[go: up one dir, main page]

CN115021756A - Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device - Google Patents

Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device Download PDF

Info

Publication number
CN115021756A
CN115021756A CN202210752692.XA CN202210752692A CN115021756A CN 115021756 A CN115021756 A CN 115021756A CN 202210752692 A CN202210752692 A CN 202210752692A CN 115021756 A CN115021756 A CN 115021756A
Authority
CN
China
Prior art keywords
bit
digital
analog
signal
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210752692.XA
Other languages
Chinese (zh)
Inventor
刘维辉
陈敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chipsea Technologies Shenzhen Co Ltd
Original Assignee
Chipsea Technologies Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chipsea Technologies Shenzhen Co Ltd filed Critical Chipsea Technologies Shenzhen Co Ltd
Priority to CN202210752692.XA priority Critical patent/CN115021756A/en
Publication of CN115021756A publication Critical patent/CN115021756A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本申请实施例提供一种模数转换电路、芯片、模数转换方法和电子设备,该模数转换电路,包括:全并行模数转换模块,包括:K位电阻串;N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,用于对模拟输入信号进行N位模数转换并得到N位数字信号,N位数字信号包括高K位数字信号和低M位数字信号,其中,N=K+M,且K、M和N为正整数;其中:全并行模数转换模块,被配置为对模拟输入信号进行采样并转换,得到高K位数字信号;N位逐次逼近模数转换模块,被配置为通过K位电阻串和M位电容数模转换阵列得到低M位数字信号,且低M位数字信号为根据高K位数字信号在N位模数转换中得到。通过本申请实施例,可降低模数转换电路的面积或功耗。

Figure 202210752692

Embodiments of the present application provide an analog-to-digital conversion circuit, a chip, an analog-to-digital conversion method, and an electronic device. The analog-to-digital conversion circuit includes: a fully parallel analog-to-digital conversion module, including: a K-bit resistor string; an N-bit successive approximation analog-to-digital The conversion module includes: an M-bit capacitance digital-to-analog conversion array, which is used to perform N-bit analog-to-digital conversion on the analog input signal and obtain an N-bit digital signal. The N-bit digital signal includes a high K-bit digital signal and a low M-bit digital signal, wherein , N=K+M, and K, M, and N are positive integers; among them: the fully parallel analog-to-digital conversion module is configured to sample and convert the analog input signal to obtain a high K-bit digital signal; N-bit successive approximation modulus The digital conversion module is configured to obtain the low M-bit digital signal through the K-bit resistor string and the M-bit capacitance digital-to-analog conversion array, and the low M-bit digital signal is obtained from the N-bit analog-to-digital conversion according to the high K-bit digital signal. With the embodiments of the present application, the area or power consumption of the analog-to-digital conversion circuit can be reduced.

Figure 202210752692

Description

模数转换电路、芯片、模数转换方法和电子设备Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device

技术领域technical field

本申请涉及信号处理技术领域,尤其涉及一种模数转换电路、芯片、模数转换方法和电子设备。The present application relates to the technical field of signal processing, and in particular, to an analog-to-digital conversion circuit, a chip, an analog-to-digital conversion method, and an electronic device.

背景技术Background technique

全并行(Flash)模数转换器(ADC)与逐次逼近寄存器(SAR)ADC组合的模数转换器,是一种混合模数转换器,也称为Flash-SARADC。A fully parallel (Flash) analog-to-digital converter (ADC) combined with a successive approximation register (SAR) ADC is a hybrid analog-to-digital converter, also known as a Flash-SAR ADC.

相关技术中的Flash-SAR ADC存在电路面积较大和功耗较高的技术问题。The Flash-SAR ADC in the related art has technical problems of large circuit area and high power consumption.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请实施例提供了一种模数转换电路、芯片、模数转换方法和电子设备,以减少模数转换电路的电路面积和降低功耗。In view of this, the embodiments of the present application provide an analog-to-digital conversion circuit, a chip, an analog-to-digital conversion method, and an electronic device, so as to reduce the circuit area and power consumption of the analog-to-digital conversion circuit.

根据本申请的一方面,提供了一种模数转换电路,包括:According to an aspect of the present application, an analog-to-digital conversion circuit is provided, comprising:

全并行模数转换模块,包括:K位电阻串;Full parallel analog-to-digital conversion module, including: K-bit resistor string;

N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,用于对模拟输入信号进行N位模数转换并得到N位数字信号,N位数字信号包括高K位数字信号和低M位数字信号,其中,N=K+M,且K、M和N为正整数;N-bit successive approximation analog-to-digital conversion module, including: M-bit capacitance digital-to-analog conversion array, used to perform N-bit analog-to-digital conversion on the analog input signal and obtain N-bit digital signal, the N-bit digital signal includes high K-bit digital signal and low M-bit digital signal, wherein, N=K+M, and K, M and N are positive integers;

其中:in:

全并行模数转换模块,被配置为对模拟输入信号进行采样并转换,得到高K位数字信号;The fully parallel analog-to-digital conversion module is configured to sample and convert the analog input signal to obtain a high-K-bit digital signal;

N位逐次逼近模数转换模块,被配置为通过K位电阻串和M位电容数模转换阵列得到低M位数字信号,且低M位数字信号为根据高K位数字信号在N位模数转换中得到。The N-bit successive approximation analog-to-digital conversion module is configured to obtain the low M-bit digital signal through the K-bit resistor string and the M-bit capacitor digital-to-analog conversion array, and the low M-bit digital signal is based on the high K-bit digital signal. obtained in conversion.

根据本申请的另一方面,提供了一种模数转换电路的模数转换方法,模数转换电路包括:全并行模数转换模块,包括:K位电阻串;N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,N位逐次逼近模数转换模块,用于对模拟输入信号进行N位模数转换并得到N位数字信号,N位数字信号包括高K位数字信号和低M位数字信号;其中,N=K+M,且K、M和N为正整数;According to another aspect of the present application, an analog-to-digital conversion method for an analog-to-digital conversion circuit is provided. The analog-to-digital conversion circuit includes: a fully parallel analog-to-digital conversion module, including: a K-bit resistor string; an N-bit successive approximation analog-to-digital conversion module , including: M-bit capacitance digital-to-analog conversion array, N-bit successive approximation analog-to-digital conversion module, which is used to perform N-bit analog-to-digital conversion on the analog input signal and obtain N-bit digital signal. The N-bit digital signal includes high K-bit digital signal and Low M-bit digital signal; wherein, N=K+M, and K, M and N are positive integers;

模数转换方法包括:Analog-to-digital conversion methods include:

全并行模数转换模块对模拟输入信号进行采样并转换,得到高K位数字信号;The fully parallel analog-to-digital conversion module samples and converts the analog input signal to obtain a high K-bit digital signal;

N位逐次逼近模数转换模块通过K位电阻串和M位电容数模转换阵列得到低M位数字信号,且低M位数字信号为根据高K位数字信号在N位模数转换中得到。The N-bit successive approximation analog-to-digital conversion module obtains the low M-bit digital signal through the K-bit resistor string and the M-bit capacitor digital-to-analog conversion array, and the low M-bit digital signal is obtained from the N-bit analog-to-digital conversion according to the high K-bit digital signal.

根据本申请的又一方面,提供了一种芯片,包括本申请实施例的模数转换电路。According to another aspect of the present application, a chip is provided, including the analog-to-digital conversion circuit of the embodiment of the present application.

根据本申请的又一方面,提供了一种电子设备,包括:本申请实施例的模数转换电路。According to another aspect of the present application, an electronic device is provided, including: the analog-to-digital conversion circuit of the embodiment of the present application.

本申请实施例中提供的一个或多个技术方案,通过复用全并行模数转换模块中的K位电阻串,减少了逐次逼近模数转换模块中电容数模转换阵列的电容数量,可减少电路面积和降低功耗。One or more technical solutions provided in the embodiments of the present application reduce the number of capacitors in the capacitor digital-to-analog conversion array in the successive approximation analog-to-digital conversion module by multiplexing the K-bit resistor strings in the fully parallel analog-to-digital conversion module, which can reduce circuit area and reduced power consumption.

附图说明Description of drawings

在下面结合附图对于示例性实施例的描述中,本申请的更多细节、特征和优点被公开,在附图中:Further details, features and advantages of the present application are disclosed in the following description of exemplary embodiments in conjunction with the accompanying drawings, in which:

图1示出了本申请示例性实施例的模数转换电路的示意性框图;1 shows a schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application;

图2示出了本申请示例性实施例的模数转换电路的另一示意性框图;FIG. 2 shows another schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application;

图3示出了本申请示例性实施例的模数转换电路的又一示意性框图;FIG. 3 shows another schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application;

图4示出了本申请示例性实施例的模数转换电路的又一示意性框图;Fig. 4 shows another schematic block diagram of the analog-to-digital conversion circuit of the exemplary embodiment of the present application;

图5示出了本申请示例性实施例的模数转换电路的又一示意性框图;Fig. 5 shows another schematic block diagram of the analog-to-digital conversion circuit of an exemplary embodiment of the present application;

图6示出了本申请示例性实施例的模数转换电路的又一示意性框图;Fig. 6 shows another schematic block diagram of the analog-to-digital conversion circuit of an exemplary embodiment of the present application;

图7示出了本申请示例性实施例的模数转换电路的一个示例的结构示意图;FIG. 7 shows a schematic structural diagram of an example of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application;

图8示出了本申请示例性实施例的模数转换电路的另一个示例的结构示意图;FIG. 8 shows a schematic structural diagram of another example of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application;

图9示出了本申请示例性实施例的模数转换方法的流程图。FIG. 9 shows a flowchart of an analog-to-digital conversion method according to an exemplary embodiment of the present application.

具体实施方式Detailed ways

下面将参照附图更详细地描述本申请的实施例。虽然附图中显示了本申请的某些实施例,然而应当理解的是,本申请可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本申请。应当理解的是,本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。Embodiments of the present application will be described in more detail below with reference to the accompanying drawings. While certain embodiments of the present application are shown in the drawings, it is to be understood that the present application may be embodied in various forms and should not be construed as limited to the embodiments set forth herein, but rather are provided for the purpose of A more thorough and complete understanding of this application. It should be understood that the drawings and embodiments of the present application are only used for exemplary purposes, and are not used to limit the protection scope of the present application.

应当理解,本申请的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本申请的范围在此方面不受限制。It should be understood that the various steps described in the method embodiments of the present application may be performed in different orders and/or in parallel. Furthermore, method embodiments may include additional steps and/or omit performing the illustrated steps. The scope of this application is not limited in this regard.

本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本申请中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。As used herein, the term "including" and variations thereof are open-ended inclusions, ie, "including but not limited to". The term "based on" is "based at least in part on." The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one additional embodiment"; the term "some embodiments" means "at least some embodiments". Relevant definitions of other terms will be given in the description below. It should be noted that concepts such as "first" and "second" mentioned in this application are only used to distinguish different devices, modules or units, and are not used to limit the order of functions performed by these devices, modules or units or interdependence.

需要注意,本申请中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "a" and "a plurality" mentioned in this application are illustrative rather than restrictive, and those skilled in the art should understand that unless the context clearly indicates otherwise, they should be understood as "one or a plurality of". multiple".

本申请实施例提供了一种模数转换电路。The embodiments of the present application provide an analog-to-digital conversion circuit.

图1示出了本申请示例性实施例的模数转换电路的示意性框图,如图1所示,模数转换电路100包括:全并行模数转换模块110和N位逐次逼近模数转换模块120。全并行模数转换模块110包括K位电阻串111。N位逐次逼近模数转换模块120包括M位电容数模转换阵列121。N位逐次逼近模数转换模块120用于对模拟输入信号进行N位模数转换并得到N位数字信号,其中N位数字信号包括高K位数字信号和低M位数字信号。N=K+M,且K、M和N为正整数。FIG. 1 shows a schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 1 , the analog-to-digital conversion circuit 100 includes: a fully parallel analog-to-digital conversion module 110 and an N-bit successive approximation analog-to-digital conversion module 120. The fully parallel analog-to-digital conversion module 110 includes a K-bit resistor string 111 . The N-bit successive approximation analog-to-digital conversion module 120 includes an M-bit capacitance digital-to-analog conversion array 121 . The N-bit successive approximation analog-to-digital conversion module 120 is configured to perform N-bit analog-to-digital conversion on the analog input signal and obtain an N-bit digital signal, wherein the N-bit digital signal includes a high K-bit digital signal and a low M-bit digital signal. N=K+M, and K, M and N are positive integers.

全并行模数转换模块110,被配置为对模拟输入信号进行采样并转换,得到N位数字信号中的高K位数字信号。N位逐次逼近模数转换模块120,被配置为通过K位电阻串111和M位电容数模转换阵列121得到N位数字信号中的低M位数字信号,且该低M位数字信号为根据高K位数字信号在N位模数转换中得到。The fully parallel analog-to-digital conversion module 110 is configured to sample and convert the analog input signal to obtain the high-K-bit digital signal in the N-bit digital signal. The N-bit successive approximation analog-to-digital conversion module 120 is configured to obtain the low M-bit digital signal in the N-bit digital signal through the K-bit resistor string 111 and the M-bit capacitance digital-to-analog conversion array 121, and the low M-bit digital signal is based on The high K-bit digital signal is obtained in N-bit analog-to-digital conversion.

通过本实施例的模数转换电路100,使用全并行模数转换模块110的K位电阻串111与N位逐次逼近模数转换模块120的M位电容数模转换阵列121组成电阻电容混合结构,实现N位数模转换。通过复用全并行模数转换模块中的K位电阻串,减少了逐次逼近模数转换模块中电容数模转换阵列的电容数量,可减少电路面积和降低功耗。Through the analog-to-digital conversion circuit 100 of this embodiment, the K-bit resistor string 111 of the fully parallel analog-to-digital conversion module 110 and the M-bit capacitance digital-to-analog conversion array 121 of the N-bit successive approximation analog-to-digital conversion module 120 are used to form a resistor-capacitor hybrid structure, Realize N bit-to-analog conversion. By multiplexing the K-bit resistor strings in the fully parallel analog-to-digital conversion module, the number of capacitors in the capacitor-to-digital-to-analog conversion array in the successive approximation analog-to-digital conversion module can be reduced, which can reduce circuit area and power consumption.

应当理解,尽管图1中示出了模数转换电路100包括的组件和组件之间的位置关系,但本实施例对此不作限定。It should be understood that although the components included in the analog-to-digital conversion circuit 100 and the positional relationship between the components are shown in FIG. 1 , this embodiment is not limited thereto.

在本实施例中,M位电容数模转换阵列121可为二进制加权电容阵列或分段电容阵列(也称为桥接电容阵列),本实施例对此不做限定。分段电容阵列的一个例子是通过分段电容(称为Cs)将两个独立的二进制加权电容阵列分隔,以至少降低整体电容值。In this embodiment, the M-bit capacitor digital-to-analog conversion array 121 may be a binary weighted capacitor array or a segmented capacitor array (also referred to as a bridge capacitor array), which is not limited in this embodiment. An example of a segmented capacitor array is the separation of two independent binary weighted capacitor arrays by segmented capacitors (called Cs) to at least reduce the overall capacitance value.

在本实施例中,K位电阻串111可首先被用于全并行模数转换模块110生成N位数字信号中的高K位数字信号,然后被用于N位逐次逼近模数转换模块120生成N位数字信号中的低M位数字信号。下面对复用K位电阻串111可能的实施方式进行描述。In this embodiment, the K-bit resistor string 111 can be first used by the fully parallel analog-to-digital conversion module 110 to generate the high-order K-bit digital signal among the N-bit digital signals, and then used by the N-bit successive approximation analog-to-digital conversion module 120 to generate the digital signal. The low-order M-bit digital signal in the N-bit digital signal. A possible implementation of the multiplexed K-bit resistor string 111 is described below.

方式一method one

N位逐次逼近模数转换模块120,被配置为:通过K位电阻串111对高K位数字信号进行数模转换,并通过M位电容数模转换阵列121得到N位数字信号中的低M位数字信号。The N-bit successive approximation analog-to-digital conversion module 120 is configured to: perform digital-to-analog conversion on the high K-bit digital signal through the K-bit resistor string 111 , and obtain the low M in the N-bit digital signal through the M-bit capacitance digital-to-analog conversion array 121 bit digital signal.

图2示出了根据本申请示例性实施例的模数转换电路的示意性框图,如图2所示,模数转换电路100,还包括:开关模块130,被配置为根据该高K位数字信号对应的温度编码(包括2k-1位),控制K位电阻串111以输出参考电压信号(VREF)。M位电容数模转换阵列121中的各个电容对应的参考信号端,被配置为接收上述参考电压信号(VREF)。FIG. 2 shows a schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 2, the analog-to-digital conversion circuit 100 further includes: a switch module 130 configured to The temperature code corresponding to the signal (including 2 k -1 bits) controls the K-bit resistor string 111 to output the reference voltage signal (V REF ). The reference signal terminals corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array 121 are configured to receive the above-mentioned reference voltage signal (V REF ).

如图2所示,全并行模数转换模块110包括:比较模块112,与K位电阻串111连接,比较模块112被配置为生成高K位数字信号对应的温度编码。进一步的,基于该温度编码可得到对应的高K位数字信号。As shown in FIG. 2 , the fully parallel analog-to-digital conversion module 110 includes: a comparison module 112 connected to the K-bit resistor string 111 , and the comparison module 112 is configured to generate a temperature code corresponding to the high K-bit digital signal. Further, the corresponding high K-bit digital signal can be obtained based on the temperature encoding.

作为一种示例,开关模块130包括与温度编码的编码位数对应的开关,温度编码中的每位分别控制一个开关。作为一种例子,K位电阻串111可包括2K-1个等值电阻,比较模块112包括2K-1个比较器,每个比较器接收一个电阻对应的分段参考电压,相应的,开关模块130可包括2K-1个开关,每个开关对应于一个电阻对应的分段参考电压。As an example, the switch module 130 includes switches corresponding to the encoded bits of the temperature encoding, and each bit in the temperature encoding controls one switch respectively. As an example, the K-bit resistor string 111 may include 2K -1 equal-value resistors, the comparison module 112 includes 2K -1 comparators, and each comparator receives a segmented reference voltage corresponding to a resistor. Correspondingly, The switch module 130 may include 2 K −1 switches, and each switch corresponds to a segmented reference voltage corresponding to one resistance.

以一次采样和转换为例进行说明。示例性的,在采样期间,全并行模数转换模块110与N位逐次逼近模数转换模块120同时对模拟输入信号进行采样。在全并行模数转换模块110的转换期间,比较模块112生成模拟输入信号对应的高K位数字信号的温度编码,对温度编码进一步编码得到模拟输入信号对应的高K位数字信号。比较模块112将温度编码反馈给开关模块130。开关模块130根据温度编码控制K位电阻串111以输出参考电压信号(VREF),M位电容数模转换阵列121中的各个电容对应的参考信号端接收参考电压信号(VREF)。此时,复用全并行模数转换模块中的K位电阻串111作为N位逐次逼近模数转换模块120的高K位数模转换模块,M位电容数模转换阵列121作为N位逐次逼近模数转换模块120的低M位数模转换模块,N位逐次逼近模数转换模块120通过M位电容数模转换阵列直接从第M-1位开始比较,剩余只需比较M次,直到生成模拟输入信号对应的低M位数字信号。Take one sample and convert as an example. Exemplarily, during the sampling period, the analog input signal is simultaneously sampled by the fully parallel analog-to-digital conversion module 110 and the N-bit successive approximation analog-to-digital conversion module 120 . During the conversion period of the fully parallel analog-to-digital conversion module 110, the comparison module 112 generates the temperature code of the high-K-bit digital signal corresponding to the analog input signal, and further encodes the temperature code to obtain the high-K-bit digital signal corresponding to the analog input signal. The comparison module 112 feeds back the temperature code to the switch module 130 . The switch module 130 controls the K-bit resistor string 111 to output a reference voltage signal (V REF ) according to the temperature code, and the reference signal terminal corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array 121 receives the reference voltage signal (V REF ). At this time, the K-bit resistor string 111 in the multiplexed full-parallel analog-to-digital conversion module is used as the high-K digital-to-analog conversion module of the N-bit successive approximation analog-to-digital conversion module 120, and the M-bit capacitance digital-to-analog conversion array 121 is used as the N-bit successive approximation. The low-M digital-to-analog conversion module of the analog-to-digital conversion module 120, the N-bit successive approximation analog-to-digital conversion module 120 directly starts the comparison from the M-1th bit through the M-bit capacitance digital-to-analog conversion array, and the rest only needs to be compared M times until the generation The low M-bit digital signal corresponding to the analog input signal.

图3示出了根据本申请示例性实施例的另一模数转换电路的示意性框图,如图3所示,模数转换电路100,还包括:开关模块130,被配置为根据高K位数字信号控制K位电阻串111以输出一路参考电压信号(VREF)。M位电容数模转换阵列121中的各个电容对应的参考信号端,被配置为接收上述参考电压信号(VREF)。FIG. 3 shows a schematic block diagram of another analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 3 , the analog-to-digital conversion circuit 100 further includes: a switch module 130 configured to The digital signal controls the K-bit resistor string 111 to output a reference voltage signal (V REF ). The reference signal terminals corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array 121 are configured to receive the above-mentioned reference voltage signal (V REF ).

如图3所示,全并行模数转换模块110包括:比较模块112,与K位电阻串111连接,比较模块112被配置为生成模拟输入信号对应的高K位数字信号的温度编码;编码模块113,与比较模块112连接,被配置为该温度编码生成模拟输入信号对应的高K位数字信号。As shown in FIG. 3 , the fully parallel analog-to-digital conversion module 110 includes: a comparison module 112, which is connected to the K-bit resistor string 111, and the comparison module 112 is configured to generate the temperature encoding of the high K-bit digital signal corresponding to the analog input signal; the encoding module 113, connected to the comparison module 112, and configured to generate a high K-bit digital signal corresponding to the analog input signal for the temperature encoding.

作为一种示例,开关模块130可包括K路控制信号端,每路控制信号端对应于高K位数字信号中的一位数字信号。作为一个例子,开关模块130可为具有K路控制信号端对应的开关树。As an example, the switch module 130 may include K channels of control signal terminals, and each channel of control signal terminals corresponds to one bit of digital signal in the high K-bit digital signal. As an example, the switch module 130 may be a switch tree having K channels corresponding to control signal terminals.

以一次采样和转换为例进行说明。示例性的,在采样期间,全并行模数转换模块110与N位逐次逼近模数转换模块120同时对模拟输入信号进行采样。在全并行模数转换模块110的转换期间,比较模块112生成模拟输入信号对应的高K位数字信号的温度编码,编码模块113对温度编码进一步编码得到模拟输入信号对应的高K位数字信号。编码模块113将高K位数字信号反馈给开关模块130。开关模块130根据高K位数字信号控制K位电阻串111以输出参考电压信号(VREF),M位电容数模转换阵列121中的各个电容对应的参考信号端接收参考电压信号(VREF)。此时,复用全并行模数转换模块中的K位电阻串111作为N位逐次逼近模数转换模块120的高K位数模转换模块,M位电容数模转换阵列121作为N位逐次逼近模数转换模块120的低M位数模转换模块,N位逐次逼近模数转换模块120通过M位电容数模转换阵列直接从第M-1位开始比较,剩余只需比较M次,直到生成模拟输入信号对应的低M位数字信号。Take one sample and convert as an example. Exemplarily, during the sampling period, the analog input signal is simultaneously sampled by the fully parallel analog-to-digital conversion module 110 and the N-bit successive approximation analog-to-digital conversion module 120 . During the conversion of the fully parallel analog-to-digital conversion module 110, the comparison module 112 generates the temperature code of the high K-bit digital signal corresponding to the analog input signal, and the encoding module 113 further encodes the temperature code to obtain the high K-bit digital signal corresponding to the analog input signal. The encoding module 113 feeds back the high K-bit digital signal to the switch module 130 . The switch module 130 controls the K-bit resistor string 111 according to the high K-bit digital signal to output a reference voltage signal (V REF ), and the reference signal terminal corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array 121 receives the reference voltage signal (V REF ) . At this time, the K-bit resistor string 111 in the multiplexed full-parallel analog-to-digital conversion module is used as the high-K digital-to-analog conversion module of the N-bit successive approximation analog-to-digital conversion module 120, and the M-bit capacitance digital-to-analog conversion array 121 is used as the N-bit successive approximation. The low-M digital-to-analog conversion module of the analog-to-digital conversion module 120, the N-bit successive approximation analog-to-digital conversion module 120 directly starts the comparison from the M-1th bit through the M-bit capacitance digital-to-analog conversion array, and the rest only needs to be compared M times until the generation The low M-bit digital signal corresponding to the analog input signal.

图4示出了根据本申请示例性实施例的另一种模数转换电路的示意性框图,如图4所示,模数转换电路100,还包括:开关模块130。FIG. 4 shows a schematic block diagram of another analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 4 , the analog-to-digital conversion circuit 100 further includes: a switch module 130 .

如图4所示,全并行模数转换模块110包括:比较模块112,与K位电阻串111连接,比较模块112被配置为生成模拟输入信号对应的高K位数字信号的温度编码;编码模块113,与比较模块112连接,被配置为该温度编码生成模拟输入信号对应的高K位数字信号。As shown in FIG. 4 , the fully parallel analog-to-digital conversion module 110 includes: a comparison module 112, which is connected to the K-bit resistor string 111, and the comparison module 112 is configured to generate the temperature encoding of the high K-bit digital signal corresponding to the analog input signal; the encoding module 113, connected to the comparison module 112, and configured to generate a high K-bit digital signal corresponding to the analog input signal for the temperature encoding.

如图4所示,N位逐次逼近模数转换模块120,还包括:M位逐次比较逻辑122和比较单元124。M位逐次比较逻辑122,被配置为控制M位电容数模转换阵列121,以进行N位数模转换中的低M位数模转换,从而得到模拟输入信号对应的低M位数字信号。As shown in FIG. 4 , the N-bit successive approximation analog-to-digital conversion module 120 further includes: an M-bit successive comparison logic 122 and a comparison unit 124 . The M-bit successive comparison logic 122 is configured to control the M-bit capacitance digital-to-analog conversion array 121 to perform low-M digital-to-analog conversion in the N-bit digital-to-analog conversion, thereby obtaining a low-M-bit digital signal corresponding to the analog input signal.

如图4所示,模数转换电路100还包括:比较单元124。比较单元124的一个输入端与M位电容数模转换阵列121的模拟电压输出端相连。M位逐次比较逻辑122监听比较单元124的比较输出。As shown in FIG. 4 , the analog-to-digital conversion circuit 100 further includes: a comparison unit 124 . One input terminal of the comparison unit 124 is connected to the analog voltage output terminal of the M-bit capacitance digital-to-analog conversion array 121 . The M-bit successive comparison logic 122 listens to the comparison output of the comparison unit 124 .

需要说明的是,在图4中,使用一条虚线连接连接编码电路113与开关模块130,使用另一条虚线连接比较模块112与开关模块130,其目的是为了说明编码电路113或比较模块112之一的信号被用于控制开关模块130,并不是连接关系的限定。It should be noted that, in FIG. 4 , a dotted line is used to connect the encoding circuit 113 and the switch module 130 , and another dotted line is used to connect the comparison module 112 and the switch module 130 , the purpose of which is to illustrate one of the encoding circuit 113 or the comparison module 112 The signal is used to control the switch module 130 and is not a limitation of the connection relationship.

方式二Method 2

N位逐次逼近模数转换模块120,被配置为:根据高K位数字信号或高K位数字信号对应的温度编码,控制M位电容数模转换阵列进行数模转换,并通过M位电容数模转换阵列和K位电阻串得到N位数字信号中的低M位数字信号。The N-bit successive approximation analog-to-digital conversion module 120 is configured to: control the M-bit capacitance digital-to-analog conversion array to perform digital-to-analog conversion according to the high-K-bit digital signal or the temperature code corresponding to the high-K-bit digital signal, and use the M-bit capacitance digital signal to perform digital-to-analog conversion. The analog conversion array and the K-bit resistor string obtain the low-order M-bit digital signal in the N-bit digital signal.

图5示出了根据本申请示例性实施例的模数转换电路的示意性框图,如图5所示,还包括开关模块130。FIG. 5 shows a schematic block diagram of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 5 , a switch module 130 is further included.

如图5所示,N位逐次逼近模数转换模块120还包括:M位逐次逼近逻辑122,被配置为输出M位控制信号。M位电容数模转换阵列121包括:高K位电容数模转换阵列、低M-K位电容数模转换阵列和补偿电容。As shown in FIG. 5 , the N-bit successive approximation analog-to-digital conversion module 120 further includes: an M-bit successive approximation logic 122 configured to output an M-bit control signal. The M-bit capacitance digital-to-analog conversion array 121 includes: a high-K-bit capacitance digital-to-analog conversion array, a low M-K-bit capacitance digital-to-analog conversion array, and a compensation capacitor.

该M位控制信号用于控制低M-K位电容数模转换阵列和K位电阻串,以得到低M位数字信号。具体地,该M位控制信号包括第一控制信号和第二控制信号。The M-bit control signal is used to control the low-M-K-bit capacitance digital-to-analog conversion array and the K-bit resistor string to obtain a low-M-bit digital signal. Specifically, the M-bit control signal includes a first control signal and a second control signal.

开关模块130,与M位逐次逼近逻辑122相连,被配置为根据第一控制信号控制K位电阻串以输参考电压信号(VREF)。补偿电容,被配置为接收该参考电压信号(VREF)。低M-K位电容数模转换阵列,被配置为接收第二控制信号,以进行数模转换。The switch module 130, connected to the M-bit successive approximation logic 122, is configured to control the K-bit resistor string to output the reference voltage signal (V REF ) according to the first control signal. A compensation capacitor is configured to receive the reference voltage signal (V REF ). The low MK bit capacitance digital-to-analog conversion array is configured to receive the second control signal for digital-to-analog conversion.

如图5所示,全并行模数转换模块110包括:比较模块112,与K位电阻串111连接,比较模块112被配置为生成模拟输入信号对应的高K位数字信号的温度编码;编码模块113,与比较模块112连接,被配置为该温度编码生成模拟输入信号对应的高K位数字信号。其中,高K位电容数模转换阵列,被配置为接收模拟输入信号对应的温度编码。As shown in FIG. 5 , the fully parallel analog-to-digital conversion module 110 includes: a comparison module 112, which is connected to the K-bit resistor string 111, and the comparison module 112 is configured to generate the temperature encoding of the high K-bit digital signal corresponding to the analog input signal; the encoding module 113, connected to the comparison module 112, and configured to generate a high K-bit digital signal corresponding to the analog input signal for the temperature encoding. The high-K-bit capacitance digital-to-analog conversion array is configured to receive the temperature code corresponding to the analog input signal.

作为一种示例,开关模块130包括K路控制信号端,每路控制信号端对应于第一控制信号中的一位开关控制信号。作为一种例子,开关模块130可为具有K路控制信号的开关树。As an example, the switch module 130 includes K channels of control signal terminals, and each channel of control signal terminals corresponds to a one-bit switch control signal in the first control signal. As an example, the switch module 130 may be a switch tree with K channels of control signals.

以一次采样和转换为例进行说明。示例性的,在采样期间,全并行模数转换模块110与N位逐次逼近模数转换模块120同时对模拟输入信号进行采样。在全并行模数转换模块110的转换期间,比较模块112生成模拟输入信号对应的高K数字信号的位温度编码,编码模块113对温度编码进一步编码得到模拟输入信号对应的高K位数字信号。编码模块113将高K位数字信号反馈给M位电容数模转换阵列121的高K位电容数模转换阵列,使该高K位电容数模转换阵列根据该高K位数字信号翻转,N位逐次逼近模数转换模块120只需从M位电容数模转换阵列中剩余的低M-K位电容数模转换阵列开始进行转换,直到生成模拟输入信号对应的低M位数字信号。Take one sample and convert as an example. Exemplarily, during the sampling period, the analog input signal is simultaneously sampled by the fully parallel analog-to-digital conversion module 110 and the N-bit successive approximation analog-to-digital conversion module 120 . During the conversion period of the fully parallel analog-to-digital conversion module 110, the comparison module 112 generates the bit temperature code of the high-K digital signal corresponding to the analog input signal, and the encoding module 113 further encodes the temperature code to obtain the high-K bit digital signal corresponding to the analog input signal. The encoding module 113 feeds back the high-k-bit digital signal to the high-k-bit capacitance digital-to-analog conversion array of the M-bit capacitance digital-to-analog conversion array 121, so that the high-k-bit capacitance digital-to-analog conversion array is flipped according to the high-k-bit digital signal, and the N bits The successive approximation analog-to-digital conversion module 120 only needs to perform conversion from the remaining low M-K bit capacitance digital-to-analog conversion arrays in the M-bit capacitor digital-to-analog conversion array until the low M-bit digital signal corresponding to the analog input signal is generated.

具体地,在转换得到低M位数字信号的过程中,M位逐次逼近逻辑122输出的M位控制信号中的第二控制信号控制该低M-K位电容数模转换阵列进行转换,M位控制信号中的第一控制信号控制开关模块130,使开关模块130控制K位电阻串111以输出参考电压信号(VREF);M位电容数模转换阵列121中的补偿电容的参考信号端接收参考电压信号(VREF)。也即在该过程中,低M位数字信号的转换由M位电容数模转换阵列中的低M-K位电容数模转换阵列和全并行模数转换阵列中的K位电阻串111共同完成。Specifically, in the process of converting the low M-bit digital signal, the second control signal in the M-bit control signal output by the M-bit successive approximation logic 122 controls the low-MK-bit capacitance digital-to-analog conversion array to perform conversion, and the M-bit control signal The first control signal in the switch module 130 controls the switch module 130 to control the K-bit resistor string 111 to output a reference voltage signal (V REF ); the reference signal terminal of the compensation capacitor in the M-bit capacitor digital-to-analog conversion array 121 receives the reference voltage signal (V REF ). That is, in this process, the conversion of the low M-bit digital signal is completed by the low MK-bit capacitance digital-to-analog conversion array in the M-bit capacitance digital-to-analog conversion array and the K-bit resistor string 111 in the fully parallel analog-to-digital conversion array.

图6示出了根据本申请示例性实施例的另一模数转换电路的示意性框图,如图6所示,还包括开关模块130。FIG. 6 shows a schematic block diagram of another analog-to-digital conversion circuit according to an exemplary embodiment of the present application. As shown in FIG. 6 , it further includes a switch module 130 .

如图6所示,N位逐次逼近模数转换模块120还包括:M位逐次逼近逻辑122,被配置为输出M位控制信号。M位电容数模转换阵列121包括:高K位电容数模转换阵列、低M-K位电容数模转换阵列和补偿电容。As shown in FIG. 6 , the N-bit successive approximation analog-to-digital conversion module 120 further includes: an M-bit successive approximation logic 122 configured to output an M-bit control signal. The M-bit capacitance digital-to-analog conversion array 121 includes: a high-K-bit capacitance digital-to-analog conversion array, a low M-K-bit capacitance digital-to-analog conversion array, and a compensation capacitor.

该M位控制信号用于控制低M-K位电容数模转换阵列和K位电阻串,以得到低M位数字信号。具体地,该M位控制信号包括第一控制信号和第二控制信号。The M-bit control signal is used to control the low-M-K-bit capacitance digital-to-analog conversion array and the K-bit resistor string to obtain a low-M-bit digital signal. Specifically, the M-bit control signal includes a first control signal and a second control signal.

N位逐次逼近模数转换模块120还包括:编码模块123,被配置为生成上述第一控制信号对应的温度编码。The N-bit successive approximation analog-to-digital conversion module 120 further includes an encoding module 123 configured to generate a temperature encoding corresponding to the first control signal.

开关模块130,与编码模块123相连,被配置为根据第一控制信号对应的温度编码控制K位电阻串以输出参考电压信号(VREF)。补偿电容,被配置为接收该参考电压信号(VREF)。低M-K位电容数模转换阵列,被配置为接收第二控制信号,以进行数模转换。The switch module 130, connected to the encoding module 123, is configured to control the K-bit resistor string according to the temperature encoding corresponding to the first control signal to output a reference voltage signal (V REF ). A compensation capacitor is configured to receive the reference voltage signal (V REF ). The low MK bit capacitance digital-to-analog conversion array is configured to receive the second control signal for digital-to-analog conversion.

作为一种示例,开关模块130包括与温度编码的编码位数相应数量对应的开关,每个开关对应于K位电阻串111的电阻对应的分段参考电压。As an example, the switch module 130 includes switches corresponding to a corresponding number of encoded bits of temperature encoding, and each switch corresponds to a segmented reference voltage corresponding to the resistance of the K-bit resistor string 111 .

如图6所示,全并行模数转换模块110包括:比较模块112,与K位电阻串111连接,比较模块112被配置为生成模拟输入信号对应的高K位数字信号的温度编码;编码模块113,与比较模块112连接,被配置为该温度编码生成模拟输入信号对应的高K位数字信号。其中,高K位电容数模转换阵列,被配置为接收模拟输入信号对应的高K位数字信号。As shown in FIG. 6 , the fully parallel analog-to-digital conversion module 110 includes: a comparison module 112, which is connected to the K-bit resistor string 111, and the comparison module 112 is configured to generate the temperature encoding of the high K-bit digital signal corresponding to the analog input signal; the encoding module 113, connected to the comparison module 112, and configured to generate a high K-bit digital signal corresponding to the analog input signal for the temperature encoding. The high-K-bit capacitance digital-to-analog conversion array is configured to receive high-K-bit digital signals corresponding to the analog input signals.

以一次采样和转换为例进行说明。示例性的,在采样期间,全并行模数转换模块110与N位逐次逼近模数转换模块120同时对模拟输入信号进行采样。在全并行模数转换模块110的转换期间,比较模块112生成模拟输入信号对应的高K位数字信号的温度编码,编码模块113对温度编码进一步编码得到模拟输入信号对应的高K位数字信号。编码模块113将高K位数字信号反馈给M位电容数模转换阵列121的高K位电容数模转换阵列,使该高K位电容数模转换阵列根据该高K位数字信号翻转,N位逐次逼近模数转换模块120只需从M位电容数模转换阵列中剩余的低M-K位电容数模转换阵列开始进行转换,直到生成模拟输入信号对应的低M位数字信号。Take one sample and convert as an example. Exemplarily, during the sampling period, the analog input signal is simultaneously sampled by the fully parallel analog-to-digital conversion module 110 and the N-bit successive approximation analog-to-digital conversion module 120 . During the conversion of the fully parallel analog-to-digital conversion module 110, the comparison module 112 generates the temperature code of the high K-bit digital signal corresponding to the analog input signal, and the encoding module 113 further encodes the temperature code to obtain the high K-bit digital signal corresponding to the analog input signal. The encoding module 113 feeds back the high-k-bit digital signal to the high-k-bit capacitance digital-to-analog conversion array of the M-bit capacitance digital-to-analog conversion array 121, so that the high-k-bit capacitance digital-to-analog conversion array is flipped according to the high-k-bit digital signal, and the N bits The successive approximation analog-to-digital conversion module 120 only needs to perform conversion from the remaining low M-K bit capacitance digital-to-analog conversion arrays in the M-bit capacitor digital-to-analog conversion array until the low M-bit digital signal corresponding to the analog input signal is generated.

具体地,在转换得到低M位数字信号的过程中,M位逐次逼近逻辑122输出的M位控制信号中的第二控制信号控制该低M-K位电容数模转换阵列进行转换,M位控制信号中的第一控制信号控制开关模块130,使开关模块130控制K位电阻串111以输出一路参考电压信号(VREF);M位电容数模转换阵列121中的补偿电容的参考信号端接收参考电压信号(VREF)。也即在该过程中,低M位数字信号的转换由M位电容数模转换阵列中的低M-K位电容数模转换阵列和全并行模数转换阵列中的K位电阻串111共同完成。Specifically, in the process of converting the low M-bit digital signal, the second control signal in the M-bit control signal output by the M-bit successive approximation logic 122 controls the low-M-K-bit capacitance digital-to-analog conversion array to perform conversion, and the M-bit control signal The first control signal in the switch module 130 controls the switch module 130 to control the K-bit resistor string 111 to output a reference voltage signal (VREF); the reference signal terminal of the compensation capacitor in the M-bit capacitor digital-to-analog conversion array 121 receives the reference voltage signal (VREF). That is, in this process, the conversion of the low M-bit digital signal is completed by the low M-K-bit capacitance digital-to-analog conversion array in the M-bit capacitance digital-to-analog conversion array and the K-bit resistor string 111 in the fully parallel analog-to-digital conversion array.

如图5和6所示,模数转换电路100还包括:比较单元124。比较单元124的一个输入端与M位电容数模转换阵列121的模拟电压输出端相连。M位逐次比较逻辑122监听比较单元124的比较输出。As shown in FIGS. 5 and 6 , the analog-to-digital conversion circuit 100 further includes: a comparison unit 124 . One input terminal of the comparison unit 124 is connected to the analog voltage output terminal of the M-bit capacitance digital-to-analog conversion array 121 . The M-bit successive comparison logic 122 listens to the comparison output of the comparison unit 124 .

下面对本实施例的一些示例进行描述。Some examples of this embodiment are described below.

图7示出了本申请示例性实施例的模数转换电路的一个示例的结构示意图,该模数转换电路为一个N位的Flash SAR混合结构ADC,如图7所示,其包含K位Flash ADC、M位DAC差分电容阵列、比较器COMP、M位的SAR逻辑、编码电路1和编码电路2。FIG. 7 shows a schematic structural diagram of an example of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application. The analog-to-digital conversion circuit is an N-bit Flash SAR hybrid ADC, as shown in FIG. 7 , which includes K-bit Flash ADC, M-bit DAC differential capacitor array, comparator COMP, M-bit SAR logic, encoding circuit 1 and encoding circuit 2.

该K位Flash ADC,包含采样电容CS1和CS2、K位电阻串、2*(2K-1)个比较器。在ADC采样阶段,Flash ADC和SAR ADC同时采样。采样完成后,可用一个时钟周期得到差分信号对应的温度码结果TP[2K-1:0]和TP[2K-1:0],再通过编码电路1得到K位二进制码结果T[K-1:0]。并通过编码电路1将K位Flash ADC的比较结果反馈给K位电阻串(作为SAR ADC中的高K位电阻阵列)。The K-bit Flash ADC includes sampling capacitors CS1 and CS2, a K-bit resistor string, and 2*(2 K -1) comparators. During the ADC sampling stage, the Flash ADC and the SAR ADC sample simultaneously. After the sampling is completed, the temperature code results TP[2 K -1:0] and TP[2 K -1:0] corresponding to the differential signal can be obtained in one clock cycle, and then the K-bit binary code result T[K is obtained through the encoding circuit 1 -1:0]. And the comparison result of the K-bit Flash ADC is fed back to the K-bit resistor string (as the high K-bit resistor array in the SAR ADC) through the encoding circuit 1.

该N位SAR ADC,包含K位电阻串、M位DAC差分电容阵列、比较器COMP、M位的SAR逻辑等,该M位DAC差分电容阵列包括M位电容阵列,其中DAC差分电容阵列包括但不限于二进制权重DAC差分电容阵列和桥接式DAC差分电容阵列。当编码电路1将K位Flash ADC的比较结果反馈给SAR ADC中的高K位后,SAR ADC开始第M-1位的比较,剩余比较M次。SAR ADC的高K位直接复用Flash ADC中的K位电阻串,通过两组开关SW1和SW2进行控制。该DAC差分电容阵列包括M位电容阵列,通过M bit SAR逻辑来控制M位电容阵列。SAR ADC可复用的电阻串位数小于等于K位,DAC阵列包括M位电容阵列,总的电容个数2*2M,相比传统方式减少了2*(2N-2M)个电容。比如对于N=12,K=4,M=8的SAR ADC,可节省的电容个数为2*(212-28)=7680,节省的电容部分占传统结构电容的94%左右。The N-bit SAR ADC includes a K-bit resistor string, an M-bit DAC differential capacitor array, a comparator COMP, an M-bit SAR logic, etc. The M-bit DAC differential capacitor array includes an M-bit capacitor array, wherein the DAC differential capacitor array includes but Not limited to binary weight DAC differential capacitor arrays and bridge DAC differential capacitor arrays. After the coding circuit 1 feeds back the comparison result of the K-bit Flash ADC to the high K bits in the SAR ADC, the SAR ADC starts the comparison of the M-1th bit, and the remaining comparisons are made M times. The high K bits of the SAR ADC directly multiplex the K-bit resistor string in the Flash ADC, and are controlled by two sets of switches SW1 and SW2. The DAC differential capacitor array includes an M-bit capacitor array, and the M-bit capacitor array is controlled by M bit SAR logic. The number of reusable resistor strings of the SAR ADC is less than or equal to K bits, and the DAC array includes an M-bit capacitor array. The total number of capacitors is 2*2 M , which reduces 2*(2 N -2 M ) capacitors compared to the traditional method. . For example, for a SAR ADC with N=12, K=4, and M=8, the number of capacitors that can be saved is 2*(2 12 -2 8 )=7680, and the saved capacitor part accounts for about 94% of the capacitance of the traditional structure.

该编码电路2将Flash ADC的K位二进制码结果T[K-1:0]和SAR ADC的M位二进制结果D[M-1:0]累加,得到N位二进制码结果D[N-1:0]。The encoding circuit 2 accumulates the K-bit binary code result T[K-1:0] of the Flash ADC and the M-bit binary code result D[M-1:0] of the SAR ADC to obtain the N-bit binary code result D[N-1 :0].

图8示出了本申请示例性实施例的模数转换电路的另一个示例的结构示意图,该模数转换电路为一个N位的Flash SAR混合结构ADC,该电路包含K位Flash ADC、M位DAC差分电容阵列、比较器COMP、M位的SAR逻辑、编码电路1和编码电路2。FIG. 8 shows a schematic structural diagram of another example of an analog-to-digital conversion circuit according to an exemplary embodiment of the present application. The analog-to-digital conversion circuit is an N-bit Flash SAR hybrid ADC, and the circuit includes K-bit Flash ADC, M-bit DAC differential capacitor array, comparator COMP, M-bit SAR logic, encoding circuit 1 and encoding circuit 2.

该K位Flash ADC,包含采样电容CS1和CS2、K位电阻串、2*(2K-1)个比较器。在ADC采样阶段,Flash ADC和SAR ADC同时采样,采样完成后,可用一个时钟周期得到差分信号对应的温度码结果TP[2K-1:0]和TP[2K-1:0],再通过编码电路1就可以得到K位二进制码结果T[K-1:0]。并通过编码电路1将K位Flash ADC的比较结果反馈给SAR ADC中的高K位电容阵列。The K-bit Flash ADC includes sampling capacitors CS1 and CS2, a K-bit resistor string, and 2*(2 K -1) comparators. In the ADC sampling stage, the Flash ADC and SAR ADC are sampled at the same time. After the sampling is completed, the temperature code results TP[2 K -1:0] and TP[2 K -1:0] corresponding to the differential signal can be obtained in one clock cycle, and then Through the encoding circuit 1, the K-bit binary code result T[K-1:0] can be obtained. And through the coding circuit 1, the comparison result of the K-bit Flash ADC is fed back to the high-k-bit capacitor array in the SAR ADC.

该N位SAR ADC,包含K位电阻串、M位DAC差分电容阵列、比较器COMP、M位的SAR逻辑等,该M位DAC差分电容阵列包括高K位电容阵列和低M-K位电容阵列。其中DAC差分电容阵列不限于二进制权重DAC差分电容阵列和桥接式DAC差分电容阵列。当编码电路1将K位FlashADC的比较结果反馈给SAR ADC中的高K位电容阵列后,SAR ADC开始第M-1位的比较,剩余比较M次。DAC差分电容阵列的高K位中最低位电容CPT(0)是低M-K位中最高位电容CP(M-K-1)的2倍。SAR ADC的低M位包含M-K位电容阵列和K位电阻串,K位电阻串复用Flash ADC中的电阻串,通过两组开关SW1和SW2。通过M位SAR逻辑来控制M-K位电容阵列和K位电阻串。SARADC可复用的电阻串位数小于等于K位,DAC阵列只需要M位电容阵列,总的电容个数2*2M,相比传统方式减少了2*(2N-2M)个电容。比如对于N=12,K=4,M=8的SAR ADC,可节省的电容个数为2*(212-28)=7680,节省的电容部分占传统结构电容的94%左右。The N-bit SAR ADC includes a K-bit resistor string, an M-bit DAC differential capacitor array, a comparator COMP, an M-bit SAR logic, etc. The M-bit DAC differential capacitor array includes a high-K-bit capacitor array and a low-MK-bit capacitor array. The DAC differential capacitor array is not limited to the binary weight DAC differential capacitor array and the bridge-connected DAC differential capacitor array. After the coding circuit 1 feeds back the comparison result of the K-bit FlashADC to the high-K-bit capacitor array in the SAR ADC, the SAR ADC starts the comparison of the M-1th bit, and the remaining comparisons are made M times. The lowest-order capacitance CPT(0) in the high-K bits of the DAC differential capacitance array is twice the highest-order capacitance CP(MK-1) in the low-MK bits. The low M bits of the SAR ADC include an MK-bit capacitor array and a K-bit resistor string. The K-bit resistor string multiplexes the resistor string in the Flash ADC through two sets of switches SW1 and SW2. The MK-bit capacitor array and the K-bit resistor string are controlled by M-bit SAR logic. The number of resistor strings that can be reused by SARADC is less than or equal to K bits, and the DAC array only needs an M-bit capacitor array. The total number of capacitors is 2*2 M , which reduces 2*(2 N -2 M ) capacitors compared to the traditional method. . For example, for a SAR ADC with N=12, K=4, and M=8, the number of capacitors that can be saved is 2*(21 2 -2 8 )=7680, and the saved capacitor portion accounts for about 94% of the capacitance of the traditional structure.

该编码电路2将Flash ADC的K位二进制码结果T[K-1:0]和SAR ADC的M位二进制结果D[M-1:0]累加,得到N位二进制码结果D[N-1:0]。The encoding circuit 2 accumulates the K-bit binary code result T[K-1:0] of the Flash ADC and the M-bit binary code result D[M-1:0] of the SAR ADC to obtain the N-bit binary code result D[N-1 :0].

本实施例还提供了一种模数转换电路的模数转换方法,应用于本申请实施例的模数转换电路。This embodiment also provides an analog-to-digital conversion method for an analog-to-digital conversion circuit, which is applied to the analog-to-digital conversion circuit of the embodiment of the present application.

图9示出了根据本申请示例性实施例的模数转换方法的流程图,如图9所示,该方法包括步骤S901至步骤S902。Fig. 9 shows a flowchart of an analog-to-digital conversion method according to an exemplary embodiment of the present application. As shown in Fig. 9 , the method includes steps S901 to S902.

步骤S901,全并行模数转换模块对模拟输入信号进行采样并转换,得到模拟输入信号对应的高K位数字信号。Step S901 , the fully parallel analog-to-digital conversion module samples and converts the analog input signal to obtain a high K-bit digital signal corresponding to the analog input signal.

其中,全并行模数转换模块,包括:K位电阻串;N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,其中,N=K+M,且K、M和N为正整数。The fully parallel analog-to-digital conversion module includes: a K-bit resistor string; an N-bit successive approximation analog-to-digital conversion module includes: an M-bit capacitance digital-to-analog conversion array, where N=K+M, and K, M and N are positive integer.

步骤S902,N位逐次逼近模数转换模块通过K位电阻串和M位电容数模转换阵列得到低M位数字信号,且低M位数字信号为根据高K位数字信号在N位模数转换中得到。Step S902, the N-bit successive approximation analog-to-digital conversion module obtains the low M-bit digital signal through the K-bit resistor string and the M-bit capacitor digital-to-analog conversion array, and the low M-bit digital signal is converted according to the high K-bit digital signal in the N-bit analog-to-digital conversion. obtained in.

通过本实施例的模数转换方法,使用全并行模数转换模块的K位电阻串与N位逐次逼近模数转换模块的M位电容数模转换阵列组成电阻电容混合结构,实现N位数模转换。通过复用全并行模数转换模块中的K位电阻串,减少了逐次逼近模数转换模块中电容数模转换阵列的电容数量,可减少电路面积和降低功耗。Through the analog-to-digital conversion method of this embodiment, a resistor-capacitor hybrid structure is formed by using the K-bit resistor string of the fully parallel analog-to-digital conversion module and the M-bit capacitance digital-to-analog conversion array of the N-bit successive approximation analog-to-digital conversion module to realize N-bit analog-to-digital conversion. convert. By multiplexing the K-bit resistor strings in the fully parallel analog-to-digital conversion module, the number of capacitors in the capacitor-to-digital-to-analog conversion array in the successive approximation analog-to-digital conversion module can be reduced, which can reduce circuit area and power consumption.

作为一种实施方式,上述步骤S902,包括:As an implementation manner, the above step S902 includes:

通过K位电阻串对高K位数字信号进行数模转换,并通过M位电容数模转换阵列得到低M位数字信号。The digital-to-analog conversion is performed on the high-K-bit digital signal through the K-bit resistor string, and the low-M-bit digital signal is obtained through the M-bit capacitance digital-to-analog conversion array.

作为一种示例,通过K位电阻串对高K位数字信号进行数模转换,并通过M位电容数模转换阵列得到低M位数字信号,包括:As an example, digital-to-analog conversion is performed on high-k-bit digital signals through K-bit resistor strings, and low-M-bit digital signals are obtained through an M-bit capacitor digital-to-analog conversion array, including:

根据高K位数字信号或高K位数字信号对应的温度编码,控制K位电阻串以输出第一参考电压信号,其中,M位电容数模转换阵列中的各个电容对应的参考信号端接收第一参考电压信号。According to the high-K-bit digital signal or the temperature code corresponding to the high-K-bit digital signal, the K-bit resistor string is controlled to output the first reference voltage signal, wherein the reference signal terminal corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array receives the first reference signal. a reference voltage signal.

作为另一种实施方式,N位逐次逼近模数转换模块通过K位电阻串和M位电容数模转换阵列得到低M位数字信号,包括:As another implementation manner, the N-bit successive approximation analog-to-digital conversion module obtains a low-M-bit digital signal through a K-bit resistor string and an M-bit capacitor digital-to-analog conversion array, including:

根据高K位数字信号或高K位数字信号对应的温度编码,控制M位电容数模转换阵列进行数模转换,并通过M位电容数模转换阵列和K位电阻串得到低M位数字信号。According to the temperature code corresponding to the high-K-bit digital signal or the high-K-bit digital signal, the M-bit capacitor digital-to-analog conversion array is controlled to perform digital-to-analog conversion, and the low-M-bit digital signal is obtained through the M-bit capacitor digital-to-analog conversion array and the K-bit resistor string. .

作为一种示例,M位电容数模转换阵列包括:高K位电容数模转换阵列、低M-K位电容数模转换阵列和补偿电容;As an example, the M-bit capacitance digital-to-analog conversion array includes: a high-K-bit capacitance digital-to-analog conversion array, a low M-K-bit capacitance digital-to-analog conversion array, and a compensation capacitor;

其中,通过M位电容数模转换阵列和K位电阻串得到低M位数字信号,包括:Among them, the low M-bit digital signal is obtained through the M-bit capacitor digital-to-analog conversion array and the K-bit resistor string, including:

输出M位控制信号,其中M位控制信号用于控制低M-K位电容数模转换阵列和K位电阻串,以得到低M位数字信号;且M位控制信号包括第一控制信号和第二控制信号;Output an M-bit control signal, wherein the M-bit control signal is used to control the low-M-K-bit capacitance digital-to-analog conversion array and the K-bit resistor string to obtain a low-M-bit digital signal; and the M-bit control signal includes a first control signal and a second control signal Signal;

根据第一控制信号控制K位电阻串以输出第二参考电压信号,其中,补偿电容对应的参考信号端,被配置为接收第二参考电压信号;The K-bit resistor string is controlled according to the first control signal to output the second reference voltage signal, wherein the reference signal terminal corresponding to the compensation capacitor is configured to receive the second reference voltage signal;

根据第二控制信号控制低M-K位电容数模转换阵列以进行数模转换。The low M-K bit capacitance digital-to-analog conversion array is controlled to perform digital-to-analog conversion according to the second control signal.

本申请实施例还提供一种芯片,该芯片包括上述的模数转换电路。芯片(Integrated Circuit,IC)也称芯片,该芯片可以是但不限于是SOC(System on Chip,芯片级系统)芯片、SIP(systeminpackage,系统级封装)芯片。该芯片通过使用全并行模数转换模块的K位电阻串与N位逐次逼近模数转换模块的M位电容数模转换阵列组成电阻电容混合结构,实现N位数模转换。通过复用全并行模数转换模块中的K位电阻串,减少了逐次逼近模数转换模块中电容数模转换阵列的电容数量,可减少电路面积和降低功耗。An embodiment of the present application further provides a chip, where the chip includes the above-mentioned analog-to-digital conversion circuit. A chip (Integrated Circuit, IC) is also called a chip, and the chip may be, but is not limited to, a SOC (System on Chip, system-on-chip) chip or a SIP (system in package, system-in-package) chip. The chip uses the K-bit resistor string of the full-parallel analog-to-digital conversion module and the M-bit capacitance digital-to-analog conversion array of the N-bit successive approximation analog-to-digital conversion module to form a resistor-capacitor hybrid structure to realize N digital-to-analog conversion. By multiplexing the K-bit resistor strings in the fully parallel analog-to-digital conversion module, the number of capacitors in the capacitor-to-digital-to-analog conversion array in the successive approximation analog-to-digital conversion module is reduced, which can reduce circuit area and power consumption.

本申请实施例还提供一种电子设备,该电子设备包括设备主体以及设于设备主题内的如上述的芯片。电子设备可以是但不限于体重秤、体脂秤、营养秤、红外电子体温计、脉搏血氧仪、人体成分分析仪、移动电源、无线充电器、快充充电器、车载充电器、适配器、显示器、USB(Universal Serial Bus,通用串行总线)扩展坞、触控笔、真无线耳机、汽车中控屛、汽车、智能穿戴设备、移动终端、智能家居设备。智能穿戴设备包括但不限于智能手表、智能手环、颈椎按摩仪。移动终端包括但不限于智能手机、笔记本电脑、平板电脑、POS(point ofsales terminal,销售点终端)机。智能家居设备包括但不限于智能插座、智能电饭煲、智能扫地机、智能灯。该电子设备通过使用全并行模数转换模块的K位电阻串与N位逐次逼近模数转换模块的M位电容数模转换阵列组成电阻电容混合结构,实现N位数模转换。通过复用全并行模数转换模块中的K位电阻串,减少了逐次逼近模数转换模块中电容数模转换阵列的电容数量,可减少电路面积和降低功耗。An embodiment of the present application further provides an electronic device, the electronic device includes a device body and the above-mentioned chip provided in the device subject. Electronic devices can be but are not limited to weight scales, body fat scales, nutrition scales, infrared electronic thermometers, pulse oximeters, body composition analyzers, power banks, wireless chargers, fast chargers, car chargers, adapters, monitors , USB (Universal Serial Bus, Universal Serial Bus) docking station, stylus, true wireless headset, car center console, automobile, smart wearable device, mobile terminal, smart home equipment. Smart wearable devices include but are not limited to smart watches, smart bracelets, and cervical spine massagers. Mobile terminals include but are not limited to smart phones, notebook computers, tablet computers, and POS (point of sales terminal, point of sale terminal) machines. Smart home devices include but are not limited to smart sockets, smart rice cookers, smart sweepers, and smart lights. The electronic device forms a resistor-capacitor hybrid structure by using the K-bit resistor string of the fully parallel analog-to-digital conversion module and the M-bit capacitance digital-to-analog conversion array of the N-bit successive approximation analog-to-digital conversion module to realize N-bit digital-to-analog conversion. By multiplexing the K-bit resistor strings in the fully parallel analog-to-digital conversion module, the number of capacitors in the capacitor-to-digital-to-analog conversion array in the successive approximation analog-to-digital conversion module is reduced, which can reduce circuit area and power consumption.

以上,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭示如上,然而并非用以限定本申请,任何本领域技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案内容,依据本申请的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本申请技术方案的范围内。The above are only preferred embodiments of the present application, and are not intended to limit the present application in any form. Although the present application has been disclosed above with preferred embodiments, it is not intended to limit the present application. Without departing from the scope of the technical solution of the present application, when the technical content disclosed above can be used to make some changes or modifications to equivalent examples of equivalent changes, provided that it does not depart from the content of the technical solution of the present application, according to the technical essence of the present application. Any brief modifications, equivalent changes and modifications made in the above embodiments still fall within the scope of the technical solutions of the present application.

Claims (13)

1.一种模数转换电路,其特征在于,包括:1. an analog-to-digital conversion circuit, is characterized in that, comprises: 全并行模数转换模块,包括:K位电阻串;Full parallel analog-to-digital conversion module, including: K-bit resistor string; N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,用于对模拟输入信号进行N位模数转换并得到N位数字信号,所述N位数字信号包括高K位数字信号和低M位数字信号,其中,N=K+M,且K、M和N为正整数;The N-bit successive approximation analog-to-digital conversion module includes: an M-bit capacitance digital-to-analog conversion array for performing N-bit analog-to-digital conversion on an analog input signal to obtain an N-bit digital signal, where the N-bit digital signal includes high K-bit digital signals and low M-bit digital signals, where N=K+M, and K, M and N are positive integers; 其中:in: 所述全并行模数转换模块,被配置为对所述模拟输入信号进行采样并转换,得到所述高K位数字信号;The fully parallel analog-to-digital conversion module is configured to sample and convert the analog input signal to obtain the high K-bit digital signal; 所述N位逐次逼近模数转换模块,被配置为通过所述K位电阻串和所述M位电容数模转换阵列得到所述低M位数字信号,且所述低M位数字信号为根据所述高K位数字信号在N位模数转换中得到。The N-bit successive approximation analog-to-digital conversion module is configured to obtain the low M-bit digital signal through the K-bit resistor string and the M-bit capacitance digital-to-analog conversion array, and the low M-bit digital signal is based on The high K-bit digital signal is obtained in N-bit analog-to-digital conversion. 2.根据权利要求1所述的模数转换电路,其特征在于,所述N位逐次逼近模数转换模块,被配置为:通过所述K位电阻串对所述高K位数字信号进行数模转换,并通过所述M位电容数模转换阵列得到所述低M位数字信号。2 . The analog-to-digital conversion circuit according to claim 1 , wherein the N-bit successive approximation analog-to-digital conversion module is configured to: digitize the high K-bit digital signal through the K-bit resistor string. 3 . analog-to-analog conversion, and obtain the low M-bit digital signal through the M-bit capacitance digital-to-analog conversion array. 3.根据权利要求2所述的模数转换电路,其特征在于,还包括:3. analog-to-digital conversion circuit according to claim 2, is characterized in that, also comprises: 第一开关模块,被配置为根据所述高K位数字信号或所述高K位数字信号对应的温度编码,控制所述K位电阻串以输出第一参考电压信号;a first switch module, configured to control the K-bit resistor string to output a first reference voltage signal according to the high-K-bit digital signal or the temperature code corresponding to the high-K-bit digital signal; 其中,所述M位电容数模转换阵列中的各个电容对应的参考信号端,被配置为接收所述第一参考电压信号。The reference signal terminals corresponding to each capacitor in the M-bit capacitor digital-to-analog conversion array are configured to receive the first reference voltage signal. 4.根据权利要求1所述的模数转换电路,其特征在于,所述N位逐次逼近模数转换模块,被配置为:根据所述高K位数字信号或所述高K位数字信号对应的温度编码,控制所述M位电容数模转换阵列进行数模转换,并通过所述M位电容数模转换阵列和所述K位电阻串得到所述低M位数字信号。4 . The analog-to-digital conversion circuit according to claim 1 , wherein the N-bit successive approximation analog-to-digital conversion module is configured to: according to the high-k-bit digital signal or the corresponding high-k-bit digital signal. 5 . The temperature encoding of the M-bit capacitance digital-to-analog conversion array is controlled to perform digital-to-analog conversion, and the low M-bit digital signal is obtained through the M-bit capacitance digital-to-analog conversion array and the K-bit resistor string. 5.根据权利要求4所述的模数转换电路,其特征在于,所述M位电容数模转换阵列包括:高K位电容数模转换阵列、低M-K位电容数模转换阵列和补偿电容;5. The analog-to-digital conversion circuit according to claim 4, wherein the M-bit capacitance digital-to-analog conversion array comprises: a high-K-bit capacitance digital-to-analog conversion array, a low M-K-bit capacitance digital-to-analog conversion array, and a compensation capacitor; 所述全并行模数转换模块,被配置为根据所述高K位数字信号或所述高K位数字信号对应的温度编码控制所述高K位电容数模转换阵列;The fully parallel analog-to-digital conversion module is configured to control the high-k-bit capacitance digital-to-analog conversion array according to the high-k-bit digital signal or the temperature code corresponding to the high-k-bit digital signal; 所述N位逐次逼近模数转换模块,包括:M位逐次逼近逻辑单元,所述M位逐次逻辑单元被配置为输出M位控制信号,所述M位控制信号用于控制所述低M-K位电容数模转换阵列和所述K位电阻串,以得到所述低M位数字信号。The N-bit successive approximation analog-to-digital conversion module includes: an M-bit successive approximation logic unit, the M-bit successive approximation logic unit is configured to output an M-bit control signal, and the M-bit control signal is used to control the low M-K bits A capacitor digital-to-analog conversion array and the K-bit resistor string are used to obtain the low M-bit digital signal. 6.根据权利要求5所述的模数转换电路,其特征在于,所述M位控制信号包括第一控制信号和第二控制信号;所述模数转换电路还包括:6. The analog-to-digital conversion circuit according to claim 5, wherein the M-bit control signal comprises a first control signal and a second control signal; the analog-to-digital conversion circuit further comprises: 第二开关模块,被配置为根据所述第一控制信号控制所述K位电阻串以输出第二参考电压信号,其中,所述补偿电容对应的参考信号端,被配置为接收所述第二参考电压信号;The second switch module is configured to control the K-bit resistor string to output a second reference voltage signal according to the first control signal, wherein the reference signal terminal corresponding to the compensation capacitor is configured to receive the second reference voltage signal reference voltage signal; 所述低M-K位电容数模转换阵列,被配置为接收所述第二控制信号,以进行数模转换。The low M-K bit capacitance digital-to-analog conversion array is configured to receive the second control signal for digital-to-analog conversion. 7.一种模数转换电路的模数转换方法,其特征在于,所述模数转换电路包括:全并行模数转换模块,包括:K位电阻串;N位逐次逼近模数转换模块,包括:M位电容数模转换阵列,所述N位逐次逼近模数转换模块,用于对模拟输入信号进行N位模数转换并得到N位数字信号,所述N位数字信号包括高K位数字信号和低M位数字信号;其中,N=K+M,且K、M和N为正整数;7. An analog-to-digital conversion method for an analog-to-digital conversion circuit, wherein the analog-to-digital conversion circuit comprises: a fully parallel analog-to-digital conversion module, comprising: a K-bit resistor string; an N-bit successive approximation analog-to-digital conversion module, including : M-bit capacitance digital-to-analog conversion array, the N-bit successive approximation analog-to-digital conversion module is used to perform N-bit analog-to-digital conversion on the analog input signal and obtain an N-bit digital signal, and the N-bit digital signal includes high K-bit digital signals Signal and low M-bit digital signal; wherein, N=K+M, and K, M and N are positive integers; 所述模数转换方法包括:The analog-to-digital conversion method includes: 所述全并行模数转换模块对模拟输入信号进行采样并转换,得到所述高K位数字信号;The fully parallel analog-to-digital conversion module samples and converts the analog input signal to obtain the high K-bit digital signal; 所述N位逐次逼近模数转换模块通过所述K位电阻串和所述M位电容数模转换阵列得到所述低M位数字信号,且所述低M位数字信号为根据所述高K位数字信号在N位模数转换中得到。The N-bit successive approximation analog-to-digital conversion module obtains the low M-bit digital signal through the K-bit resistor string and the M-bit capacitance digital-to-analog conversion array, and the low M-bit digital signal is based on the high K-bit digital signal. The bit digital signal is obtained in N-bit analog-to-digital conversion. 8.根据权利要求7所述的模数转换方法,其特征在于,所述N位逐次逼近模数转换模块通过所述K位电阻串和所述M位电容数模转换阵列得到所述低M位数字信号,包括:8 . The analog-to-digital conversion method according to claim 7 , wherein the N-bit successive approximation analog-to-digital conversion module obtains the low M by the K-bit resistor string and the M-bit capacitance digital-to-analog conversion array. 9 . Bit digital signal, including: 通过所述K位电阻串对所述高K位数字信号进行数模转换,并通过所述M位电容数模转换阵列得到所述低M位数字信号。Digital-to-analog conversion is performed on the high-k-bit digital signal through the K-bit resistor string, and the low-M-bit digital signal is obtained through the M-bit capacitance digital-to-analog conversion array. 9.根据权利要求8所述的模数转换方法,其特征在于,所述通过所述K位电阻串对所述高K位数字信号进行数模转换,并通过所述M位电容数模转换阵列得到所述低M位数字信号,包括:9 . The analog-to-digital conversion method according to claim 8 , wherein the digital-to-analog conversion is performed on the high K-bit digital signal by the K-bit resistor string, and the digital-to-analog conversion is performed by the M-bit capacitor. 10 . The array obtains the low M-bit digital signal, including: 根据所述高K位数字信号或所述高K位数字信号对应的温度编码,控制所述K位电阻串以输出第一参考电压信号,其中,所述M位电容数模转换阵列中的各个电容对应的参考信号端接收所述第一参考电压信号。The K-bit resistor string is controlled to output a first reference voltage signal according to the high-K-bit digital signal or the temperature code corresponding to the high-K-bit digital signal, wherein each of the M-bit capacitance digital-to-analog conversion arrays The reference signal terminal corresponding to the capacitor receives the first reference voltage signal. 10.根据权利要求7所述的模数转换方法,其特征在于,所述N位逐次逼近模数转换模块通过所述K位电阻串和所述M位电容数模转换阵列得到所述低M位数字信号,包括:10 . The analog-to-digital conversion method according to claim 7 , wherein the N-bit successive approximation analog-to-digital conversion module obtains the low M value through the K-bit resistor string and the M-bit capacitor digital-to-analog conversion array. 11 . Bit digital signal, including: 根据所述高K位数字信号或所述高K位数字信号对应的温度编码,控制所述M位电容数模转换阵列进行数模转换,并通过所述M位电容数模转换阵列和所述K位电阻串得到所述低M位数字信号。According to the high-K-bit digital signal or the temperature code corresponding to the high-K-bit digital signal, the M-bit capacitance digital-to-analog conversion array is controlled to perform digital-to-analog conversion, and the M-bit capacitance digital-to-analog conversion array and the The K-bit resistor string obtains the low M-bit digital signal. 11.根据权利要求10所述的模数转换方法,其特征在于,所述M位电容数模转换阵列包括:高K位电容数模转换阵列、低M-K位电容数模转换阵列和补偿电容;11. The analog-to-digital conversion method according to claim 10, wherein the M-bit capacitance digital-to-analog conversion array comprises: a high-K-bit capacitance digital-to-analog conversion array, a low M-K-bit capacitance digital-to-analog conversion array, and a compensation capacitor; 其中,所述通过所述M位电容数模转换阵列和所述K位电阻串得到所述低M位数字信号,包括:Wherein, obtaining the low M-bit digital signal through the M-bit capacitance digital-to-analog conversion array and the K-bit resistor string includes: 输出M位控制信号,其中所述M位控制信号用于控制所述低M-K位电容数模转换阵列和所述K位电阻串,以得到所述低M位数字信号;且所述M位控制信号包括第一控制信号和第二控制信号;outputting an M-bit control signal, wherein the M-bit control signal is used to control the low-M-K-bit capacitance digital-to-analog conversion array and the K-bit resistor string to obtain the low-M-bit digital signal; and the M-bit control signal the signal includes a first control signal and a second control signal; 根据所述第一控制信号控制所述K位电阻串以输出第二参考电压信号,其中,所述补偿电容对应的参考信号端,被配置为接收所述第二参考电压信号;The K-bit resistor string is controlled to output a second reference voltage signal according to the first control signal, wherein the reference signal terminal corresponding to the compensation capacitor is configured to receive the second reference voltage signal; 根据所述第二控制信号控制所述低M-K位电容数模转换阵列以进行数模转换。The low M-K bit capacitance digital-to-analog conversion array is controlled according to the second control signal to perform digital-to-analog conversion. 12.一种芯片,其特征在于,包括根据权利要求1至6中任一项所述的模数转换电路。12. A chip, characterized by comprising the analog-to-digital conversion circuit according to any one of claims 1 to 6. 13.一种电子设备,其特征在于,包括:根据权利要求1至6中任一项所述的模数转换电路。13. An electronic device, comprising: the analog-to-digital conversion circuit according to any one of claims 1 to 6.
CN202210752692.XA 2022-06-29 2022-06-29 Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device Pending CN115021756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210752692.XA CN115021756A (en) 2022-06-29 2022-06-29 Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210752692.XA CN115021756A (en) 2022-06-29 2022-06-29 Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device

Publications (1)

Publication Number Publication Date
CN115021756A true CN115021756A (en) 2022-09-06

Family

ID=83079055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210752692.XA Pending CN115021756A (en) 2022-06-29 2022-06-29 Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device

Country Status (1)

Country Link
CN (1) CN115021756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318154A (en) * 2023-05-17 2023-06-23 南方电网数字电网研究院有限公司 Analog-to-digital conversion device and signal conversion equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489904A (en) * 1993-09-28 1996-02-06 The Regents Of The University Of California Analog current mode analog/digital converter
US20100001892A1 (en) * 2008-03-24 2010-01-07 Fujitsu Microelectronics Limited Successive approximation a/d converter
CN102324934A (en) * 2011-07-04 2012-01-18 电子科技大学 A Resistor String Multiplexing Circuit Structure for SAC
CN104300984A (en) * 2014-10-21 2015-01-21 上海玮舟微电子科技有限公司 Analog-digital converter and analog-digital conversion method
CN106209102A (en) * 2016-06-27 2016-12-07 合肥工业大学 Mixed type two-layer configuration for full parellel successive approximation analog-digital converter
CN110199482A (en) * 2018-01-23 2019-09-03 香港应用科技研究院有限公司 A kind of multistage mixed analog to digital converter
CN112953535A (en) * 2019-12-11 2021-06-11 上海交通大学 Gain error calibration device and method for analog-digital converter with segmented structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489904A (en) * 1993-09-28 1996-02-06 The Regents Of The University Of California Analog current mode analog/digital converter
US20100001892A1 (en) * 2008-03-24 2010-01-07 Fujitsu Microelectronics Limited Successive approximation a/d converter
CN102324934A (en) * 2011-07-04 2012-01-18 电子科技大学 A Resistor String Multiplexing Circuit Structure for SAC
CN104300984A (en) * 2014-10-21 2015-01-21 上海玮舟微电子科技有限公司 Analog-digital converter and analog-digital conversion method
CN106209102A (en) * 2016-06-27 2016-12-07 合肥工业大学 Mixed type two-layer configuration for full parellel successive approximation analog-digital converter
CN110199482A (en) * 2018-01-23 2019-09-03 香港应用科技研究院有限公司 A kind of multistage mixed analog to digital converter
CN112953535A (en) * 2019-12-11 2021-06-11 上海交通大学 Gain error calibration device and method for analog-digital converter with segmented structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318154A (en) * 2023-05-17 2023-06-23 南方电网数字电网研究院有限公司 Analog-to-digital conversion device and signal conversion equipment
CN116318154B (en) * 2023-05-17 2023-09-15 南方电网数字电网研究院有限公司 Analog-to-digital conversion device and signal conversion equipment

Similar Documents

Publication Publication Date Title
CN111934688A (en) Successive approximation type analog-to-digital converter and method
CN106209102A (en) Mixed type two-layer configuration for full parellel successive approximation analog-digital converter
US8508400B2 (en) Successive approximation register analog to digital converter and conversion method thereof
CN104300984B (en) A kind of analog-digital converter and D conversion method
US7414562B2 (en) Analog-to-digital conversion using asynchronous current-mode cyclic comparison
CN114978172B (en) Analog-to-digital conversion circuit, control method, chip and electronic device
CN104811203A (en) 2bits per circle high-speed successive approximation type analog-digital converter
TWI532328B (en) Analog to digital converter and converting method thereof
CN106877869B (en) Capacitor sorting method capable of improving linearity of resistance-capacitance type successive approximation analog-to-digital converter
CN102324934A (en) A Resistor String Multiplexing Circuit Structure for SAC
KR20060052937A (en) Space Efficient Low Power Periodic A / D Converter
CN108306644B (en) Front-end circuit based on 10-bit ultra-low power consumption successive approximation type analog-to-digital converter
CN111756380A (en) A two-step successive approximation analog-to-digital converter with a shared bridge capacitor array
CN109644002A (en) Expansible random successive approximation register analog-digital converter
CN115021756A (en) Analog-to-digital conversion circuit, chip, analog-to-digital conversion method and electronic device
CN117040531A (en) Sectional resistance type DAC digital algorithm circuit
CN113612480A (en) Successive approximation type analog-to-digital converter based on sectional type differential capacitor array
CN103840829A (en) Successive approximation type analog-to-digital converter
CN107579738A (en) analog-to-digital conversion device
CN101478309A (en) System and method for improving precision of A/D converter
CN115833835A (en) Successive approximation type analog-to-digital converter, oversampling method and device
WO2025067021A1 (en) Digital-to-analog converter, analog-to-digital converter, chip, and electronic device
CN217824933U (en) Analog-digital conversion circuit, chip and electronic equipment
CN117200799A (en) A hybrid analog-to-digital conversion circuit, analog-to-digital conversion method, and chip
CN118353467A (en) Analog-to-digital converter, chip and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination