CN115037580B - Self-learning-based radio frequency predistortion system and method - Google Patents
Self-learning-based radio frequency predistortion system and method Download PDFInfo
- Publication number
- CN115037580B CN115037580B CN202210816623.0A CN202210816623A CN115037580B CN 115037580 B CN115037580 B CN 115037580B CN 202210816623 A CN202210816623 A CN 202210816623A CN 115037580 B CN115037580 B CN 115037580B
- Authority
- CN
- China
- Prior art keywords
- predistortion
- radio frequency
- signal
- module
- dpd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 31
- 230000009467 reduction Effects 0.000 claims abstract description 5
- 230000003321 amplification Effects 0.000 claims abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 241000219745 Lupinus Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Amplifiers (AREA)
Abstract
本发明提出了一种基于自学习的射频预失真系统及方法,系统包括数字预失真DPD处理器、功率放大器、1/G模块和运算模块,以及DPD学习器和自学习模块;方法的实现步骤为:初始化参数;DPD处理器对射频信号进行预失真处理;功率放大器对预失真射频信号进行功率放大;1/G模块对放大信号进行1/G幅度缩减;DPD学习器对缩减信号进行非线性特性逆处理;运算模块对预失真射频信号与预失真估计信号进行比较;自学习模块估计预失真参数;判断是否满足迭代条件;获取射频预失真结果。本发明射频预失真系统的结构简单、成本低;预失真方法提高了射频信号预失真处理结果的精度,进而降低了通信系统的误码率。
The present invention proposes a radio frequency predistortion system and method based on self-learning. The system includes a digital predistortion DPD processor, a power amplifier, a 1/G module and an operation module, as well as a DPD learner and a self-learning module; the implementation steps of the method are: initialization parameters; the DPD processor performs pre-distortion processing on the RF signal; the power amplifier performs power amplification on the pre-distorted RF signal; the 1/G module performs 1/G amplitude reduction on the amplified signal; the DPD learner performs non-linearity on the reduced signal Characteristic inverse processing; the computing module compares the predistortion RF signal and the predistortion estimation signal; the self-learning module estimates the predistortion parameters; determines whether the iteration conditions are met; and obtains the RF predistortion result. The radio frequency predistortion system of the present invention has a simple structure and low cost; the predistortion method improves the accuracy of the radio frequency signal predistortion processing results, thereby reducing the bit error rate of the communication system.
Description
技术领域Technical field
本发明属于无线通信技术领域,涉及一种射频预失真系统及方法,具体涉及一种基于自学习的实现射频预失真的系统及方法,可用于各类无线通信系统。The invention belongs to the field of wireless communication technology and relates to a radio frequency predistortion system and method. Specifically, it relates to a system and method for realizing radio frequency predistortion based on self-learning, which can be used in various wireless communication systems.
技术背景technical background
无线通信系统包含随机比特发生器、格雷编码器、映射器、信号转换器、低通滤波器、调制器、功率放大器、信道、解调器、解映射器、格雷译码器、误码率检测器、延时器等部件。信号处理流程为:在发射端,随机比特发生器产生基带信号,并将基带信号传输给格雷编码器;格雷编码器对基带信号进行格雷编码,并将编码后基带信号传输给映射器;映射器将编码后基带信号映射到星座图上,接着由信号转换器将基带信号转换为两路信号,并传输给低通滤波器;低通滤波器对两路信号分别进行滤波以减少信号之间的干扰,并将滤波后的信号传输给调制器;调制器对滤波后信号进行上变频转变为射频信号,并将射频信号传输给功率放大器;功率放大器对射频信号进行放大,并经过加性高斯白噪声信道传输到接收端;在接收端,解调器将射频放大信号进行下变频转变为基带信号,并将基带信号传输给低通滤波器;低通滤波器滤除基带信号带外噪声,然后经过信号转换器将两路信号转换为一路复信号,并将复信号传输给解映射器;解映射器将复信号对应到星座图上最近的点,并将该点输出;格雷编码器输出信号和解映射器输出信号分别传输给误码率检测器,以检测解映射器输出信号的误码率。误码率能够反应无线通信质量,而功率放大器固有的非线性特性会严重影响无线通信质量,导致误码率上升。Wireless communication system includes random bit generator, Gray encoder, mapper, signal converter, low-pass filter, modulator, power amplifier, channel, demodulator, demapper, Gray decoder, bit error rate detection controller, delayer and other components. The signal processing process is: at the transmitting end, the random bit generator generates a baseband signal and transmits the baseband signal to the Gray encoder; the Gray encoder performs Gray encoding on the baseband signal and transmits the encoded baseband signal to the mapper; mapper The encoded baseband signal is mapped to the constellation diagram, and then the baseband signal is converted into two signals by a signal converter and transmitted to the low-pass filter; the low-pass filter filters the two signals separately to reduce the interference between the signals. interference, and transmits the filtered signal to the modulator; the modulator up-converts the filtered signal into a radio frequency signal, and transmits the radio frequency signal to the power amplifier; the power amplifier amplifies the radio frequency signal, and passes the additive Gaussian white signal The noise channel is transmitted to the receiving end; at the receiving end, the demodulator down-converts the RF amplified signal into a baseband signal, and transmits the baseband signal to the low-pass filter; the low-pass filter filters out the baseband signal out-of-band noise, and then The two signals are converted into a complex signal through the signal converter, and the complex signal is transmitted to the demapper; the demapper maps the complex signal to the nearest point on the constellation diagram and outputs the point; the Gray encoder outputs the signal The output signals of the demapper are respectively transmitted to the bit error rate detector to detect the bit error rate of the output signal of the demapper. The bit error rate can reflect the quality of wireless communication, and the inherent nonlinear characteristics of the power amplifier will seriously affect the quality of wireless communication, causing the bit error rate to increase.
为保证功率放大器的线性性能以降低无信通信误码率,需要对功率放大器进行线性化处理。目前对功率放大器线性化处理的方法主要有功率回退法(Back-Off)、负反馈法(Feedback)、前馈法(Feed forward)、数字预失真法(Digital Predistortion,DPD)等。数字预失真技术的原理是在功率放大器的前端加一个数字预失真DPD处理器,该DPD处理器会对输入的信号产生失真信号分量,与原始输入信号通过功率放大器后产生的失真信号相位相反、幅度相同,从而对失真信号进行线性补偿,抵消功率放大器的非线性作用。相比其它技术,预失真法效率高、自适应性好、复杂度适中,因此吸引了众多学者的关注。In order to ensure the linear performance of the power amplifier and reduce the bit error rate of signalless communication, the power amplifier needs to be linearized. At present, the main methods for linearizing power amplifiers include power back-off, negative feedback, feed forward, digital predistortion (DPD), etc. The principle of digital predistortion technology is to add a digital predistortion DPD processor at the front end of the power amplifier. The DPD processor will generate a distortion signal component for the input signal, which is opposite in phase to the distortion signal generated after the original input signal passes through the power amplifier. The amplitude is the same, thereby linearly compensating the distorted signal and offsetting the nonlinear effect of the power amplifier. Compared with other technologies, the predistortion method has high efficiency, good adaptability, and moderate complexity, so it has attracted the attention of many scholars.
申请公布号为CN114050795A,名称为“一种数字预失真处理系统及方法”的专利申请,公开了一种数字预失真处理系统及方法。该系统结构如图1所示,包括预失真器、功率放大器、1/G模块、运算模块、第一学习器和第二学习器。该方法首先通过第一学习器进行系数拟合估计,快速确定系数估计区间,对系数区间值进行粗调,然后通过第二学习器对系数区间值进行精调。该发明最小仅需两次信号处理,就能达到数字预失真效果。但其不足之处在于,采用双阶学习器,系统结构复杂,成本高,工作效率低;并且第二次信号处理的精调结果严重依赖第一次的粗调结果,两次信号处理过程的耦合度过高,不容易进行维护和调整;再者第一学习器进行的系数拟合估计精度低,功率放大器非线性处理效果差,从而导致无线通信误码率较高,通信质量较差。The application publication number is CN114050795A, and the patent application titled "A digital pre-distortion processing system and method" discloses a digital pre-distortion processing system and method. The system structure is shown in Figure 1, including a predistorter, a power amplifier, a 1/G module, an operation module, a first learner and a second learner. This method first performs coefficient fitting estimation through the first learner, quickly determines the coefficient estimate interval, roughly adjusts the coefficient interval value, and then fine-tunes the coefficient interval value through the second learner. This invention requires at least two signal processes to achieve the digital predistortion effect. However, its shortcomings are that using a double-stage learner has a complex system structure, high cost, and low work efficiency; and the fine-tuning result of the second signal processing heavily depends on the first coarse-tuning result, and the difference between the two signal processing processes is The coupling is too high and it is not easy to maintain and adjust. Furthermore, the coefficient fitting estimation accuracy of the first learner is low, and the nonlinear processing effect of the power amplifier is poor, resulting in a high wireless communication bit error rate and poor communication quality.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术存在的缺陷,提出了一种基于自学习的射频预失真系统及方法,用于解决现有射频预失真系统存在的结构复杂、模块耦合度较高,以及射频预失真方法存在的计算精度较低的技术问题。The purpose of the present invention is to overcome the shortcomings of the above-mentioned existing technologies, and propose a radio frequency pre-distortion system and method based on self-learning, which is used to solve the existing radio frequency pre-distortion systems' complex structure, high module coupling degree, and The radio frequency predistortion method has the technical problem of low calculation accuracy.
为了实现上述目的,本发明采用的技术方案为:In order to achieve the above objects, the technical solutions adopted by the present invention are:
一种基于自学习的射频预失真系统,包括顺次连接的数字预失真DPD处理器、功率放大器、1/G模块和运算模块,数字预失真DPD处理器的输出端还与运算模块连接;所述1/G模块的输出端与运算模块的输入端之间加载有数字预失真DPD学习器,所述数字预失真DPD学习器的输入端与运算模块的输出端之间加载有自学习模块,其中:A radio frequency pre-distortion system based on self-learning includes a digital pre-distortion DPD processor, a power amplifier, a 1/G module and an arithmetic module connected in sequence. The output end of the digital pre-distortion DPD processor is also connected to the arithmetic module; so A digital predistortion DPD learner is loaded between the output end of the 1/G module and the input end of the operation module, and a self-learning module is loaded between the input end of the digital predistortion DPD learner and the output end of the operation module, in:
数字预失真DPD处理器,用于对输入的射频信号进行预失真处理;Digital predistortion DPD processor, used to predistort the input radio frequency signal;
功率放大器,用于对DPD处理器输出的预失真射频信号进行功率放大;Power amplifier, used to power amplify the pre-distorted radio frequency signal output by the DPD processor;
1/G模块,用于对功率放大器输出的放大信号进行1/G幅度缩减;1/G module, used to reduce the 1/G amplitude of the amplified signal output by the power amplifier;
数字预失真DPD学习器,用于对1/G模块输出的幅度缩减后的信号进行非线性特性逆处理;Digital predistortion DPD learner is used to inversely process the nonlinear characteristics of the reduced amplitude signal output by the 1/G module;
运算模块,用于对DPD处理器输出的预失真射频信号与数字预失真DPD学习器输出的预失真估计信号进行差值运算;The operation module is used to perform difference operation on the pre-distortion radio frequency signal output by the DPD processor and the pre-distortion estimation signal output by the digital pre-distortion DPD learner;
自学习模块,包括判决模块以及并行的第一预失真参数运算模块和第二预失真参数运算模块;判决模块,用于判断估计误差随初始化的第n路射频信号变化的误差门限函数与初始化的误差门限值的大小;第一预失真参数运算模块或第二预失真参数运算模块根据判决模块的判断结果估计预失真参数,并通过预失真参数对数字预失真DPD学习器的参数进行更新。The self-learning module includes a decision module and a parallel first predistortion parameter calculation module and a second predistortion parameter calculation module; the decision module is used to judge the error threshold function of the estimated error as the initialized nth radio frequency signal changes and the initialized The size of the error threshold; the first predistortion parameter operation module or the second predistortion parameter operation module estimates the predistortion parameters based on the judgment results of the decision module, and updates the parameters of the digital predistortion DPD learner through the predistortion parameters.
一种基于自学习的射频预失真方法,包括如下步骤:A radio frequency pre-distortion method based on self-learning, including the following steps:
(1)初始化参数:(1)Initialization parameters:
初始化输入射频预失真系统的N路射频信号为x={x(1),x(2),...,x(n),...,x(N)},误差门限值为η0,功率放大器的非线性阶数为l,最大非线性阶数为L,并令n=1,其中,N≥50,x(n)表示第n路射频信号,L≥1,1≤l≤L;Initialize the N channels of RF signals input to the RF predistortion system as x={x(1),x(2),...,x(n),...,x(N)}, and the error threshold is η 0 , the nonlinear order of the power amplifier is l, the maximum nonlinear order is L, and let n=1, where N≥50, x(n) represents the nth radio frequency signal, L≥1, 1≤l ≤L;
(2)数字预失真DPD处理器对射频信号进行预失真处理:(2) The digital predistortion DPD processor performs predistortion processing on RF signals:
数字预失真DPD处理器对输入射频预失真系统的第n路射频信号x(n)进行预失真处理,输出预失真射频信号z(n);The digital predistortion DPD processor performs predistortion processing on the nth RF signal x(n) input to the RF predistortion system and outputs the predistorted RF signal z(n);
(3)功率放大器对预失真射频信号进行功率放大:(3) The power amplifier amplifies the power of the predistorted RF signal:
功率放大器对数字预失真DPD处理器输出的预失真射频信号z(n)进行功率放大,输出放大的预失真射频信号y(n);The power amplifier amplifies the predistorted radio frequency signal z(n) output by the digital predistortion DPD processor and outputs the amplified predistorted radio frequency signal y(n);
(4)1/G模块对放大信号进行1/G幅度缩减:(4) The 1/G module reduces the amplified signal by 1/G amplitude:
1/G模块对功率放大器输出的放大信号y(n)进行幅度缩减,输出缩减信号y(n)/G;The 1/G module reduces the amplitude of the amplified signal y(n) output by the power amplifier and outputs the reduced signal y(n)/G;
(5)数字预失真DPD学习器对缩减信号进行非线性特性逆处理:(5) The digital predistortion DPD learner performs inverse processing of nonlinear characteristics of the reduced signal:
数字预失真DPD学习器对1/G模块输出的缩减信号y(n)/G进行非线性特性逆处理,输出预失真估计信号z′(n);The digital predistortion DPD learner performs inverse processing of nonlinear characteristics on the reduced signal y(n)/G output by the 1/G module, and outputs the predistortion estimation signal z′(n);
(6)运算模块对预失真射频信号与预失真估计信号进行比较:(6) The operation module compares the pre-distorted RF signal and the pre-distorted estimated signal:
运算模块对数字预失真DPD处理器输出的预失真射频信号z(n)与数字预失真DPD学习器输出的预失真估计信号z′(n)进行比较,得到估计误差e(n)=|z(n)-z′(n)|;The operation module compares the predistortion RF signal z(n) output by the digital predistortion DPD processor with the predistortion estimation signal z′(n) output by the digital predistortion DPD learner, and obtains the estimation error e(n)=|z (n)-z′(n)|;
(7)自学习模块估计预失真参数:(7) The self-learning module estimates the pre-distortion parameters:
判决模块判断估计误差e(n)随初始化的第n路射频信号x(n)变化的误差门限函数与初始化的误差门限值η0是否满足/>若是,第一预失真参数运算模块采用递归最小二乘RLS算法,并通过e(n)估计预失真参数,否则,第二预失真参数运算模块采用最小均方误差LMS算法,并通过e(n)估计预失真参数,然后通过预失真参数对数字预失真DPD学习器的参数进行更新;The decision module determines the error threshold function of the estimated error e(n) as it changes with the initialized nth radio frequency signal x(n). Does it satisfy the initialized error threshold value eta 0 /> If so, the first predistortion parameter operation module uses the recursive least squares RLS algorithm and estimates the predistortion parameters through e(n). Otherwise, the second predistortion parameter operation module uses the minimum mean square error LMS algorithm and estimates the predistortion parameters through e(n). ) Estimate the predistortion parameters, and then update the parameters of the digital predistortion DPD learner through the predistortion parameters;
(8)判断是否满足迭代条件:(8) Determine whether the iteration conditions are met:
判断n=N是否成立,若是,得到训练好的数字预失真DPD学习器,执行步骤(9),否则,令n=n+1,并执行步骤(2);Determine whether n=N is true. If so, obtain the trained digital predistortion DPD learner and perform step (9). Otherwise, set n=n+1 and perform step (2);
(9)获取射频预失真结果:(9) Obtain RF pre-distortion results:
数字预失真DPD处理器提取训练好的数字预失真DPD学习器的参数,并通过该参数对射频信号x(n)进行预失真处理,实现对功率放大器的非线性处理。The digital predistortion DPD processor extracts the parameters of the trained digital predistortion DPD learner and performs predistortion processing on the radio frequency signal x(n) through the parameters to achieve nonlinear processing of the power amplifier.
本发明与现有技术相比,具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明的射频预失真系统通过数字预失真DPD学习器对1/G模块输出的幅度缩减后的信号进行非线性特性逆处理,避免了现有射频预失真系统采用双阶学习器导致的结构复杂以及学习器间耦合度较高的缺陷,与现有技术相比,能够降低成本和运算的复杂度。1. The radio frequency predistortion system of the present invention uses a digital predistortion DPD learner to inversely process the nonlinear characteristics of the reduced amplitude signal output by the 1/G module, avoiding the problems caused by the dual-stage learner used in the existing radio frequency predistortion system. Compared with the existing technology, the disadvantages of complex structure and high coupling between learners can reduce the cost and computational complexity.
2.本发明通过数字预失真DPD学习器的输入端与运算模块的输出端之间加载的自学习模块中的两个预失真参数运算模块,根据判决模块的判断结果,采用不同的方法估计预失真参数,然后通过预失真参数对数字预失真DPD学习器的参数进行更新,经过多轮训练获得数字预失真DPD学习器最终的参数,避免了现有技术采用系数拟合的方法获取学习器的参数对射频信号预失真处理结果精度的影响,有效提高了功率放大器非线性处理效果,进而降低了通信系统的误码率。2. The present invention uses two predistortion parameter operation modules in the self-learning module loaded between the input end of the digital predistortion DPD learner and the output end of the operation module, and uses different methods to estimate the predistortion parameter according to the judgment results of the decision module. distortion parameters, and then update the parameters of the digital predistortion DPD learner through the predistortion parameters. After multiple rounds of training, the final parameters of the digital predistortion DPD learner are obtained, which avoids the existing technology's use of coefficient fitting methods to obtain the parameters of the learner. The influence of parameters on the accuracy of RF signal predistortion processing results effectively improves the nonlinear processing effect of the power amplifier, thereby reducing the bit error rate of the communication system.
附图说明Description of the drawings
图1是现有技术中射频预失真系统的结构示意图。Figure 1 is a schematic structural diagram of a radio frequency predistortion system in the prior art.
图2是本发明射频预失真系统的结构示意图。Figure 2 is a schematic structural diagram of the radio frequency predistortion system of the present invention.
图3是本发明射频预失真方法的实现流程图。Figure 3 is a flow chart of the implementation of the radio frequency predistortion method of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例,对本发明进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
参照图2,本发明射频预失真系统包括顺次连接的数字预失真DPD处理器、功率放大器、1/G模块和运算模块,数字预失真DPD处理器的输出端还与运算模块连接;所述1/G模块的输出端与运算模块的输入端之间加载有数字预失真DPD学习器,所述数字预失真DPD学习器的输入端与运算模块的输出端之间加载有自学习模块,其中:Referring to Figure 2, the radio frequency predistortion system of the present invention includes a digital predistortion DPD processor, a power amplifier, a 1/G module and an operation module that are connected in sequence. The output end of the digital predistortion DPD processor is also connected to the operation module; A digital predistortion DPD learner is loaded between the output end of the 1/G module and the input end of the operation module, and a self-learning module is loaded between the input end of the digital predistortion DPD learner and the output end of the operation module, where :
数字预失真DPD处理器,用于对输入的射频信号进行预失真处理,以补偿功率放大器的非线性失真;Digital predistortion DPD processor, used to predistort the input RF signal to compensate for the nonlinear distortion of the power amplifier;
功率放大器,用于对DPD处理器输出的预失真射频信号进行功率放大;Power amplifier, used to power amplify the pre-distorted radio frequency signal output by the DPD processor;
1/G模块,用于对功率放大器输出的放大信号进行1/G幅度缩减;1/G module, used to reduce the 1/G amplitude of the amplified signal output by the power amplifier;
数字预失真DPD学习器,用于对1/G模块输出的幅度缩减后的信号进行非线性特性逆处理;现有技术中采用二阶学习器,结构复杂,成本高,并且第二学习器严重依赖于第一学习器,对第二学习器参数的修改需要考虑到第一学习器;本发明只使用一阶学习器,结构简单,成本低,不存在模块间的耦合;The digital predistortion DPD learner is used to inversely process the nonlinear characteristics of the reduced amplitude signal output by the 1/G module; the existing technology uses a second-order learner, which has a complex structure and high cost, and the second learner is serious Relying on the first learner, the modification of the parameters of the second learner needs to take the first learner into consideration; the present invention only uses a first-order learner, has a simple structure, low cost, and no coupling between modules;
运算模块,用于对DPD处理器输出的预失真射频信号与数字预失真DPD学习器输出的预失真估计信号进行差值运算;The operation module is used to perform difference operation on the pre-distortion radio frequency signal output by the DPD processor and the pre-distortion estimation signal output by the digital pre-distortion DPD learner;
自学习模块,包括判决模块以及并行的第一预失真参数运算模块和第二预失真参数运算模块;判决模块,用于判断估计误差随初始化的第n路射频信号变化的误差门限函数与初始化的误差门限值的大小;第一预失真参数运算模块或第二预失真参数运算模块根据判决模块的判断结果估计预失真参数,并通过预失真参数对数字预失真DPD学习器的参数进行更新。The self-learning module includes a decision module and a parallel first predistortion parameter calculation module and a second predistortion parameter calculation module; the decision module is used to judge the error threshold function of the estimated error as the initialized nth radio frequency signal changes and the initialized The size of the error threshold; the first predistortion parameter operation module or the second predistortion parameter operation module estimates the predistortion parameters based on the judgment results of the decision module, and updates the parameters of the digital predistortion DPD learner through the predistortion parameters.
参照图3,本发明射频预失真方法包括如下步骤:Referring to Figure 3, the radio frequency predistortion method of the present invention includes the following steps:
步骤1)初始化参数:Step 1) Initialization parameters:
初始化输入射频预失真系统的N路射频信号为x={x(1),x(2),...,x(n),...,x(N)},误差门限值为η0,功率放大器的非线性阶数为l,最大非线性阶数为L,非线性阶数是功率放大器输入输出关系表达式的阶数,用于表征功率放大器的非线性程度,并令n=1,其中,N≥50,x(n)表示第n路射频信号,L≥1,1≤l≤L,本实施例N=65。Initialize the N channels of RF signals input to the RF predistortion system as x={x(1),x(2),...,x(n),...,x(N)}, and the error threshold is η 0 , the nonlinear order of the power amplifier is l, and the maximum nonlinear order is L. The nonlinear order is the order of the input-output relationship expression of the power amplifier, which is used to characterize the degree of nonlinearity of the power amplifier, and let n= 1. Among them, N≥50, x(n) represents the nth radio frequency signal, L≥1, 1≤l≤L, and N=65 in this embodiment.
步骤2)数字预失真DPD处理器对射频信号进行预失真处理:Step 2) The digital predistortion DPD processor performs predistortion processing on the radio frequency signal:
数字预失真DPD处理器对输入射频预失真系统的第n路射频信号x(n)进行预失真处理,以补偿功率放大器非线性失真,输出预失真射频信号z(n);z(n)的计算公式为:The digital predistortion DPD processor performs predistortion processing on the nth RF signal x(n) input to the RF predistortion system to compensate for the nonlinear distortion of the power amplifier and outputs the predistorted RF signal z(n); z(n) The calculation formula is:
其中,∑表示求和操作,M表示最大记忆深度,记忆深度表示当前信号和历史信号间隔的信号数,hlm表示非线性阶数为l记忆深度为m时的预失真参数,当l=1,m=0时hlm=1,其它时刻hlm=0,x(n-m)表示在当前射频信号x(n)之前的第m个历史射频信号,0≤m≤M。Among them, ∑ represents the summation operation, M represents the maximum memory depth, the memory depth represents the number of signals between the current signal and the historical signal, h lm represents the predistortion parameter when the nonlinear order is l and the memory depth is m, when l=1 , h lm = 1 when m = 0, h lm = 0 at other times, x (nm) represents the mth historical radio frequency signal before the current radio frequency signal x (n), 0 ≤ m ≤ M.
步骤3)功率放大器对预失真射频信号进行功率放大:Step 3) The power amplifier amplifies the power of the pre-distorted RF signal:
功率放大器对数字预失真DPD处理器输出的预失真射频信号z(n)进行功率放大,输出放大的预失真射频信号y(n);y(n)的计算公式为:The power amplifier amplifies the predistorted RF signal z(n) output by the digital predistortion DPD processor and outputs the amplified predistorted RF signal y(n); the calculation formula of y(n) is:
其中,z(n-m)表示在当前预失真射频信号z(n)之前的第m个历史射频信号,alm表示功率放大器非线性阶数为l记忆深度为m时的滤波系数,m表示记忆深度,0≤m≤M,M为最大记忆深度。Among them, z(nm) represents the mth historical radio frequency signal before the current predistorted radio frequency signal z(n), a lm represents the filter coefficient when the nonlinear order of the power amplifier is l and the memory depth is m, m represents the memory depth. , 0≤m≤M, M is the maximum memory depth.
步骤4)1/G模块对放大信号进行1/G幅度缩减:Step 4) The 1/G module reduces the amplified signal by 1/G amplitude:
1/G模块对功率放大器输出的放大信号y(n)进行幅度缩减,缩减为功率放大器输出信号的1/G倍,G的取值和功率放大器的放大倍数保持一致,用于抵消功率放大器对信号幅度的放大作用,输出缩减信号y(n)/G;The 1/G module reduces the amplitude of the amplified signal y(n) output by the power amplifier to 1/G times the output signal of the power amplifier. The value of G is consistent with the amplification factor of the power amplifier and is used to offset the effect of the power amplifier on Amplification of signal amplitude, output reduction signal y(n)/G;
步骤5)数字预失真DPD学习器对缩减信号进行非线性特性逆处理:Step 5) The digital predistortion DPD learner performs inverse processing of nonlinear characteristics of the reduced signal:
数字预失真DPD学习器对1/G模块输出的缩减信号y(n)/G进行非线性特性逆处理,输出预失真估计信号z′(n);z′(n)的计算公式为:The digital predistortion DPD learner performs inverse processing of nonlinear characteristics on the reduced signal y(n)/G output by the 1/G module, and outputs the predistortion estimated signal z′(n); the calculation formula of z′(n) is:
其中,y(n-m)/G表示在当前信号y(n-m)/G之前的第m个历史信号,hlm表示非线性阶数为l记忆深度为m时的预失真参数,m表示记忆深度,当l=1,m=0时其它时刻0≤m≤M,M为最大记忆深度。Among them, y(nm)/G represents the m-th historical signal before the current signal y(nm)/G, h lm represents the pre-distortion parameter when the nonlinear order is l and the memory depth is m, m represents the memory depth, When l=1, m=0 other times 0≤m≤M, M is the maximum memory depth.
步骤6)运算模块对预失真射频信号与预失真估计信号进行比较:Step 6) The operation module compares the pre-distorted radio frequency signal and the pre-distorted estimated signal:
运算模块对数字预失真DPD处理器输出的预失真射频信号z(n)与数字预失真DPD学习器输出的预失真估计信号z′(n)进行比较,得到估计误差e(n)=|z(n)-z′(n)|;The operation module compares the predistortion RF signal z(n) output by the digital predistortion DPD processor with the predistortion estimation signal z′(n) output by the digital predistortion DPD learner, and obtains the estimation error e(n)=|z (n)-z′(n)|;
步骤7)自学习模块估计预失真参数:Step 7) The self-learning module estimates the pre-distortion parameters:
判决模块判断估计误差e(n)随初始化的第n路射频信号x(n)变化的误差门限函数与初始化的误差门限值η0是否满足/>若是,第一预失真参数运算模块采用递归最小二乘RLS算法,并通过e(n)估计预失真参数,否则,第二预失真参数运算模块采用最小均方误差LMS算法,并通过e(n)估计预失真参数,然后通过预失真参数对数字预失真DPD学习器的参数进行更新。The decision module determines the error threshold function of the estimated error e(n) as it changes with the initialized nth radio frequency signal x(n). Does it satisfy the initialized error threshold value eta 0 /> If so, the first predistortion parameter operation module uses the recursive least squares RLS algorithm and estimates the predistortion parameters through e(n). Otherwise, the second predistortion parameter operation module uses the minimum mean square error LMS algorithm and estimates the predistortion parameters through e(n). ) estimates the predistortion parameters, and then updates the parameters of the digital predistortion DPD learner through the predistortion parameters.
递归最小二乘RLS算法具有强大的目标参数跟踪能力和函数收敛快等优点,可用于时变系统,进行实时的参数估计,适用于自适应控制;第一预失真参数运算模块采用递归最小二乘RLS算法估计预失真参数,估计公式为:The recursive least squares RLS algorithm has the advantages of powerful target parameter tracking capability and fast function convergence. It can be used in time-varying systems for real-time parameter estimation and is suitable for adaptive control; the first predistortion parameter calculation module uses recursive least squares The RLS algorithm estimates the predistortion parameters, and the estimation formula is:
hlm=min||e(n)||2 h lm =min||e(n)|| 2
最小均方误差LMS算法计算过程简单、计算复杂度是线性的、计算高效,不易受外部扰动的干扰,鲁邦性能好。第二预失真参数运算模块采用最小均方误差LMS算法估计预失真参数,估计公式为:The minimum mean square error LMS algorithm has a simple calculation process, linear computational complexity, efficient calculation, is not susceptible to external disturbances, and has good Lupine performance. The second predistortion parameter calculation module uses the minimum mean square error LMS algorithm to estimate the predistortion parameters. The estimation formula is:
其中,min{·}表示求最小值操作,||·||表示求范数操作,E{·}表示求均值操作,表示非线性阶数为l记忆深度为m时的预失真参数。Among them, min{·} represents the minimum operation, ||·|| represents the norm operation, and E{·} represents the mean operation. Represents the predistortion parameters when the nonlinear order is l and the memory depth is m.
步骤8)判断是否满足迭代条件:Step 8) Determine whether the iteration conditions are met:
判断n=N是否成立,若是,得到训练好的数字预失真DPD学习器,执行步骤(9),否则,令n=n+1,并执行步骤(2);Determine whether n=N is true. If so, obtain the trained digital predistortion DPD learner and perform step (9). Otherwise, set n=n+1 and perform step (2);
步骤9)获取射频预失真结果:Step 9) Obtain RF pre-distortion results:
数字预失真DPD处理器提取训练好的数字预失真DPD学习器的参数,并通过该参数对射频信号x(n)进行预失真处理,实现对功率放大器的非线性处理。The digital predistortion DPD processor extracts the parameters of the trained digital predistortion DPD learner and performs predistortion processing on the radio frequency signal x(n) through the parameters to achieve nonlinear processing of the power amplifier.
现有技术中第一学习器进行系数拟合估计,系数拟合是指已知某函数的若干离散函数值,通过调整该函数中若干待定系数,减小估计函数与期望函数的差别,从而获得逼近期望值的估计值,但一般很难选取到合适的已知离散函数值,从而导致估计值和期望值差距较大,拟合优度和1的偏离程度较大,估计精度较低;而本发明通过一步步迭代,不断缩小估计值和期望值之间的差距,从而获得较高的估计精度。In the prior art, the first learner performs coefficient fitting estimation. Coefficient fitting refers to knowing several discrete function values of a certain function. By adjusting several undetermined coefficients in the function, the difference between the estimated function and the expected function is reduced, thereby obtaining The estimated value is close to the expected value, but it is generally difficult to select a suitable known discrete function value, resulting in a large gap between the estimated value and the expected value, a large deviation between the goodness of fit and 1, and a low estimation accuracy; and the present invention Through step-by-step iteration, the gap between the estimated value and the expected value is continuously narrowed, thereby obtaining higher estimation accuracy.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210816623.0A CN115037580B (en) | 2022-07-12 | 2022-07-12 | Self-learning-based radio frequency predistortion system and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210816623.0A CN115037580B (en) | 2022-07-12 | 2022-07-12 | Self-learning-based radio frequency predistortion system and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115037580A CN115037580A (en) | 2022-09-09 |
| CN115037580B true CN115037580B (en) | 2023-09-08 |
Family
ID=83129657
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210816623.0A Active CN115037580B (en) | 2022-07-12 | 2022-07-12 | Self-learning-based radio frequency predistortion system and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115037580B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115987415A (en) * | 2022-12-29 | 2023-04-18 | 哲库科技(上海)有限公司 | Method, device, equipment and storage medium for determining predistortion performance parameters |
| CN119996130B (en) * | 2025-04-11 | 2025-09-09 | 天津七一二通信广播股份有限公司 | Digital predistortion communication device and implementation method based on GRU network |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102055696A (en) * | 2010-12-06 | 2011-05-11 | 西安电子科技大学 | Digital predistortion system for inhibiting noise of feedback signal |
| CN103856429A (en) * | 2014-03-26 | 2014-06-11 | 西安电子科技大学 | Adaptive predistortion system and method based on hybrid indirect learning algorithm |
| CN103888396A (en) * | 2014-03-26 | 2014-06-25 | 西安电子科技大学 | Predistortion method based on self-adaptive variable step size iteration |
| CN103929136A (en) * | 2014-04-22 | 2014-07-16 | 西安易晓通讯科技有限公司 | Broadband mobile communication LTE system transmitter power amplifier predistortion processing method |
| US9749161B1 (en) * | 2016-02-23 | 2017-08-29 | Nxp Usa, Inc. | Fixed-point conjugate gradient digital pre-distortion (DPD) adaptation |
| CN111245377A (en) * | 2020-03-20 | 2020-06-05 | 厦门大学 | A digital predistortion system and method based on direct learning structure |
| CN112859611A (en) * | 2021-01-19 | 2021-05-28 | 重庆邮电大学 | Self-adaptive predistortion system and method |
| WO2021244236A1 (en) * | 2020-06-02 | 2021-12-09 | 中兴通讯股份有限公司 | Predistortion method and system, device, and storage medium |
| CN113949350A (en) * | 2021-10-20 | 2022-01-18 | 上海大学 | Digital predistortion method and system based on baseband-RF joint optimization |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201115915A (en) * | 2009-10-23 | 2011-05-01 | Ralink Technology Corp | Method for pre-distorting power amplifier and the circuit thereof |
| US9214969B2 (en) * | 2013-05-09 | 2015-12-15 | King Fahd University Of Petroleum And Minerals | Scalable digital predistortion system |
-
2022
- 2022-07-12 CN CN202210816623.0A patent/CN115037580B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102055696A (en) * | 2010-12-06 | 2011-05-11 | 西安电子科技大学 | Digital predistortion system for inhibiting noise of feedback signal |
| CN103856429A (en) * | 2014-03-26 | 2014-06-11 | 西安电子科技大学 | Adaptive predistortion system and method based on hybrid indirect learning algorithm |
| CN103888396A (en) * | 2014-03-26 | 2014-06-25 | 西安电子科技大学 | Predistortion method based on self-adaptive variable step size iteration |
| CN103929136A (en) * | 2014-04-22 | 2014-07-16 | 西安易晓通讯科技有限公司 | Broadband mobile communication LTE system transmitter power amplifier predistortion processing method |
| US9749161B1 (en) * | 2016-02-23 | 2017-08-29 | Nxp Usa, Inc. | Fixed-point conjugate gradient digital pre-distortion (DPD) adaptation |
| CN111245377A (en) * | 2020-03-20 | 2020-06-05 | 厦门大学 | A digital predistortion system and method based on direct learning structure |
| WO2021244236A1 (en) * | 2020-06-02 | 2021-12-09 | 中兴通讯股份有限公司 | Predistortion method and system, device, and storage medium |
| CN112859611A (en) * | 2021-01-19 | 2021-05-28 | 重庆邮电大学 | Self-adaptive predistortion system and method |
| CN113949350A (en) * | 2021-10-20 | 2022-01-18 | 上海大学 | Digital predistortion method and system based on baseband-RF joint optimization |
Non-Patent Citations (1)
| Title |
|---|
| Over-the-fiber Digital Predistortion Using Reinforcement Learning;Jinxiang Song;《Signal Processing》;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115037580A (en) | 2022-09-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115037580B (en) | Self-learning-based radio frequency predistortion system and method | |
| CN103117964B (en) | Signal detecting method and device under a kind of 60GHz millimeter-wave communication systems | |
| CN103856429A (en) | Adaptive predistortion system and method based on hybrid indirect learning algorithm | |
| CN103929136B (en) | Broadband mobile communication LTE system transmitter power amplifier predistortion processing method | |
| CN103888396A (en) | Predistortion method based on self-adaptive variable step size iteration | |
| CN105262447A (en) | Pre-distortion method and device for power amplifier and radio frequency system | |
| CN101764577A (en) | Baseband pre-distortion power amplifier linearization method based on one-way feedback and non-iterative technique | |
| CN102111361B (en) | Self-adaptive predistorter design based on table look-up method of amplifier estimator | |
| CN102055696B (en) | Digital predistortion system for inhibiting noise of feedback signal | |
| CN115913140B (en) | Piecewise polynomial digital predistortion device and method for controlling operation precision | |
| CN116131773A (en) | System and method based on envelope tracking and adaptive digital predistortion | |
| CN102624338B (en) | Volterra-filtering-based power amplifier pre-distortion method for double-loop feedback model | |
| CN102082751A (en) | Neural network pre-distortion method based on improved MLBP (Levenberg-Marquardt back propagation) algorithm | |
| CN115459717A (en) | Power self-adaptive neural network digital predistortion system and method | |
| Thompson et al. | Integrating volterra series model and deep neural networks to equalize nonlinear power amplifiers | |
| CN201127032Y (en) | Digital Predistortion Device Based on TD-SCDMA Signal | |
| KR100873106B1 (en) | Amplifier and its method using polynomial based predistortion of direct learning structure | |
| Qian et al. | A neural network predistorter for nonlinear power amplifiers with memory | |
| CN111884602B (en) | Power amplifier predistortion method based on single-output-node neural network | |
| Zeng et al. | A crest factor reduction method in digital predistortion for improvement of power efficiency | |
| CN114050795B (en) | A digital predistortion processing system and method | |
| Ding et al. | Time-domain adaptive predistortion for nonlinear amplifiers | |
| Ye et al. | Enhancing DPD of Wideband Power Amplifiers Based on LSTM and BiLSTM with Integrated Self-Attention Layers | |
| Long et al. | Indirect learning hybrid memory predistorter based on polynomial and look-up-table | |
| Zhu et al. | A blind AM/PM estimation method for power amplifier linearization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |