CN115064194A - Memory and decoupling method thereof - Google Patents
Memory and decoupling method thereof Download PDFInfo
- Publication number
- CN115064194A CN115064194A CN202210767899.4A CN202210767899A CN115064194A CN 115064194 A CN115064194 A CN 115064194A CN 202210767899 A CN202210767899 A CN 202210767899A CN 115064194 A CN115064194 A CN 115064194A
- Authority
- CN
- China
- Prior art keywords
- comparator
- clock signal
- signal
- data clock
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4091—Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4096—Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Databases & Information Systems (AREA)
- Dram (AREA)
Abstract
本发明提供一种存储器,能够去除在进行写操作时因耦合而产生的噪声。通过在写操作使能信号激活的同时激活去耦使能信号,对于没有相应上升沿来消除耦合影响的第三数据时钟信号和第四数据时钟信号的第一个下降沿,利用去耦使能信号将参考电压信号下拉来消除上述耦合对参考电压信号的影响。从而能够消除因耦合噪声对参考电压产生的不良影响,提高比较器的比较精度,改善存储器的性能。
The present invention provides a memory capable of removing noise generated by coupling during a write operation. By activating the decoupling enable signal at the same time when the write operation enable signal is activated, for the first falling edge of the third data clock signal and the fourth data clock signal without the corresponding rising edge to eliminate the coupling influence, use the decoupling enable The signal pulls down the reference voltage signal to eliminate the effects of the coupling described above on the reference voltage signal. Therefore, the adverse effect on the reference voltage caused by the coupling noise can be eliminated, the comparison accuracy of the comparator can be improved, and the performance of the memory can be improved.
Description
技术领域technical field
本发明涉及一种存储器,具体涉及能够去除在进行写操作时因耦合而产生的噪声的存储器。The present invention relates to a memory, in particular to a memory capable of removing noise generated by coupling during a write operation.
背景技术Background technique
关于存储器,按读写功能可以划分为只读存储器(ROM)和随机读写存储器(RAM)。只读存储器中存储的内容是固定不变的,只能读出而不能写入。而随机读写存储器是既能读出又能写入的存储器。此外,随机读写存储器又可分为SRAM(静态随机读写存储器)和DRAM(动态随机读写存储器)。Regarding memory, it can be divided into read-only memory (ROM) and random access memory (RAM) according to the read-write function. The content stored in the read-only memory is fixed and can only be read but not written. Random access memory is a memory that can be both read and written. In addition, random access memory can be divided into SRAM (static random access memory) and DRAM (dynamic random access memory).
DRAM利用电容储存电荷多少来存储数据,需要定时刷新电路克服电容漏电问题,常用于容量大的主存储器,如计算机、智能手机、服务器内存等。DRAM又可分为SDRAM、DDRSDRAM、RDRAM等。DRAM uses capacitors to store charge to store data, and requires a regular refresh circuit to overcome the problem of capacitor leakage. It is often used in large-capacity main memory, such as computers, smartphones, and server memory. DRAM can be divided into SDRAM, DDRSDRAM, RDRAM and so on.
其中,SDRAM(Synchronous DRAM)是一种时钟同步式存储器,其以处理器发出的时钟信号为基准进行动作。用于定义动作的命令信号和用于指定存储器单元的地址信号并行发送,并与时钟信号的上升沿同步。DDR SDRAM(double data rate SDRAM:双倍数据率同步动态随机存取存储器)为具有双倍数据传输率的存储器,在时钟信号的上升沿和下降沿都可以进行数据传输,即其数据传输速度为时钟信号频率的两倍,由于速度增加,其传输性能优于传统的SDRAM。Among them, SDRAM (Synchronous DRAM) is a clock-synchronized memory that operates based on a clock signal sent by a processor. Command signals for defining actions and address signals for specifying memory cells are sent in parallel and synchronized with the rising edge of the clock signal. DDR SDRAM (double data rate SDRAM: double data rate synchronous dynamic random access memory) is a memory with double data transfer rate, which can perform data transfer on both the rising and falling edges of the clock signal, that is, its data transfer speed is Twice the frequency of the clock signal, its transfer performance is better than that of conventional SDRAM due to the increased speed.
DDR SDRAM(以下简称为DDR)以DQ Strobe(DQS)信号作为源同步时钟,对数据信号DQ进行选通并通过DQ总线进行数据传输。命令信号和地址信号仅同步到该时钟信号DQS的上升沿,而数据信号同步到DQS的上升沿和下降沿。时钟信号、命令信号、地址信号从处理器单向输入DDR,而DQS和DQ是双向的,在写入时输入到DDR,在读取时从DDR输出。DDR SDRAM (hereinafter referred to as DDR) uses the DQ Strobe (DQS) signal as a source synchronous clock to gate the data signal DQ and transmit data through the DQ bus. Command signals and address signals are only synchronized to the rising edge of the clock signal DQS, while data signals are synchronized to the rising and falling edges of DQS. The clock signal, command signal, and address signal are unidirectionally input to the DDR from the processor, while DQS and DQ are bidirectional, input to the DDR when writing, and output from the DDR when reading.
DDR的接收器电路通常具有多个(例如4个)并联的比较器,各比较器通过对输入的数据信号和参考电压信号进行比较,来判断是否选通该数据信号。例如,在后文所述的图1的DDR接收器电路的比较器COMP_A中,通过将数据信号DQ的电压与参考电压VREFDQ进行比较,从而可以得到从输出端子OUT输出的0或1的输出信号OUTA。A DDR receiver circuit usually has multiple (for example, four) parallel-connected comparators, and each comparator determines whether to select the data signal by comparing the input data signal with the reference voltage signal. For example, in the comparator COMP_A of the DDR receiver circuit of FIG. 1 described later, by comparing the voltage of the data signal DQ with the reference voltage VREFDQ, an output signal of 0 or 1 output from the output terminal OUT can be obtained OUTA.
当比较器COMP_A被时钟信号DQSAb的某一信号沿触发时,若输入的数据信号DQ在参考电压VREFDQ附近,则由于信号本身的噪声、以及电路元件的失配(mismatch)等,会进一步耦合而产生噪声,导致比较器的精度下降。而为了节省功耗,在通常的写操作过程中参考电压VREFDQ一般会使用较弱的电压(电压值较低),因此上述耦合噪声会对参考电压VREFDQ产生较大的影响,进而影响比较器甚至DDR整体的性能。When the comparator COMP_A is triggered by a certain signal edge of the clock signal DQSAb, if the input data signal DQ is near the reference voltage VREFDQ, due to the noise of the signal itself and the mismatch of circuit elements, it will be further coupled and Noise is generated, which reduces the accuracy of the comparator. In order to save power consumption, the reference voltage VREFDQ generally uses a weaker voltage (lower voltage value) during the normal writing operation, so the above-mentioned coupling noise will have a greater impact on the reference voltage VREFDQ, which in turn affects the comparator and even DDR overall performance.
发明内容SUMMARY OF THE INVENTION
针对上述耦合噪声,考虑通过控制各比较器的时钟信号的相位,例如将图1中的4个比较器各自的时钟信号DQSAb、DQSBb、DQSCb、DQSDb的相位彼此相差90度,即分别为0°、90°、180°、270°。这样一来,每当有比较器根据施加在该比较器上的时钟信号的下降沿开始进行校准时,都有另一比较器的数据时钟信号的反相的上升沿来消除因下降沿引起的耦合噪声即去耦。For the above coupling noise, consider controlling the phase of the clock signal of each comparator, for example, the phases of the respective clock signals DQSAb, DQSBb, DQSCb, DQSDb of the four comparators in FIG. 1 are 90 degrees different from each other, that is, 0° , 90°, 180°, 270°. In this way, whenever a comparator begins to calibrate according to the falling edge of the clock signal applied to the comparator, there is an inverted rising edge of the data clock signal of another comparator to eliminate the falling edge caused by Coupling noise is decoupling.
然而,根据上述的相位设置,时钟信号DQSAb、DQSBb是在比较器正常工作触发的同时或之后开始第一个下降沿,而DQSCb、DQSDb的第一个下降沿均在比较器被触发前就已经出现。对于这两个时钟信号DQSCb、DQSDb的第一个下降沿,没有如DQSAb、DQSBb的第一各下降沿那样有相应的上升沿来消除耦合噪声的影响,因此,时钟信号DQSCb、DQSDb的第一个下降沿对参考电压VREFDQ造成的耦合影响并未消除,因此,该耦合噪声会影响比较器的精度,进而影响存储器整体的性能。However, according to the above phase settings, the clock signals DQSAb, DQSBb start the first falling edge at the same time or after the comparator is triggered in normal operation, and the first falling edge of DQSCb and DQSDb are before the comparator is triggered. Appear. For the first falling edges of the two clock signals DQSCb and DQSDb, there is no corresponding rising edge like the first falling edges of DQSAb and DQSBb to eliminate the influence of coupling noise. Therefore, the first falling edges of the clock signals DQSCb and DQSDb The coupling effect caused by each falling edge to the reference voltage VREFDQ is not eliminated, therefore, the coupling noise will affect the accuracy of the comparator, thereby affecting the overall performance of the memory.
本发明是为了解决上述问题而完成的,其目的在于提供一种存储器,能够去除在进行写操作时因耦合而产生的噪声。通过在写操作使能信号激活的同时激活去耦使能信号,对于没有相应上升沿来消除耦合影响的第三数据时钟信号和第四数据时钟信号的第一个下降沿,利用去耦使能信号将参考电压信号下拉来消除上述耦合对参考电压信号的影响。从而能够消除因耦合噪声对参考电压产生的不良影响,提高比较器的比较精度,改善存储器的性能。The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a memory capable of removing noise generated by coupling during a write operation. By activating the decoupling enable signal at the same time when the write operation enable signal is activated, for the first falling edge of the third data clock signal and the fourth data clock signal without the corresponding rising edge to eliminate the coupling influence, use the decoupling enable The signal pulls down the reference voltage signal to eliminate the effects of the coupling described above on the reference voltage signal. Therefore, the adverse effect on the reference voltage caused by the coupling noise can be eliminated, the comparison accuracy of the comparator can be improved, and the performance of the memory can be improved.
本发明的第一方面所涉及的存储器能够去除在进行写操作时因耦合而产生的噪声,包括:The memory involved in the first aspect of the present invention can remove noise generated by coupling during a write operation, including:
输入接收单元,该输入接收单元具备将串行输入转换为并行输出的接口、以及并联连接至该接口的第一比较器、第二比较器、第三比较器、第四比较器,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的时钟信号输入端子分别输入经分频后的第一数据时钟信号、第二数据时钟信号、第三数据时钟信号、第四数据时钟信号,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的参考电压输入端子分别输入参考电压信号,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的数据信号输入端子分别输入数据信号,对所述参考电压信号和所述数据信号进行比较并输出比较结果;an input receiving unit, the input receiving unit is provided with an interface for converting serial input into parallel output, and a first comparator, a second comparator, a third comparator, and a fourth comparator connected in parallel to the interface, The clock signal input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator respectively input the divided first data clock signal, the second data clock signal, and the third Three data clock signals and a fourth data clock signal, respectively input reference voltage signals to the reference voltage input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator, A data signal is input to the data signal input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator, respectively, and the reference voltage signal and the data signal are processed. Compare and output the comparison result;
控制单元,该控制单元基于所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器各自的比较结果,生成控制信号;以及a control unit that generates a control signal based on the respective comparison results of the first comparator, the second comparator, the third comparator, and the fourth comparator; and
存储单元,该存储单元至少存储经所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器比较而选通的数据信号、以及所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的所述比较结果,a storage unit that stores at least a data signal compared and gated by the first comparator, the second comparator, the third comparator, and the fourth comparator, and the first comparison the comparison results of the comparator, the second comparator, the third comparator, and the fourth comparator,
所述第一数据时钟信号、所述第二数据时钟信号、所述第三数据时钟信号、所述第四数据时钟信号的相位分别相差90°,所述第一数据时钟信号的第一个下降沿与所述第三数据时钟信号的第一个上升沿相对应,所述第二数据时钟信号的第一个下降沿与所述第四数据时钟信号的第一个上升沿,The phases of the first data clock signal, the second data clock signal, the third data clock signal, and the fourth data clock signal differ by 90° respectively, and the first data clock signal falls The edge corresponds to the first rising edge of the third data clock signal, the first falling edge of the second data clock signal corresponds to the first rising edge of the fourth data clock signal,
在所述第三比较器和所述第四比较器的所述参考电压输入端子分别连接去耦电容,并在该去耦电容上分别施加与所述第三数据时钟信号或所述第四数据时钟信号相对应的去耦使能信号。Decoupling capacitors are respectively connected to the reference voltage input terminals of the third comparator and the fourth comparator, and the third data clock signal or the fourth data is respectively applied to the decoupling capacitors The decoupling enable signal corresponding to the clock signal.
优选为,本发明的第二方面在本发明的第一方面所涉及的存储器中,Preferably, in the second aspect of the present invention, in the memory according to the first aspect of the present invention,
所述第三比较器的所述去耦电容上施加的所述去耦使能信号在所述第三数据时钟信号的第一个下降沿被触发,从而消除所述第三数据时钟信号的第一个下降沿在所述参考电压信号上产生的耦合噪声,The decoupling enable signal applied to the decoupling capacitor of the third comparator is triggered at the first falling edge of the third data clock signal, thereby eliminating the first falling edge of the third data clock signal. A falling edge generates coupled noise on the reference voltage signal,
所述第四比较器的所述去耦电容上施加的所述去耦使能信号在所述第四数据时钟信号的第一个下降沿被触发,从而消除所述第四数据时钟信号的第一个下降沿在所述参考电压信号上产生的耦合噪声。The decoupling enable signal applied to the decoupling capacitor of the fourth comparator is triggered at the first falling edge of the fourth data clock signal, thereby eliminating the first falling edge of the fourth data clock signal. A falling edge generates coupled noise on the reference voltage signal.
优选为,本发明的第三方面在本发明的第二方面所涉及的存储器中,Preferably, in the third aspect of the present invention, in the memory related to the second aspect of the present invention,
所述第三比较器的所述去耦使能信号在所述第三数据时钟信号的第一个下降沿的时刻变为低电平,The decoupling enable signal of the third comparator becomes a low level at the moment of the first falling edge of the third data clock signal,
所述第四比较器的所述去耦使能信号在所述第四数据时钟信号的第一个下降沿的时刻变为低电平。The decoupling enable signal of the fourth comparator changes to a low level at the moment of the first falling edge of the fourth data clock signal.
优选为,本发明的第四方面在本发明的第三方面所涉及的存储器中,Preferably, in the fourth aspect of the present invention, in the memory related to the third aspect of the present invention,
所述第三比较器的所述去耦使能信号、所述第四比较器的所述去耦使能信号在所述存储器的一次写操作完成的时刻复位为高电平。The decoupling enable signal of the third comparator and the decoupling enable signal of the fourth comparator are reset to a high level when a write operation of the memory is completed.
优选为,本发明的第五方面在本发明的第一方面所涉及的存储器中,Preferably, in the fifth aspect of the present invention, in the memory related to the first aspect of the present invention,
所述第三比较器的所述去耦使能信号、所述第四比较器的所述去耦使能信号根据所述存储器的全局复位信号、写操作使能信号生成。The decoupling enable signal of the third comparator and the decoupling enable signal of the fourth comparator are generated according to a global reset signal and a write operation enable signal of the memory.
优选为,本发明的第六方面在本发明的第一方面所涉及的存储器中,Preferably, in the sixth aspect of the present invention, in the memory related to the first aspect of the present invention,
在所述第一数据时钟信号的第一个下降沿之后,所述第一数据时钟信号的每一个信号沿与所述第三数据时钟信号的每一个信号沿反相,After the first falling edge of the first data clock signal, each signal edge of the first data clock signal is inverted with each signal edge of the third data clock signal,
在所述第二数据时钟信号的第一个下降沿之后,所述第二数据时钟信号的每一个信号沿与所述第四数据时钟信号的每一个信号沿反相。After the first falling edge of the second data clock signal, each signal edge of the second data clock signal is inverted with each signal edge of the fourth data clock signal.
优选为,本发明的第七方面在本发明的第一至第六方面的任一项所涉及的存储器中,Preferably, in the seventh aspect of the present invention, in the memory according to any one of the first to sixth aspects of the present invention,
所述存储器是DDR(双倍速率同步动态随机存储器)。The memory is DDR (Double Rate Synchronous Dynamic Random Access Memory).
本发明的第八方面涉及的去耦方法能够去除存储器在进行写操作时因耦合而产生的噪声,The decoupling method involved in the eighth aspect of the present invention can remove the noise generated by the coupling when the memory performs the write operation,
所述存储器包括:The memory includes:
输入接收单元,该输入接收单元具备将串行输入转换为并行输出的接口、以及并联连接至该接口的第一比较器、第二比较器、第三比较器、第四比较器,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的时钟信号输入端子分别输入经分频后的第一数据时钟信号、第二数据时钟信号、第三数据时钟信号、第四数据时钟信号,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的参考电压输入端子分别输入参考电压信号,向所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的数据信号输入端子分别输入数据信号,对所述参考电压信号和所述数据信号进行比较并输出比较结果;an input receiving unit, the input receiving unit is provided with an interface for converting serial input into parallel output, and a first comparator, a second comparator, a third comparator, and a fourth comparator connected in parallel to the interface, The clock signal input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator respectively input the divided first data clock signal, the second data clock signal, and the third Three data clock signals and a fourth data clock signal, respectively input reference voltage signals to the reference voltage input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator, A data signal is input to the data signal input terminals of the first comparator, the second comparator, the third comparator, and the fourth comparator, respectively, and the reference voltage signal and the data signal are processed. Compare and output the comparison result;
控制单元,该控制单元基于所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器各自的比较结果,生成控制信号;以及a control unit that generates a control signal based on the respective comparison results of the first comparator, the second comparator, the third comparator, and the fourth comparator; and
存储单元,该存储单元至少存储经所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器比较而选通的数据信号、以及所述第一比较器、所述第二比较器、所述第三比较器、所述第四比较器的所述比较结果,a storage unit that stores at least a data signal compared and gated by the first comparator, the second comparator, the third comparator, and the fourth comparator, and the first comparison the comparison results of the comparator, the second comparator, the third comparator, and the fourth comparator,
所述第一数据时钟信号、所述第二数据时钟信号、所述第三数据时钟信号、所述第四数据时钟信号的相位分别相差90°,所述第一数据时钟信号的第一个下降沿与所述第三数据时钟信号的第一个上升沿相对应,所述第二数据时钟信号的第一个下降沿与所述第四数据时钟信号的第一个上升沿,The phases of the first data clock signal, the second data clock signal, the third data clock signal, and the fourth data clock signal differ by 90° respectively, and the first data clock signal falls The edge corresponds to the first rising edge of the third data clock signal, the first falling edge of the second data clock signal corresponds to the first rising edge of the fourth data clock signal,
在所述第三比较器和所述第四比较器的所述参考电压输入端子分别连接去耦电容,并在该去耦电容上分别施加与所述第三数据时钟信号或所述第四数据时钟信号相对应的去耦使能信号。Decoupling capacitors are respectively connected to the reference voltage input terminals of the third comparator and the fourth comparator, and the third data clock signal or the fourth data is respectively applied to the decoupling capacitors The decoupling enable signal corresponding to the clock signal.
发明效果Invention effect
根据本发明的存储器,能够去除在进行写操作时因耦合而产生的噪声。通过在写操作使能信号激活的同时激活去耦使能信号,对于没有相应上升沿来消除耦合影响的第三数据时钟信号和第四数据时钟信号的第一个下降沿,利用去耦使能信号将参考电压信号下拉来消除上述耦合对参考电压信号的影响。从而能够消除因耦合噪声对参考电压产生的不良影响,提高比较器的比较精度,改善存储器的性能。According to the memory of the present invention, it is possible to remove noise due to coupling when a write operation is performed. By activating the decoupling enable signal at the same time when the write operation enable signal is activated, for the first falling edge of the third data clock signal and the fourth data clock signal without the corresponding rising edge to eliminate the coupling influence, use the decoupling enable The signal pulls down the reference voltage signal to eliminate the effects of the coupling described above on the reference voltage signal. Therefore, the adverse effect on the reference voltage caused by the coupling noise can be eliminated, the comparison accuracy of the comparator can be improved, and the performance of the memory can be improved.
附图说明Description of drawings
图1是示出本发明的实施方式1所涉及的存储器的输入接收单元的基本结构及比较器的具体结构的电路示意图。1 is a schematic circuit diagram showing a basic configuration of an input receiving unit of a memory and a specific configuration of a comparator according to Embodiment 1 of the present invention.
图2是示出本发明的实施方式1所涉及的存储器中的信号时序图。2 is a timing chart showing signals in the memory according to Embodiment 1 of the present invention.
图3是示出本发明的实施方式1所涉及的存储器中用于消除耦合噪声的电路示意图。3 is a schematic diagram showing a circuit for eliminating coupling noise in the memory according to Embodiment 1 of the present invention.
图4是示出本发明的实施方式1所涉及的存储器在写操作时的信号的时序图。4 is a timing chart showing signals during a write operation in the memory according to Embodiment 1 of the present invention.
图5是示出本发明的实施方式1所涉及的存储器中用于消除耦合噪声的结构示意图。5 is a schematic diagram showing a configuration for eliminating coupling noise in the memory according to Embodiment 1 of the present invention.
图6是示出本发明的实施方式1所涉及的存储器中的使能去耦信号DECOUPLE_EN的逻辑电路及信号时序图。6 is a logic circuit and a signal timing diagram showing the enable decoupling signal DECOUPLE_EN in the memory according to Embodiment 1 of the present invention.
具体实施方式Detailed ways
在下面参照附图更全面地描述本发明,在其中示出本发明的实施例。然而,本发明可以以不同的方式实施,而不应限制于在此阐述的实施例。在附图中可以为了清楚起见放大层和区域的尺寸和相对尺寸。The present invention is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. However, the present invention may be embodied in various forms and should not be limited to the embodiments set forth herein. The size and relative sizes of layers and regions may be exaggerated in the drawings for clarity.
为了描述的方便,可在此使用空间相对术语,例如“之下”、“下方”、“下”、“上方”、“上”等,来描述如图所示的一个元件或特性相对于另一元件或特性的关系。应理解,空间相对术语旨在包括除了在图中所示的指向之外的使用或操作的器件不同指向。例如,如果将图中的器件翻转,描述为在其它元件或特性“之下”或“下”的元件将被定向为在其它元件或特性“之上”。For convenience of description, spatially relative terms, such as "below," "below," "under," "over," "over," etc. may be used herein to describe one element or feature as shown in the figures relative to another The relationship of an element or characteristic. It should be understood that spatially relative terms are intended to encompass different orientations of the device used or operated in addition to the orientation shown in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features.
除非另外限定,在此使用的术语具有与本发明所属领域的普通技术人员所通常理解相同的含义。术语应理解为具有与相关技术的上下文中的含义一致的含义,并不应以理想化或过度形式化来理解,除非在此明显地这样限定。Unless otherwise defined, terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms should be understood to have meanings that are consistent with their meanings in the context of the related art, and should not be understood as idealized or overly formalized, unless explicitly so defined herein.
<实施方式1><Embodiment 1>
本发明的存储器包括输入接收单元、控制单元和存储单元。下面,对本发明的存储器为DDR的示例进行说明,但其种类并无特别限定,只要具备本申请中所描述的校准功能即可。The memory of the present invention includes an input receiving unit, a control unit and a storage unit. Hereinafter, an example in which the memory of the present invention is a DDR will be described, but the type thereof is not particularly limited, as long as it has the calibration function described in this application.
图1是示出本发明的实施方式1所涉及的DDR存储器的输入接收单元10的基本结构及比较器COMP_A的具体结构的电路示意图。1 is a schematic circuit diagram showing the basic configuration of the
如图1所示,该DDR存储器100的输入接收单元10具备将串行输入转换为并行输出的接口(未图示)、以及并联连接至该接口的第一比较器COMP_A、第二比较器COMP_B、第三比较器COMP_C、第四比较器COMP_D(这些比较器的结构基本相同,因此,在不进行区分的情况下也记为D_COMPARATOR)。其中,第一比较器COMP_A、第二比较器COMP_B、第三比较器COMP_C、第四比较器COMP_D的参考电压输入端子彼此连接,分别被施加参考电压信号VREFDQ。这些比较器COMP_A、COMP_B、COMP_C、COMP_D的数据信号输入端子DQ_IN则接受要存储的数据信号DQ的输入(DQ_IN)。As shown in FIG. 1 , the
输入接收单元10中,通过其接口将1个串行的数据时钟信号DQS分为4个并行的数据时钟信号即第一数据时钟信号DQSAb、第二数据时钟信号DQSBb、第三数据时钟信号DQSCb、第四数据时钟信号DQSDb,并分别输入到4个比较器各自的时钟信号输入端子CKb。具体而言,将第一数据时钟信号DQSAb输入到第一比较器COMP_A的时钟信号输入端子CKb,将第二数据时钟信号DQSBb输入到第二比较器COMP_B的时钟信号输入端子CKb,将第三数据时钟信号DQSCb输入到第三比较器COMP_C的时钟信号输入端子CKb,将第四数据时钟信号DQSDb输入到第四比较器COMP_D的时钟信号输入端子CKb。In the
在各比较器COMP_A、COMP_B、COMP_C、COMP_D中,分别对参考电压信号VREFDQ和数据信号DQ进行比较,根据比较结果从各自的输出端子OUT输出0或1的数字输出信号OUTA、OUTB、OUTC、OUTD。In each of the comparators COMP_A, COMP_B, COMP_C, and COMP_D, the reference voltage signal VREFDQ and the data signal DQ are compared respectively, and digital output signals OUTA, OUTB, OUTC, OUTD of 0 or 1 are output from the respective output terminals OUT according to the comparison results. .
各数字输出信号OUTA、OUTB、OUTC、OUTD输入至后级的校准单元或控制单元(未图示)。例如,每一个比较器的后级均连接有由驱动器、脉冲发生器、锁定部等构成的校准控制部,该校准控制部基于其连接的比较器的比较结果,生成控制信号并施加到该比较器的控制端子,控制该比较器进行用于消除因电路元件失配引起的失调的校准等,这里省略对其的详细说明。The digital output signals OUTA, OUTB, OUTC, and OUTD are input to a calibration unit or a control unit (not shown) of the subsequent stage. For example, a calibration control unit composed of a driver, a pulse generator, a lock unit, etc. is connected to the rear stage of each comparator, and the calibration control unit generates a control signal based on the comparison result of the connected comparator and applies it to the comparison The control terminal of the comparator is used to control the comparator to perform calibration for eliminating the offset caused by the mismatch of circuit elements, and the detailed description thereof is omitted here.
DDR存储器还具有未图示的控制单元和存储单元,其中,控制单元基于4个比较器各自的比较结果,生成控制信号进行例如失配校准等,存储单元用于存储进行了经比较器触发而选通的数据信号DQ、以及上述的输出信号OUTA、OUTB、OUTC、OUTD等信号。The DDR memory also has a control unit and a storage unit (not shown), wherein the control unit generates a control signal to perform, for example, mismatch calibration based on the comparison results of the four comparators. The gated data signal DQ, and the above-mentioned output signals OUTA, OUTB, OUTC, OUTD and other signals.
图1的右侧示出了本发明的实施方式1所涉及的存储器中的比较器D_COMPARATOR的具体结构的电路示意图,这里以第一比较器CMP_A为例,对比较器D_COMPARATOR的基本结构进行说明。The right side of FIG. 1 shows a schematic circuit diagram of the specific structure of the comparator D_COMPARATOR in the memory according to Embodiment 1 of the present invention. Here, the first comparator CMP_A is taken as an example to describe the basic structure of the comparator D_COMPARATOR.
如图所示,比较器COMP_A的基本结构包括9个晶体管P1~P9,在本实施方式中,晶体管P1~P5为PMOS,晶体管P6~P9为NMOS。其中,晶体管P1、P6、P7的栅极连接到比较器D_COMPARATOR的时钟信号输入端子CKb,晶体管P2的栅极连接到参考电压输入端子VREFDQ,晶体管P3的栅极连接到数据信号输入端子DQ_IN。此外,图中的VSS、OUT分别表示源极电压和比较器D_COMPARATOR的输出端子。比较器COMP_A通过图示的结构,在时钟信号DQSAb的触发下,对参考电压信号VREFDQ和数据信号DQ(DQ_IN)进行比较,根据比较结果从输出端子OUT输出0或1的数字输出信号OUTA。As shown in the figure, the basic structure of the comparator COMP_A includes nine transistors P1-P9. In this embodiment, the transistors P1-P5 are PMOS, and the transistors P6-P9 are NMOS. The gates of the transistors P1, P6 and P7 are connected to the clock signal input terminal CKb of the comparator D_COMPATOR, the gate of the transistor P2 is connected to the reference voltage input terminal VREFDQ, and the gate of the transistor P3 is connected to the data signal input terminal DQ_IN. In addition, VSS and OUT in the figure represent the source voltage and the output terminal of the comparator D_COMPATOR, respectively. The comparator COMP_A compares the reference voltage signal VREFDQ and the data signal DQ (DQ_IN) under the trigger of the clock signal DQSAb with the structure shown in the figure, and outputs a digital output signal OUTA of 0 or 1 from the output terminal OUT according to the comparison result.
图2是示出本发明的实施方式1所涉及的存储器中的信号时序图。图中,数据信号DQ为0、1、……、9、a、b、……、f共16bit的数据。时钟信号DQS_t、DQS_c互为反相信号,经分频生成分别输入到4个比较器CMP_A、CMP_B、CMP_C、CMP_D的时钟信号DQSAb、DQSBb、DQSCb、DQSDb。各比较器在各时钟信号的信号沿(本实施方式中为下降沿)被触发,对参考电压信号VREFDQ和数据信号DQ进行比较,根据比较结果输出各自的输出信号OUTA、OUT、OUTC、OUTD。2 is a timing chart showing signals in the memory according to Embodiment 1 of the present invention. In the figure, the data signal DQ is 0, 1, ..., 9, a, b, ..., f, a total of 16 bits of data. The clock signals DQS_t and DQS_c are mutually inverse signals, and are divided into clock signals DQSAb, DQSBb, DQSCb and DQSDb which are respectively input to the four comparators CMP_A, CMP_B, CMP_C and CMP_D. Each comparator is triggered on the signal edge (falling edge in this embodiment) of each clock signal, compares the reference voltage signal VREFDQ and the data signal DQ, and outputs respective output signals OUTA, OUT, OUTC, and OUTD according to the comparison results.
如上所述,比较器中的电路元件存在失配的情况,而且输入的信号不可避免地存在失真的可能,因此,当数据信号DQ接近参考电压信号VREFDQ或在参考电压信号VREFDQ附近的一定范围内时,由于电路元件失配导致比较器出现失调,而为了对进行校准时,因耦合而产生的噪声又会对取值较小的参考电压信号VREFDQ产生影响,导致比较器的性能和精度下降。As mentioned above, the circuit elements in the comparator are mismatched, and the input signal is inevitably distorted. Therefore, when the data signal DQ is close to the reference voltage signal VREFDQ or within a certain range near the reference voltage signal VREFDQ When , the offset of the comparator is caused by the mismatch of the circuit components, and when calibrating, the noise generated by the coupling will affect the reference voltage signal VREFDQ with a small value, resulting in a decrease in the performance and accuracy of the comparator.
对此,本发明的实施方式1中,将输入到4个比较器各自的第一数据时钟信号DQSAb、第二数据时钟信号DQSBb、第三数据时钟信号DQSCb、第四数据时钟信号DQSDb的相位分别设为0°、90°、180°、270°。如图2所示,对于数据信号DQ的第1位“0”的数据,其触发的定时对应于第一数据时钟信号DQSAb的下降沿,因此从第一比较器CMP_A的输出端子OUTA输出关于该数据“0”的比较结果。需要注意的是,在该数据“0”的触发定时,除了第一数据时钟信号DQSAb的下降沿之外,还设置了第三数据时钟信号DQSCb的上升沿。即,第1位“0”的数据的触发沿同时对应第一数据时钟信号DQSAb的下降沿和第三数据时钟信号DQSCb的上升沿。同样,第2位“1”的数据的触发沿同时对应第二数据时钟信号DQSBb的下降沿和第四数据时钟信号DQSDb的上升沿。第3位“2”的数据的触发沿同时对应第三数据时钟信号DQSCb的下降沿和第一数据时钟信号DQSAb的上升沿。第4位“3”的数据的触发沿同时对应第四数据时钟信号DQSDb的下降沿和第二数据时钟信号DQSBb的上升沿。之后的第5~16位数据的触发沿以此类推。In contrast, in Embodiment 1 of the present invention, the phases of the first data clock signal DQSAb, the second data clock signal DQSBb, the third data clock signal DQSCb, and the fourth data clock signal DQSDb input to the four comparators are respectively Set to 0°, 90°, 180°, 270°. As shown in FIG. 2 , for the data of the first bit “0” of the data signal DQ, the timing of triggering corresponds to the falling edge of the first data clock signal DQSAb, so the output terminal OUTA of the first comparator CMP_A outputs information about this data. Comparison result of data "0". It should be noted that, at the trigger timing of the data "0", in addition to the falling edge of the first data clock signal DQSAb, the rising edge of the third data clock signal DQSCb is also set. That is, the trigger edge of the data of the first bit "0" corresponds to the falling edge of the first data clock signal DQSAb and the rising edge of the third data clock signal DQSCb at the same time. Likewise, the trigger edge of the data of the second bit "1" corresponds to the falling edge of the second data clock signal DQSBb and the rising edge of the fourth data clock signal DQSDb at the same time. The trigger edge of the data of the third bit "2" corresponds to the falling edge of the third data clock signal DQSCb and the rising edge of the first data clock signal DQSAb at the same time. The trigger edge of the data of the fourth bit "3" corresponds to the falling edge of the fourth data clock signal DQSDb and the rising edge of the second data clock signal DQSBb at the same time. The trigger edge of the following 5th to 16th data is deduced by analogy.
图3是示出本实施方式所涉及的存储器中利用第一数据时钟信号DQSAb的第一个下降沿与第三数据时钟信号DQSCb的第一个上升沿来消除耦合噪声的电路示意图。3 is a schematic diagram illustrating a circuit for eliminating coupling noise by using the first falling edge of the first data clock signal DQSAb and the first rising edge of the third data clock signal DQSCb in the memory according to this embodiment.
图3中示出了第一比较器COMP_A和第三比较器COMP_C的结构及其时钟信号DQSAb和DQSCb的波形的例子。在对第一比较器COMP_A的晶体管P1的栅极即时钟信号输入端子输入DQSAb的第一个下降沿时,将对该晶体管P1的电压产生下拉作用,而晶体管P1与晶体管P2(晶体管P2的栅极即参考电压输入端子VREFDQ)之间产生的耦合电容导致晶体管P6处的电压上升,相当于参考电压VREFDQ上升的情况。此时,通过同时在第三比较器COMP_C的晶体管P1的栅极即时钟信号输入端子输入DQSCb的第一个上升沿,将会对该晶体管P1的电压产生上拉作用,而第三比较器COMP_C中的晶体管P1与晶体管P2之间产生的耦合电容使得升高的参考电压VREFDQ经由晶体管P6进行放电,即参考电压VREFDQ下降,由此,DQSAb的第一个下降沿和DQSCb的第一个上升沿反相,使得参考电压VREFDQ的上升和下降相互抵消,从而消除因耦合噪声带来的不良影响。An example of the structure of the first comparator COMP_A and the third comparator COMP_C and the waveforms of the clock signals DQSAb and DQSCb is shown in FIG. 3 . When the first falling edge of DQSAb is input to the gate of the transistor P1 of the first comparator COMP_A, that is, the clock signal input terminal, the voltage of the transistor P1 will be pulled down, and the gate of the transistor P1 and the transistor P2 (the gate of the transistor P2) will be pulled down. The coupling capacitance generated between the two poles, namely the reference voltage input terminal VREFDQ) causes the voltage at the transistor P6 to rise, which is equivalent to the case where the reference voltage VREFDQ rises. At this time, by simultaneously inputting the first rising edge of DQSCb to the gate of the transistor P1 of the third comparator COMP_C, that is, the input terminal of the clock signal, the voltage of the transistor P1 will be pulled up, and the third comparator COMP_C The coupling capacitance generated between the transistor P1 and the transistor P2 in the circuit causes the raised reference voltage VREFDQ to be discharged through the transistor P6, that is, the reference voltage VREFDQ drops, so that the first falling edge of DQSAb and the first rising edge of DQSCb Inverted, so that the rise and fall of the reference voltage VREFDQ cancel each other, thereby eliminating the adverse effects caused by coupled noise.
图3中还示出了第二数据时钟信号DQSBb和第四数据时钟信号DQSDb的波形示例,其与DQSAb、DQSCb的情况类似,不再重复说明。FIG. 3 also shows waveform examples of the second data clock signal DQSBb and the fourth data clock signal DQSDb, which are similar to the cases of DQSAb and DQSCb, and will not be described again.
如上所述,本实施方式的存储器中的各并行连接的比较器各自的数据时钟信号分别错开90°,具体而言,第一比较器、第二比较器、第三比较器、第四比较器各自的数据时钟信号的相位分别为0°、90°、180°、270°,从而,在任一数据时钟信号的下降沿触发数据时,都有相应的另一反相的数据时钟信号的上升沿来消除耦合噪声,因此,不仅能够进行失调校准,还能消除校准过程中因耦合噪声对参考电压产生的不良影响,提高比较器的比较精度,改善存储器的性能。As described above, the data clock signals of the parallel-connected comparators in the memory of the present embodiment are shifted by 90°. Specifically, the first comparator, the second comparator, the third comparator, and the fourth comparator The phases of the respective data clock signals are 0°, 90°, 180°, and 270°, respectively, so that when the falling edge of any data clock signal triggers data, there is a corresponding rising edge of another inverted data clock signal. Therefore, it can not only perform offset calibration, but also eliminate the adverse effect on the reference voltage caused by the coupling noise during the calibration process, improve the comparison accuracy of the comparator, and improve the performance of the memory.
然而,对于数据时钟信号来说,本发明中以高电平为初始状态,因此,根据上述数据时钟信号的相位设置,DQSAb、DQSBb是在数据被触发的同时或之后开始第一个下降沿,而DQSCb、DQSDb的第一个下降沿均在数据被触发之前就已经出现。若在正确的数据被触发之前出现数据时钟信号的下降沿,而此时又没有相应的上升沿来消除该下降沿所引发的耦合噪声,就会由此触发错误的数据,从而导致比较器的结果精度降低,进而影响DDR存储器的性能。However, for the data clock signal, in the present invention, the high level is used as the initial state. Therefore, according to the phase setting of the above data clock signal, DQSAb and DQSBb start the first falling edge at the same time or after the data is triggered, The first falling edges of DQSCb and DQSDb both appear before the data is triggered. If the falling edge of the data clock signal occurs before the correct data is triggered, and there is no corresponding rising edge to eliminate the coupling noise caused by the falling edge, the wrong data will be triggered, which will cause the comparator to fail. As a result, the accuracy is reduced, which in turn affects the performance of the DDR memory.
图4是示出本发明的实施方式所涉及的存储器在写操作时的信号的时序图。图4中,CKt、CKc及DQS_T、DQS_C是两组互为反相的时钟信号,用于生成本实施方式的存储器所需的时钟信号。数据信号DQ中包括了D0、D1、D2、D3、……、D15这16bit的数据,与图2的时序图中的数据信号DQ所示相对应。DQS_EN是数据时钟使能信号即写操作使能信号,数据时钟信号DQSAb、DQSBb、DQSCb、DQSDb的波形与图2、图3所示的相同,各下降沿均有对应的上升沿来消除耦合噪声的影响,这里不再重复说明。4 is a timing chart showing signals during a write operation in the memory according to the embodiment of the present invention. In FIG. 4 , CKt, CKc, DQS_T, and DQS_C are two sets of clock signals whose phases are opposite to each other, and are used to generate clock signals required by the memory of this embodiment. The data signal DQ includes 16-bit data of D0, D1, D2, D3, ..., D15, which corresponds to the data signal DQ in the timing diagram of FIG. 2 . DQS_EN is the data clock enable signal, that is, the write operation enable signal. The waveforms of the data clock signals DQSAb, DQSBb, DQSCb, and DQSDb are the same as those shown in Figure 2 and Figure 3. Each falling edge has a corresponding rising edge to eliminate coupling noise. impact, which will not be repeated here.
在图4中,特别标出了数据时钟信号DQSCb、DQSDb的第一个下降沿。由于DQSCb、DQSDb的这两个下降沿出现在DQSAb、DQSBb的第一个下降沿之前,因此,没有相应的上升沿来抵消DQSCb、DQSDb的这两个下降沿。因而,DQSCb、DQSDb的第一个下降沿会引发耦合噪声,需要采取措施来消除由此产生的耦合噪声。In FIG. 4, the first falling edges of the data clock signals DQSCb, DQSDb are particularly marked. Since the two falling edges of DQSCb and DQSDb appear before the first falling edges of DQSAb and DQSBb, there is no corresponding rising edge to offset the two falling edges of DQSCb and DQSDb. Therefore, the first falling edge of DQSCb and DQSDb will cause coupling noise, and measures need to be taken to eliminate the resulting coupling noise.
图5是本发明的实施方式1所涉及的存储器中用于消除耦合噪声的结构示意图。图中示出了用于消除由数据时钟信号DQSCb、DQSDb的第一个下降沿引起的耦合噪声的基本电路结构,主要示出的是晶体管P1~P3以及参考电压输入端子VREFDQ、数据信号输入DQ_IN及时钟信号输入端子的相关结构,省略了其它结构的图示。FIG. 5 is a schematic diagram of the structure for eliminating coupling noise in the memory according to Embodiment 1 of the present invention. The figure shows the basic circuit structure for eliminating the coupling noise caused by the first falling edge of the data clock signals DQSCb and DQSDb, mainly showing the transistors P1-P3, the reference voltage input terminal VREFDQ, and the data signal input DQ_IN and the related structure of the clock signal input terminal, the illustration of other structures is omitted.
如图5所示,当时钟信号DQSCb/DQSDb的第一个下降沿输入到晶体管P1的栅极时,将对该晶体管P1的电压产生下拉作用,晶体管P1与晶体管P2(晶体管P2的栅极即参考电压输入端子VREFDQ)之间发生耦合,相当于产生一个耦合电容C1。如图3中所述,该耦合电容C1会导致比较器COMP_C或COMP_D中产生噪声。As shown in FIG. 5, when the first falling edge of the clock signal DQSCb/DQSDb is input to the gate of transistor P1, the voltage of transistor P1 will be pulled down, and the voltage of transistor P1 and transistor P2 (the gate of transistor P2 is Coupling occurs between the reference voltage input terminals VREFDQ), which is equivalent to generating a coupling capacitor C1. As described in Figure 3, this coupling capacitor C1 can cause noise in the comparators COMP_C or COMP_D.
对此,本实施方式通过设置连接到参考电压输入端子VREFDQ的电容C2,来消除上述耦合噪声,因此,将该电容C2称为去耦电容C2。并且,向该去耦电容C2输入去耦使能信号DECOUPLE_EN,以消除由数据时钟信号DQSCb或DQSDb的第一个下降沿产生的耦合噪声。In this regard, in this embodiment, the above-mentioned coupling noise is eliminated by providing a capacitor C2 connected to the reference voltage input terminal VREFDQ. Therefore, the capacitor C2 is referred to as a decoupling capacitor C2. And, the decoupling enable signal DECOUPLE_EN is input to the decoupling capacitor C2 to eliminate coupling noise generated by the first falling edge of the data clock signal DQSCb or DQSDb.
具体而言,在数据时钟信号DQSCb或DQSDb的第一个下降沿,去耦使能信号DECOUPLE_EN也产生相应的下降沿,该去耦使能信号DECOUPLE_EN经由去耦电容C2的作用,对晶体管P2的电压产生下拉作用,从而在去偶电容C2(去耦使能信号DECOUPLE_EN)与晶体管P2的栅极(参考电压输入端子VREFDQ)之间也发生耦合,相当于产生一个耦合电容C3(实质上为去耦作用的电容C3)。该耦合电容C3与耦合电容C1相互抵消,从而消除了上述耦合噪声。Specifically, on the first falling edge of the data clock signal DQSCb or DQSDb, the decoupling enable signal DECOUPLE_EN also generates a corresponding falling edge. The voltage produces a pull-down effect, so that coupling also occurs between the decoupling capacitor C2 (decoupling enable signal DECOUPLE_EN) and the gate of the transistor P2 (reference voltage input terminal VREFDQ), which is equivalent to generating a coupling capacitor C3 (essentially decoupling Coupling capacitor C3). The coupling capacitor C3 and the coupling capacitor C1 cancel each other out, thereby eliminating the above-mentioned coupling noise.
本实施方式1所涉及的存储器中采用的去耦方法的信号时序图如图6的下部所示。DQS_EN为数据时钟使能信号,即当DQS_EN为高电平时,各数据时钟信号DQSAb、DQSBb、DQSCb、DQSDb开始各自的信号沿(如图2所示)。图6中,仅示出数据时钟信号DQSCb、DQSDb的信号沿,省略了DQSAb、DQSBb的图示。The signal timing chart of the decoupling method used in the memory according to Embodiment 1 is shown in the lower part of FIG. 6 . DQS_EN is the data clock enable signal, that is, when DQS_EN is high, each data clock signal DQSAb, DQSBb, DQSCb, DQSDb starts their respective signal edges (as shown in Figure 2). In FIG. 6 , only the signal edges of the data clock signals DQSCb and DQSDb are shown, and the illustration of DQSAb and DQSBb is omitted.
如图6所示,当DQS_EN变为高电平时,数据时钟信号DQSCb或DQSDb相应地出现第一个下降沿。As shown in FIG. 6 , when DQS_EN changes to a high level, the first falling edge of the data clock signal DQSCb or DQSDb occurs accordingly.
GRSTb为全局复位信号,RSTb为复位信号,复位信号RSTb是全局复位信号GRSTb和表示写入使能的信号DQS_EN的下降沿产生的脉冲的组合。复位信号RSTb的逻辑电路如图6的上部左侧所示,将数据时钟使能信号DQS_EN经由延迟链、非门、或非门后的信号与全局复位信号GRSTb经由非门后的信号一并输入到或非门来生成复位信号RSTb。这里的逻辑电路只是一种示例,只要能够生成图示的复位信号RSTb,可以采用任意的电路结构。GRSTb is a global reset signal, RSTb is a reset signal, and reset signal RSTb is a combination of the global reset signal GRSTb and a pulse generated by the falling edge of the signal DQS_EN indicating write enable. The logic circuit of the reset signal RSTb is shown in the upper left side of FIG. 6, and the data clock enable signal DQS_EN is input through the delay chain, the NOT gate, or the signal after the NOR gate and the global reset signal GRSTb through the signal after the NOT gate. to the NOR gate to generate the reset signal RSTb. The logic circuit here is just an example, and any circuit configuration can be adopted as long as the reset signal RSTb shown in the figure can be generated.
然后,将复位信号RSTb、数据时钟信号DQSCb或DQSDb输入到图6上部右侧所示的电路,生成去耦使能信号DECOUPLE_EN。该去耦使能信号DECOUPLE_EN在数据时钟信号DQSCb或DQSDb的第一个下降沿的时刻变为低电平,当其如图5所示地施加在参考电压输入端子VREFDQ上时,去耦使能信号DECOUPLE_EN的下降沿能够消除参考电压电平VREFDQ上因耦合而产生的噪声。Then, the reset signal RSTb, the data clock signal DQSCb or DQSDb are input to the circuit shown in the upper right side of FIG. 6 to generate the decoupling enable signal DECOUPLE_EN. The decoupling enable signal DECOUPLE_EN becomes a low level at the moment of the first falling edge of the data clock signal DQSCb or DQSDb. When it is applied to the reference voltage input terminal VREFDQ as shown in FIG. 5, the decoupling enable The falling edge of the signal DECOUPLE_EN can cancel the noise due to coupling on the reference voltage level VREFDQ.
具体而言,去耦使能信号DECOUPLE_EN的下降沿对参考电压VREFDQ的电平产生下拉作用(即负耦合),从而消除因数据时钟信号DQSCb/DQSDb的第一个下降沿在参考电压VREFDQ上耦合(即正耦合)产生的噪声。Specifically, the falling edge of the decoupling enable signal DECOUPLE_EN has a pull-down effect on the level of the reference voltage VREFDQ (ie, negative coupling), thereby eliminating the coupling on the reference voltage VREFDQ caused by the first falling edge of the data clock signal DQSCb/DQSDb. (that is, positive coupling).
当存储器的一次写操作结束时,即数据时钟使能信号DQS_EN变为低电平时,相应的复位信号RSTb也变为低电平,数据时钟信号DQSCb或DQSDb迎来上升沿,因此,去耦使能信号DECOUPLE_EN也变为高电平,即在写操作完成时,去耦动作结束,并在下一次写操作时复位。When a write operation of the memory ends, that is, when the data clock enable signal DQS_EN changes to a low level, the corresponding reset signal RSTb also changes to a low level, and the data clock signal DQSCb or DQSDb welcomes a rising edge. Therefore, decoupling enables The enable signal DECOUPLE_EN also changes to high level, that is, when the write operation is completed, the decoupling operation ends and is reset in the next write operation.
根据本实施方式,利用去耦使能信号DECOUPLE_EN,消除参考电压VREFDQ上因耦合产生的噪声等,确保其电平不会受到耦合噪声的影响,从而提高比较器的比较精度,改善存储器的性能。According to this embodiment, the decoupling enable signal DECOUPLE_EN is used to eliminate the noise generated by coupling on the reference voltage VREFDQ, so as to ensure that its level is not affected by the coupling noise, thereby improving the comparison accuracy of the comparator and improving the performance of the memory.
本发明进行了详细的说明,但上述实施方式仅是所有实施方式中的示例,本发明并不局限于此。本发明可以在该发明的范围内对各实施方式进行自由组合,或对各实施方式的任意构成要素进行变形,或省略各实施方式的任意的构成要素。The present invention has been described in detail, but the above-described embodiments are merely examples of all the embodiments, and the present invention is not limited thereto. In the present invention, the respective embodiments can be freely combined within the scope of the present invention, or any constituent elements of the respective embodiments can be modified, or any constituent elements of the respective embodiments can be omitted.
工业上的实用性Industrial applicability
本发明的具有校准功能的存储器可应用于包括SDR SRAM、DDR SRAM、QDR SRAM、ZBT SRAM的SRAM;包括SDRAM、DDR DRAM、RDRAM的DRAM;ROM等各种类型的存储器。The memory with calibration function of the present invention can be applied to SRAM including SDR SRAM, DDR SRAM, QDR SRAM, ZBT SRAM; DRAM including SDRAM, DDR DRAM, RDRAM; ROM and other types of memories.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210767899.4A CN115064194A (en) | 2022-06-30 | 2022-06-30 | Memory and decoupling method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210767899.4A CN115064194A (en) | 2022-06-30 | 2022-06-30 | Memory and decoupling method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115064194A true CN115064194A (en) | 2022-09-16 |
Family
ID=83204905
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210767899.4A Pending CN115064194A (en) | 2022-06-30 | 2022-06-30 | Memory and decoupling method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115064194A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060091902A1 (en) * | 2004-10-30 | 2006-05-04 | Kang Hee-Bok | Data input buffer in semiconductor device |
| CN110235372A (en) * | 2017-01-31 | 2019-09-13 | 华为技术有限公司 | A Double Data Rate Time Interpolation Quantizer with Reduced Retrace Noise |
| CN113205840A (en) * | 2020-01-30 | 2021-08-03 | 爱思开海力士有限公司 | Data receiving apparatus, and semiconductor device and semiconductor system using the same |
-
2022
- 2022-06-30 CN CN202210767899.4A patent/CN115064194A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060091902A1 (en) * | 2004-10-30 | 2006-05-04 | Kang Hee-Bok | Data input buffer in semiconductor device |
| CN110235372A (en) * | 2017-01-31 | 2019-09-13 | 华为技术有限公司 | A Double Data Rate Time Interpolation Quantizer with Reduced Retrace Noise |
| CN113205840A (en) * | 2020-01-30 | 2021-08-03 | 爱思开海力士有限公司 | Data receiving apparatus, and semiconductor device and semiconductor system using the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7196966B2 (en) | On die termination mode transfer circuit in semiconductor memory device and its method | |
| US7362619B2 (en) | Data strobe synchronization circuit and method for double data rate, multi-bit writes | |
| CN110800056A (en) | System and method for refreshing a memory bank while accessing another memory bank using a shared address path | |
| CN111095412B (en) | System and method for maintaining bank refresh operations using shared address paths | |
| US8031553B2 (en) | Data strobe signal generating device and a semiconductor memory apparatus using the same | |
| US6791888B2 (en) | Semiconductor memory device having preamble function | |
| US11251796B2 (en) | Phase lock circuitry using frequency detection | |
| US8503256B2 (en) | Column command buffer and latency circuit including the same | |
| US20220011809A1 (en) | Powering clock tree circuitry using internal voltages | |
| US7872926B2 (en) | Input buffer and method with AC positive feedback, and a memory device and computer system using same | |
| US7230864B2 (en) | Circuit for generating data strobe signal of semiconductor memory device | |
| US7928786B2 (en) | Clock buffer circuit of semiconductor device configured to generate an internal clock signal | |
| US8230140B2 (en) | Latency control circuit and method using queuing design method | |
| US6343040B2 (en) | Auto precharge control signal generating circuits for semiconductor memory devices and auto precharge control methods | |
| US10885958B2 (en) | Semiconductor device with phase difference detection circuit between a clock and strobe signal | |
| US20030223279A1 (en) | Clock driver in semiconductor memory device | |
| US8027205B2 (en) | Semiconductor memory device and operation method thereof | |
| JP2002015570A (en) | Semiconductor memory | |
| WO2024188121A1 (en) | Write equalization detector, write equalization detection circuit, and memory | |
| US20040263229A1 (en) | Latch or phase detector device | |
| CN115064195A (en) | Memory and method of decoupling the same | |
| CN115064194A (en) | Memory and decoupling method thereof | |
| CN111800126B (en) | Resetting clock divider circuits prior to clock restart | |
| US8929173B1 (en) | Data strobe control device | |
| US7741892B2 (en) | Data output controller |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |