第一集成运放330可以是任意型号的集成运算放大器,在此不作限定。According to an embodiment of the present disclosure, the first integrated
根据本公开的实施例,升压单元340可以是任意升压电路或升压组件,例如,BOOST电路、升压电荷泵等,在此不作限定。According to an embodiment of the present disclosure, the boosting
根据本公开的实施例,第一分压单元可以被配置为基于第一源极S1的电压,向第一正输入端提供第一分压信号,如公式(1)所示:According to an embodiment of the present disclosure, the first voltage dividing unit may be configured to provide a first voltage dividing signal to the first positive input terminal based on the voltage of the first source S1, as shown in formula (1):
在式中,Vp1表示第一分压信号;VS1表示第一源极的电压;R1表示第一电阻311的阻值;R2表示第二电阻312的阻值。In the formula, V p1 represents the first voltage division signal; V S1 represents the voltage of the first source; R 1 represents the resistance value of the
根据本公开的实施例,第二分压单元可以被配置为基于第一漏极D1的电压,向第一负输入端提供第二分压信号,如公式(2)所示:According to an embodiment of the present disclosure, the second voltage dividing unit may be configured to provide a second voltage dividing signal to the first negative input terminal based on the voltage of the first drain D1, as shown in formula (2):
在式中,Vp2表示第二分压信号;VD1表示第一漏极的电压;R3表示第三电阻321的阻值;R4表示第四电阻322的阻值。In the formula, V p2 represents the second voltage division signal; V D1 represents the voltage of the first drain; R 3 represents the resistance value of the
根据本公开的实施例,第一集成运放330可以被配置为基于第一分压信号和第二分压信号,在第一输出端生成第一控制信号。According to an embodiment of the present disclosure, the first integrated
根据本公开的实施例,第一集成运放330可以被配置为一个比较器。在第一分压信号大于第二分压信号时,第一集成运放330在第一输出端输出表征为高电平的第一控制信号;在第一分压信号小于或等于第二分压信号时,第一集成运放330在第一输出端输出表征为低电平的第一控制信号。According to an embodiment of the present disclosure, the first integrated
根据本公开的实施例,第一电阻311和第二电阻312的比值可以与第三电阻321和第四电阻322的比值相等,从而使得第一分压信号与第二分压信号仅分别与第一源极S1的电压和第一漏极D1的电压相关。在电源110正常供电的情况下,由于第一场效应管200存在压降,使得第一源极S1的电压大于第一漏极D1的电压,从而使得第一集成运放330在第一输出端输出高电平信号。或者,第一电阻311和第二电阻312的比值也可以设置为小于第三电阻321和第四电阻322的比值,从而使得第一分压信号大于第二分压信号,以使得在电源110正常供电时第一输出端输出高电平信号。According to an embodiment of the present disclosure, the ratio of the
根据本公开的实施例,通过升压单元340对第一集成运放330的供电,在电源110正常供电的情况下,第一集成运放330可以输出高于电源110的电压值的第一控制信号,从而使得第一场效应管200满足N沟道增强型场效应管的开启条件,即第一漏极G1的电压大于第一源极S1的电压,且第一漏极G1的电压与第一源极S1的电压的差值大于第一场效应管200的开启电压。According to an embodiment of the present disclosure, the first integrated
根据本公开的实施例,在电源110的电压骤降的情况下,第一源极S1的电压随电源110的电压降低,由于储能模块400储蓄有电能,第一漏极D1的电压依旧保持高电平状态。对于第一集成运放330,其第一正输入端的电压值小于第一负输入端,其输出的第一控制信号表征为低电平信号,此时,第一控制信号可以被配置为控制第一场效应管200处于截止状态。According to the embodiment of the present disclosure, when the voltage of the
根据本公开的实施例,通过基于第一分压单元310、第二分压单元320、第一集成运放330和升压单元340配置控制模块300,控制模块300输出的电平信号可以随第一源极S1的电压和第一漏极D1的电压变化而变化,从而在电源110正常供电时和电压骤降时控制第一场效应管200进行状态切换,进而有效保障了电源110的正常供电,并降低了电源110电压骤降时储能模块400中电能的浪费。According to an embodiment of the present disclosure, by configuring the
图3B示意性示出了根据本公开另一实施例的控制模块的示意图。FIG. 3B schematically shows a schematic diagram of a control module according to another embodiment of the present disclosure.
如图3B所示,控制模块300除包括第一分压单元310、第二分压单元320、第一集成运放330和升压单元340之外,还可以包括第二集成运放350和第二场效应管360。As shown in FIG. 3B , in addition to the first
根据本公开的实施例,第二集成运放350可以包括第二正输入端、第二负输入端和第二输出端,第二正输入端可以被配置为连接第一负输入端,第二负输入端可以被配置为连接第一正输入端,第二输出端可以被配置为连接第二场效应管360的第二栅极G2。According to an embodiment of the present disclosure, the second integrated
根据本公开的实施例,第二场效应管360可以包括第二源极S2、第二漏极D2和第二栅极G2,第二源极S2可以被配置为连接第一源极S1,第二漏极D2可以被配置为连接第一漏极G1。According to an embodiment of the present disclosure, the second
根据本公开的实施例,升压单元340可以被配置向第二集成运放350供电。According to an embodiment of the present disclosure, the boosting
根据本公开的实施例,第二集成运放350可以是任意型号的集成运算放大器,在此不作限定。According to an embodiment of the present disclosure, the second integrated
根据本公开的实施例,第二场效应管360可以是N沟道增强型场效应管。According to an embodiment of the present disclosure, the second
根据本公开的实施例,第一分压单元310可以被配置为向第二负输入端提供第一分压信号,第二分压单元320可以被配置为向第二正输入端提供第二分压信号。第一分压信号和第二分压信号分别分别如公式(1)和(2)所示,在此不再赘述。According to an embodiment of the present disclosure, the first
根据本公开的实施例,第二集成运放350可以被配置为基于第一分压信号和第二分压信号,在第二输出端生成第二控制信号。According to an embodiment of the present disclosure, the second integrated
根据本公开的实施例,第二集成运放350可以被配置为一个比较器。在第一分压信号大于第二分压信号时,第二集成运放350在第二输出端输出表征为低电平的第二控制信号;在第一分压信号小于或等于第二分压信号时,第二集成运放350在第二输出端输出表征为高电平的第二控制信号。According to an embodiment of the present disclosure, the second integrated
根据本公开的实施例,在电源110正常供电的情况下,第一分压信号大于第二分压信号,第二集成运放350在第二输出端输出表征为低电平的第二控制信号,此时,第二场效应管360处于截至状态。According to an embodiment of the present disclosure, when the
根据本公开的实施例,在电源110的电压骤降的情况下,第一分压信号小于第二分压信号,第二集成运放350在第二输出端输出表征为高电平的第二控制信号,此时,第二控制信号被配置为控制第二场效应管360处于导通状态。由于第二场效应管360导通,使得第一场效应管200的第一源极S1和第一漏极G1短接,第一场效应管200被配置为响应于第二场效应管360处于导通状态而转换至截止状态。According to an embodiment of the present disclosure, when the voltage of the
根据本公开的实施例,由于第一场效应管200为功率场效应管,其开启和关闭,即在导通状态和截止状态之间切换需要较大的栅极电流,而第一集成运放330可以为第一漏极G1提供的栅极电流较低,从而导致第一场效应管200的关断速度较慢,进而使得储能模块400向电源110释放较多的电能。通过第二集成运放350和第二场效应管360的设置,可以通过控制第二场效应管360导通的方式,可以有效提高第一场效应管200的关断速度,从而有效降低储能模块400向电源110方向的电能释放。According to the embodiment of the present disclosure, since the first
图4示意性示出了根据本公开另一实施例的用于无人车的电压保持装置的示意图。FIG. 4 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to another embodiment of the present disclosure.
如图4所示,用于无人车的电压保持装置可以包括第一场效应管200、控制模块300、储能模块400和软启动模块500。As shown in FIG. 4 , the voltage holding device for an unmanned vehicle may include a first
根据本公开的实施例,软启动模块500可以被配置为连接第一场效应管200和储能模块400。According to an embodiment of the present disclosure, the
根据本公开的实施例,软启动模块500可以包括充电单元510和第三场效应管520。According to an embodiment of the present disclosure, the
根据本公开的实施例,充电单元510可以包括第六电阻511、第七电阻512和电容513,第六电阻511可以被配置为与第七电阻512串联,电容513可以被配置为与第六电阻511并联。According to an embodiment of the present disclosure, the charging
根据本公开的实施例,第三场效应管520可以包括第三源极S3、第三漏极D3和第三栅极G3,第三源极S3可以被配置为连接第一漏极D1,第三漏极D3可以被配置为连接储能模块400,第三栅极G3可以被配置为连接第六电阻511、第七电阻512和电容513。According to an embodiment of the present disclosure, the third field effect transistor 520 may include a third source electrode S3, a third drain electrode D3 and a third gate electrode G3, the third source electrode S3 may be configured to be connected to the first drain electrode D1, the third The three drains D3 may be configured to be connected to the
根据本公开的实施例,第三场效应管520可以是P沟道增强型场效应管。According to an embodiment of the present disclosure, the third field effect transistor 520 may be a P-channel enhancement type field effect transistor.
根据本公开的实施例,充电单元510被配置为响应于第一场效应管200处于截止状态,控制第三栅极G3的电压在预设时间内逐渐降低,其中,第三场效应管520被配置为响应于第三栅极G3的电压满足第二电压阈值条件而转换为截止状态。According to an embodiment of the present disclosure, the charging
根据本公开的实施例,第二电压阈值条件可以表示为第三栅极G3的电压低于第三场效应管520的开启电压。According to an embodiment of the present disclosure, the second voltage threshold condition may be expressed as the voltage of the third gate G3 being lower than the turn-on voltage of the third field effect transistor 520 .
根据本公开的实施例,通过控制第三场效应管520逐步导通和关断的方式,可以降低储能模块400因上下电而产生的浪涌电流,从而抑制浪涌电流对电路中元器件及模块的破坏,进而有效保障电路的正常工作。According to the embodiments of the present disclosure, by controlling the third field effect transistor 520 to be gradually turned on and off, the surge current generated by the
图5示意性示出了根据本公开又一实施例的用于无人车的电压保持装置的示意图。FIG. 5 schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to yet another embodiment of the present disclosure.
如图5所示,用于无人车的电压保持装置可以包括第一场效应管200、控制模块300、储能模块400和放电模块600。As shown in FIG. 5 , the voltage maintaining device for an unmanned vehicle may include a first
根据本公开的实施例,放电模块600可以被配置为与储能模块400并联。According to an embodiment of the present disclosure, the
根据本公开的实施例,用于无人车的电压保持装置中可以存在一个或多个放电模块600,在此不作限定。According to an embodiment of the present disclosure, there may be one or
根据本公开的实施例,放电模块600可以包括稳压单元610、二极管620和放电单元630。According to an embodiment of the present disclosure, the
根据本公开的实施例,稳压单元610可以包括串联的稳压二极管611和第八电阻612,稳压二极管611的阳极可以被配置为与第八电阻612连接,稳压二极管611的阴极可以被配置为与第一漏极D1连接。According to an embodiment of the present disclosure, the
根据本公开的实施例,三极管620可以包括集电极C、基极B和发射极E,集电极C可以被配置为通过第九电阻621连接稳压二极管611的阴极,基极B可以被配置为连接稳压二极管611的阳极和第八电阻612,发射极E可以被配置为接地。According to an embodiment of the present disclosure, the
根据本公开的实施例,三极管620可以是NPN型三极管。According to an embodiment of the present disclosure, the
根据本公开的实施例,放电单元630可以包括串联的第十电阻631和第四场效应管632,第四场效应管632可以包括第四漏极D4、第四源极S4和第四栅极G4,第四漏极D4可以被配置为连接第十电阻631,第四源极S4可以被配置为接地,第四栅极G4可以被配置为连接集电极C。According to an embodiment of the present disclosure, the
根据本公开的实施例,第四场效应管632可以是N沟道增强型场效应管。According to an embodiment of the present disclosure, the fourth
根据本公开的实施例,稳压单元610可以被配置为在储能模块400的供电电压满足第三电压阈值条件的情况下,向基极B提供表征为低电平的使能信号,其中,使能信号可以被配置为控制三极管620处于截止状态。According to an embodiment of the present disclosure, the
根据本公开的实施例,第四场效应管632可以被配置为响应于三极管620处于截止状态而转换为导通状态,以便于储能模块400通过放电单元630进行放电。According to an embodiment of the present disclosure, the fourth
根据本公开的实施例,第三电压阈值条件可以指储能模块400的供电电压小于稳压二极管611的击穿电压。该击穿电压可以是负载120的最小工作电压。According to an embodiment of the present disclosure, the third voltage threshold condition may refer to that the power supply voltage of the
根据本公开的实施例,通过设置放电模块600,可以在储能模块400中的电能不足,即储能模块400的供电电压低于稳压二极管611的击穿电压时,对储能模块400进行放电,从而使得储能模块400中的电能完全泄放,使得在电源110恢复供电后,储能模块400产生较小的浪涌电流,进而有效提升了电路的可靠性。According to the embodiment of the present disclosure, by setting the
图6A示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的示意图。FIG. 6A schematically shows a schematic diagram of a voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
如图6A所示,用于无人车的电压保持装置可以包括第一场效应管200、控制模块300、储能模块400、软启动模块500和放电模块600。As shown in FIG. 6A , the voltage maintaining device for an unmanned vehicle may include a first
根据本公开的实施例,储能模块400中可以包括多个并联的电容或电容组,该电容组中可以包括串联的多个电容。储能模块400的等效电容值可以为并联形成该储能模块400的多个电容或电容组的等效电容值的和。储能模块400的等效电容值可以根据负载120的功耗进行设置,例如,在负载120的功耗为100W的情况下,为了确保负载120在100ms内正常工作,储能模块400的等效电容值可以被配置为在15000uF~20000uF之间。According to an embodiment of the present disclosure, the
图6B示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的电压时序示意图。FIG. 6B schematically shows a voltage timing diagram of a voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
如图6B所示,电源110在t1时刻开始进行供电,在t2时刻电压骤降,并在t3时刻恢复正常供电。As shown in FIG. 6B , the
根据本公开的实施例,在t1时刻电源110开始供电后:According to an embodiment of the present disclosure, after the
电源110通过第一二极管341向升压单元340供电,使得升压单元340向第一集成运放330和第二集成运放350提供电源。The
基于第一电阻311、第二电阻312、第三电阻321和第四电阻322的阻值设置,使得第一分压信号大于第二分压信号,从而第一集成运放330的第一正输入端的电压大于第一负输入端的电压,第一集成运放330在第一输出端输出表征为高电平的第一控制信号,使得第一场效应管200导通;相应的,第二集成运放350的第二正输入端的电压小于第二负输入端的电压,第二集成运放350在第二输出端输出表征为低电平的第二控制信号,使得第二场效应管360截止。Based on the resistance settings of the
电容513和第七电阻512构成充电电路,电源110通过第一场效应管200向电容513充电,如公式(3)所示:The
在式中,Vth表示第三场效应管520的导通电压;R7表示第七电阻512的阻值;C表示电容513的容值;t表示第三场效应管520的软启动时间。第三场效应管520可以在t4时刻,即t1+t时刻完全导通。In the formula, V th represents the turn-on voltage of the third field effect transistor 520 ; R 7 represents the resistance value of the
在第三场效应管520逐渐导通的过程中,电源110开始向储能模块400充电。When the third field effect transistor 520 is gradually turned on, the
由于电源110的供电电压大于稳压二极管611的击穿电压,稳压二极管611处于击穿状态,稳压二极管611的阳极向三极管620的基极B提供高电平信号,使得三极管620处于导通状态,从而导致第四栅极G4接地,第四场效应管632处于截止状态。Since the supply voltage of the
根据本公开的实施例,在t2时刻电源110电压骤降后:According to an embodiment of the present disclosure, after the voltage of the
由于电容513中储蓄有电能,第三场效应管520的第三源极S3和第三栅极G3之间的压差不会瞬间消失,而是随着电容513两端电荷通过第六电阻511,使电容513两端的压差逐渐降低,从而使得第三场效应管520逐渐关断。第三场效应管520可以在t5时刻完全关断,即预设时间可以表征为t5-t2。Since the
在第三场效应管520逐渐关断的过程中,第一漏极D1的电压大于第一源极S1的电压,使得第一分压信号小于第二分压信号,从而第二集成运放350输出表征为高电平的第二控制信号,使得第二场效应管360导通。第二场效应管360的导通使得第一场效应管200的第一源极S1和第一漏极G1导通,第一场效应管200迅速截止。In the process of turning off the third field effect transistor 520 gradually, the voltage of the first drain electrode D1 is greater than the voltage of the first source electrode S1, so that the first voltage division signal is smaller than the second voltage division signal, so that the second integrated operational amplifier 350 A second control signal characterized by a high level is output, so that the second
储能模块400开始向负载120供电。The
根据本公开的实施例,在t3时刻电源110的电压恢复后,电源110继续通过第一场效应管200和第三场效应管520向负载120供电。According to the embodiment of the present disclosure, after the voltage of the
图6C示意性示出了根据本公开再一实施例的用于无人车的电压保持装置的又一电压时序示意图。FIG. 6C schematically shows still another voltage timing diagram of the voltage maintaining device for an unmanned vehicle according to still another embodiment of the present disclosure.
如图6C所示,电源110在t1时刻开始进行供电,在t2时刻电压骤降,并在t3时刻未恢复正常供电。As shown in FIG. 6C , the
根据本公开的实施例,随着储能模块400中电能的消耗,储能模块400提供的电压在t6时刻低于稳压二极管611的击穿电压,稳压二极管611处于截止状态,稳压二极管611的阳极向三极管620的基极B提供低电平信号,使得三极管620处于截止状态,储能模块400为第四栅极G4供电,使得第四场效应管632导通。储能模块400中剩余的电能可以通过第十电阻631和第四场效应管632释放,负载120关机。According to the embodiment of the present disclosure, with the consumption of electric energy in the
图7示意性示出了根据本公开实施例的无人车的示意图。FIG. 7 schematically shows a schematic diagram of an unmanned vehicle according to an embodiment of the present disclosure.
如图7所示,无人车可以包括电池装置700、动力装置800、传感装置900和电压保持装置。As shown in FIG. 7 , the unmanned vehicle may include a
根据本公开的实施例,电压保持装置被配置为连接所述电池装置700和所述传感装置900,所述电压保持装置包括第一场效应管200、控制模块300和储能模块400。According to an embodiment of the present disclosure, a voltage maintaining device is configured to connect the
根据本公开的实施例,第一场效应管200,包括第一源极S1、第一漏极D1和第一漏极G1,第一源极S1连接被配置为电池装置700的正极,第一漏极D1被配置为连接储能模块400,第一漏极G1被配置为连接控制模块300。According to an embodiment of the present disclosure, the first
根据本公开的实施例,控制模块300被配置为与第一场效应管200并联,控制模块300被配置为控制第一场效应管200处于导通状态或截止状态。According to an embodiment of the present disclosure, the
根据本公开的实施例,储能模块400被配置为与传感装置900并联,储能模块400被配置为储存来自电池装置700的电能。According to an embodiment of the present disclosure, the
根据本公开的实施例,在电池装置700的电压骤降的情况下,控制模块300被配置为响应于第一源极S1的电压和第一漏极D1的电压满足第一电压阈值条件,控制第一场效应管200处于截止状态,储能模块400被配置为响应于第一场效应管200处于截止状态,向传感装置900供电。According to an embodiment of the present disclosure, in the case of a voltage dip of the
根据本公开的实施例,在无人车的电池装置正常工作时,控制模块可以控制第一场效应管处于导通状态,电池装置可以向储能模块充电;在无人车的电池装置骤降时,由于电势差,储能模块可以向传感装置进行供电,以确保传感装置在电池装置骤降的一段时间内可以正常工作,所以至少部分地克服了相关技术中无人车的电池装置电压骤降会影响传感装置的正常工作,进而影响无人车的运行安全的技术问题,通过保障传感装置的工作稳定性,有效提高了无人车运行时的安全性;另一方面,由于电池装置骤降会导致第一场效应管的第一源极的电压和第一漏极的电压满足第一电压阈值条件,因而控制模块可以控制第一场效应管处于截止状态,从而使得储能模块和电池装置之间的回路处于开路状态,储能模块中的电能不会流向电池装置,进而有效抑制了储能模块中的电能的浪费,提高了传感装置的工作稳定性。According to the embodiments of the present disclosure, when the battery device of the unmanned vehicle is working normally, the control module can control the first field effect transistor to be in a conducting state, and the battery device can charge the energy storage module; when the battery device of the unmanned vehicle drops sharply When the electric potential is different, the energy storage module can supply power to the sensing device to ensure that the sensing device can work normally during a period of time when the battery device slumps, so the voltage of the battery device of the unmanned vehicle in the related art is at least partially overcome. The sudden drop will affect the normal operation of the sensing device, and then affect the technical problem of the safe operation of the unmanned vehicle. By ensuring the working stability of the sensing device, the safety of the unmanned vehicle during operation is effectively improved; on the other hand, due to the The sudden drop of the battery device will cause the voltage of the first source electrode and the voltage of the first drain electrode of the first field effect transistor to meet the first voltage threshold condition, so the control module can control the first field effect transistor to be in an off state, so that the energy storage is The circuit between the module and the battery device is in an open state, and the electric energy in the energy storage module will not flow to the battery device, thereby effectively suppressing the waste of electric energy in the energy storage module and improving the working stability of the sensing device.
根据本公开的实施例,电池装置700可以包括电池和电源管理模块,电池被配置为通过电源管理模块向动力装置800和传感装置900供电。According to an embodiment of the present disclosure, the
根据本公开的实施例,传感装置900可以包括传感器和核心处理单元套件,传感装置900被配置为连接动力装置800,传感装置900被配置为向动力装置800发送运动控制信号。According to an embodiment of the present disclosure, the
根据本公开的实施例,动力装置800可以被配置为响应于运动控制信号而控制无人车运动。According to an embodiment of the present disclosure, the
根据本公开的实施例,针对无人车因短路或者其他原因造成的电压骤降,通过在电池装置和传感装置之间配置电压保持装置的方式,可使传感装置在电压骤降的过程中正常运行,避免因电压骤降造成传感装置复位、重启等对无人车的运行安全造成影响。According to the embodiments of the present disclosure, for the voltage sag of the unmanned vehicle due to a short circuit or other reasons, by configuring a voltage holding device between the battery device and the sensing device, the sensing device can be kept in the process of the voltage sag. It can operate normally in the middle of the road to avoid the reset and restart of the sensor device caused by the voltage dip, which will affect the operation safety of the unmanned vehicle.
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。Those skilled in the art will appreciate that various combinations and/or combinations of features recited in various embodiments and/or claims of the present disclosure are possible, even if such combinations or combinations are not expressly recited in the present disclosure. In particular, various combinations and/or combinations of the features recited in the various embodiments of the present disclosure and/or in the claims may be made without departing from the spirit and teachings of the present disclosure. All such combinations and/or combinations fall within the scope of this disclosure.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. Although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (12)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210619649.6A CN114865912A (en) | 2022-06-01 | 2022-06-01 | Voltage holding device for unmanned vehicle and unmanned vehicle |
| PCT/CN2022/132818 WO2023231318A1 (en) | 2022-06-01 | 2022-11-18 | Voltage holding device for unmanned vehicle and unmanned vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210619649.6A CN114865912A (en) | 2022-06-01 | 2022-06-01 | Voltage holding device for unmanned vehicle and unmanned vehicle |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN114865912A true CN114865912A (en) | 2022-08-05 |
Family
ID=82640806
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210619649.6A Pending CN114865912A (en) | 2022-06-01 | 2022-06-01 | Voltage holding device for unmanned vehicle and unmanned vehicle |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN114865912A (en) |
| WO (1) | WO2023231318A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115453949A (en) * | 2022-09-29 | 2022-12-09 | 北京京东乾石科技有限公司 | Time sequence control device and unmanned vehicle |
| WO2023231318A1 (en) * | 2022-06-01 | 2023-12-07 | 北京京东乾石科技有限公司 | Voltage holding device for unmanned vehicle and unmanned vehicle |
| CN117353421A (en) * | 2023-10-10 | 2024-01-05 | 重庆神缘智能科技有限公司 | An optimization method and optimization circuit for power supply isolation |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119134892B (en) * | 2024-11-12 | 2025-03-11 | 湖南长泰工业科技有限公司 | Vehicle-mounted power supply control system for airport plane power supply |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102739029A (en) * | 2012-05-31 | 2012-10-17 | 德讯科技股份有限公司 | Soft start circuit for realizing large-current start of switching power supply |
| CN206698004U (en) * | 2017-03-27 | 2017-12-01 | 南京南瑞继保电气有限公司 | A kind of energy-storage system that can be applied to microcomputer control protective unit |
| CN208257653U (en) * | 2018-06-27 | 2018-12-18 | 烽火通信科技股份有限公司 | A kind of power supply energy leadage circuit and device |
| CN208971382U (en) * | 2018-10-23 | 2019-06-11 | 深圳市海勤科技有限公司 | Soft start DC power supply switch circuit and the electronic equipment for applying it |
| CN112310960A (en) * | 2020-10-16 | 2021-02-02 | 广东电网有限责任公司广州供电局 | Voltage sag compensation circuit and device |
| CN113872176A (en) * | 2021-10-14 | 2021-12-31 | 上海军陶科技股份有限公司 | Double-bus positive line reverse filling prevention circuit based on field effect transistor |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210376600A1 (en) * | 2020-05-29 | 2021-12-02 | Loon Llc | Transient Voltage Protection for Low Voltage Circuits |
| CN112054529A (en) * | 2020-08-31 | 2020-12-08 | 广东电网有限责任公司 | Voltage support equipment and control method thereof |
| CN213637085U (en) * | 2020-10-19 | 2021-07-06 | 湖北春田电工技术有限公司 | Voltage sag compensation device |
| CN112952846A (en) * | 2021-04-23 | 2021-06-11 | 哈尔滨易成电气有限公司 | Parallel high-speed switching type voltage sag treatment system |
| CN114865912A (en) * | 2022-06-01 | 2022-08-05 | 北京京东乾石科技有限公司 | Voltage holding device for unmanned vehicle and unmanned vehicle |
-
2022
- 2022-06-01 CN CN202210619649.6A patent/CN114865912A/en active Pending
- 2022-11-18 WO PCT/CN2022/132818 patent/WO2023231318A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102739029A (en) * | 2012-05-31 | 2012-10-17 | 德讯科技股份有限公司 | Soft start circuit for realizing large-current start of switching power supply |
| CN206698004U (en) * | 2017-03-27 | 2017-12-01 | 南京南瑞继保电气有限公司 | A kind of energy-storage system that can be applied to microcomputer control protective unit |
| CN208257653U (en) * | 2018-06-27 | 2018-12-18 | 烽火通信科技股份有限公司 | A kind of power supply energy leadage circuit and device |
| CN208971382U (en) * | 2018-10-23 | 2019-06-11 | 深圳市海勤科技有限公司 | Soft start DC power supply switch circuit and the electronic equipment for applying it |
| CN112310960A (en) * | 2020-10-16 | 2021-02-02 | 广东电网有限责任公司广州供电局 | Voltage sag compensation circuit and device |
| CN113872176A (en) * | 2021-10-14 | 2021-12-31 | 上海军陶科技股份有限公司 | Double-bus positive line reverse filling prevention circuit based on field effect transistor |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023231318A1 (en) * | 2022-06-01 | 2023-12-07 | 北京京东乾石科技有限公司 | Voltage holding device for unmanned vehicle and unmanned vehicle |
| CN115453949A (en) * | 2022-09-29 | 2022-12-09 | 北京京东乾石科技有限公司 | Time sequence control device and unmanned vehicle |
| CN117353421A (en) * | 2023-10-10 | 2024-01-05 | 重庆神缘智能科技有限公司 | An optimization method and optimization circuit for power supply isolation |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023231318A1 (en) | 2023-12-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114865912A (en) | Voltage holding device for unmanned vehicle and unmanned vehicle | |
| CN108781078B (en) | Power supply control device | |
| US20080018174A1 (en) | Power control apparatus and method thereof | |
| KR102555498B1 (en) | Inrush current limiter and system including the same | |
| CN204012687U (en) | There is the protective circuit of the pooling feature that powers on | |
| US20130271104A1 (en) | Soft-start time control circuit | |
| CN110635669A (en) | A high-voltage MOSFET switch drive and protection circuit | |
| CN112311228B (en) | Switching power supply and control circuit and control method thereof | |
| CN115995801B (en) | Power supply device and system for vehicle body stabilization system and vehicle | |
| US20190103867A1 (en) | Power supply control device | |
| CN109194126B (en) | Power supply switching circuit | |
| CN112260370B (en) | Battery protection circuit board | |
| JP7568502B2 (en) | Switching power supply circuit and switching power supply device | |
| CN109155626B (en) | Power supply control device | |
| JP2014021634A (en) | Rush current suppression circuit | |
| US8138705B2 (en) | Circuit arrangement and method for controlling an electric load | |
| CN113489126A (en) | High-efficient milliwatt level photovoltaic energy collection control circuit | |
| US20220345031A1 (en) | Switching converter and low-voltage startup circuit thereof | |
| CN112421594B (en) | Input protection circuit and vehicle-mounted generator | |
| TW202321867A (en) | Power supplying circuit and power supplying method | |
| CN114974329A (en) | A shutdown controlling means and unmanned vehicle for unmanned vehicle | |
| KR102851361B1 (en) | Battery disconnect apparatus and battery apparatus including the same | |
| CN114793013A (en) | Voltage holding device and unmanned vehicle | |
| US11689195B2 (en) | Semiconductor device | |
| CN217036776U (en) | A drive circuit, a battery management system, a battery pack and an electrical device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |