CN114947696A - White light-narrow band-fluorescence integrated endoscope and use method thereof - Google Patents
White light-narrow band-fluorescence integrated endoscope and use method thereof Download PDFInfo
- Publication number
- CN114947696A CN114947696A CN202210690059.2A CN202210690059A CN114947696A CN 114947696 A CN114947696 A CN 114947696A CN 202210690059 A CN202210690059 A CN 202210690059A CN 114947696 A CN114947696 A CN 114947696A
- Authority
- CN
- China
- Prior art keywords
- light
- endoscope
- fluorescence
- light source
- narrow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000003384 imaging method Methods 0.000 claims abstract description 42
- 230000005284 excitation Effects 0.000 claims abstract description 35
- 239000003504 photosensitizing agent Substances 0.000 claims abstract description 24
- 238000005286 illumination Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims description 28
- 229910052724 xenon Inorganic materials 0.000 claims description 13
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000799 fluorescence microscopy Methods 0.000 claims description 12
- 239000000523 sample Substances 0.000 claims description 11
- 239000004973 liquid crystal related substance Substances 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims 2
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000001839 endoscopy Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000002428 photodynamic therapy Methods 0.000 description 5
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000002046 chromoendoscopy Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000027734 detection of oxygen Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 210000004088 microvessel Anatomy 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00131—Accessories for endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/043—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/063—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0684—Endoscope light sources using light emitting diodes [LED]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Endoscopes (AREA)
Abstract
本发明提供一种白光‑窄带‑荧光一体化内窥镜及其使用方法,包括:光源部分、光源控制单元和内镜部分;光源部分提供照射在被检生物组织上的照明光,照明光包括白光以及多种波长窄带光,窄带光包括荧光激发光;荧光激发光能激发被检生物组织上的光敏剂产生荧光;光源控制单元控制光源部分提供的照明光类型;内镜部分包括内镜探测器和陷波片;内镜探测器用于接收照明光经被检生物组织反射后的反射光和被检生物组织上的光敏剂被荧光激发光激发产生的荧光,反射光和荧光均经陷波片进入内镜探测器;陷波片的陷波波长等于荧光激发光的波长。将多光谱窄带功能和荧光功能结合,在保证成像质量与采集速度的前提下,能够显著降低内窥镜结构的复杂程度。The invention provides a white light-narrow-band-fluorescence integrated endoscope and a method of using the same, comprising: a light source part, a light source control unit and an endoscope part; White light and narrow-band light of various wavelengths, the narrow-band light includes fluorescence excitation light; the fluorescence excitation light can excite the photosensitizer on the biological tissue to be inspected to generate fluorescence; the light source control unit controls the type of illumination light provided by the light source part; the endoscope part includes endoscopic detection The endoscope detector is used to receive the reflected light after the illumination light is reflected by the biological tissue to be inspected and the fluorescence generated by the excitation of the photosensitizer on the biological tissue by the fluorescence excitation light. The plate enters the endoscope detector; the notch wavelength of the notch plate is equal to the wavelength of the fluorescence excitation light. Combining the multi-spectral narrowband function and the fluorescence function can significantly reduce the complexity of the endoscope structure on the premise of ensuring the imaging quality and acquisition speed.
Description
技术领域technical field
本发明属于内窥镜领域,具体涉及一种白光-窄带-荧光一体化内窥镜及其使用方法。The invention belongs to the field of endoscopes, and particularly relates to a white light-narrow-band-fluorescence integrated endoscope and a method for using the same.
背景技术Background technique
白光内镜、窄带内镜、偏振内镜和荧光内镜可以分别提供肿瘤的结构信号和功能信号,特别是窄带信号通常对血氧、黏膜下微血管等功能信息比较敏感,偏振信号则对手性分子和双折射信号敏感,荧光信号在此基础上,可以通过光敏剂探针浓度等功能信息进一步对肿瘤进行提示,多种功能信号彼此相互补充,通过图像识别和信号过滤技术,对多源数据进行融合分析,提高算法对肿瘤的识别能力。White light endoscopy, narrow-band endoscopy, polarized endoscopy and fluorescence endoscopy can respectively provide structural and functional signals of tumors. In particular, narrow-band signals are usually sensitive to functional information such as blood oxygen and submucosal microvessels, while polarized signals are chiral molecules. Sensitive to birefringence signals, and on the basis of fluorescence signals, functional information such as the concentration of photosensitizer probes can be used to further prompt tumors. Various functional signals complement each other. Image recognition and signal filtering techniques are used to perform multi-source data analysis. Fusion analysis improves the algorithm's ability to identify tumors.
但目前,染色内镜、共聚焦显微放大内镜、超声内镜等其探头或者成像模组与白光内镜并不兼容,事实上增加了多模检测的难度。比如消化道肿瘤往往难以仅仅通过白光内镜定性诊断,特别是很多情况还需进一步通过放大内镜、染色内镜以及病理活检的方式对肿瘤进行定性诊断,有时还需对黏膜下组织进行辅助判断。再比如在光动力治疗的过程中,氧含量和光敏剂浓度检测是光动力剂量监测的两个重要部分。其中对氧含量的检测需要使用多光谱窄带内窥镜对血红蛋白进行检测,而光敏剂浓度需要荧光通道进行检测。目前技术下,很难在同一内镜下对目标组织进行一体化检测,需要通过机械装置进行切换。而内镜的工作性质决定,通过机械装置不可避免的增加内镜模组体积,从而事实上限定了其应用范围。比如白光-显微一体内镜需要设计复杂的弾镜-变焦光路,其体积至少增大一倍。窄带-荧光内镜需要设计分光光路,一方面大大增加体积,一方面降低了其他波段光照的利用率。因此目前市面上的商业应用尚无一体化内镜。比如,奥林巴斯的NBI内镜通常检测415和540nm的窄带反射光,开立的光电复合染色成像技术(VIST)使用单波长结合成像CCD的RGB通道进行复合染色。这些方法着重对比微血管引起的吸收而无法检测诸如脂类或自体荧光等光谱信息。英国帝国理工学院发展了一种利用超连续谱光源的高光谱窄带内镜,但是超连续谱光源非常昂贵。However, at present, the probes or imaging modules of chromoendoscopy, confocal microscopic magnifying endoscopy, and ultrasound endoscopy are not compatible with white light endoscopy, which actually increases the difficulty of multimodal detection. For example, it is often difficult to qualitatively diagnose gastrointestinal tumors only by white light endoscopy, especially in many cases, it is necessary to further qualitatively diagnose tumors by means of magnifying endoscopy, chromoendoscopy and pathological biopsy, and sometimes it is necessary to make auxiliary judgments on submucosal tissue . For another example, in the process of photodynamic therapy, the detection of oxygen content and photosensitizer concentration are two important parts of photodynamic dose monitoring. Among them, the detection of oxygen content requires the detection of hemoglobin using a multispectral narrow-band endoscope, and the detection of the photosensitizer concentration requires a fluorescence channel. Under the current technology, it is difficult to perform integrated detection of the target tissue under the same endoscope, and it needs to be switched by a mechanical device. The working nature of the endoscope determines that the volume of the endoscope module is inevitably increased through mechanical devices, which in fact limits its application range. For example, the white light-microscope integrated endoscope needs to design a complex optical lens-zoom optical path, and its volume is at least doubled. The narrow-band-fluorescence endoscope needs to design the light splitting optical path, which greatly increases the volume on the one hand, and reduces the utilization rate of illumination in other bands on the other hand. Therefore, there is currently no integrated endoscope for commercial applications on the market. For example, Olympus' NBI endoscopes typically detect narrow-band reflected light at 415 and 540 nm, and the developed Photoelectric Composite Stain Imaging Technology (VIST) uses a single wavelength combined with the RGB channels of the imaging CCD for composite staining. These methods focus on contrasting absorption caused by microvessels and cannot detect spectral information such as lipids or autofluorescence. Imperial College London has developed a hyperspectral narrow-band endoscope using supercontinuum light sources, but supercontinuum light sources are very expensive.
光敏剂的浓度监测是光动力剂量监测中最为重要的部分。通过检测光敏剂的激发荧光强度,可以得到多种信息,如光敏剂的浓度、靶向性及空间分布等。对光敏剂浓度检测主要使用的是荧光内窥镜。专利号为CN 110772208 A的专利中公开了一种荧光内窥镜装置,该装置通过复眼成像装置采集被摄对象的多个荧光图像子块,再对这些荧光子块进行像素坐标配准,最后基于各个荧光图像子块中各个像素点的像素配准坐标进行像素恢复至叠加,从而生成被摄对象的荧光图像。这种方法虽然能够获取质量较高的荧光图像,但是需要多个检测通道,其体积难以缩小,因此实际应用中其场景极其有限,同时算法极其复杂,对图像处理设备的性能要求很高。Concentration monitoring of photosensitizers is the most important part of photodynamic dose monitoring. By detecting the excitation fluorescence intensity of the photosensitizer, various information can be obtained, such as the concentration, targeting and spatial distribution of the photosensitizer. Fluorescence endoscopy is mainly used to detect the concentration of photosensitizers. Patent No. CN 110772208 A discloses a fluorescent endoscope device, which collects multiple fluorescent image sub-blocks of a subject through a compound eye imaging device, and then performs pixel coordinate registration on these fluorescent sub-blocks, and finally Based on the pixel registration coordinates of each pixel point in each fluorescent image sub-block, pixel restoration is performed to superimpose, thereby generating a fluorescent image of the subject. Although this method can obtain high-quality fluorescence images, it requires multiple detection channels, and its volume is difficult to reduce. Therefore, its practical application is extremely limited, and the algorithm is extremely complex, which requires high performance of image processing equipment.
专利CN109758094A和CN108577791A公布了一种荧光导航内窥镜系统及其增强荧光成像灵敏度的方法,其方法通过分光光路将荧光和白光分离,难以和窄带反射内镜相结合,因为每增加一个光学通道,一方面需要更多的相机和分光光路,极大的增加成本,另一方面内窥镜探头也难以集成更多的光学器件。Patents CN109758094A and CN108577791A disclose a fluorescence navigation endoscope system and a method for enhancing fluorescence imaging sensitivity. The method separates fluorescence and white light through a light splitting optical path, which is difficult to combine with narrow-band reflective endoscopes, because each additional optical channel, On the one hand, more cameras and beam splitting optical paths are required, which greatly increases the cost. On the other hand, it is difficult for the endoscopic probe to integrate more optical devices.
专利文献CN109758094A公布了显微内窥系统,通过成像光纤将图像引出,从而在体外实现光路分光,这样虽然不受体内体积限制问题,但成像光纤分辨率有限,比如住田光学号称业内领先的成像光纤,也只能实现十万像素级别的分辨率,与目前临床1080P甚至4K分辨率的要求差别甚远。专利文献CN108670203A公布了一种窄带-荧光成像光路,使用了3个传感器和相对应的分光光路,这大大增加了其体积和设计复杂程度,难以应用到电子内窥镜中。专利文献CN110731748A公布了一路窄带光和一路荧光耦合的电子内窥镜,使用了两个分光光路和一个成像芯片,其上限能处理某一单一波长反射光和单一波长荧光。Patent document CN109758094A discloses a micro-endoscopy system, which draws out the image through an imaging fiber, so as to realize optical path splitting in vitro, so that although it is not limited by the volume of the body, the resolution of the imaging fiber is limited. For example, Sumita Optics is known as the industry-leading imaging Optical fiber can only achieve a resolution of 100,000 pixels, which is far from the current clinical requirements of 1080P or even 4K resolution. Patent document CN108670203A discloses a narrow-band-fluorescence imaging optical path, which uses three sensors and corresponding beam splitting optical paths, which greatly increases its volume and design complexity, and is difficult to apply to electronic endoscopes. Patent document CN110731748A discloses an electronic endoscope with one narrow-band light and one fluorescent coupling, using two splitting optical paths and one imaging chip, the upper limit of which can handle a single wavelength reflected light and single wavelength fluorescence.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种白光-窄带-荧光一体化内窥镜及其使用方法,将白光功能、多光谱窄带功能和荧光功能结合在一起,在保证成像质量与采集速度的前提下,能够显著降低内窥镜结构的复杂程度,The purpose of the present invention is to provide a white light-narrowband-fluorescence integrated endoscope and a method of using the same, which combine the white light function, the multispectral narrowband function and the fluorescence function, and under the premise of ensuring the imaging quality and acquisition speed, can Significantly reduces the complexity of the endoscope structure,
本发明通过以下技术方案实现:The present invention is achieved through the following technical solutions:
一种白光-窄带-荧光一体化内窥镜,包括:光源部分、光源控制单元和内镜部分;A white light-narrowband-fluorescence integrated endoscope, comprising: a light source part, a light source control unit and an endoscope part;
光源部分用于提供照射在被检生物组织上的照明光,所述照明光的类型包括白光以及多种波长的窄带光,所述窄带光包括荧光激发光;所述荧光激发光能激发被检生物组织上的光敏剂产生荧光;The light source part is used to provide illumination light illuminating the biological tissue to be inspected, the types of the illumination light include white light and narrow-band light of various wavelengths, and the narrow-band light includes fluorescence excitation light; the fluorescence excitation light can excite the inspected The photosensitizer on biological tissue produces fluorescence;
光源控制单元用于控制光源部分提供的照明光的类型;The light source control unit is used to control the type of illumination light provided by the light source part;
内镜部分包括内镜探测器和陷波片;内镜探测器用于接收光源部分提供的照明光经被检生物组织反射后的反射光和被检生物组织上的光敏剂被光源部分提供的荧光激发光激发产生的荧光,得到光信号,反射光和荧光均经陷波片进入内镜探测器;陷波片的陷波波长等于荧光激发光的波长。The endoscope part includes an endoscope detector and a notch plate; the endoscope detector is used to receive the reflected light from the illumination light provided by the light source part and the reflected light from the inspected biological tissue and the fluorescence provided by the light source part of the photosensitizer on the inspected biological tissue. The fluorescence generated by the excitation light is excited to obtain an optical signal. Both the reflected light and the fluorescence enter the endoscope detector through the notch plate; the notch wavelength of the notch plate is equal to the wavelength of the fluorescence excitation light.
优选的,内镜部分还包括夹持器,夹持器内部开设有内镜探测器通道,内镜探测器通道内安装内镜探测器,夹持器的一端端面上设置有凹槽,凹槽与内镜探测器通道同轴并连通,凹槽内安装陷波片。Preferably, the endoscope part further comprises a holder, an endoscope detector channel is opened inside the holder, an endoscope detector is installed in the endoscope detector channel, one end face of the holder is provided with a groove, and the groove It is coaxial with and communicated with the channel of the endoscope detector, and a notch plate is installed in the groove.
进一步的,夹持器上开设有导光束通道,导光束通道的轴线与内镜探测器通道的轴线平行;光源部分提供的照明光经导光束通道照射在被检生物组织上。Further, the holder is provided with a light guide channel, the axis of the light guide channel is parallel to the axis of the endoscope detector channel; the illumination light provided by the light source part is irradiated on the biological tissue to be inspected through the light guide channel.
进一步的,导光束通道设置两个,两个导光束通道关于内镜探测器通道对称。Further, two light guide channels are provided, and the two light guide channels are symmetrical with respect to the endoscope detector channel.
优选的,还包括数据采集部分,数据采集部分包括采集卡与存储卡,采集卡用于接收内镜探测器的光信号和光源控制单元的成像模式信号,处理得到组织图像;存储卡用于对采集卡得到的组织图像进行存储。Preferably, it also includes a data acquisition part, the data acquisition part includes an acquisition card and a memory card, the acquisition card is used to receive the optical signal of the endoscope detector and the imaging mode signal of the light source control unit, and process the tissue image; The tissue images obtained by the capture card are stored.
进一步的,还包括显示器,显示器用于对采集部分得到的组织图像进行实时显示。Further, a display is also included, and the display is used to display the tissue images obtained by the acquisition part in real time.
优选的,光源部分包括氙灯光源、聚焦透镜组和滤光片轮;聚焦透镜组包括第一聚焦透镜和第二聚焦透镜;在氙灯光源的发射光方向上依次设置第一聚焦透镜、滤光片轮和第二聚焦透镜。Preferably, the light source part includes a xenon lamp light source, a focusing lens group and a filter wheel; the focusing lens group includes a first focusing lens and a second focusing lens; the first focusing lens and the filter are sequentially arranged in the direction of the emitted light of the xenon lamp source. wheel and second focusing lens.
优选的,光源部分包括氙灯光源、聚焦透镜组和可调谐液晶滤波器LCTF;聚焦透镜组包括第一聚焦透镜和第二聚焦透镜;在氙灯光源的发射光方向上依次设置第一聚焦透镜、可调谐液晶滤波器LCTF和第二聚焦透镜。Preferably, the light source part includes a xenon lamp light source, a focusing lens group and a tunable liquid crystal filter LCTF; the focusing lens group includes a first focusing lens and a second focusing lens; the first focusing lens, the adjustable Tune the liquid crystal filter LCTF and the second focusing lens.
所述的白光-窄带-荧光一体化内窥镜的使用方法,包括白光成像模式、窄带成像模式和荧光成像模式;The method for using the white light-narrowband-fluorescence integrated endoscope includes a white light imaging mode, a narrowband imaging mode and a fluorescence imaging mode;
若选择白光成像模式,光源控制单元控制光源部分发出白光,经导光束通道照射在被检生物组织上,白光经被检生物组织反射的反射光经由内镜探测器探测;If the white light imaging mode is selected, the light source control unit controls the light source part to emit white light, which is irradiated on the inspected biological tissue through the light guide channel, and the reflected light of the white light reflected by the inspected biological tissue is detected by the endoscopic detector;
若选择窄带成像模式,光源控制单元控制光源部分发出波长与陷波片陷波波长不相等的窄带光,经导光束通道照射在被检生物组织上,窄带光经被检生物组织反射的反射光经由内镜探测器探测;If the narrow-band imaging mode is selected, the light source control unit controls the light source part to emit narrow-band light whose wavelength is not equal to the notch wavelength of the notch plate, and irradiates it on the biological tissue under inspection through the light guide channel, and the narrow-band light is reflected by the biological tissue. detected by an endoscopic detector;
若选择荧光成像模式,光源控制单元控制光源部分发出波长与陷波片陷波波长相等的窄带光,经导光束通道照射在被检生物组织上,被检生物组织上的光敏剂被激发产生荧光,窄带光经被检生物组织反射的反射光与荧光共同照射到内镜部分上,反射光经陷波片滤除后,荧光经由内镜探测器探测。If the fluorescence imaging mode is selected, the light source control unit controls the light source part to emit narrow-band light with a wavelength equal to the notch wavelength of the notch plate, which is irradiated on the biological tissue under inspection through the light guide channel, and the photosensitizer on the biological tissue under inspection is excited to generate fluorescence. , the narrow-band light reflected by the biological tissue to be inspected is irradiated to the endoscope part together with the fluorescence. After the reflected light is filtered by the notch filter, the fluorescence is detected by the endoscope detector.
进一步的,白光-窄带-荧光一体化内窥镜包括数据采集部分,数据采集部分包括采集卡与存储卡,采集卡用于接收内镜探测器的光信号和光源控制单元的成像模式信号,处理得到组织图像;存储卡用于对采集卡得到的组织图像进行存储;Further, the white light-narrowband-fluorescence integrated endoscope includes a data acquisition part, and the data acquisition part includes an acquisition card and a memory card, and the acquisition card is used to receive the optical signal of the endoscope detector and the imaging mode signal of the light source control unit, and process it. Obtain the tissue image; the memory card is used to store the tissue image obtained by the acquisition card;
采集卡根据光源控制单元反馈的成像模式信号,得到图像标签,根据接收的内镜探测器的光信号处理得到图像,并对图像添加图像标签,得到组织图像。The acquisition card obtains an image label according to the imaging mode signal fed back by the light source control unit, obtains an image by processing according to the received light signal of the endoscope detector, and adds an image label to the image to obtain a tissue image.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明内窥镜,光源部分能提供白光、包括荧光激发光在内的多种波长的窄带光,即将复杂的窄带分光光路放到光源端,不进体内,可在后期根据需要扩充;在内镜部分设置陷波片,当照明光为荧光激发光时,能过滤荧光激发光的反射光,只允许荧光进入内镜探测器,实现荧光激发光的反射光与荧光分离,从而通过陷波光路简化进体内的内镜部分,通过小体积的光路,在不增加内镜部分体积基础上,实现白光-窄带-荧光一体化内窥镜设计,使得本发明伸入体内的内镜部分体积小、结构简单;通过陷波的方式将荧光模式下的荧光激发光的反射光滤除,解决了多光谱窄带功能与荧光成像功能难以集成化的问题。本发明实现了白光内窥镜、多光谱窄带内窥镜与荧光内窥镜的一体化,三者共用一套光源,一套图像采集设备,实现了多种功能的一体化,填补了领域内的空白。本发明方案合理,结构简单,容易实现,适应性强,应用场景广泛,可以用于光动力治疗过程中氧含量和光敏剂浓度检测,提高深部肿瘤光动力治疗内窥镜的集成程度。In the endoscope of the present invention, the light source part can provide white light and narrow-band light of various wavelengths including fluorescent excitation light, that is, the complex narrow-band light splitting light path is placed at the light source end, not into the body, and can be expanded later as needed; The mirror part is equipped with a notch plate. When the illumination light is fluorescent excitation light, it can filter the reflected light of the fluorescent excitation light, and only allow the fluorescence to enter the endoscope detector. The endoscope part that enters the body is simplified, and the white light-narrow-band-fluorescence integrated endoscope design is realized without increasing the volume of the endoscope part through the optical path of small volume, so that the endoscope part of the present invention extending into the body is small in size, The structure is simple; the reflected light of the fluorescence excitation light in the fluorescence mode is filtered out by means of a notch, which solves the problem that the multi-spectral narrow-band function and the fluorescence imaging function are difficult to integrate. The invention realizes the integration of a white light endoscope, a multi-spectral narrow-band endoscope and a fluorescence endoscope. Whitespace. The invention has reasonable scheme, simple structure, easy realization, strong adaptability and wide application scenarios, and can be used for detecting oxygen content and photosensitizer concentration in the process of photodynamic therapy, thereby improving the integration degree of endoscope for deep tumor photodynamic therapy.
进一步的,本发明内镜部分采用了自主设计的夹持器,结构巧妙并且造价低廉。Further, the endoscope part of the present invention adopts an independently designed holder, which has an ingenious structure and low cost.
进一步的,数据采集部分采用集成化的采集卡与存储卡,既能进行数据采集又能进行存储,体积小巧。Further, the data acquisition part adopts an integrated acquisition card and memory card, which can perform both data acquisition and storage, and is compact in size.
本发明的白光-窄带-荧光一体化内窥镜使用过程,能实现白光成像模式、窄带成像模式和荧光成像模式的简单切换,采用同一内窥镜,实现多种探测模式。The white-light-narrow-band-fluorescence integrated endoscope of the invention can realize simple switching between white-light imaging mode, narrow-band imaging mode and fluorescence imaging mode, and the same endoscope can be used to realize various detection modes.
附图说明Description of drawings
图1为本发明白光-窄带-荧光内窥镜成像系统整体结构框图;1 is a block diagram of the overall structure of the white light-narrowband-fluorescence endoscopic imaging system of the present invention;
图2为本发明内镜部分结构示意图;FIG. 2 is a schematic structural diagram of an endoscope part of the present invention;
图3为本发明夹持器结构示意图;FIG. 3 is a schematic view of the structure of the gripper of the present invention;
图4为本发明第一实施方式的光源部分结构示意图;4 is a schematic structural diagram of a light source part according to the first embodiment of the present invention;
图5为本发明第二实施方式的光源部分结构示意图;5 is a schematic structural diagram of a light source part according to a second embodiment of the present invention;
图6为本发明三种模式的时序选通流程图;Fig. 6 is the sequence gating flow chart of three modes of the present invention;
光源部分100、内镜部分200、数据采集部分300、内镜探测器210、陷波片230、夹持器240、导光束通道241/242、内镜探测器通道243、凹槽244、氙灯光源110、聚焦透镜组120、滤光片轮130、可调谐液晶滤波器LCTF 140。
具体实施方式Detailed ways
为了进一步理解本发明,下面结合实施例对本发明进行描述,这些描述只是进一步解释本发明的特征和优点,并非用于限制本发明的权利要求。In order to further understand the present invention, the present invention will be described below in conjunction with the embodiments. These descriptions are only used to further explain the features and advantages of the present invention, and are not intended to limit the claims of the present invention.
本发明一种白光-窄带-荧光内窥镜成像系统,实现了窄带反射成像与荧光成像的一体化设计。其思想是简化内镜部分光学设计,通过陷波将荧光和窄带光反射波段分离,不增加需要进体内的内镜部分体积,在体外光源实现白光-窄带光源激发,从而实现白光-窄带-荧光一体化内镜检测的目标。The present invention is a white light-narrow-band-fluorescence endoscope imaging system, which realizes the integrated design of narrow-band reflection imaging and fluorescence imaging. The idea is to simplify the optical design of the endoscope part, separate the fluorescence and narrow-band light reflection bands through the notch, without increasing the volume of the endoscope part that needs to enter the body, and realize the excitation of white light-narrow-band light source in the external light source, so as to realize white-narrow-band-fluorescence. Targets for all-in-one endoscopy.
如图1所示,本发明的白光-窄带-荧光内窥镜成像系统由三个部分组成:光源部分100、光源控制单元、内镜部分200、数据采集部分300。As shown in FIG. 1 , the white light-narrowband-fluorescence endoscopic imaging system of the present invention consists of three parts: a
光源部分100,该部分用于提供照射在被检生物组织上的照明光,所述照明光的类型包括白光以及多种波长的窄带光,所述窄带光包括荧光激发光;所述荧光激发光能激发被检生物组织上的光敏剂产生荧光。荧光激发光的波长需要根据光敏剂的特性来选择。The
光源控制单元用于控制光源部分100提供的照明光的类型。The light source control unit is used to control the type of illumination light provided by the
内镜部分200,该部分为伸入被检生物组织的探测部分,能够对被检生物组织在光源部分100提供的白光或窄带光照明下的组织图像进行拍摄采集得到光信号。The endoscope part 200 , which is a detection part extending into the biological tissue to be inspected, can capture and collect light signals from the tissue image of the biological tissue to be inspected under the illumination of the white light or narrow-band light provided by the
数据采集部分300,该部分接收内镜部分200的光信号和光源控制单元的成像模式信号,处理得到组织图像并进行存储。The data acquisition part 300 receives the optical signal of the endoscope part 200 and the imaging mode signal of the light source control unit, and processes the tissue image to obtain and store the image.
如图2所示,内镜部分200由一个内镜探测器210、陷波片230组成,陷波片230的陷波波长等于荧光激发光的波长。内镜探测器210、陷波片230由一个夹持器240固定在一起,夹持器240上开设有导光束通道可以伸入人体组织进行探测。夹持器240的结构如图3所示,该结构采用SOLIDWORKS软件进行设计,PLA材料3D打印而成。该部分采用分体式打印,分为前后两部分,共有三个通道,两侧两个直径较小的通道241和242为导光束通道,中间直径较大的通道243为内镜探测器通道,用于安装内镜探测器210。在内镜探测器通道前端(靠近被检生物组织)有一个凹槽244,其作用为固定陷波片230。As shown in FIG. 2 , the endoscope part 200 is composed of an
内镜探测器210用于接收光源部分100提供的照明光经被检生物组织反射后的反射光和被检生物组织上的光敏剂被光源部分100提供的荧光激发光激发产生的荧光。当光源部分100提供的是荧光激发光时,由于陷波片230的陷波波长等于荧光激发光的波长,陷波片能够滤除被检生物组织的反射光,能够保证进行荧光成像时,只让荧光到达内镜探测器。The
夹持器240的设计,能够保证将反射光与荧光分离开来,保证了实现荧光功能成像时将组织的反射光滤除的目的,是保证荧光成像功能与窄带成像功能一体化的关键环节。The design of the
内镜探测器210的分辨率可选的为1920*1080。The resolution of the
本发明可以搭配多种不同光源使用,只要光源能够发出不同波长的窄带光即可。可以搭配高光谱与超光谱光源,拓宽了高光谱与超光谱技术的应用面,将多光谱、高光谱甚至超光谱技术与内窥镜结合,弥补了因为光的穿透性有限从而难以在体内应用的缺憾。The present invention can be used with a variety of different light sources, as long as the light sources can emit narrow-band light of different wavelengths. It can be matched with hyperspectral and hyperspectral light sources, broadening the application of hyperspectral and hyperspectral technologies, and combining multispectral, hyperspectral and even hyperspectral technologies with endoscopes, making up for the limited penetration of light, which is difficult to penetrate in the body. The shortcomings of the application.
如图4所示,在一个可行的光源设计方案中,光源部分100使用了氙灯光源110+聚焦透镜组120+滤光片轮130的设计方案。在氙灯光源110的发射光方向依次设置聚焦透镜、滤光片轮130、聚焦透镜。聚焦透镜能够将氙灯发出的光束直径约为60mm的光聚焦为光束直径4mm,并将其聚焦在导光束通道的入光面上。同时滤光片轮上设置有透过白光的通孔和多个不同波长的滤光片,滤光片能够从氙灯发出的宽谱段的光中选通需要的窄带波,从而实现窄带成像的目的,在使用时根据需要选择合适的滤光片轮。如图5所示,在另一个可行的光源设计方案中,使用了氙灯光源110+聚焦透镜组120+可调谐液晶滤波器LCTF140的设计方案。相比于滤光片轮,LCTF可选通的波长数目更多,可控性也更高。这两个可行的光源设计方案可以分别作为多光谱与高光谱光源的示例。当然,本发明并不限定光源具体参数与光路结构,只要能够发出白光与不同波长的窄带光即可作为光源,例如超连续谱光源。除过上文中列举的两个可行方案外,还可以使用LED、光谱仪等仪器作为光源组成部分。As shown in FIG. 4 , in a feasible light source design solution, the
数据采集部分300包括采集卡与存储卡,采集卡用于接收内镜探测器210的光信号和光源控制单元的成像模式信号,处理得到组织图像;存储卡用于对采集卡得到的组织图像进行存储;采集卡根据光源控制单元反馈的成像模式信号,得到图像标签,根据接收的内镜探测器210的光信号处理得到图像,并对图像添加图像标签,得到组织图像,可以用于后续机器学习算法的处理,重建出不同的功能图像。例如窄带模式下获取的图像可以用于血氧饱和度的判别,荧光模式下获取的图像可以用于光动力治疗前后光敏剂剂量的判定。The data acquisition part 300 includes an acquisition card and a memory card, the acquisition card is used to receive the light signal of the
数据采集部分采用集成化的采集卡与存储卡,体积小巧,同时配有操作手柄与UDB外设连接槽,可以连接外设USB进行存图,操作方便。采集卡具有实时成像功能,可以外接显示器进行实时内镜图像显示,同时,通过采集卡操作手柄,可以对图像进行冻结,冻结后图像可以通过存储卡存储到外接的USB设备上。The data acquisition part adopts an integrated acquisition card and memory card, which is small in size. It is also equipped with an operating handle and a UDB peripheral connection slot, which can be connected to the peripheral USB to save images, which is easy to operate. The capture card has a real-time imaging function, which can be connected to an external monitor for real-time endoscopic image display. At the same time, the image can be frozen by operating the handle of the capture card, and the frozen image can be stored on an external USB device through a memory card.
本发明的光路经过Zemax软件的仿真模拟与实际验证,伸入体内的部分光路简单、体积小巧、应用场景广泛,可以在中小型动物消化道以及结直肠内使用。The optical path of the invention has been simulated and verified by Zemax software, and the part of the optical path extending into the body is simple, small in size and wide in application scenarios, and can be used in the digestive tract and colorectum of small and medium-sized animals.
本发明该系统的工作过程为:若是白光成像模式,光源部分100发出的白光经导光束通道照射在被检生物组织上,被检生物组织的反射光经由内镜探测器探测得到白光图像,传输至数据采集部分并由显示器显示,白光图像可以给医生提供手术部位的直观感受;若是窄带成像模式,光源部分100发出的波长与陷波片陷波波长不相等的窄带光经导光束通道照射在被检生物组织上,被检生物组织的反射光经过内镜部分200中的内镜探测器被收集到,内镜探测器与数据采集部分300相连,可以进行窄带图像的实时显示与存储,存储到USB外设中的窄带图像可以生成多光谱或高光谱数据集,可以结合相应的算法进行血氧浓度的判断;若是荧光成像模式,光源部分100发出的波长与陷波片陷波波长相等的窄带光(也是光敏剂激发光)经导光束通道照射在被检生物组织上,被检生物组织的反射光与荧光共同照射到内镜部分200,反射光经相应的陷波片滤除后,荧光经过内镜部分200中的内镜探测器被收集到,内镜探测器与数据采集部分300相连,可以进行图像的实时显示与存储,荧光模式可以用来探测手术部位的光敏剂浓度。该内窥镜三种模式不需要手动切换,只需要根据所使用的照明光的波长不同进行区分,通过程序对光源部分的照明光的波长进行时序控制,当非荧光激发波段被选通后,得到的图像被标记为对应波段的窄带图像,此时对应窄带成像模式;当与陷波片陷波波长相匹配的荧光激发波段被选通后,因为激发波段被陷波片滤掉,得到的是荧光图像,此时对应荧光模式。简而言之,只需保证荧光模式的激发窄带光波长恰为陷波片的陷波波长即可。三种模式的时序选通流程图如图6所示。The working process of the system of the present invention is as follows: if it is in the white light imaging mode, the white light emitted by the
需要说明的是,本发明并不对窄带光的波长进行限定,具体的波长参数需要根据被检生物组织的光学特性进行选择。由于本发明的发明初衷为测量光动力治疗过程中对氧含量和光敏剂浓度进行检测,窄带光优选为其中心波长位于血液氧合血红蛋白与脱氧血红蛋白的吸收峰值附近,荧光激发光波长优选为光动力治疗中常见光敏剂的激发波长。It should be noted that the present invention does not limit the wavelength of the narrow-band light, and specific wavelength parameters need to be selected according to the optical characteristics of the biological tissue to be examined. Since the original intention of the present invention is to detect oxygen content and photosensitizer concentration in the process of measuring photodynamic therapy, the narrow-band light is preferably the central wavelength of which is located near the absorption peaks of blood oxyhemoglobin and deoxyhemoglobin, and the wavelength of the fluorescence excitation light is preferably light. Excitation wavelengths of common photosensitizers in dynamic therapy.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210690059.2A CN114947696B (en) | 2022-06-17 | 2022-06-17 | A white light-narrow band-fluorescence integrated endoscope and its use method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210690059.2A CN114947696B (en) | 2022-06-17 | 2022-06-17 | A white light-narrow band-fluorescence integrated endoscope and its use method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN114947696A true CN114947696A (en) | 2022-08-30 |
| CN114947696B CN114947696B (en) | 2025-03-04 |
Family
ID=82963015
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210690059.2A Active CN114947696B (en) | 2022-06-17 | 2022-06-17 | A white light-narrow band-fluorescence integrated endoscope and its use method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN114947696B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115670359A (en) * | 2022-10-28 | 2023-02-03 | 上海术之道医疗器械有限公司 | Endoscopic imaging device, method and storage medium |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6510338B1 (en) * | 1998-02-07 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Method of and devices for fluorescence diagnosis of tissue, particularly by endoscopy |
| CN102920420A (en) * | 2012-10-11 | 2013-02-13 | 北京大学 | an endoscopic device |
| CN103393391A (en) * | 2013-06-20 | 2013-11-20 | 中国科学院苏州生物医学工程技术研究所 | Multifunctional medical instrument for alimentary canal endoscopic surgery |
| US20150088001A1 (en) * | 2011-12-19 | 2015-03-26 | Technical University Of Denmark | Illumination System for Endoscopic Applications |
| CN106901683A (en) * | 2017-05-05 | 2017-06-30 | 中国人民武装警察部队总医院 | A kind of fluorescent endoscopic imgaing system |
| CN108577791A (en) * | 2018-05-16 | 2018-09-28 | 广东欧谱曼迪科技有限公司 | A fluorescence navigation endoscope system and method for enhancing the sensitivity of fluorescence imaging |
| CN108670203A (en) * | 2018-06-01 | 2018-10-19 | 深圳开立生物医疗科技股份有限公司 | A kind of imaging device |
| CN109222864A (en) * | 2018-09-26 | 2019-01-18 | 天津工业大学 | A kind of fluorescence endoscope cold light source device |
| CN110731748A (en) * | 2019-11-18 | 2020-01-31 | 深圳开立生物医疗科技股份有限公司 | electronic endoscope |
| CN114468960A (en) * | 2021-12-21 | 2022-05-13 | 华南师范大学 | Endoscope device integrating optics, optoacoustic, OCT and fluorescence multi-mode forward imaging and imaging method thereof |
| CN114468950A (en) * | 2021-12-30 | 2022-05-13 | 浙江大学 | Mixed illumination autofluorescence laparoscope |
-
2022
- 2022-06-17 CN CN202210690059.2A patent/CN114947696B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6510338B1 (en) * | 1998-02-07 | 2003-01-21 | Karl Storz Gmbh & Co. Kg | Method of and devices for fluorescence diagnosis of tissue, particularly by endoscopy |
| US20150088001A1 (en) * | 2011-12-19 | 2015-03-26 | Technical University Of Denmark | Illumination System for Endoscopic Applications |
| CN102920420A (en) * | 2012-10-11 | 2013-02-13 | 北京大学 | an endoscopic device |
| CN103393391A (en) * | 2013-06-20 | 2013-11-20 | 中国科学院苏州生物医学工程技术研究所 | Multifunctional medical instrument for alimentary canal endoscopic surgery |
| CN106901683A (en) * | 2017-05-05 | 2017-06-30 | 中国人民武装警察部队总医院 | A kind of fluorescent endoscopic imgaing system |
| CN108577791A (en) * | 2018-05-16 | 2018-09-28 | 广东欧谱曼迪科技有限公司 | A fluorescence navigation endoscope system and method for enhancing the sensitivity of fluorescence imaging |
| CN108670203A (en) * | 2018-06-01 | 2018-10-19 | 深圳开立生物医疗科技股份有限公司 | A kind of imaging device |
| CN109222864A (en) * | 2018-09-26 | 2019-01-18 | 天津工业大学 | A kind of fluorescence endoscope cold light source device |
| CN110731748A (en) * | 2019-11-18 | 2020-01-31 | 深圳开立生物医疗科技股份有限公司 | electronic endoscope |
| CN114468960A (en) * | 2021-12-21 | 2022-05-13 | 华南师范大学 | Endoscope device integrating optics, optoacoustic, OCT and fluorescence multi-mode forward imaging and imaging method thereof |
| CN114468950A (en) * | 2021-12-30 | 2022-05-13 | 浙江大学 | Mixed illumination autofluorescence laparoscope |
Non-Patent Citations (1)
| Title |
|---|
| 张平;董卫国;汤绍迁;: "电子内镜窄带成像与自体荧光成像系统的选型研究", 医疗卫生装备, no. 01, 15 January 2011 (2011-01-15) * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115670359A (en) * | 2022-10-28 | 2023-02-03 | 上海术之道医疗器械有限公司 | Endoscopic imaging device, method and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114947696B (en) | 2025-03-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7515952B2 (en) | System for characterization and mapping of tissue lesions | |
| US20190343392A1 (en) | System and Method for Multi-Color Laser Imaging and Ablation of Cancer Cells Using Fluorescence | |
| US7697975B2 (en) | Methods and apparatus for fluorescence imaging using multiple excitation-emission pairs and simultaneous multi-channel image detection | |
| CN101904737B (en) | Living body fluorescent endoscopic spectrum imaging device | |
| US20100026785A1 (en) | High resolution digital video colposcope with built-in polarized LED illumination and computerized clinical data management system | |
| US20130041267A1 (en) | Method and device for multi-spectral photonic imaging | |
| WO2019100450A1 (en) | Multi-functional endoscope system | |
| CN107280763A (en) | A kind of optic visualization operation guiding system | |
| CN115721247A (en) | Endoscopic imaging system for photodynamic diagnosis | |
| CN101940463B (en) | In vivo fluorescence endoscopic imaging system | |
| KR20200012314A (en) | Head for endoscope, medical endoscope and medical micro scope | |
| CN114947696B (en) | A white light-narrow band-fluorescence integrated endoscope and its use method | |
| CN117257203A (en) | Endoscopic system and imaging method of endoscopic system | |
| CN116982915A (en) | Image and spectrum combined detection system based on endoscope and application method thereof | |
| CN111568549B (en) | A visualization system with real-time imaging function | |
| Kang et al. | System for fluorescence diagnosis and photodynamic therapy of cervical disease | |
| AU2001244423B2 (en) | Method and system for characterization and mapping of tissue lesions | |
| WO2011162721A1 (en) | Method and system for performing tissue measurements | |
| Zeng | White Light Endoscopy | |
| AU2001244423A1 (en) | Method and system for characterization and mapping of tissue lesions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |