CN115046551A - Dynamic attitude measurement and calculation method based on MEMS inertial sensor - Google Patents
Dynamic attitude measurement and calculation method based on MEMS inertial sensor Download PDFInfo
- Publication number
- CN115046551A CN115046551A CN202110254481.9A CN202110254481A CN115046551A CN 115046551 A CN115046551 A CN 115046551A CN 202110254481 A CN202110254481 A CN 202110254481A CN 115046551 A CN115046551 A CN 115046551A
- Authority
- CN
- China
- Prior art keywords
- error
- data
- gyroscope
- accelerometer
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000691 measurement method Methods 0.000 title claims description 9
- 238000004364 calculation method Methods 0.000 title description 4
- 238000005259 measurement Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 20
- 239000011159 matrix material Substances 0.000 claims description 40
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000009434 installation Methods 0.000 claims description 8
- 238000005295 random walk Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 241001123248 Arma Species 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 5
- 230000008030 elimination Effects 0.000 claims description 4
- 238000003379 elimination reaction Methods 0.000 claims description 4
- 238000005311 autocorrelation function Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Gyroscopes (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及MEMS传感技术领域,尤其涉及一种基于MEMS传感器的动态姿态测算的方法。The invention relates to the technical field of MEMS sensing, in particular to a method for dynamic attitude measurement and calculation based on a MEMS sensor.
背景技术Background technique
现有技术中有很多用于动态姿势研究的解算算法,其中准确地建模惯性传感器非常重要。动态姿态解算算法需要考虑传感器产生的各种误差,例如安装误差、制造误差、非正交误差和零偏移误差。由于MEMS传感器的特性,传统的惯性传感器容易因温度和噪声而产生不同程度的漂移。仅使用陀螺仪和加速度计的原始数据在角度测量中会有较大的误差,这将对动态姿态解算产生重大影响。因此,如何充分利用两种传感器的优点,消除传感器产生的干扰,获得更加实用、准确的数据,已成为许多专家学者研究的关键问题之一。There are many solution algorithms for dynamic pose research in the prior art, in which it is very important to accurately model inertial sensors. The dynamic attitude calculation algorithm needs to consider various errors generated by the sensor, such as installation error, manufacturing error, non-orthogonal error and zero offset error. Due to the characteristics of MEMS sensors, traditional inertial sensors are prone to drift to varying degrees due to temperature and noise. Using only the raw data from the gyroscope and accelerometer will have a large error in the angle measurement, which will have a significant impact on the dynamic attitude solution. Therefore, how to make full use of the advantages of the two sensors, eliminate the interference generated by the sensors, and obtain more practical and accurate data has become one of the key issues studied by many experts and scholars.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提供了一种基于MEMS惯性传感器的动态姿态测量和加速解算的方法,首先获取加速度计和陀螺仪的测量数据,然后将以上两种测量数据运用四元数算法解算出姿态角,从而获得动态姿态信息。In order to solve the above technical problems, the present invention provides a method for dynamic attitude measurement and acceleration calculation based on a MEMS inertial sensor. First, the measurement data of the accelerometer and the gyroscope are obtained, and then the above two measurement data are applied using the quaternion algorithm. The attitude angle is solved to obtain dynamic attitude information.
本发明的技术方案如下:一种基于MEMS惯性传感器的动态姿态测算方法,所述MEMS 惯性传感器集成了三轴加速度计和三轴陀螺仪,根据以下步骤获取姿态信息:The technical scheme of the present invention is as follows: a dynamic attitude measurement method based on a MEMS inertial sensor, wherein the MEMS inertial sensor integrates a three-axis accelerometer and a three-axis gyroscope, and obtains attitude information according to the following steps:
1)获取三轴陀螺仪输出数据并消除误差,得到角速度;1) Obtain the output data of the three-axis gyroscope and eliminate the error to obtain the angular velocity;
2)获取三轴加速度计输出数据并消除误差,得到加速度;2) Obtain the output data of the three-axis accelerometer and eliminate the error to obtain the acceleration;
3)根据步骤1)和2)得到的角速度和加速度,使用四元数算法解算出姿态角。3) According to the angular velocity and acceleration obtained in steps 1) and 2), use the quaternion algorithm to calculate the attitude angle.
在步骤1)建立三轴陀螺仪的误差模型,如下:In step 1), the error model of the three-axis gyroscope is established, as follows:
其中,为陀螺仪误差消除后的测量值,ωx,ωy,ωz为陀螺仪测量原始值,fx,fy,fz为加速度计测量值的比力值,wx,wy,wz为陀螺仪三轴上的零偏漂移误差,lx,ly,lz为刻度因子误差,kxy,kxz,kyx,kyz,kzy,kzx为对应两轴间的安装误差,mxy,mxz,myx,myz,mzy,mzx为对应两轴之间的比力误差系数,εgx,εgy,εgz为陀螺仪三轴的随机误差。in, are the measured values after the gyroscope error has been eliminated, ω x , ω y , ω z are the original values measured by the gyroscope, f x , f y , f z are the specific force values of the accelerometer measured values, w x , w y , w z is the zero offset drift error on the three axes of the gyroscope, l x , ly , l z are the scale factor errors, k xy , k xz , k yx , k yz , k zy , k zx are the installations between the corresponding two axes Errors, m xy , m xz , m yx , m yz , m zy , and m zx are the error coefficients of the specific force between the corresponding two axes, ε gx , ε gy , and ε gz are the random errors of the three axes of the gyroscope.
对于确定性误差系数,可以通过对陀螺仪进行测试标定实验确定:先进行多位置静态测量得出Wi,mij,再进行正交角速率测量。由于陀螺仪在与待测定轴正交的恒定的角速度下运转时,敏感轴是静止的,因此可以略去刻度因子误差,所以上述误差模型在这一步简化成下面的式子:For the deterministic error coefficient, it can be determined by testing and calibrating the gyroscope: first perform multi-position static measurement to obtain Wi, m ij , and then perform orthogonal angular rate measurement. Since the sensitive axis is stationary when the gyroscope is running at a constant angular velocity orthogonal to the axis to be measured, the scale factor error can be omitted, so the above error model is simplified into the following formula in this step:
其中,表示互耦误差,由于已知加在陀螺仪上的与待测定轴正交的恒定加速度,所以能求解出kij in, Represents the mutual coupling error. Since the constant acceleration applied to the gyroscope and orthogonal to the axis to be measured is known, k ij can be solved
对于随机误差,可以利用Allan方差分析法进行估算和补偿。首先,取N个连续的陀螺仪数据作为总样本,将其中连续的n个采样数据组成一个子样本组,n<N/2,这个子样本组即数据簇,然后计算各个数据簇中数据样本的平均值。For random errors, Allan analysis of variance can be used to estimate and compensate. First, take N consecutive gyroscope data as the total sample, and form a subsample group of the consecutive n sampled data, n<N/2, this subsample group is the data cluster, and then calculate the data samples in each data cluster average of.
假设t时刻陀螺仪的输出为Ω(t),则第k个数据簇的平均值为:Assuming that the output of the gyroscope at time t is Ω(t), the average value of the kth data cluster is:
其中,为时间长度为T的含有n个输出数据的第k个数据簇的平均值。由此可知,第k+1个数据簇的平均值为:in, is the average value of the kth data cluster with n output data of time length T. It can be seen that the average value of the k+1th data cluster is:
求相邻两个数据簇的平均值之差,则有:To find the difference between the averages of two adjacent data clusters, we have:
因此对于时间长度为T的数据簇,Allan方差的定义为:So for a data cluster of time length T, the Allan variance is defined as:
其中,符号<>的含义是对所有符号内数据求平均值,则有:Among them, the meaning of the symbol < > is to average the data in all symbols, then there are:
将经过解算后的方差值数据代入ARMA模型中采用自回归模型,如下所示:Substitute the calculated variance value data into the ARMA model to use the autoregressive model, as shown below:
当时间序列{xk}服从n阶自回归模型的表达式如下:When the time series {x k } obeys the n-order autoregressive model, the expression is as follows:
xk=α1xk-1+…+αnxk-n+εt x k =α 1 x k-1 +…+α n x kn +ε t
自相关函数为:The autocorrelation function is:
上式中:In the above formula:
γk=E(xt,xt+k)γ k =E(x t , x t+k )
=Ext(α1xt+k-1+α2xt+k-1+…αnxt+k-n+εt+k)=Ex t (α 1 x t+k-1 +α 2 x t+k-1 +…α n x t+kn +ε t+k )
=α1γk-1+α2γk-2+…+αnγk-n =α 1 γ k-1 +α 2 γ k-2 +…+α n γ kn
ρk=ρ-k,ρ0=1ρ k =ρ −k , ρ 0 =1
Yule-Walker方程组:Yule-Walker equations:
AR(n)传递函数:AR(n) transfer function:
由此对随机误差进行估算与补偿。Random errors are thus estimated and compensated.
在步骤2)建立三轴加速度计的误差模型,如下:In step 2), the error model of the three-axis accelerometer is established, as follows:
其中,表示加速度计三轴测量值经过误差消除算法后的值,fx,fy,fz表示加速计三轴测量的原始值,Fx,Fy,Fz为加速度计三轴零偏漂移误差,hx,hy,hz表示加速度计三轴刻度因子误差,pxy,pyx,pzx,pxz,pyx,pzy表示加速度计三轴两两之间的安装误差,εfx,εfy,εfz表示加速度计三轴上的随机误差。in, Represents the three-axis measurement value of the accelerometer after the error elimination algorithm, f x , f y , f z represent the original value of the three-axis measurement of the accelerometer, F x , F y , F z are the three-axis zero offset drift error of the accelerometer , h x , h y , h z represent the error of the three-axis scale factor of the accelerometer, p xy , p yx , p zx , p xz , p yx , p zy represent the installation error between the three axes of the accelerometer, ε fx , ε fy , ε fz represent random errors on the three axes of the accelerometer.
运用卡尔曼滤波消除加速度数据误差。首先采用Allan方差分析法,假设t时刻加速度计的输出为Ω(t),T为数据簇的时间长度,则第k个数据簇的平均值为:The Kalman filter is used to eliminate errors in the acceleration data. First, Allan variance analysis method is used, assuming that the output of the accelerometer at time t is Ω(t), and T is the time length of the data cluster, then the average value of the kth data cluster is:
由此可知,第k+1个数据簇的平均值为:It can be seen that the average value of the k+1th data cluster is:
相邻两个数据簇的平均值之差为:The difference between the mean values of two adjacent data clusters is:
对于时间长度为T的数据簇,Allan方差的定义为:For a data cluster of time length T, the Allan variance is defined as:
上式中,n为时间长度为T的数据簇中的数据样本的数目,N为数据样本的总数。In the above formula, n is the number of data samples in the data cluster with time length T, and N is the total number of data samples.
根据IEEE的规定,Allan方差与原始数据中噪声功率谱密度存在的定量关系如下:According to IEEE, the quantitative relationship between the Allan variance and the noise power spectral density in the original data is as follows:
则信号总输出的Allan方差为:Then the Allan variance of the total output of the signal is:
其中,为Allan方差;为角度随机游走噪声方差;为速率随机游走噪声方差;为零偏不稳定性噪声方差;为速率斜坡噪声方差;为量化噪声方差。in, is the Allan variance; is the angle random walk noise variance; is the rate random walk noise variance; zero bias instability noise variance; is the rate ramp noise variance; is the quantization noise variance.
上式可改写成:The above formula can be rewritten as:
化简有:Simplified to have:
比较上式则有:Comparing the above formula is:
建立卡尔曼状态方程和测量方程:Set up the Kalman equation of state and measurement equation:
X(k)=AX(k-1)+BW(k)X(k)=AX(k-1)+BW(k)
Z(k)=y(k)+V(k)=CX(k)+V(k)Z(k)=y(k)+V(k)=CX(k)+V(k)
其中,X(k)为系统的n维状态矩阵,A为系统的n×n维状态转移矩阵,B是系统的 n×p维噪声输入矩阵,W(k)为系统的p维过程噪声矩阵;Z(k)为系统的m维状态矩阵,C 是m×n维观测矩阵,V(k)为m维观测噪声矩阵。where X(k) is the n-dimensional state matrix of the system, A is the n×n-dimensional state transition matrix of the system, B is the n×p-dimensional noise input matrix of the system, and W(k) is the p-dimensional process noise matrix of the system ; Z(k) is the m-dimensional state matrix of the system, C is the m×n-dimensional observation matrix, and V(k) is the m-dimensional observation noise matrix.
系统的过程噪声和观测噪声满足:The process noise and observation noise of the system satisfy:
其中,Qk是W(k)的对阵非负定方差矩阵,Rk是V(k)的对阵正定方差矩阵,δki是Kronecker-δ函数;得到卡尔曼滤波递推算式为:Among them, Q k is the paired non-negative definite variance matrix of W(k), R k is the paired positive definite variance matrix of V(k), δ ki is the Kronecker-δ function; the recursive Kalman filter formula is:
其中,R为测量噪声矩阵,其值为ARMA模型估计误差的方差,Q为系统噪声。Among them, R is the measurement noise matrix, its value is the variance of the estimation error of the ARMA model, and Q is the system noise.
步骤3)将消除误差后的加速度和角速度数据代入四元数算法中计算姿态角,四元数方程为: Step 3) Substitute the acceleration and angular velocity data after eliminating the error into the quaternion algorithm to calculate the attitude angle, and the quaternion equation is:
即就是:That is:
其中:in:
四元数和姿态矩阵的关系:The relationship between quaternion and attitude matrix:
其中有:Including:
得出运载体姿态角和姿态矩阵的关系:The relationship between the attitude angle of the carrier and the attitude matrix is obtained:
记 remember
得姿态角:Get attitude angle:
采用四阶龙格库塔法求解四元数微分方程:The fourth-order Runge-Kutta method is used to solve the quaternion differential equation:
系统的状态量为:The state of the system is:
Zk=[ωbx ωby ωbz]T Z k =[ω bx ω by ω bz ] T
系统的状态方程为:The state equation of the system is:
观察方程为:The observation equation is:
得到系统的测量矩阵为:The measurement matrix of the system is obtained as:
系统的最佳估计值为:The best estimate for the system is:
姿态角输出为:The attitude angle output is:
由此获得动态姿态信息。Thereby, dynamic pose information is obtained.
本发明的有益效果:Beneficial effects of the present invention:
动态姿态测量是高精度控制系统设计中非常重要的方面,需要非常精确地测量角度变化,由于单个轴向姿态倾斜传感器无法满足要求,因此我们使用多轴传感器以获得更高的精度和精度。并建立误差模型,可以更准确补偿加速度计与陀螺仪的值,有了更准确的加速度计和陀螺仪的值,就可以得到更准确的姿态信息,通过四元数算法可以获得准确的角度值,并且可以在动态环境中使用,以使动态控制系统能够稳定运行。结合有针对性的硬件加速处理器,大大提高了系统的实时性能够满足高速低延时场景下的需求。Dynamic attitude measurement is a very important aspect in the design of high-precision control systems. It needs to measure the angle change very accurately. Since a single axial attitude tilt sensor cannot meet the requirements, we use multi-axis sensors to obtain higher accuracy and precision. And establish an error model, which can more accurately compensate the values of the accelerometer and gyroscope. With more accurate values of the accelerometer and gyroscope, more accurate attitude information can be obtained, and accurate angle values can be obtained through the quaternion algorithm. , and can be used in a dynamic environment, so that the dynamic control system can run stably. Combined with the targeted hardware acceleration processor, the real-time performance of the system is greatly improved to meet the needs of high-speed and low-latency scenarios.
附图说明Description of drawings
图1是本发明具体实施方式方法的流程图;Fig. 1 is the flow chart of the specific embodiment method of the present invention;
图2是本发明具体实施方式的系统结构示意图,其中:1为加速度计,2为陀螺仪,3为加速度计误差补偿模型,4为陀螺仪误差补偿模型,5为解算算法和滤波器。2 is a schematic diagram of the system structure of a specific embodiment of the present invention, wherein: 1 is an accelerometer, 2 is a gyroscope, 3 is an accelerometer error compensation model, 4 is a gyroscope error compensation model, and 5 is a solution algorithm and filter.
图3是本发明具体实施方式中陀螺仪数据滤波前(A)、后(B)的对比图。FIG. 3 is a comparison diagram of before (A) and after (B) filtering of gyroscope data in a specific embodiment of the present invention.
图4是本发明具体实施方式中滤波前(A)、后(B)MEMS加速度计随机漂移曲线。4 is a random drift curve of a MEMS accelerometer before (A) and after (B) filtering in an embodiment of the present invention.
图5是本发明具体实施方式的摇摆实验中,在x轴的角度输出对比图,其中A为现有算法得到的俯仰角度图,B为本发明方法得到的俯仰角度图。5 is a comparison diagram of the angle output on the x-axis in the swing experiment of the specific embodiment of the present invention, wherein A is the pitch angle diagram obtained by the existing algorithm, and B is the pitch angle diagram obtained by the method of the present invention.
图6是本发明具体实施方式的摇摆实验中,在y轴的角度输出对比图,其中A为现有算 法得到的横滚角度图,B为本发明方法得到的横滚角度图。Fig. 6 is in the rocking experiment of the specific embodiment of the present invention, in the angle output comparison diagram of y-axis, wherein A is the roll angle diagram that the existing algorithm obtains, and B is the roll angle diagram that the method of the present invention obtains.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
对于集成了三轴加速度计和三轴陀螺仪的MEMS惯性传感器,参照图2所示,获取三轴陀螺仪输出的角速度信息,运用AR(n)模型消除三轴角速度误差;获取三轴加速度计输出的加速度信息,运用卡尔曼滤波消除加速度数据误差;使用四元数算法进行姿态角的解算,给出实时的动态姿态值。For a MEMS inertial sensor that integrates a three-axis accelerometer and a three-axis gyroscope, as shown in Figure 2, obtain the angular velocity information output by the three-axis gyroscope, and use the AR(n) model to eliminate the three-axis angular velocity error; obtain the three-axis accelerometer For the output acceleration information, Kalman filter is used to eliminate the acceleration data error; the quaternion algorithm is used to solve the attitude angle, and the real-time dynamic attitude value is given.
根据误差的产生机理分析,误差又分为确定性误差和随机误差。确定性误差主要有零位漂移、刻度因子误差、温度影响因子、安装误差和杆臂效应误差等,之所以称之为确定性误差是因为这部分误差是确定的,具有一定规律的,可以通过标定来得到其稳定模型,然后可以进行补偿;随机误差主要有启动漂移、速率随机游走、角度随机游走和偏差不稳定性等,这部分误差是由随机常数、一阶马尔可夫过程和白噪声组成的,偶然性、随机性是其主要特点,是无规律可循的,只能通过统计学方法得到其统计规律,然后利用滤波手段进行处理。According to the analysis of the error generation mechanism, the error is divided into deterministic error and random error. Deterministic errors mainly include zero drift, scale factor error, temperature influence factor, installation error and lever arm effect error. Calibration to get its stable model, and then it can be compensated; the random errors mainly include start-up drift, rate random walk, angle random walk and deviation instability, etc. This part of the error is caused by random constants, first-order Markov process and It is composed of white noise, and its main characteristics are contingency and randomness, and there are no rules to follow. The statistical rules can only be obtained by statistical methods, and then processed by filtering methods.
(1)陀螺仪的误差消除(1) Error elimination of gyroscope
依据MEMS陀螺仪的基本原理和结构,对所可能产生的确定性误差进行分析,建立常温误差模型如下:According to the basic principle and structure of MEMS gyroscope, the possible deterministic error is analyzed, and the normal temperature error model is established as follows:
其中,为陀螺仪误差消除后的测量值,ωx,ωy,ωz为陀螺仪测量原始值,fx,fy,fz为加速度计测量值的比力值,wx,wy,wz为陀螺仪三轴上的零偏漂移误差,lx,ly,lz为刻度因子误差,kxy,kxz,kyx,kyz,kzy,kzx为对应两轴间的安装误差,mxy,mxz,myx,myz,mzy,mzx为对应两轴之间的比力误差系数,εgx,εgy,εgz为陀螺仪三轴的随机误差。in, are the measured values after the gyroscope error has been eliminated, ω x , ω y , ω z are the original values measured by the gyroscope, f x , f y , f z are the specific force values of the accelerometer measured values, w x , w y , w z is the zero offset drift error on the three axes of the gyroscope, l x , ly , l z are the scale factor errors, k xy , k xz , k yx , k yz , k zy , k zx are the installations between the corresponding two axes Errors, m xy , m xz , m yx , m yz , m zy , and m zx are the error coefficients of the specific force between the corresponding two axes, ε gx , ε gy , and ε gz are the random errors of the three axes of the gyroscope.
在完成MEMS惯性传感器误差模型的建立以后,为了确定模型中确定性误差各个误差系数,需要对MEMS惯性传感器进行测试标定实验,以便完成确定性误差补偿,进而提高MEMS惯性测量单元的测量输出精度。通过测试实验可以了解惯性传感器的输出误差特性,尤其确定性误差特性。所谓标定就是将设备的输出和已知的标准信息进行比较,并确定一些因子以使得输出和标准信息在一定范围内一致。After the establishment of the MEMS inertial sensor error model, in order to determine each error coefficient of the deterministic error in the model, the MEMS inertial sensor needs to be tested and calibrated in order to complete the deterministic error compensation and improve the measurement output accuracy of the MEMS inertial measurement unit. The output error characteristics of inertial sensors, especially the deterministic error characteristics, can be understood through test experiments. The so-called calibration is to compare the output of the device with the known standard information, and determine some factors to make the output and the standard information consistent within a certain range.
先进行多位置静态测量得出Wi,mij,再进行正交角速率测量,指对MEMS陀螺仪加上与待测定轴正交的恒定的角速度的运动状态下测量。在与待测定轴正交的恒定的角速度运转时,敏感轴是静止的,因此可以略去刻度因子误差,所以误差模型在这一步可以简化成下面的式子:First perform multi-position static measurement to obtain W i , m ij , and then perform orthogonal angular rate measurement, which refers to the measurement under the motion state of adding a constant angular velocity orthogonal to the axis to be measured to the MEMS gyroscope. When running at a constant angular velocity orthogonal to the axis to be measured, the sensitive axis is stationary, so the scale factor error can be ignored, so the error model can be simplified to the following formula in this step:
其中表示互耦误差,由于已知加在陀螺仪上的与待测定轴正交的恒定加速度,所以就能求解出kij。in Represents the mutual coupling error. Since the constant acceleration applied to the gyroscope orthogonal to the axis to be measured is known, k ij can be solved.
MEMS传感器的随机误差是影响MEMS传感器输出精度的主要误差源,为提高MEMS传感器输出精度,必须对MEMS传感器的随机误差建立合理的误差模型,然后对随机误差进行估算与补偿。The random error of MEMS sensor is the main error source that affects the output accuracy of MEMS sensor. In order to improve the output accuracy of MEMS sensor, a reasonable error model must be established for the random error of MEMS sensor, and then the random error is estimated and compensated.
利用Allan方差分析法对MEMS陀螺仪数据的处理是在认为陀螺仪数据的随机部分是由特定噪声产生的前提下进行的。这样,通过利用陀螺仪数据就可以估算到每种噪声源的方差。The processing of MEMS gyroscope data by Allan variance analysis is carried out on the premise that the random part of the gyroscope data is generated by specific noise. In this way, the variance of each noise source can be estimated by using the gyroscope data.
假设取N个连续的陀螺仪数据作为总样本,数据的采样时间间隔为t0,将其中连续的 n(n<N/2)个采样数据组成一个子样本组,这个子样本组叫做数据簇,然后计算各个数据簇中数据样本的平均值。Assuming that N consecutive gyroscope data are taken as the total samples, the data sampling time interval is t 0 , and the consecutive n (n<N/2) sampled data are formed into a sub-sample group, and this sub-sample group is called a data cluster , and then calculate the mean of the data samples in each data cluster.
假设t时刻陀螺仪的输出为Ω(t),则第k个数据簇的平均值为:Assuming that the output of the gyroscope at time t is Ω(t), the average value of the kth data cluster is:
式中为时间长度为T的含有n个输出数据的第k个数据簇的平均值。由此可知,第k+1个数据簇的平均值为:in the formula is the average value of the kth data cluster with n output data of time length T. It can be seen that the average value of the k+1th data cluster is:
求相邻两个数据簇的平均值之差,则有:To find the difference between the averages of two adjacent data clusters, we have:
因此对于时间长度为T的数据簇,Allan方差的定义为:So for a data cluster of time length T, the Allan variance is defined as:
其中符号<>的含义是对所有符号内数据求平均值,则有:The meaning of the symbol <> is to average the data in all symbols, then there are:
从上述Allan方差定义可知,只要样本中数据点数是有限的,都能够得到若干个固定数据长度的簇,由此可知,上式是一个定量估计式,而它的估计精度取决于每个独立簇的数据长度,簇的数据长度越小,估计精度越高。From the above definition of Allan variance, it can be seen that as long as the number of data points in the sample is limited, several clusters of fixed data length can be obtained. It can be seen that the above formula is a quantitative estimation formula, and its estimation accuracy depends on each independent cluster. The smaller the data length of the cluster, the higher the estimation accuracy.
经过解算后的方差值数据代入ARMA模型中采用自回归模型,如下所示:The calculated variance value data is substituted into the ARMA model to use the autoregressive model, as shown below:
当时间序列{xk}服从n阶自回归模型的表达式如下:When the time series {x k } obeys the n-order autoregressive model, the expression is as follows:
xk=α1xk-1+…+αnxk-n+εt x k =α 1 x k-1 +…+α n x kn +ε t
自相关函数为:The autocorrelation function is:
上式中:In the above formula:
γk=E(xt,xt+k)γ k =E(x t , x t+k )
=Ext(α1xt+k-1+α2xt+k-1+…αnxt+k-n+εt+k)=Ex t (α 1 x t+k-1 +α 2 x t+k-1 +…α n x t+kn +ε t+k )
=α1γk-1+α2γk-2+…+αnγk-n =α 1 γ k-1 +α 2 γ k-2 +…+α n γ kn
ρk=ρ-k,ρ0=1ρ k =ρ −k , ρ 0 =1
Yule-Walker方程组:Yule-Walker equations:
AR(n)传递函数:AR(n) transfer function:
(2)加速度计的误差补偿(2) Error compensation of accelerometer
建立如下误差模型:Create the following error model:
其中,表示加速度计三轴测量值经过误差消除算法后的值,fx,fy,fz表示加速计三轴测量的原始值,Fx,Fy,Fz为加速度计三轴零偏漂移误差,hx,hy,hz表示加速度计三轴刻度因子误差,pxy,pyx,pzx,pxz,pyz,pzy表示加速度计三轴两两之间的安装误差,εfx,εfy,εfz表示加速度计三轴上的随机误差。in, Represents the three-axis measurement value of the accelerometer after the error elimination algorithm, f x , f y , f z represent the original value of the three-axis measurement of the accelerometer, F x , F y , F z are the three-axis zero offset drift error of the accelerometer , h x , hy , h z represent the error of the three-axis scale factor of the accelerometer, p xy , p yx , p zx , p xz , p yz , p zy represent the installation error between the three axes of the accelerometer, ε fx , ε fy , ε fz represent random errors on the three axes of the accelerometer.
MEMS传感器的随机误差是影响MEMS传感器输出精度的主要误差源,为提高MEMS传感器输出精度,必须对MEMS传感器的随机误差建立合理的误差模型,然后对随机误差进行估算与补偿。The random error of MEMS sensor is the main error source that affects the output accuracy of MEMS sensor. In order to improve the output accuracy of MEMS sensor, a reasonable error model must be established for the random error of MEMS sensor, and then the random error is estimated and compensated.
采用Allan方差分析法,假设t时刻加速度计的输出为Ω(t),T为数据簇的时间长度,则第k个数据簇的平均值为:Using the Allan variance analysis method, assuming that the output of the accelerometer at time t is Ω(t), and T is the time length of the data cluster, the average value of the kth data cluster is:
由此可知,第k+1个数据簇的平均值为:It can be seen that the average value of the k+1th data cluster is:
相邻两个数据簇的平均值之差为:The difference between the mean values of two adjacent data clusters is:
对于时间长度为T的数据簇,Allan方差的定义为:For a data cluster of time length T, the Allan variance is defined as:
上式中,n为时间长度为T的数据簇中的数据样本的数目,N为数据样本的总数。In the above formula, n is the number of data samples in the data cluster with time length T, and N is the total number of data samples.
根据IEEE的规定,Allan方差与原始数据中噪声功率谱密度存在的定量关系如下:According to IEEE, the quantitative relationship between the Allan variance and the noise power spectral density in the original data is as follows:
则信号总输出的Allan方差为:Then the Allan variance of the total output of the signal is:
其中,为惯性传感器的Allan方差;为角度随机游走噪声方差;为速率随机游走噪声方差;为零偏不稳定性噪声方差;为速率斜坡噪声方差;为量化噪声方差。in, is the Allan variance of the inertial sensor; is the angle random walk noise variance; is the rate random walk noise variance; zero bias instability noise variance; is the rate ramp noise variance; is the quantization noise variance.
上式可改写成:The above formula can be rewritten as:
化简有:Simplified to have:
比较上式则有:Comparing the above formula is:
建立卡尔曼状态方程和测量方程:Set up the Kalman equation of state and measurement equation:
X(k)=AX(k-1)+BW(k)X(k)=AX(k-1)+BW(k)
Z(k)=y(k)+V(k)=CX(k)+V(k)Z(k)=y(k)+V(k)=CX(k)+V(k)
其中,X(k)为系统(此处指加速度计)的n维状态矩阵,A为系统的n×n维状态转移矩阵,B是系统的n×p维噪声输入矩阵,W(k)为系统的p维过程噪声矩阵;Z(k)为系统的m维状态矩阵,C是m×n维观测矩阵,V(k)为m维观测噪声矩阵。Among them, X(k) is the n-dimensional state matrix of the system (here refers to the accelerometer), A is the n×n-dimensional state transition matrix of the system, B is the n×p-dimensional noise input matrix of the system, and W(k) is The p-dimensional process noise matrix of the system; Z(k) is the m-dimensional state matrix of the system, C is the m×n-dimensional observation matrix, and V(k) is the m-dimensional observation noise matrix.
系统的过程噪声和观测噪声满足:The process noise and observation noise of the system satisfy:
其中,Qk是W(k)的对阵非负定方差矩阵,Rk是V(k)的对阵正定方差矩阵,δki是Kronecker-δ函数。得到卡尔曼滤波递推算式为:where Q k is the pairwise non-negative definite variance matrix of W( k ), Rk is the pairwise positive definite variance matrix of V(k), and δki is the Kronecker-δ function. The Kalman filter recursive formula is obtained as:
其中,R为测量噪声矩阵,其值为ARMA模型估计误差的方差,Q为系统噪声。将 MEMS加速度计随机数据得到的矩阵作为输入进行滤波,计算后可以得到滤波前后MEMS 加速度计随机漂移曲线,如图4所示。Among them, R is the measurement noise matrix, its value is the variance of the estimation error of the ARMA model, and Q is the system noise. The matrix obtained from the random data of the MEMS accelerometer is used as input for filtering, and the random drift curve of the MEMS accelerometer before and after filtering can be obtained after calculation, as shown in Figure 4.
(3)解算算法:(3) Solving algorithm:
加速度计和陀螺仪的原始数据经消除误差后代入四元数算法中计算姿态角。使用加速度计的数据计算出开始测量的时候的角度,再根据陀螺仪输出值进行积分得到实时的姿态角。四元数方程:The original data of the accelerometer and gyroscope are used to calculate the attitude angle in the quaternion algorithm after eliminating the error. Use the accelerometer data to calculate the angle at the start of the measurement, and then integrate the gyroscope output value to obtain the real-time attitude angle. Quaternion equation:
即就是:That is:
其中:in:
四元数和姿态矩阵的关系:The relationship between quaternion and attitude matrix:
其中有:Including:
得出运载体姿态角和姿态矩阵的关系:The relationship between the attitude angle of the carrier and the attitude matrix is obtained:
记 remember
得姿态角:Get attitude angle:
求解四元数采用四阶龙格库塔法求解四元数微分方程:Solving the quaternion uses the fourth-order Runge-Kutta method to solve the quaternion differential equation:
系统的状态量为:The state of the system is:
xk=[abx aby abz ωbx ωby ωbz]T x k =[a bx a by a bz ω bx ω by ω bz ] T
系统观测量为:System observations are:
Zk=[ωbx ωby ωbz]T Z k =[ω bx ω by ω bz ] T
系统的状态方程为:The state equation of the system is:
观察方程为:The observation equation is:
得到系统的测量矩阵为:The measurement matrix of the system is obtained as:
系统的最佳估计值为:The best estimate for the system is:
姿态角输出为:The attitude angle output is:
设计实验采集经典动态运动条件下的数据验证算法结算精度。在最具代表性的摇摆条件下,摇摆幅度为2°,频率为10hz情况下模拟汽车运行过程中发动机抖动场景。由图5可以看出,在x轴上,经过本方法计算的结果精度在0.1°以内且完全消除了陀螺仪长时间积分带来的漂移现象,在左侧图中可见的整体向上偏移的现象在本方法中得到消除。由图6可以看出,在y轴上此时应该是没有摇摆数据,从理论分析上会有x轴摇摆带来的震动产生,现有算法中在这种运动条件下所计算的值完全就是误差值,不能反映出这种由x轴摇摆带来的y 轴震动现象,而经过本方法计算出来的角度值很好地反应出了这一物理现象。本发明方法具有极大的实用价值。Design experiments to collect data under classical dynamic motion conditions to verify the settlement accuracy of the algorithm. Under the most representative swing condition, the swing amplitude is 2° and the frequency is 10hz to simulate the engine shaking scene during the operation of the car. It can be seen from Figure 5 that on the x-axis, the accuracy of the result calculated by this method is within 0.1° and the drift phenomenon caused by the long-term integration of the gyroscope is completely eliminated. The phenomenon is eliminated in this method. It can be seen from Figure 6 that there should be no swaying data on the y-axis at this time. From the theoretical analysis, there will be vibrations caused by the swaying of the x-axis. The value calculated by the existing algorithm under this motion condition is exactly The error value cannot reflect the y-axis vibration phenomenon caused by the x-axis swing, and the angle value calculated by this method reflects this physical phenomenon well. The method of the present invention has great practical value.
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110254481.9A CN115046551A (en) | 2021-03-09 | 2021-03-09 | Dynamic attitude measurement and calculation method based on MEMS inertial sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110254481.9A CN115046551A (en) | 2021-03-09 | 2021-03-09 | Dynamic attitude measurement and calculation method based on MEMS inertial sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115046551A true CN115046551A (en) | 2022-09-13 |
Family
ID=83156190
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110254481.9A Pending CN115046551A (en) | 2021-03-09 | 2021-03-09 | Dynamic attitude measurement and calculation method based on MEMS inertial sensor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115046551A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115560668A (en) * | 2022-11-09 | 2023-01-03 | 东南大学 | Miniature dynamic dip angle measurement module and calculation method thereof |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103512584A (en) * | 2012-06-26 | 2014-01-15 | 北京赛佰特科技有限公司 | Navigation attitude information output method, device and strapdown navigation attitude reference system |
| CN103983276A (en) * | 2014-04-29 | 2014-08-13 | 北京航天控制仪器研究所 | Three-frame four-axis inertial platform error calibration method based on navigation datum system |
| CN105806343A (en) * | 2016-04-19 | 2016-07-27 | 武汉理工大学 | Indoor 3D positioning system and method based on inertial sensor |
| US20160327396A1 (en) * | 2015-05-08 | 2016-11-10 | Sharp Laboratories of America (SLA), Inc. | System and Method for Determining the Orientation of an Inertial Measurement Unit (IMU) |
| CN108827301A (en) * | 2018-04-16 | 2018-11-16 | 南京航空航天大学 | A kind of improvement error quaternion Kalman filtering robot pose calculation method |
| CN110375772A (en) * | 2019-07-29 | 2019-10-25 | 中国航空工业集团公司北京长城计量测试技术研究所 | The ring laser stochastic error modeling of adaptive Kalman filter and compensation method |
-
2021
- 2021-03-09 CN CN202110254481.9A patent/CN115046551A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103512584A (en) * | 2012-06-26 | 2014-01-15 | 北京赛佰特科技有限公司 | Navigation attitude information output method, device and strapdown navigation attitude reference system |
| CN103983276A (en) * | 2014-04-29 | 2014-08-13 | 北京航天控制仪器研究所 | Three-frame four-axis inertial platform error calibration method based on navigation datum system |
| US20160327396A1 (en) * | 2015-05-08 | 2016-11-10 | Sharp Laboratories of America (SLA), Inc. | System and Method for Determining the Orientation of an Inertial Measurement Unit (IMU) |
| CN105806343A (en) * | 2016-04-19 | 2016-07-27 | 武汉理工大学 | Indoor 3D positioning system and method based on inertial sensor |
| CN108827301A (en) * | 2018-04-16 | 2018-11-16 | 南京航空航天大学 | A kind of improvement error quaternion Kalman filtering robot pose calculation method |
| CN110375772A (en) * | 2019-07-29 | 2019-10-25 | 中国航空工业集团公司北京长城计量测试技术研究所 | The ring laser stochastic error modeling of adaptive Kalman filter and compensation method |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115560668A (en) * | 2022-11-09 | 2023-01-03 | 东南大学 | Miniature dynamic dip angle measurement module and calculation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180010923A1 (en) | Precision calibration method of attitude measuring system | |
| Marinov et al. | Analysis of sensors noise performance using Allan deviation | |
| CN112762962A (en) | Zero offset compensation method for micro-electro-mechanical system accelerometer based on temperature hysteresis model | |
| CN116678403A (en) | Temperature compensation method, device, equipment and storage medium of inertial measurement device | |
| Lin et al. | A high-accuracy method for calibration of nonorthogonal angles in dual-axis rotational inertial navigation system | |
| CN110553642A (en) | Method for improving inertial guidance precision | |
| Marinov et al. | Allan variance analysis on error characters of low-cost MEMS accelerometer MMA8451Q | |
| Xu et al. | Low-cost and efficient thermal calibration scheme for MEMS triaxial accelerometer | |
| CN115046551A (en) | Dynamic attitude measurement and calculation method based on MEMS inertial sensor | |
| CN112067844B (en) | MEMS sensor array type high precision output control method | |
| Xing et al. | Offline calibration for MEMS gyroscope G-sensitivity error coefficients based on the newton iteration and least square methods | |
| CN109752568B (en) | Calibration method of microelectromechanical system accelerometer based on principal component analysis | |
| Yin et al. | Vibration effect correction method of inclinometer in intermittent transonic wind tunnel | |
| Wang et al. | Inertial measurement unit calibration method based on neural network | |
| CN116482405A (en) | Accelerometer calibration method and system based on ADMM algorithm | |
| Zhang et al. | Implementation and complexity analysis of orientation estimation algorithms for human body motion tracking using low-cost sensors | |
| CN117128956A (en) | A dynamic tilt method based on angular velocity conversion and equipment applying the method | |
| CN113865621B (en) | Random six-position MEMS gyroscope and g-value sensitivity coefficient calibration method thereof | |
| Wang et al. | Thermal calibration of MEMS inertial sensors for an FPGA-based navigation system | |
| Li et al. | A Comparative Study on Two Methods of Decoupling a Six-Axis Accelerometer without and with a Gyroscope | |
| CN103196450A (en) | Kalman filtering method based on analog circuit and analog circuit | |
| Zhu et al. | Modeling and compensation for dynamic random error of accelerometer under mooring state | |
| Zhang et al. | Temperature Compensation Method and Embedded System Design for MEMS Accelerometers | |
| CN120489317B (en) | Weighing sensor data compensation method, device, equipment and storage medium | |
| Fang et al. | Modified Allan variance analysis on random errors of MINS |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |