CN114886404B - Electronic equipment, device and storage medium - Google Patents
Electronic equipment, device and storage medium Download PDFInfo
- Publication number
- CN114886404B CN114886404B CN202210818321.7A CN202210818321A CN114886404B CN 114886404 B CN114886404 B CN 114886404B CN 202210818321 A CN202210818321 A CN 202210818321A CN 114886404 B CN114886404 B CN 114886404B
- Authority
- CN
- China
- Prior art keywords
- feature vector
- vector
- fusion
- fused
- classification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013598 vector Substances 0.000 claims abstract description 460
- 230000033764 rhythmic process Effects 0.000 claims abstract description 160
- 230000004927 fusion Effects 0.000 claims abstract description 135
- 238000005070 sampling Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 72
- 230000015654 memory Effects 0.000 claims description 26
- 230000006835 compression Effects 0.000 claims description 23
- 238000007906 compression Methods 0.000 claims description 23
- 238000011176 pooling Methods 0.000 claims description 19
- 238000000605 extraction Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 14
- 230000000747 cardiac effect Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 abstract description 10
- 230000006870 function Effects 0.000 description 24
- 238000013527 convolutional neural network Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 230000004913 activation Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000013480 data collection Methods 0.000 description 10
- 206010003119 arrhythmia Diseases 0.000 description 9
- 230000006793 arrhythmia Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010006578 Bundle-Branch Block Diseases 0.000 description 1
- 101100440696 Caenorhabditis elegans cor-1 gene Proteins 0.000 description 1
- 206010049418 Sudden Cardiac Death Diseases 0.000 description 1
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/0245—Measuring pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Signal Processing (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本申请涉及医学信号处理技术领域,尤其涉及一种电子设备、装置及存储介质。The present application relates to the technical field of medical signal processing, and in particular to an electronic device, device and storage medium.
背景技术Background technique
近来年,随着物质水平的不断提升,人们越来越重视自身的健康状况。在各类疾病中,心脏病不仅是一种较为常见的疾病类型,更对人的生命健康造成了较大的威胁。In recent years, with the continuous improvement of the material level, people pay more and more attention to their own health. Among various diseases, heart disease is not only a relatively common type of disease, but also poses a greater threat to human life and health.
心电图(Electrocardiogram,ECG)可以客观反映心脏各部位的生理状况和工作状态,是诊断心律失常疾病的重要手段和主要依据,然而,心电图的识别仍然需要经验丰富的医务人员才能准确的诊断出心律失常的类别。因此,利用智能医疗设备以及相关算法,实现及时监控当前病人的心脏跳动状态,并对其心律进行自动分类,具有很强的现实意义。Electrocardiogram (ECG) can objectively reflect the physiological status and working status of various parts of the heart, and is an important means and main basis for diagnosing arrhythmia diseases. However, the identification of ECG still requires experienced medical personnel to accurately diagnose arrhythmia category. Therefore, it is of great practical significance to use intelligent medical equipment and related algorithms to monitor the current patient's heart beating state in time and automatically classify their heart rhythm.
在现有技术中,为了实现对心律的自动分类,在获取到心电图包含的心电信号之后,对其进行归一化处理,获得相应的心律数据,在此基础上,基于卷积神经网络(Convolutional Neural Networks,CNN)模型和编码-解码模型构建的心律数据分类模块,对心律数据进行特征提取,获得相应的心律特征信息,从而根据获得的心律特征信息,完成对心律数据的分类。In the prior art, in order to realize the automatic classification of heart rhythm, after obtaining the ECG signal contained in the electrocardiogram, it is normalized to obtain the corresponding heart rhythm data. On this basis, based on the convolutional neural network ( The heart rhythm data classification module constructed by the Convolutional Neural Networks (CNN) model and the encoding-decoding model extracts the characteristics of the heart rhythm data and obtains the corresponding heart rhythm feature information, so as to complete the classification of the heart rhythm data according to the obtained heart rhythm feature information.
然而,采用上述的心律数据分类方法,通过心律数据模块,完成对心律数据的分类,会因卷积神经网络模型和编码-解码模型融合的特征提取能力不够,从而导致对心律数据的分类不准确。However, if the heart rhythm data classification method mentioned above is used to complete the classification of heart rhythm data through the heart rhythm data module, the feature extraction ability of the fusion of the convolutional neural network model and the encoding-decoding model will be insufficient, resulting in inaccurate classification of the heart rhythm data. .
因此,采用上述方式,心律数据分类的准确度较低。Therefore, with the above method, the accuracy of heart rhythm data classification is low.
发明内容Contents of the invention
本申请实施例提供了一种电子设备、装置及存储介质,用以提高心律数据分类的准确度。Embodiments of the present application provide an electronic device, an apparatus, and a storage medium, so as to improve the accuracy of heart rhythm data classification.
第一方面,本申请实施例提供了一种电子设备,包括存储器,处理器及存储在存储器上并可在处理器运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现如下心律数据分类方法:In the first aspect, the embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein, when the processor executes the computer program, Implement the following heart rhythm data classification methods:
获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;Obtain the heart rhythm data of the target object within the set time range, and perform feature extraction on the waveform features of the heart rhythm data to obtain the corresponding original feature vector set;
分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;performing feature compression on each original feature vector included in the original feature vector set according to two preset vector element sampling methods respectively, to obtain corresponding first feature vector set and second feature vector set;
对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集;Fusing the original feature vector set, the first feature vector set and the second feature vector set to obtain a corresponding fusion feature vector set;
基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;Based on the set of fusion feature vectors, the element correlation between the vector elements contained in each fusion feature vector is determined to determine the respective classification weights of each fusion feature vector;
基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。A heart rhythm category of the heart rhythm data is determined based on each fusion feature vector and its corresponding classification weight.
第二方面,本申请实施例还提供了一种心律数据分类装置,所述装置包括:In the second aspect, the embodiment of the present application also provides a heart rhythm data classification device, the device comprising:
获取模块,用于获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;The obtaining module is used to obtain the heart rhythm data of the target object within the set time range, and perform feature extraction on the waveform features of the heart rhythm data to obtain the corresponding original feature vector set;
压缩模块,用于分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;The compression module is used to perform feature compression on each original feature vector included in the original feature vector set according to the two preset vector element sampling methods, and obtain the corresponding first feature vector set and second feature vector set;
融合模块,用于对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集;The fusion module is used to fuse the original feature vector set, the first feature vector set and the second feature vector set to obtain a corresponding fusion feature vector set;
配置模块,用于基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;The configuration module is used to determine the respective classification weights of each fusion feature vector based on the fusion feature vector set, the element correlation between the vector elements contained in each fusion feature vector;
识别模块,用于基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。An identification module, configured to determine the heart rhythm category of the heart rhythm data based on each fusion feature vector and its corresponding classification weight.
在一种可能的实施例中,在分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集时,所述压缩模块具体用于:In a possible embodiment, each original feature vector included in the original feature vector set is subjected to feature compression according to the two preset vector element sampling methods to obtain the corresponding first feature vector set and second feature vector When set, the compression module is specifically used for:
基于两种向量元素采样方式,对各个原始特征向量进行全局平均池化,获得第一语义信息集,以及对各个原始特征向量进行全局最大池化,获得第二语义信息集;Based on two vector element sampling methods, perform global average pooling on each original feature vector to obtain a first semantic information set, and perform global maximum pooling on each original feature vector to obtain a second semantic information set;
基于第一语义信息集,生成第一特征向量集,以及基于第二语义信息集,生成第二特征向量集。Based on the first set of semantic information, a first set of feature vectors is generated, and based on the second set of semantic information, a second set of feature vectors is generated.
在一种可能的实施例中,在基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度时,所述配置模块具体用于:In a possible embodiment, when based on the fusion feature vector set, the element correlation between the vector elements contained in each fusion feature vector, the configuration module is specifically used to:
针对各个融合特征向量,分别执行以下操作:For each fused feature vector, perform the following operations:
获取一个融合特征向量包含的各个向量元素,并分别对各个向量元素各自的元素名称进行语义提取,获得各个元素名称各自的语义信息;Obtain each vector element contained in a fusion feature vector, and perform semantic extraction on the respective element names of each vector element, and obtain the respective semantic information of each element name;
针对各个元素名称,分别执行以下操作:For each element name, do the following:
分别对一个元素名称的语义信息,与其他元素名称的语义信息进行语义相似度比对,获得至少一个语义相似度;Comparing the semantic information of an element name with the semantic information of other element names to obtain at least one semantic similarity;
基于获得的至少一个语义相似度,分别确定一个元素名称对应的向量元素,与其他向量元素之间的元素相关度。Based on the obtained at least one semantic similarity, respectively determine the vector element corresponding to an element name, and the element correlation between other vector elements.
在一种可能的实施例中,在基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重时,所述配置模块具体用于:In a possible embodiment, when determining the respective classification weights of each fusion feature vector based on the element correlation between the vector elements contained in each fusion feature vector in the fusion feature vector set, the configuration module is specifically used to :
针对各个融合特征向量,分别执行以下操作:For each fused feature vector, perform the following operations:
分别获取一个融合特征向量包含的各个向量元素,各自对应的至少一个元素相关度;每个元素相关度表征:相应的向量元素与其他向量元素中的一个向量元素之间的关联程度;Respectively obtain each vector element included in a fusion feature vector, and at least one element correlation degree corresponding to each; each element correlation degree represents: the degree of association between the corresponding vector element and one of the other vector elements;
基于各个向量元素各自对应的至少一个各个元素相关度,分别获得各个向量元素各自对应的子分类权重;Obtaining respective sub-category weights corresponding to each vector element based on at least one element correlation corresponding to each vector element;
基于获得的各个子分类权重,以及各个向量元素各自的元素值,获得一个融合特征向量的分类权重。Based on the obtained weights of each sub-category and the respective element values of each vector element, a classification weight of a fused feature vector is obtained.
在一种可能的实施例中,在基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别时,所述识别模块具体用于:In a possible embodiment, when determining the heart rhythm category of the heart rhythm data based on each fused feature vector and its corresponding classification weight, the identification module is specifically configured to:
分别确定各个融合特征向量各自对应的分类权重,各自归属的融合特征权重区间;Respectively determine the classification weights corresponding to each fusion feature vector, and the fusion feature weight intervals to which they belong;
基于获得的各个融合特征权重区间,以及预设的融合特征权重区间与心律类别之间的对应关系,确定心律数据的心律类别。The heart rhythm category of the heart rhythm data is determined based on the obtained fusion feature weight intervals and the preset correspondence between the fusion feature weight intervals and heart rhythm categories.
第三方面,提出了一种电子设备,其包括处理器和存储器,其中,所述存储器存储有程序代码,当所述程序代码被所述处理器执行时,使得所述处理器执行上述第一方面所述的心律数据分类方法的步骤。In a third aspect, an electronic device is proposed, which includes a processor and a memory, wherein the memory stores program code, and when the program code is executed by the processor, the processor executes the above-mentioned first The steps of the heart rhythm data classification method described in the aspect.
第四方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行如第一方面所述的心律数据分类方法的步骤。In a fourth aspect, a computer program product is provided. When the computer program product is invoked by a computer, the computer executes the steps of the heart rhythm data classification method described in the first aspect.
本申请有益效果如下:The beneficial effects of this application are as follows:
在本申请实施例所提供的电子设备中,获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;接着,分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;进一步地,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;最终,基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。In the electronic device provided in the embodiment of the present application, the heart rhythm data of the target object within the set time range is obtained, and the waveform features of the heart rhythm data are extracted to obtain the corresponding original feature vector set; then, according to the preset The two vector element sampling methods are used to perform feature compression on each original feature vector contained in the original feature vector set, and obtain the corresponding first feature vector set and second feature vector set; further, the original feature vector set, the first feature vector The vector set and the second feature vector set are fused to obtain a corresponding fused feature vector set, so that based on the fused feature vector set, the element correlation between the vector elements contained in each fused feature vector, the respective classification of each fused feature vector is determined weight; finally, based on each fusion feature vector and its corresponding classification weight, the heart rhythm category of the heart rhythm data is determined.
采用这种方式,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重,进而基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别,避免了现有技术中,因卷积神经网络模型和编码-解码模型融合的特征提取能力不够,从而导致对心律数据的分类不准确的技术弊端,故而,提高了心律数据分类的准确度。In this way, the original eigenvector set, the first eigenvector set, and the second eigenvector set are fused to obtain the corresponding fused eigenvector set, so that based on the fused eigenvector set, the vector elements contained in each fused feature vector The correlation between the elements, determine the respective classification weights of each fusion feature vector, and then determine the heart rhythm category of the heart rhythm data based on each fusion feature vector and their corresponding classification weights, avoiding the problem of convolutional neural network model in the prior art The ability to extract features fused with the encoding-decoding model is not enough, which leads to the technical disadvantage of inaccurate classification of heart rhythm data, thus improving the accuracy of heart rhythm data classification.
此外,本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者,通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。Furthermore, other features and advantages of the application will be set forth in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the application. The objectives and other advantages of the application may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort. In the attached picture:
图1示例性示出了本申请实施例适用的系统架构的一个可选的示意图;FIG. 1 exemplarily shows an optional schematic diagram of a system architecture applicable to an embodiment of the present application;
图2示例性示出了本申请实施例提供的一种心律数据分类方法的整体实施流程示意图;Fig. 2 exemplarily shows a schematic diagram of the overall implementation flow of a heart rhythm data classification method provided by the embodiment of the present application;
图3示例性示出了本申请实施例提供的一种心律数据分类方法的方法实施流程图;Fig. 3 exemplarily shows a method implementation flowchart of a heart rhythm data classification method provided by the embodiment of the present application;
图4示例性示出了本申请实施例提供的一种卷积神经网络模型的组成结构示意图;FIG. 4 exemplarily shows a schematic diagram of the composition and structure of a convolutional neural network model provided by an embodiment of the present application;
图5示例性示出了本申请实施例提供的一种获得第一特征向量集和第二特征向量集的逻辑示意图;Fig. 5 exemplarily shows a logical schematic diagram for obtaining the first feature vector set and the second feature vector set provided by the embodiment of the present application;
图6示例性示出了本申请实施例提供的序列到序列网络模型的组成结构示意图;FIG. 6 exemplarily shows a schematic diagram of the composition and structure of the sequence-to-sequence network model provided by the embodiment of the present application;
图7示例性示出了本申请实施例提供的一种获取元素相关度的具体应用场景示意图;FIG. 7 exemplarily shows a schematic diagram of a specific application scenario for obtaining element correlation provided by the embodiment of the present application;
图8示例性示出了本申请实施例提供的一种确定融合特征向量的分类权重的方法实施流程图;Fig. 8 exemplarily shows a flow chart of implementing a method for determining classification weights of fused feature vectors provided by an embodiment of the present application;
图9示例性示出了本申请实施例提供的确定心律数据的心律类别的具体应用场景示意图;Fig. 9 exemplarily shows a schematic diagram of a specific application scenario for determining the heart rhythm category of the heart rhythm data provided by the embodiment of the present application;
图10示例性示出了本申请实施例提供的一种基于图3的具体应用场景示意图;FIG. 10 exemplarily shows a schematic diagram of a specific application scenario based on FIG. 3 provided by the embodiment of the present application;
图11示例性示出了本申请实施例提供的一种心律数据分类装置的结构示意图;FIG. 11 exemplarily shows a schematic structural diagram of a heart rhythm data classification device provided by an embodiment of the present application;
图12示例性示出了本申请实施例提供的一种电子设备的结构示意图。FIG. 12 exemplarily shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请技术方案的一部分实施例,而不是全部的实施例。基于本申请文件中记载的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请技术方案保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the application clearer, the technical solutions of the application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the application. Obviously, the described embodiments are the Some embodiments of the technical solution, but not all embodiments. Based on the embodiments described in the application documents, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the technical solutions of the present application.
需要说明的是,在本申请的描述中“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。A与B连接,可以表示:A与B直接连接和A与B通过C连接这两种情况。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。It should be noted that in the description of the present application, "plurality" is understood as "at least two". "And/or" describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. The connection between A and B can mean: A and B are directly connected and A and B are connected through C. In addition, in the description of the present application, words such as "first" and "second" are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
此外,本申请技术方案中,对数据的采集、传播、使用等,均符合国家相关法律法规要求。In addition, in the technical solution of this application, the collection, dissemination, and use of data, etc., all comply with the requirements of relevant national laws and regulations.
下面对本申请实施例的设计思想进行简要介绍:The design idea of the embodiment of the present application is briefly introduced below:
近年来,心血管疾病已成为威胁人们身体健康的重要疾病之一,其患病率与致死率逐年增加,其中,大部分的心血管疾病的发生,通常都伴随着心律失常,即心律失常是诱发心脏病和心脏猝死的一个重要原因。In recent years, cardiovascular disease has become one of the important diseases that threaten people's health, and its morbidity and mortality are increasing year by year. Among them, the occurrence of most cardiovascular diseases is usually accompanied by arrhythmia, that is, arrhythmia is An important cause of heart disease and sudden cardiac death.
鉴于ECG可以客观反映心脏各部位的生理状况和工作状态,故而,ECG可作为诊断心律失常疾病的重要手段和主要依据,然而,EFC的识别仍然需要经验丰富的医务人员才能准确的诊断出心律失常的类别。但即使是经验丰富的义务人员,仍可能对心律数据做出误判,并且,由于ECG的数据量庞大,医务人员有限,由于不可避免的疲劳等因素,会进一步加剧对心律数据的误判。In view of the fact that ECG can objectively reflect the physiological status and working status of various parts of the heart, ECG can be used as an important means and main basis for diagnosing arrhythmia diseases. However, the identification of EFC still requires experienced medical personnel to accurately diagnose arrhythmia category. However, even experienced volunteers may still make misjudgment of heart rhythm data. Moreover, due to the huge amount of ECG data and limited medical staff, unavoidable fatigue and other factors will further aggravate the misjudgment of heart rhythm data.
此外,为了减缓医务人员的工作压力,出现了各种各样的心律数据自动分类的相关技术,然而,现有的心律数据自动分类技术,对心律数据的特征提取能力不够;因此,亟需一种提高心律数据的特征提取能力的心律数据分类方法,从而提高心律数据分类的准确度。In addition, in order to alleviate the work pressure of medical staff, various related technologies for automatic classification of heart rhythm data have emerged. However, the existing automatic classification technology for heart rhythm data is not capable of extracting the features of heart rhythm data; therefore, there is an urgent need for a A heart rhythm data classification method that improves the feature extraction capability of the heart rhythm data, thereby improving the accuracy of the heart rhythm data classification.
有鉴于此,本申请实施例中提供了一种电子设备执行的心律数据分类方法,具体包括:获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;接着,分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;进一步地,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;最终,基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别;此外,为了便于描述与理解,在本申请实施例中,电子设备可以为执行心律数据分类方法的服务器。In view of this, an embodiment of the present application provides a heart rhythm data classification method performed by an electronic device, which specifically includes: acquiring the heart rhythm data of a target object within a set time range, and performing feature extraction on the waveform features of the heart rhythm data to obtain The corresponding original feature vector set; then, according to the two preset vector element sampling methods, perform feature compression on each original feature vector contained in the original feature vector set, and obtain the corresponding first feature vector set and second feature vector set ; Further, the original eigenvector set, the first eigenvector set and the second eigenvector set are fused to obtain the corresponding fused eigenvector set, so that based on the fused eigenvector set, the relationship between the vector elements contained in each fused eigenvector Determine the respective classification weights of each fusion feature vector; finally, based on each fusion feature vector and its corresponding classification weight, determine the heart rhythm category of the heart rhythm data; in addition, for the convenience of description and understanding, in the embodiment of this application In this method, the electronic device may be a server executing the heart rhythm data classification method.
特别地,以下结合说明书附图对本申请的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本申请,并不用于限定本申请,并且在不冲突的情况下,本申请实施例及实施例中的特征可以相互组合。In particular, the preferred embodiments of the present application will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present application, not to limit the present application, and in the absence of conflict , the embodiments of the present application and the features in the embodiments can be combined with each other.
参阅图1所示,其为本申请实施例提供的一种系统架构示意图,该系统架构包括:服务器101、终端设备102和数据采集设备103。服务器101和终端设备102之间可通过通信网络进行信息交互,其中,通信网络采用的通信方式可包括:无线通信方式和有线通信方式;终端设备102与数据采集设备103连接,数据采集设备103采集到的心律数据发送给终端设备102。Referring to FIG. 1 , it is a schematic diagram of a system architecture provided by an embodiment of the present application, and the system architecture includes: a server 101 , a terminal device 102 and a data collection device 103 . Server 101 and terminal device 102 can carry out information exchange through communication network, wherein, the communication mode that communication network adopts can include: wireless communication mode and wired communication mode; Terminal device 102 is connected with data collection device 103, and data collection device 103 collects The received heart rhythm data is sent to the terminal device 102.
示例性的,服务器101可通过蜂窝移动通信技术接入网络,与终端设备102进行通信,其中,所述蜂窝移动通信技术,比如,包括第五代移动通信(5th Generation MobileNetworks,5G)技术。Exemplarily, the server 101 may access a network through a cellular mobile communication technology, and communicate with the terminal device 102, wherein the cellular mobile communication technology includes, for example, a fifth generation mobile communication (5th Generation MobileNetworks, 5G) technology.
可选的,服务器101可通过短距离无线通信方式接入网络,与终端设备102进行通信,其中,所述短距离无线通信方式,比如,包括无线保真(Wireless Fidelity,Wi-Fi)技术。Optionally, the server 101 may access the network through a short-distance wireless communication manner, and communicate with the terminal device 102, wherein the short-distance wireless communication manner, for example, includes a wireless fidelity (Wireless Fidelity, Wi-Fi) technology.
本申请实施例对上述设备的数量不做任何限制,如图1所示,仅以服务器101、终端设备102和数据采集设备103为例进行描述,下面对上述各设备及其各自的功能进行简要介绍。The embodiment of the present application does not impose any restrictions on the number of the above-mentioned devices. As shown in FIG. 1, only the server 101, the terminal device 102 and the data collection device 103 are used as examples for description, and the above-mentioned devices and their respective functions are described below brief introduction.
服务器101可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(Content Delivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。The server 101 can be an independent physical server, or a server cluster or a distributed system composed of multiple physical servers, and can also provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, Cloud servers for basic cloud computing services such as middleware services, domain name services, security services, content delivery network (Content Delivery Network, CDN), and big data and artificial intelligence platforms.
值得提出的是,在本申请实施例中,服务器101用于获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;接着,分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;进一步地,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;最终,基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。It is worth mentioning that, in the embodiment of the present application, the server 101 is used to obtain the heart rhythm data of the target object within the set time range, and perform feature extraction on the waveform features of the heart rhythm data to obtain the corresponding original feature vector set; then, Perform feature compression on each original feature vector contained in the original feature vector set according to the two preset vector element sampling methods respectively, and obtain the corresponding first feature vector set and second feature vector set; further, the original feature vector set , the first feature vector set and the second feature vector set are fused to obtain the corresponding fused feature vector set, so that based on the fused feature vector set, the element correlation between the vector elements contained in each fused feature vector, determine each fused feature The respective classification weights of the vectors; finally, the heart rhythm category of the heart rhythm data is determined based on each fusion feature vector and its corresponding classification weights.
示例性的,参阅图2所示,其为本申请实施例提供的一种心律数据分类方法的整体实施流程图,服务器可基于预先训练后的卷积神经网络模型和序列到序列网络模型,去确定在设定时间范围内,获取到的目标对象的心律数据的心律类别,其中,序列到序列网络模型也可称之为编码-解码模型;此外,在本申请实施例中,心律数据根据心电节拍可分为五种心律:N类(正常或者束支传导阻滞节拍)、S类(室上性异常节拍)、V类(心室异常节拍)、F类(融合节拍)和Q类(末能分类节拍)。As an example, refer to FIG. 2, which is an overall implementation flowchart of a heart rhythm data classification method provided by the embodiment of the present application. The server can use the pre-trained convolutional neural network model and sequence-to-sequence network model to Determine the heart rhythm category of the heart rhythm data of the target object acquired within the set time range, wherein the sequence-to-sequence network model can also be called an encoding-decoding model; in addition, in the embodiment of the present application, the heart rhythm data is Electrical beats can be divided into five types of heart rhythms: N (normal or bundle branch block beats), S (abnormal supraventricular beats), V (abnormal ventricular beats), F (fusion beats), and Q ( end can classify beats).
需要说明的是,服务器在执行上述心律数据分类的方法步骤时,采用带有通道注意力的卷积神经网络提取特征,再送入到带有全局注意力的序列到序列网络模型中进行分类,通过引入双注意力机制,提高对心律数据的特征提取能力。It should be noted that, when the server performs the above-mentioned heart rhythm data classification method steps, it uses a convolutional neural network with channel attention to extract features, and then sends them to a sequence-to-sequence network model with global attention for classification. A dual-attention mechanism is introduced to improve the feature extraction ability of heart rhythm data.
终端设备102是一种可以向用户提供语音和/或数据连通性的设备,包括:具有无线连接功能的手持式终端设备、车载终端设备等。The terminal device 102 is a device that can provide users with voice and/or data connectivity, including: a handheld terminal device with a wireless connection function, a vehicle-mounted terminal device, and the like.
示例性的,终端设备102包括但不限于:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备,虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备,或智慧家庭中的无线终端设备等。Exemplarily, the terminal device 102 includes, but is not limited to: a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile Internet device (Mobile Internet Device, MID), a wearable device, a virtual reality (Virtual Reality, VR) device, an augmented reality (Augmented Reality, AR) equipment, wireless terminal devices in industrial control, wireless terminal devices in unmanned driving, wireless terminal devices in smart grids, wireless terminal devices in transportation safety, wireless terminal devices in smart cities, or Wireless terminal equipment in smart homes, etc.
此外,终端设备102上可以安装有相关的客户端,该客户端可以是软件(例如,APP、浏览器、短视频软件等),也可以是网页、小程序等。在本申请实施例中,心律数据可由终端设备102发送至服务器101。In addition, a relevant client may be installed on the terminal device 102, and the client may be software (for example, APP, browser, short video software, etc.), or may be a webpage, a small program, or the like. In the embodiment of the present application, the heart rhythm data can be sent from the terminal device 102 to the server 101 .
数据采集设备103用于获取数据和记录信息,通过相应的传感器可以将采集的信号转换成模拟的电信号,进而转换为数字信号存储起来,进行预处理的设备。包括具有无线连接功能的手持式数据采集设备、头戴式数据采集设备以及固定式数据采集设备等。The data acquisition device 103 is used to obtain data and record information, and convert the collected signals into analog electrical signals through corresponding sensors, and then convert them into digital signals for storage and preprocessing. Including handheld data collection devices with wireless connectivity, head-mounted data collection devices, and fixed data collection devices.
示例性的,数据采集设备103可以是:批处理数据采集器、工业数据采集器、射频识别(Radio Frequency Identification,RFID)数据采集器,以及其他带有数据采集功能的数据采集设备(手机、平板电脑等),数据采集卡等。Exemplarily, the data collection device 103 may be: a batch processing data collector, an industrial data collector, a radio frequency identification (Radio Frequency Identification, RFID) data collector, and other data collection devices (mobile phones, tablet computer, etc.), data acquisition card, etc.
需要说明的是,本申请实施例中,数据采集设备103以心电仪作为例子进行描述,其中,心电仪能够实时采集目标对象的心律数据,并将采集到的心律数据上传给终端设备102。It should be noted that, in the embodiment of the present application, the data acquisition device 103 is described by taking an electrocardiogram as an example, wherein the electrocardiometer can collect the heart rhythm data of the target object in real time, and upload the collected heart rhythm data to the terminal device 102 .
下面结合上述的系统架构,以及参考附图来描述本申请示例性实施方式提供的心律数据分类方法,需要注意的是,上述系统架构仅是为了便于理解本申请的精神和原理而示出,本申请的实施方式在此方面不受任何限制。The heart rhythm data classification method provided by the exemplary embodiments of the present application will be described below in conjunction with the above-mentioned system architecture and with reference to the accompanying drawings. The implementation of the application is not limited in this regard.
参阅图3所示,其为本申请实施例提供的一种心律数据分类方法的方法实施流程图,执行主体以服务器为例,该方法的具体实施流程如下:Referring to Figure 3, it is a flow chart of implementing a heart rhythm data classification method provided in the embodiment of the present application. The execution subject takes the server as an example. The specific implementation process of the method is as follows:
S301:获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集。S301: Obtain the heart rhythm data of the target object within a set time range, and perform feature extraction on the waveform features of the heart rhythm data to obtain a corresponding original feature vector set.
具体的,在执行步骤S301时,服务器获取到数据采集设备在设定时间范围内,采集到的目标对象的心律数据之后,便可基于带有通道注意力的卷积神经网络模型,对心律数据的波形特征进行特征提取,从而获得相应的原始特征向量集。Specifically, when step S301 is executed, after the server obtains the heart rhythm data of the target object collected by the data collection device within the set time range, it can analyze the heart rhythm data based on the convolutional neural network model with channel attention. The waveform features are extracted to obtain the corresponding original feature vector set.
其中,参阅图4所示,卷积神经网络模型主要由两个模块组成,具体包括:CMC模块和ML模块,CMC模块用于卷积计算,提取局部特征,ML模块用于改变原始特征向量集的空间尺寸大小,稳定训练过程,需要说明的是,原始特征向量集可以为相应的原始特征图呈现。Among them, as shown in Figure 4, the convolutional neural network model is mainly composed of two modules, specifically including: CMC module and ML module, the CMC module is used for convolution calculation, extracting local features, and the ML module is used to change the original feature vector set The size of the spatial size stabilizes the training process. It should be noted that the original feature vector set can be presented as the corresponding original feature map.
进一步地,CMC模块主要由三个部分组成,分别是:卷积、激活函数和通道注意力,基于上述组成结构,CMC模块首先通过一维卷积,对获取到的心律数据的波形特征进行特征提取,获得原始特征向量集,其中,在每个卷积操作之后,都应用相应的激活函数,增强卷积神经网络模型的非线性表达能力,进而根据通道注意力模块,完成后续对原始特征向量集包含的各个原始特征向量的特征压缩,即提高局部特征提取能力。Furthermore, the CMC module is mainly composed of three parts, namely: convolution, activation function and channel attention. Based on the above composition structure, the CMC module first uses one-dimensional convolution to characterize the waveform characteristics of the acquired heart rhythm data. Extract and obtain the original feature vector set, in which, after each convolution operation, the corresponding activation function is applied to enhance the nonlinear expression ability of the convolutional neural network model, and then complete the subsequent processing of the original feature vector according to the channel attention module The feature compression of each original feature vector contained in the set, that is, to improve the local feature extraction ability.
需要说明的是,由于Mish激活函数具有无上界,无穷阶连续性和光滑性等优点,能允许信息更好的流入卷积神经网络,增强卷积神经网络模型的准确性和泛化性,故而,在本申请实施例中,激活函数为Mish激活函数,其中,Mish激活函数的具体表达式如下:It should be noted that because the Mish activation function has the advantages of no upper bound, infinite order continuity and smoothness, it can allow information to flow into the convolutional neural network better, and enhance the accuracy and generalization of the convolutional neural network model. Therefore, in the embodiment of the present application, the activation function is the Mish activation function, where the specific expression of the Mish activation function is as follows:
其中,x表示输入,tanh(*)为一种常见的激活函数,其输出均值为0,因此,其收敛数据很快,可以减少迭代次数,其中,tanh激活函数的具体表达式如下:Among them, x represents the input, tanh (*) is a common activation function, and its output mean is 0, therefore, its convergence data is very fast, and the number of iterations can be reduced. The specific expression of the tanh activation function is as follows:
其中,x表示输入。where x represents the input.
此外,ML模块主要由两个部分组成,分别是:最大池化和层归一化,基于ML模块的组成结构,可避免经通道注意力模块处理后的原始特征向量集中,各个原始特征向量各自对应的融合特征向量过长,从而增加序列到序列网络模型的计算量和训练时间的技术弊端,并且,在增加融合特征向量集的特征通道数的同时,缩减了空间尺寸,提高了卷积神经网络模型的训练效率;此外,在融合特征向量集的空间尺寸改变的同时,应用层归一化,可以稳定训练过程,加速卷积神经网络模型的收敛速度。In addition, the ML module is mainly composed of two parts, namely: maximum pooling and layer normalization. Based on the composition structure of the ML module, it can avoid the concentration of the original feature vectors processed by the channel attention module. The corresponding fusion feature vector is too long, which increases the calculation amount of the sequence-to-sequence network model and the technical disadvantages of training time. Moreover, while increasing the number of feature channels of the fusion feature vector set, the spatial size is reduced and the convolution neural network is improved. The training efficiency of the network model; in addition, while the spatial size of the fusion feature vector set is changed, the application layer normalization can stabilize the training process and accelerate the convergence speed of the convolutional neural network model.
显然,基于上述卷积神经网络模型,对心律数据对应的原始特征向量集,进行了两次降采样操作。Obviously, based on the above convolutional neural network model, two downsampling operations are performed on the original feature vector set corresponding to the heart rhythm data.
S302:分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集。S302: Perform feature compression on each original feature vector included in the original feature vector set according to two preset vector element sampling methods respectively, to obtain a corresponding first feature vector set and a second feature vector set.
具体的,参阅图5所示,在执行步骤S302时,服务器在获取到原始特征向量集之后,基于上述两种向量元素采样方式,对各个原始特征向量进行全局平均池化,获得第一语义信息集,以及对各个原始特征向量进行全局最大池化,获得第二语义信息集,从而基于获得的第一语义信息集,生成第一特征向量集,以及基于获得的第二语义信息集,生成第二特征向量集。Specifically, as shown in FIG. 5, when executing step S302, after the server obtains the original feature vector set, based on the above two vector element sampling methods, it performs global average pooling on each original feature vector to obtain the first semantic information set, and perform global maximum pooling on each original feature vector to obtain the second semantic information set, thereby generating the first feature vector set based on the obtained first semantic information set, and generating the second semantic information set based on the obtained second semantic information set Two sets of eigenvectors.
示例性的,服务器通过上述卷积神经网络模型中的通道注意力模块,首先,对输入 的原始特征向量集(比如,原始特征图),其中,原始特征图的空间尺寸大小可表示为:,C表示通道数,H表示高度,W表示宽度;接着,分别使用沿通道轴向的全局平均池化 和全局最大池化,集原始特征图中的空间信息,分别产生两种不同的通道语义信息集,即第 一语义信息集和第二语音信息集;进一步地,将第一语义信息集和第二语音信 息集,分别送入多层感知机中,生成第一通道特征图(第一特征向量集)和第二通道特 征图(第二特征向量集)。 Exemplarily, the server uses the channel attention module in the above convolutional neural network model, firstly, for the input original feature vector set (for example, the original feature map), where the spatial size of the original feature map can be expressed as: , C represents the number of channels, H represents the height, and W represents the width; then, the global average pooling and global maximum pooling along the channel axis are respectively used to collect the spatial information in the original feature map to generate two different channel semantics information set, the first semantic information set and the second voice information set ; Further, the first semantic information set and the second voice information set , respectively sent to the multi-layer perceptron to generate the first channel feature map (the first feature vector set) and the second channel feature map (the second feature vector set).
其中,全局平均池化:若输入特征图大小为H 1×W 1×C 1,对所有通道上的特征进行平均池化,池化层的尺寸大小设为特征图输入大小H 1×W 1,通过下采样输出整个特征图的平均元素,输出大小为1×1×C 1;全局最大池化:输入特征图大小为H 2×W 2×C 2,对所有通道上的特征进行最大池化,池化层的尺寸大小设为特征图输入大小H 1×W 1,通过下采样输出整个特征图的最大元素,输出大小为1×1×C 2。Among them, global average pooling: if the input feature map size is H 1 × W 1 × C 1 , average pooling is performed on the features on all channels, and the size of the pooling layer is set to the feature map input size H 1 × W 1 , the average element of the entire feature map is output by downsampling, and the output size is 1×1× C 1 ; global maximum pooling: the input feature map size is H 2 × W 2 × C 2 , and the features on all channels are maximally pooled The size of the pooling layer is set to the feature map input size H 1 × W 1 , and the largest element of the entire feature map is output through downsampling, and the output size is 1×1× C 2 .
需要说明的是,由于上述原始特征图中包含的各原始特征的通道数并不多,因此,在上述多层感知机中,只需使用与特征通道数相同的两个全连接层,并且,在每个全连接层之后,都应用Mish激活函数,让卷积神经网络模型学习到更加复杂的非线性关系。It should be noted that since the number of channels of each original feature contained in the above original feature map is not large, in the above multi-layer perceptron, only two fully connected layers with the same number of feature channels are used, and, After each fully connected layer, the Mish activation function is applied to allow the convolutional neural network model to learn more complex nonlinear relationships.
S303:对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集。S303: Fusing the original feature vector set, the first feature vector set, and the second feature vector set to obtain a corresponding fused feature vector set.
具体的,在执行步骤S303时,服务器在获得第一特征向量集合第二特征向量集之后,基于预设的特征向量融合方法,将原始特征向量集、第一特征向量集和第二特征向量集进行融合,从而获得相应的融合特征向量集,以便后续序列到序列网络模型进行全局特征提取。Specifically, when executing step S303, after obtaining the first feature vector set and the second feature vector set, the server combines the original feature vector set, the first feature vector set, and the second feature vector set based on a preset feature vector fusion method Fusion is performed to obtain the corresponding fusion feature vector set, so that the subsequent sequence-to-sequence network model can perform global feature extraction.
示例性的,服务器基于上述卷积神经网络模型中的通道注意力模块的多层感知机,将与第一语义信息集对应的第一特征向量集和与第二语义信息集对应的第二特征向量集相加,并对其应用Sigmoid激活函数进行归一化,获得第三特征向量集,进而将第三特征向量集通过点乘操作,与原始特征向量集融合,获得相应的融合特征向量集,其中,上述获得第三特征向量集和融合特征向量集的具体过程可表示如下:Exemplarily, based on the multi-layer perceptron of the channel attention module in the above-mentioned convolutional neural network model, the server combines the first feature vector set corresponding to the first semantic information set and the second feature vector corresponding to the second semantic information set The vector sets are added, and the Sigmoid activation function is applied to them for normalization to obtain the third feature vector set, and then the third feature vector set is fused with the original feature vector set through the point multiplication operation to obtain the corresponding fusion feature vector set , wherein the above-mentioned specific process of obtaining the third feature vector set and the fusion feature vector set can be expressed as follows:
其中,X表示原始特征向量集,表示经通道注意力增强得到的第三特征向量 集, 表示Sigmoid激活函数,可将输入重新分布为区间在[0,1]内,在二分类的模型可作 为输出层,其输出结果可表示概率,W 表示多层感知机, F GAV 表示全局平均池化,F MAX 表示全 局最大池化,x c表示原始特征向量集X中的原始特征向量,表示经通道注意力增强后的融 合特征向量集,上述Sigmoid激活函数的具体表达式如下: Among them, X represents the original feature vector set, Represents the third feature vector set obtained by channel attention enhancement, Represents the Sigmoid activation function, which can redistribute the input into the interval [0, 1]. The model in the binary classification can be used as the output layer, and the output result can represent the probability. W represents the multi-layer perceptron, and F GAV represents the global average pool. , F MAX represents the global maximum pooling, x c represents the original feature vector in the original feature vector set X , Represents the fused feature vector set enhanced by channel attention, the specific expression of the above Sigmoid activation function is as follows:
其中,x表示输入。where x represents the input.
S304:基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重。S304: Based on the element correlation between the vector elements contained in each fusion feature vector in the fusion feature vector set, determine the respective classification weights of each fusion feature vector.
具体的,在执行步骤S304时,服务器在基于卷积神经网络模型,获得融合特征向量集之后,便可根据序列到序列网络模型,基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重。Specifically, when executing step S304, after the server obtains the fusion feature vector set based on the convolutional neural network model, the sequence-to-sequence network model, based on the fusion feature vector set, the vector elements contained in each fusion feature vector The element correlation among them determines the respective classification weights of each fusion feature vector.
在具体介绍确定各个融合特征向量各自的分类权重的方法之前,先对序列到序列网络模型做简单描述,参阅图6所示,序列到序列模型也是基于循环神经网络的编码-解码模型,序列到序列指的是从序列A到序列B的一种序列转换,将输入序列送入编码器,编码器将输入序列压缩成指定长度的向量,该过程成为编码;解码器以编码器的最后状态作为初始化状态,以上一状态作为输入,将编码器送入的向量再还原成序列,该过程称为解码;最终,便可基于解码器输出的结果,去确定心律数据的心律类别。Before specifically introducing the method of determining the respective classification weights of each fusion feature vector, a brief description of the sequence-to-sequence network model is given, as shown in Figure 6. The sequence-to-sequence model is also an encoding-decoding model based on a cyclic neural network. Sequence refers to a sequence conversion from sequence A to sequence B. The input sequence is sent to the encoder, and the encoder compresses the input sequence into a vector of a specified length. This process is called encoding; the decoder takes the final state of the encoder as In the initialization state, the previous state is used as input, and the vector sent by the encoder is restored to a sequence. This process is called decoding; finally, the heart rhythm category of the heart rhythm data can be determined based on the output result of the decoder.
需要说明的是,通常会使用递归神经网络(Recurrent Neural Network,RNN)作为编码器与解码器的基本单元,但在深度神经网络中,RNN会受到短时记忆的影响,如果序列长度过长,则较难将信息从较早的时间步送给较后的时间步,导致最终一部分层停止更新参数;此外,在反向传播期间,RNN较易出现梯度消失或爆炸等问题,因此,在本申请实施例中,采用长短期记忆网络(Long Short-Term Memory ,LSTM)来替代RNN,作为序列到序列网络模型中,编码器与解码器的基本单元。It should be noted that the recurrent neural network (Recurrent Neural Network, RNN) is usually used as the basic unit of the encoder and decoder, but in the deep neural network, RNN will be affected by short-term memory, if the sequence length is too long, It is more difficult to send information from an earlier time step to a later time step, causing the final part of the layer to stop updating parameters; in addition, during the backpropagation, RNN is more prone to problems such as gradient disappearance or explosion, so in this paper In the embodiment of the application, a Long Short-Term Memory (LSTM) network (Long Short-Term Memory, LSTM) is used to replace the RNN as the basic unit of the encoder and decoder in the sequence-to-sequence network model.
LSTM是一种改进后的循环神经网络,可以解决RNN无法实现长距离依赖的问题,相较于RNN只有一个传递状态h t ,LSTM有两个传递状态:单元状态c t ,与隐藏状态h t 。LSTM通过门控结构,来去除或增加信息到细胞状态,其中,门是一种使信息选择性通过的方式,包含一个Sigmoid激活函数与点乘操作(逐点乘法),LSTM中包含三个门层:遗忘门(forgetgate),输入门(input gate),输出门(output gate)。LSTM is an improved cyclic neural network that can solve the problem that RNN cannot achieve long-distance dependence. Compared with RNN, which has only one transfer state h t , LSTM has two transfer states: unit state c t , and hidden state h t . LSTM removes or adds information to the cell state through the gating structure, where the gate is a way to selectively pass information, including a Sigmoid activation function and point multiplication operation (point-by-point multiplication), LSTM contains three gates Layer: forget gate, input gate, output gate.
可选的,通常编码器与解码器是按照从左到右的顺序处理序列数据,但也可使用双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM),使得序列到序列网络模型可以从两个方向更新参数,不仅能利用过去信息,还能捕捉后续信息;因此,由于Bi-LSTM能更好的利用数据的上下文信息,通常比标准LSTM有着更好的性能表现,故而,在本申请实施例中,可使用Bi-LSTM作为编码器与解码器的基本单元。Optionally, the encoder and decoder usually process sequence data from left to right, but Bidirectional Long-Short Term Memory (Bi-LSTM) can also be used to make the sequence-to-sequence network model Parameters can be updated from two directions, not only using past information, but also capturing subsequent information; therefore, because Bi-LSTM can better utilize the context information of the data, it usually has better performance than standard LSTM, so in In the embodiment of this application, Bi-LSTM can be used as the basic unit of the encoder and decoder.
紧接着,基于上述的序列到序列网络模型,可获取融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,参阅图7所示,针对上述融合特征向量集中,各个融合特征向量,分别执行以下操作:获取一个融合特征向量包含的各个向量元素,并分别对各个向量元素各自的元素名称进行语义提取,获得各个元素名称各自的语义信息;接着,针对各个元素名称,分别执行以下操作:分别对一个元素名称的语义信息,与其他元素名称的语义信息进行语义相似度比对,获得至少一个语义相似度,从而基于获得的至少一个语义相似度,分别确定一个元素名称对应的向量元素,与其他向量元素之间的元素相关度。Next, based on the above sequence-to-sequence network model, the fusion feature vector set, the element correlation between the vector elements contained in each fusion feature vector can be obtained, as shown in Figure 7, for the above fusion feature vector set, each fusion feature vectors, respectively perform the following operations: obtain each vector element contained in a fusion feature vector, and perform semantic extraction on the respective element names of each vector element, and obtain the respective semantic information of each element name; then, for each element name, respectively Perform the following operations: respectively compare the semantic information of an element name with the semantic information of other element names to obtain at least one semantic similarity, and then determine the correspondence of an element name based on the obtained at least one semantic similarity The vector elements of , and the element correlation between other vector elements.
示例性的,以一个融合特征向量Fus.Feat.V1为例,假定融合特征向量Fus.Feat.V1包含5个向量元素,即融合特征向量Fus.Feat.V1记为:(Vect.Ele.1,Vect.Ele.2,Vect.Ele.3,Vect.Ele.4,Vect.Ele.5),其中,每一个向量元素均可用相应的Key和Vaule进行表示,Key表示向量元素的元素名称,Vaule表示向量元素的元素值,服务器基于上述的元素相关度获取方法,得到各个向量元素及其各自对应的元素相似度如表1所示:Exemplarily, taking a fusion feature vector Fus.Feat.V1 as an example, it is assumed that the fusion feature vector Fus.Feat.V1 contains 5 vector elements, that is, the fusion feature vector Fus.Feat.V1 is recorded as: (Vect.Ele.1 , Vect.Ele.2, Vect.Ele.3, Vect.Ele.4, Vect.Ele.5), where each vector element can be represented by the corresponding Key and Value, Key represents the element name of the vector element, Value represents the element value of the vector element. Based on the above-mentioned element correlation acquisition method, the server obtains each vector element and its corresponding element similarity as shown in Table 1:
表1Table 1
基于上述表格,服务器可根据一个元素名称的语义信息,与其他元素名称的语义信息,各自对应的至少一个语义相似度,分别确定上述一个元素名称对应的向量元素,与其他向量元素之间的元素相关度,例如,以向量元素Vect.Ele.1为例,向量元素Vect.Ele.1与向量元素Vect.Ele.2、向量元素Vect.Ele.3、向量元素Vect.Ele.4以及向量元素Vect.Ele.5的元素名称之间的语义相似度依次为:88%、76%、98%、83%,则可基于上述获得的四个语义相似度,确认向量元素Vect.Ele.1与向量元素Vect.Ele.2、向量元素Vect.Ele.3、向量元素Vect.Ele.4以及向量元素Vect.Ele.5之间的元素相关度依次为:0.88、0.76、0.98、0.83。Based on the above table, the server can determine the vector element corresponding to the above element name and the elements between other vector elements according to the semantic information of an element name and the semantic information of other element names and at least one semantic similarity respectively. Correlation, for example, taking the vector element Vect.Ele.1 as an example, the vector element Vect.Ele.1 and the vector element Vect.Ele.2, the vector element Vect.Ele.3, the vector element Vect.Ele.4 and the vector element The semantic similarities between the element names of Vect.Ele.5 are: 88%, 76%, 98%, and 83%. Based on the four semantic similarities obtained above, it can be confirmed that the vector elements Vect.Ele.1 and The element correlations among the vector element Vect.Ele.2, the vector element Vect.Ele.3, the vector element Vect.Ele.4 and the vector element Vect.Ele.5 are: 0.88, 0.76, 0.98, 0.83 in sequence.
进一步地,服务器在获得融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度之后,基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重,针对各个融合特征向量,参阅图8所示,其为本申请实施例提供的一种确定融合特征向量的分类权重的方法实施流程图,该方法的具体实施流程如下:Further, after the server obtains the element correlation between the vector elements contained in each fusion feature vector in the fusion feature vector set, based on the fusion feature vector set, the element correlation between the vector elements contained in each fusion feature vector, Determine the respective classification weights of each fusion feature vector. For each fusion feature vector, refer to FIG. 8, which is an implementation flowchart of a method for determining the classification weight of the fusion feature vector provided by the embodiment of the present application. The specific implementation of the method The process is as follows:
S3041:分别获取一个融合特征向量包含的各个向量元素,各自对应的至少一个元素相关度。S3041: Respectively acquire each vector element included in a fused feature vector, and at least one element correlation degree corresponding to each.
具体的,在执行步骤S3041时,服务器在基于上述的元素相关度的获取方法,获得了融合特征向量集中,所有向量元素各自对应的至少一个元素相关度之后,便可根据一个融合特征向量的类别信息或者标识信息,从元素相关度集合中,分别获取一个融合特征向量包含的各个向量元素,各自对应的至少一个元素相关度;其中,每个元素相关度表征:相应的向量元素与其他向量元素中的一个向量元素之间的关联程度。Specifically, when executing step S3041, after the server obtains at least one element correlation degree corresponding to each of all vector elements in the fusion feature vector set based on the above-mentioned method for obtaining element correlation, the server can then use the category of a fusion feature vector Information or identification information, from the element correlation set, obtain each vector element contained in a fusion feature vector, and at least one element correlation corresponding to each; wherein, each element correlation characterizes: the corresponding vector element and other vector elements The degree of association between elements of a vector in .
S3042:基于各个向量元素各自对应的至少一个各个元素相关度,分别获得各个向量元素各自对应的子分类权重。S3042: Based on at least one element correlation degree corresponding to each vector element, respectively obtain a subcategory weight corresponding to each vector element.
具体的,在执行步骤S3042时,服务器获取到各个向量元素各自对应的至少一个各个元素相关度之后,基于各个向量元素各自对应的至少一个各个元素相关度,分别获得各个向量元素各自对应的子分类权重;其中,子分类权重的计算公式具体如下:Specifically, when step S3042 is executed, after the server acquires at least one correlation degree of each element corresponding to each vector element, based on at least one correlation degree of each element corresponding to each vector element, respectively obtains the subcategory corresponding to each vector element Weight; among them, the calculation formula of sub-category weight is as follows:
其中,表示向量元素i的子分类权重,表示向量元素i与第j个向量元素之间的 元素相关度,表示向量元素对应的向量元素的个数。 in, Represents the subcategory weight of vector element i , Indicates the element correlation between vector element i and the jth vector element, Represents vector elements The number of corresponding vector elements.
示例性的,仍以上述向量元素Vect.Ele.1为例,则与向量元素Vect.Ele.2、向量元 素Vect.Ele.3、向量元素Vect.Ele.4以及向量元素Vect.Ele.5之间的元素相关度依次为:,故而,基于上述子分类权重的计算公式,可得 向量元素Vect.Ele.1的子分类权重。 Exemplarily, still taking the above-mentioned vector element Vect.Ele.1 as an example, the vector element Vect.Ele.2, the vector element Vect.Ele.3, the vector element Vect.Ele.4 and the vector element Vect.Ele.5 The correlation between elements is as follows: , therefore, based on the calculation formula of the above sub-category weight, the sub-category weight of the vector element Vect.Ele.1 can be obtained .
S3043:基于获得的各个子分类权重,以及各个向量元素各自的元素值,获得一个融合特征向量的分类权重。S3043: Obtain a classification weight of a fused feature vector based on the obtained weights of each sub-classification and the respective element values of each vector element.
具体的,在执行步骤S3043时,服务器在获得各个向量元素各自对应的子分类权重之后,便可基于获得的各个子分类权重,各个向量元素各自的元素值,以及预设的融合特征向量的分类权重计算公式,获得上述一个融合特征向量的分类权重,其中,分类权重计算公式具体如下:Specifically, when step S3043 is executed, after the server obtains the respective sub-category weights corresponding to each vector element, it can then based on the obtained respective sub-category weights, the respective element values of each vector element, and the classification of the preset fusion feature vector The weight calculation formula is used to obtain the classification weight of the above-mentioned fusion feature vector, wherein the classification weight calculation formula is as follows:
其中,表示上述一个融合特征向量的分类权重,表示向量元素i的子分类权 重,表示向量元素i的元素值,m表示上述一个融合特征向量包含的向量元素个数。 in, Represents the classification weight of the above-mentioned fusion feature vector, Represents the subcategory weight of vector element i , Indicates the element value of vector element i , and m indicates the number of vector elements contained in the above-mentioned fusion feature vector.
显然,采用上述方式,有效地避免了传统序列到序列网络模型中,序列里的所有内容享有相同的重要程度,然而在实际任务中并不合理:首先,将输入转换为词向量已经会损失一部分信息,并且在长序列中,不同词向量的重要程度更是大不相同,而引入注意力机制之后,通过对序列内容本身进行概率重加权,能够为每个信息重新分配通过注意力得到的权重信息,即原本相同的中间语义A会被替换为根据当前内容而不断变化的Ai,让模型本身能够学习到更加重要的内容;此外,注意力机制不需要对原有的序列到序列网络模型结构做出改动,且通过增加极少额外参数量与计算量,提升了对全局特征提取和融合能力,有效提升了心律数据分类的准确率。Obviously, using the above method effectively avoids the traditional sequence-to-sequence network model, where all content in the sequence enjoys the same importance, but it is not reasonable in actual tasks: first, converting the input into a word vector will already lose part of the information, and in long sequences, the importance of different word vectors is quite different. After introducing the attention mechanism, by re-weighting the probability of the sequence content itself, the weight obtained by attention can be redistributed for each information. Information, that is, the original same intermediate semantics A will be replaced by A i that changes according to the current content, so that the model itself can learn more important content; in addition, the attention mechanism does not need to be specific to the original sequence-to-sequence network model The structure has been changed, and by adding very few additional parameters and calculations, the ability to extract and fuse global features has been improved, and the accuracy of heart rhythm data classification has been effectively improved.
S305:基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。S305: Determine a heart rhythm category of the heart rhythm data based on each fused feature vector and its corresponding classification weight.
具体的,参阅图9所示,在执行步骤S305时,服务器在确定各个融合特征向量各自的分类权重之后,便可根据预设的融合特征权重区间,分别确定各个融合特征向量各自对应的分类权重,各自归属的融合特征权重区间;接着,基于获得的各个融合特征权重区间,以及预设的融合特征权重区间与心律类别之间的对应关系,确定心律数据的心律类别。Specifically, as shown in FIG. 9, when step S305 is executed, after the server determines the respective classification weights of each fusion feature vector, it can respectively determine the respective classification weights of each fusion feature vector according to the preset fusion feature weight range , the fusion feature weight intervals to which they belong; then, based on the obtained fusion feature weight intervals and the preset correspondence between the fusion feature weight intervals and heart rhythm categories, the heart rhythm category of the heart rhythm data is determined.
示例性的,以两个融合特征向量为例,则各融合特征权重区间,及其各自对应的心律类别如表2所示:Exemplarily, taking two fusion feature vectors as an example, the weight intervals of each fusion feature and their corresponding heart rhythm categories are shown in Table 2:
表2Table 2
需要说明的是,上述表格中,融合特征向量Fus.Feat.V1根据预设的融合特征权重区间划分规则,可被划分为两个融合特征权重区间,融合特征向量Fus.Feat.V2根据预设的融合特征权重区间划分规则,可被划分为三个融合特征权重区间;进一步地,服务器在确定融合特征向量Fus.Feat.V1和融合特征向量Fus.Feat.V2各自的分类权重,各自归属的融合特征权重区间之后,便可确定相应心律数据的心律类别。It should be noted that in the above table, the fused feature vector Fus.Feat.V1 can be divided into two fused feature weight intervals according to the preset fused feature weight interval division rules, and the fused feature vector Fus.Feat.V2 can be divided into two fused feature weight intervals according to the preset The fusion feature weight interval division rule can be divided into three fusion feature weight intervals; further, the server determines the respective classification weights of the fusion feature vector Fus.Feat.V1 and the fusion feature vector Fus.Feat.V2, and the respective belonging After the feature weight interval is fused, the heart rhythm category of the corresponding heart rhythm data can be determined.
示例性的,以融合特征向量Fus.Feat.V1的分类权重属于融合特征权重区间1,以及融合特征向量Fus.Feat.V2的分类权重属于融合特征权重区间3为例,则可知上述心律数据属于N类心律。Exemplarily, taking the classification weight of the fusion feature vector Fus.Feat.V1 belonging to the fusion feature weight interval 1, and the classification weight of the fusion feature vector Fus.Feat.V2 belonging to the fusion feature weight interval 3 as an example, it can be known that the above heart rhythm data belongs to Type N heart rhythm.
基于上述的心律数据分类方法,参阅图10所示,其为本申请实施例提供的一种心律数据分类方法的具体应用场景示意图,服务器获取目标对象(比如,人员A)在设定时间范围内(2022.06.25 15:01:27~2022.06.25 15:01:47)内的心律数据Arrhythmia.Data,并对心律数据Arrhythmia.Data的波形特征Wave.Chars进行特征提取,获得相应的原始特征向量集Orig.Eigen.Set;接着,分别按照预设的两种向量元素采样方式(Sampling.Meth1和Sampling.Meth2),对原始特征向量集Orig.Eig.Set包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集Fri.Eig.Set和第二特征向量集Sec.Eig.Set;进一步地,对原始特征向量集Orig.Eig.Set、第一特征向量集Fri.Eig.Set和第二特征向量集Sec.Eig.Set进行融合,获得相应的融合特征向量集Fus.Eig.Set,从而基于融合特征向量集Fus.Eig.Set中,各个融合特征向量(比如,Fus.Feat.V1和Fus.Feat.V2)各自包含的向量元素之间的元素相关度(比如,融合特征向量Fus.Feat.V1对应的元素相关度Ele.Cor1和Ele.Cor2,以及融合特征向量Fus.Feat.V2对应的元素相关度Ele.Cor3和Ele.Cor4),确定各个融合特征向量各自的分类权重,依次为:0.85和0.76;最终,基于各个融合特征向量(Fus.Feat.V1和Fus.Feat.V2)及其各自对应的分类权重(0.85和0.76),确定心律数据Arrhythmia.Data的心律类别为N类心律。Based on the above heart rhythm data classification method, refer to Figure 10, which is a schematic diagram of a specific application scenario of a heart rhythm data classification method provided by the embodiment of the present application. The server acquires the target object (for example, person A) within the set time range (2022.06.25 15:01:27~2022.06.25 15:01:47) the heart rhythm data Arrhythmia.Data, and perform feature extraction on the waveform feature Wave.Chars of the heart rhythm data Arrhythmia.Data to obtain the corresponding original feature vector Set Orig.Eigen.Set; then, perform feature compression on each original feature vector contained in the original feature vector set Orig.Eig.Set according to the two preset vector element sampling methods (Sampling.Meth1 and Sampling.Meth2), Obtain the corresponding first eigenvector set Fri.Eig.Set and the second eigenvector set Sec.Eig.Set; further, for the original eigenvector set Orig.Eig.Set, the first eigenvector set Fri.Eig.Set and The second feature vector set Sec.Eig.Set is fused to obtain the corresponding fusion feature vector set Fus.Eig.Set, so that based on the fusion feature vector set Fus.Eig.Set, each fusion feature vector (for example, Fus.Feat. V1 and Fus.Feat.V2) The element correlation between the vector elements contained in each (for example, the element correlation Ele.Cor1 and Ele.Cor2 corresponding to the fusion feature vector Fus.Feat.V1, and the fusion feature vector Fus.Feat .V2 corresponding to the element correlation Ele.Cor3 and Ele.Cor4), determine the respective classification weights of each fusion feature vector, in order: 0.85 and 0.76; finally, based on each fusion feature vector (Fus.Feat.V1 and Fus.Feat .V2) and their corresponding classification weights (0.85 and 0.76), determine the heart rhythm category of the heart rhythm data Arrhythmia.Data as N heart rhythm.
综上所述,在本申请实施例所提供的电子设备执行的心律数据分类方法中,获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;接着,分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;进一步地,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;最终,基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。To sum up, in the heart rhythm data classification method performed by the electronic device provided in the embodiment of the present application, the heart rhythm data of the target object within the set time range is obtained, and the waveform features of the heart rhythm data are extracted to obtain the corresponding The original feature vector set; then, perform feature compression on each original feature vector included in the original feature vector set according to the two preset vector element sampling methods, and obtain the corresponding first feature vector set and second feature vector set; further Specifically, the original feature vector set, the first feature vector set and the second feature vector set are fused to obtain the corresponding fused feature vector set, so that based on the fused feature vector set, the elements between the vector elements contained in each fused feature vector The degree of correlation determines the respective classification weights of the fusion feature vectors; finally, the heart rhythm category of the heart rhythm data is determined based on the fusion feature vectors and their corresponding classification weights.
采用这种方式,对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集,从而基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重,进而基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别,避免了现有技术中,因卷积神经网络模型和编码-解码模型融合的特征提取能力不够,从而导致对心律数据的分类不准确的技术弊端,故而,提高了心律数据分类的准确度。In this way, the original eigenvector set, the first eigenvector set, and the second eigenvector set are fused to obtain the corresponding fused eigenvector set, so that based on the fused eigenvector set, the vector elements contained in each fused feature vector The correlation between the elements, determine the respective classification weights of each fusion feature vector, and then determine the heart rhythm category of the heart rhythm data based on each fusion feature vector and their corresponding classification weights, avoiding the problem of convolutional neural network model in the prior art The ability to extract features fused with the encoding-decoding model is not enough, which leads to the technical disadvantage of inaccurate classification of heart rhythm data, thus improving the accuracy of heart rhythm data classification.
需要说明的是,服务器根据本申请实施例提供的心律数据分类方法,确定的心律数据的心律类别的准确度,是根据心律类别的识别结果的准确率、敏感度、特异度和精确度得到的,即,本申请实施例提供的心律数据分类方法,提供了心律数据分类的准确率、敏感度、特异度和精确度。It should be noted that, according to the heart rhythm data classification method provided by the embodiment of the present application, the accuracy of the heart rhythm category of the heart rhythm data determined by the server is obtained according to the accuracy, sensitivity, specificity and precision of the recognition result of the heart rhythm category , that is, the heart rhythm data classification method provided in the embodiment of the present application provides the accuracy, sensitivity, specificity and precision of the heart rhythm data classification.
进一步地,基于相同的技术构思,本申请实施例还提供了一种心律数据分类装置,该心律数据分类装置用以实现本申请实施例的上述的心律数据分类方法流程。参阅图11所示,该心律数据分类装置包括:获取模块1101、压缩模块1102、融合模块1103、配置模块1104以及识别模块1105,其中:Further, based on the same technical idea, the embodiment of the present application also provides a cardiac rhythm data classification device, which is used to implement the above-mentioned flow of the cardiac rhythm data classification method in the embodiment of the present application. Referring to Figure 11, the heart rhythm data classification device includes: an
获取模块1101,用于获取目标对象在设定时间范围内的心律数据,并对心律数据的波形特征进行特征提取,获得相应的原始特征向量集;The obtaining
压缩模块1102,用于分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集;The
融合模块1103,用于对原始特征向量集、第一特征向量集和第二特征向量集进行融合,获得相应的融合特征向量集;A
配置模块1104,用于基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重;The
识别模块1105,用于基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别。The
在一种可能的实施例中,在分别按照预设的两种向量元素采样方式,对原始特征向量集包含的各个原始特征向量进行特征压缩,获得相应的第一特征向量集和第二特征向量集时,所述压缩模块1102具体用于:In a possible embodiment, each original feature vector included in the original feature vector set is subjected to feature compression according to the two preset vector element sampling methods to obtain the corresponding first feature vector set and second feature vector When set, the
基于两种向量元素采样方式,对各个原始特征向量进行全局平均池化,获得第一语义信息集,以及对各个原始特征向量进行全局最大池化,获得第二语义信息集;Based on two vector element sampling methods, perform global average pooling on each original feature vector to obtain a first semantic information set, and perform global maximum pooling on each original feature vector to obtain a second semantic information set;
基于第一语义信息集,生成第一特征向量集,以及基于第二语义信息集,生成第二特征向量集。Based on the first set of semantic information, a first set of feature vectors is generated, and based on the second set of semantic information, a second set of feature vectors is generated.
在一种可能的实施例中,在基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度时,所述配置模块1104具体用于:In a possible embodiment, when based on the fusion feature vector set, the element correlation between the vector elements contained in each fusion feature vector, the
针对各个融合特征向量,分别执行以下操作:For each fused feature vector, perform the following operations:
获取一个融合特征向量包含的各个向量元素,并分别对各个向量元素各自的元素名称进行语义提取,获得各个元素名称各自的语义信息;Obtain each vector element contained in a fusion feature vector, and perform semantic extraction on the respective element names of each vector element, and obtain the respective semantic information of each element name;
针对各个元素名称,分别执行以下操作:For each element name, do the following:
分别对一个元素名称的语义信息,与其他元素名称的语义信息进行语义相似度比对,获得至少一个语义相似度;Comparing the semantic information of an element name with the semantic information of other element names to obtain at least one semantic similarity;
基于获得的至少一个语义相似度,分别确定一个元素名称对应的向量元素,与其他向量元素之间的元素相关度。Based on the obtained at least one semantic similarity, respectively determine the vector element corresponding to an element name, and the element correlation between other vector elements.
在一种可能的实施例中,在基于融合特征向量集中,各个融合特征向量各自包含的向量元素之间的元素相关度,确定各个融合特征向量各自的分类权重时,所述配置模块1104具体用于:In a possible embodiment, when determining the respective classification weights of each fusion feature vector based on the element correlation between the vector elements contained in each fusion feature vector in the fusion feature vector set, the
针对各个融合特征向量,分别执行以下操作:For each fused feature vector, perform the following operations:
分别获取一个融合特征向量包含的各个向量元素,各自对应的至少一个元素相关度;每个元素相关度表征:相应的向量元素与其他向量元素中的一个向量元素之间的关联程度;Respectively obtain each vector element included in a fusion feature vector, and at least one element correlation degree corresponding to each; each element correlation degree represents: the degree of association between the corresponding vector element and one of the other vector elements;
基于各个向量元素各自对应的至少一个各个元素相关度,分别获得各个向量元素各自对应的子分类权重;Obtaining respective sub-category weights corresponding to each vector element based on at least one element correlation corresponding to each vector element;
基于获得的各个子分类权重,以及各个向量元素各自的元素值,获得一个融合特征向量的分类权重。Based on the obtained weights of each sub-category and the respective element values of each vector element, a classification weight of a fused feature vector is obtained.
在一种可能的实施例中,在基于各个融合特征向量及其各自对应的分类权重,确定心律数据的心律类别时,所述识别模块1105具体用于:In a possible embodiment, when determining the heart rhythm category of the heart rhythm data based on each fused feature vector and its corresponding classification weight, the
分别确定各个融合特征向量各自对应的分类权重,各自归属的融合特征权重区间;Respectively determine the classification weights corresponding to each fusion feature vector, and the fusion feature weight intervals to which they belong;
基于获得的各个融合特征权重区间,以及预设的融合特征权重区间与心律类别之间的对应关系,确定心律数据的心律类别。The heart rhythm category of the heart rhythm data is determined based on the obtained fusion feature weight intervals and the preset correspondence between the fusion feature weight intervals and heart rhythm categories.
基于相同的技术构思,本申请实施例还提供了一种电子设备,该电子设备可实现本申请上述实施例提供的心律数据分类方法流程。在一种实施例中,该电子设备可以是服务器,也可以是终端设备或其他电子设备。如图12所示,该电子设备可包括:Based on the same technical concept, the embodiment of the present application also provides an electronic device, which can implement the flow of the heart rhythm data classification method provided in the above-mentioned embodiments of the present application. In an embodiment, the electronic device may be a server, or a terminal device or other electronic devices. As shown in Figure 12, the electronic equipment may include:
至少一个处理器1201,以及与至少一个处理器1201连接的存储器1202,本申请实施例中不限定处理器1201与存储器1202之间的具体连接介质,图12中是以处理器1201和存储器1202之间通过总线1200连接为例。总线1200在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线1200可以分为地址总线、数据总线、控制总线等,为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。或者,处理器1201也可以称为控制器,对于名称不做限制。At least one
在本申请实施例中,存储器1202存储有可被至少一个处理器1201执行的指令,至少一个处理器1201通过执行存储器1202存储的指令,可以执行前文论述的一种心律数据分类方法。处理器1201可以实现图11所示的装置中各个模块的功能。In the embodiment of the present application, the memory 1202 stores instructions that can be executed by at least one
其中,处理器1201是该装置的控制中心,可以利用各种接口和线路连接整个该控制设备的各个部分,通过运行或执行存储在存储器1202内的指令以及调用存储在存储器1202内的数据,该装置的各种功能和处理数据,从而对该装置进行整体监控。Wherein, the
在一种可能的设计中,处理器1201可包括一个或多个处理单元,处理器1201可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1201中。在一些实施例中,处理器1201和存储器1202可以在同一芯片上实现,在一些实施例中,它们也可以在独立的芯片上分别实现。In a possible design, the
处理器1201可以是通用处理器,例如CPU、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的一种心律数据分类方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。The
存储器1202作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器1202可以包括至少一种类型的存储介质,例如可以包括闪存、硬盘、多媒体卡、卡型存储器、随机访问存储器(Random AccessMemory,RAM)、静态随机访问存储器(Static Random Access Memory,SRAM)、可编程只读存储器(Programmable Read Only Memory,PROM)、只读存储器(Read Only Memory,ROM)、带电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性存储器、磁盘、光盘等等。存储器1202是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器1202还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。The memory 1202, as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs and modules. The memory 1202 may include at least one type of storage medium, for example, may include flash memory, hard disk, multimedia card, card memory, random access memory (Random Access Memory, RAM), static random access memory (Static Random Access Memory, SRAM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Memory, Disk, discs and more. Memory 1202 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto. The memory 1202 in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
通过对处理器1201进行设计编程,可以将前述实施例中介绍的一种心律数据分类方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图3所示的实施例的一种心律数据分类方法的步骤。如何对处理器1201进行设计编程为本领域技术人员所公知的技术,这里不再赘述。By designing and programming the
基于同一发明构思,本申请实施例还提供一种存储介质,该存储介质存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行前文论述的一种心律数据分类方法。Based on the same inventive concept, the embodiment of the present application also provides a storage medium, the storage medium stores computer instructions, and when the computer instructions are run on the computer, the computer executes the heart rhythm data classification method discussed above.
在一些可能的实施方式中,本申请提供一种心律数据分类方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在装置上运行时,程序代码用于使该控制设备执行本说明书上述描述的根据本申请各种示例性实施方式的一种心律数据分类方法中的步骤。In some possible implementations, various aspects of the heart rhythm data classification method provided by the present application can also be implemented in the form of a program product, which includes program code. When the program product runs on the device, the program code is used to use The control device executes the steps in a method for classifying cardiac rhythm data according to various exemplary embodiments of the present application described above in this specification.
应当注意,尽管在上文详细描述中提及了装置的若干单元或子单元,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。It should be noted that although several units or subunits of the apparatus are mentioned in the above detailed description, this division is only exemplary and not mandatory. Actually, according to the embodiment of the present application, the features and functions of two or more units described above may be embodied in one unit. Conversely, the features and functions of one unit described above may be further divided to be embodied by a plurality of units.
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。In addition, while operations of the methods of the present application are depicted in the figures in a particular order, there is no requirement or implication that these operations must be performed in that particular order, or that all illustrated operations must be performed to achieve desirable results. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个服务器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a general purpose computer, a special purpose computer, an embedded processor, or a processor of other programmable data processing equipment to produce a server such that the instructions executed by the computer or the processor of other programmable data processing equipment produce a server An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
可使用一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算装置上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算装置上部分在远程计算装置上执行、或者完全在远程计算装置或服务器上执行。Any combination of one or more programming languages can be used to write the program code for performing the operation of this application. The programming language includes object-oriented programming languages, such as Java, C++, etc., and also includes conventional procedural programming A language, such as "C" or a similar programming language. The program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
在涉及远程计算装置的情形中,远程计算装置可以通过任意种类的网络包括局域网(LAN)或广域网(WAN)连接到用户计算装置,或者,可以连接到外部计算装置(例如,利用因特网服务提供商来通过因特网连接)。In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider to connect via the Internet).
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the application without departing from the spirit and scope of the application. In this way, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalent technologies, the present application is also intended to include these modifications and variations.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210818321.7A CN114886404B (en) | 2022-07-13 | 2022-07-13 | Electronic equipment, device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210818321.7A CN114886404B (en) | 2022-07-13 | 2022-07-13 | Electronic equipment, device and storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114886404A CN114886404A (en) | 2022-08-12 |
| CN114886404B true CN114886404B (en) | 2022-10-28 |
Family
ID=82729538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210818321.7A Active CN114886404B (en) | 2022-07-13 | 2022-07-13 | Electronic equipment, device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114886404B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115063795B (en) * | 2022-08-17 | 2023-01-24 | 西南民族大学 | A urine sediment classification detection method, device, electronic equipment and storage medium |
| CN115211866B (en) * | 2022-09-07 | 2022-12-27 | 西南民族大学 | Arrhythmia classification method and system and electronic equipment |
| CN120086375A (en) * | 2025-05-06 | 2025-06-03 | 浪潮软件科技有限公司 | A user evaluation classification method, system, device and storage medium |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5967995A (en) * | 1998-04-28 | 1999-10-19 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | System for prediction of life-threatening cardiac arrhythmias |
| EP1416425A1 (en) * | 2002-11-04 | 2004-05-06 | Samsung Electronics Co., Ltd. | System and method for detecting a face |
| CN104921722A (en) * | 2015-07-15 | 2015-09-23 | 西南民族大学 | Double-lead combined with electrocardiogram QRS wave detection method |
| CN106377247A (en) * | 2016-09-10 | 2017-02-08 | 天津大学 | Feature selection-based arrhythmia classification method |
| CN108470156A (en) * | 2018-03-06 | 2018-08-31 | 南京邮电大学 | A kind of cardiechema signals classifying identification method |
| CN109271912A (en) * | 2018-09-05 | 2019-01-25 | 中国电子科技集团公司第三研究所 | Video classification methods, device, electronic equipment and storage medium |
| CN110751131A (en) * | 2019-11-16 | 2020-02-04 | 李汭傧 | Arrhythmia detection device |
| CN111460956A (en) * | 2020-03-26 | 2020-07-28 | 山东科技大学 | Unbalanced electrocardiogram sample classification method based on data enhancement and loss weighting |
| CN111528832A (en) * | 2020-05-28 | 2020-08-14 | 四川大学华西医院 | Arrhythmia classification method and validity verification method thereof |
| CN111626114A (en) * | 2020-04-20 | 2020-09-04 | 哈尔滨工业大学 | Electrocardiosignal arrhythmia classification system based on convolutional neural network |
| CN111755120A (en) * | 2020-06-29 | 2020-10-09 | 西南民族大学 | A cognitive impairment prediction method based on edge intelligence and multimodal perception |
| CN113011504A (en) * | 2021-03-23 | 2021-06-22 | 华南理工大学 | Virtual reality scene emotion recognition method based on visual angle weight and feature fusion |
| CN113408086A (en) * | 2021-05-24 | 2021-09-17 | 中国能源建设集团山西省电力勘测设计院有限公司 | Analytical calculation method for self-inductance value of air-core reactor |
| CN114010202A (en) * | 2021-09-18 | 2022-02-08 | 苏州无双医疗设备有限公司 | Method for classifying heart rhythms of implantable heart rhythm management device and distinguishing ventricular rate from supraventricular rate |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7917196B2 (en) * | 2005-05-09 | 2011-03-29 | Cardiac Pacemakers, Inc. | Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes |
| US7430446B2 (en) * | 2005-01-20 | 2008-09-30 | Cardiac Pacemakers, Inc. | Methods and apparatuses for cardiac arrhythmia classification using morphology stability |
| US7697766B2 (en) * | 2005-03-17 | 2010-04-13 | Delphi Technologies, Inc. | System and method to determine awareness |
| CN104055522A (en) * | 2014-07-01 | 2014-09-24 | 清华大学深圳研究生院 | Electrocardiosignal identity recognition method under arrhythmia condition |
| TWI732489B (en) * | 2020-03-17 | 2021-07-01 | 國防醫學院 | Method and system for quickly detecting abnormal concentration of potassium ion in blood from electrocardiogram |
| CN111557659B (en) * | 2020-05-22 | 2023-04-28 | 郑州大学 | Arrhythmia classification method based on multi-feature fusion and Stacking-DWKNN algorithm |
| US11730415B2 (en) * | 2020-06-10 | 2023-08-22 | Implicity | Method and system for analyzing heart rhythms |
| CN111657926B (en) * | 2020-07-08 | 2021-04-23 | 中国科学技术大学 | A method for classifying arrhythmias based on multi-lead information fusion |
| CN114652322B (en) * | 2022-03-24 | 2024-10-11 | 中南大学 | A method and system for classifying electrocardiogram signals based on multi-domain feature learning |
-
2022
- 2022-07-13 CN CN202210818321.7A patent/CN114886404B/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5967995A (en) * | 1998-04-28 | 1999-10-19 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | System for prediction of life-threatening cardiac arrhythmias |
| EP1416425A1 (en) * | 2002-11-04 | 2004-05-06 | Samsung Electronics Co., Ltd. | System and method for detecting a face |
| CN104921722A (en) * | 2015-07-15 | 2015-09-23 | 西南民族大学 | Double-lead combined with electrocardiogram QRS wave detection method |
| CN106377247A (en) * | 2016-09-10 | 2017-02-08 | 天津大学 | Feature selection-based arrhythmia classification method |
| CN108470156A (en) * | 2018-03-06 | 2018-08-31 | 南京邮电大学 | A kind of cardiechema signals classifying identification method |
| CN109271912A (en) * | 2018-09-05 | 2019-01-25 | 中国电子科技集团公司第三研究所 | Video classification methods, device, electronic equipment and storage medium |
| CN110751131A (en) * | 2019-11-16 | 2020-02-04 | 李汭傧 | Arrhythmia detection device |
| CN111460956A (en) * | 2020-03-26 | 2020-07-28 | 山东科技大学 | Unbalanced electrocardiogram sample classification method based on data enhancement and loss weighting |
| CN111626114A (en) * | 2020-04-20 | 2020-09-04 | 哈尔滨工业大学 | Electrocardiosignal arrhythmia classification system based on convolutional neural network |
| CN111528832A (en) * | 2020-05-28 | 2020-08-14 | 四川大学华西医院 | Arrhythmia classification method and validity verification method thereof |
| CN111755120A (en) * | 2020-06-29 | 2020-10-09 | 西南民族大学 | A cognitive impairment prediction method based on edge intelligence and multimodal perception |
| CN113011504A (en) * | 2021-03-23 | 2021-06-22 | 华南理工大学 | Virtual reality scene emotion recognition method based on visual angle weight and feature fusion |
| CN113408086A (en) * | 2021-05-24 | 2021-09-17 | 中国能源建设集团山西省电力勘测设计院有限公司 | Analytical calculation method for self-inductance value of air-core reactor |
| CN114010202A (en) * | 2021-09-18 | 2022-02-08 | 苏州无双医疗设备有限公司 | Method for classifying heart rhythms of implantable heart rhythm management device and distinguishing ventricular rate from supraventricular rate |
Non-Patent Citations (18)
| Title |
|---|
| A deep residual inception network with channel attention modules for multi-label cardiac abnormality detection from reduced-lead ECG;Srivastava, Apoorva;Pratiher, Sawon;Alam, Sazedul;《PHYSIOLOGICAL MEASUREMENT》;20220630;第43卷(第6期);全文 * |
| Automated ECG classification using a non-local convolutional blo.Wang, JK * |
| Hybrid feature selection using component co-occurrence based feature relevance measurement;Wang, Youwei;Feng, Lizhou;;《EXPERT SYSTEMS WITH APPLICATIONS》;20180715;第102卷;全文 * |
| Inter-patient automated arrhythmia classification: A new approach of weight capsule and sequence to sequence combination;Li, Xiangkui;Zhang, Jian;Chen, Wei;《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》;20220228;第214卷;全文 * |
| Qiao, X ; Zhang, H.《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》.2021,第203卷 * |
| 一种基于CNN和LSTM的新型双导联心律失常分类系统;汪虹;《万方》;20200803;全文 * |
| 一种改进的卷积神经网络的室内深度估计方法;梁煜,张金铭,张为;《天津大学学报》;20200605;第53卷(第8期);全文 * |
| 基于ECG的心律失常特征提取及分类算法的研究;王艳;《万方》;20181218;全文 * |
| 基于支持向量机的文本分类算法研究;秦玉平;《万方》;20090430;全文 * |
| 基于深度学习量化权重的心电数据特征表达与分类;张亚彬;《万方》;20211008;全文 * |
| 基于知识蒸馏的心律失常分类模型;张逸,周莉,陈杰.;《电子设计工程》;20220512;第30卷(第8期);全文 * |
| 多尺度编码-解码结构的单幅图像去雨网络;张学锋,李金晶,储岳中,汤亚玲.;《华中科技大学学报(自然科学版)》;20210425;第49卷(第7期);全文 * |
| 循环谱分析在心律失常分类中的应用研究;褚晶辉,卢莉莉,吕卫,李喆.;《计算机科学与探索》;20171231;第11卷(第11期);全文 * |
| 成人暴发性心肌炎早期心电图特点分析;兰永昊,郑梅,马旃;《国际心血管病杂志》;20181231;第45卷(第5期);全文 * |
| 房性期前收缩未下传二联律与慢节律的鉴别;李秀兰,郝玉红,向伟.;《临床荟萃》;20031231(第11期);全文 * |
| 考虑皮尔逊相关系数和切比雪夫距离的电压暂降类型计算方法;杜培,林焱,张伟骏;《电工电能新技术》;20210406;第40卷(第3期);全文 * |
| 融合单导联心电图传统与深度特征的常见心律失常识别方法研究;李全池,黄鑫,罗成思,黄惠泉,饶妮妮.;《中国生物医学工程学报》;20220220;第41卷(第1期);全文 * |
| 融合深度学习和决策机制的心电节律和形态异常识别;沈腾飞;《万方》;20210907;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114886404A (en) | 2022-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114886404B (en) | Electronic equipment, device and storage medium | |
| US20220222918A1 (en) | Image retrieval method and apparatus, storage medium, and device | |
| CN110175527A (en) | Pedestrian recognition methods and device, computer equipment and readable medium again | |
| WO2022105117A1 (en) | Method and device for image quality assessment, computer device, and storage medium | |
| CN108345846A (en) | A kind of Human bodys' response method and identifying system based on convolutional neural networks | |
| CN110222717A (en) | Image processing method and device | |
| CN113707323B (en) | Disease prediction method, device, equipment and medium based on machine learning | |
| KR20210049717A (en) | Image processing method and apparatus, processor, storage medium | |
| CN114429566A (en) | Image semantic understanding method, device, equipment and storage medium | |
| CN108597605A (en) | A kind of life big data acquisition of personal health and analysis system | |
| CN113052090B (en) | Method and apparatus for generating caption generator and outputting caption | |
| WO2022188644A1 (en) | Word weight generation method and apparatus, and device and medium | |
| CN115129908B (en) | A model optimization method, device, equipment, storage medium and program product | |
| CN116956222A (en) | Multi-complexity behavior recognition system and method based on self-adaptive feature extraction | |
| WO2023168997A9 (en) | Cross-modal retrieval method and related device | |
| CN112036520A (en) | Panda age identification method and device based on deep learning and storage medium | |
| CN114268747A (en) | Interview service processing method based on virtual digital people and related device | |
| CN115775349A (en) | False news detection method and device based on multi-mode fusion | |
| CN116844225A (en) | Personalized human body action recognition method based on knowledge distillation | |
| CN111445545A (en) | A text transfer map method, device, storage medium and electronic device | |
| CN118568666B (en) | Cross-modal knowledge fusion calculation method based on federal learning and size model cooperation | |
| CN116956869A (en) | Text standardization method, device, electronic equipment and storage medium | |
| CN115240647A (en) | Sound event detection method, device, electronic device and storage medium | |
| CN111988668B (en) | Video recommendation method and device, computer equipment and storage medium | |
| CN115063795B (en) | A urine sediment classification detection method, device, electronic equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |