CN115098506A - Associated data storage method, device, equipment and storage medium - Google Patents
Associated data storage method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN115098506A CN115098506A CN202210750490.1A CN202210750490A CN115098506A CN 115098506 A CN115098506 A CN 115098506A CN 202210750490 A CN202210750490 A CN 202210750490A CN 115098506 A CN115098506 A CN 115098506A
- Authority
- CN
- China
- Prior art keywords
- node
- attribute
- data
- sample
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2282—Tablespace storage structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/27—Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种关联数据的存储方法、装置、设备及存储介质。The present invention relates to the field of computer technology, and in particular, to a storage method, apparatus, device and storage medium for associated data.
背景技术Background technique
随着计算机技术的发展,数据库已普遍用于存储样本数据,以及样本数据对应的多个关联数据。With the development of computer technology, databases have been commonly used to store sample data and multiple associated data corresponding to the sample data.
现有技术中,在存储样本数据对应的关联数据时,通常有以下两种方式:第一种方式是以类似记录日志数据的形式,在数据表中逐条记录每个样本标识对应的各个关联数据标识,针对同一样本标识可能存在与该样本标识对应的多条关联数据项;第二种方式是将每个样本对应的多个关联数据标识,按照预设的分隔符进行组合。针对某一样本标识,存在一条较长的、用于表示全部关联数据标识的字符串。In the prior art, when storing the associated data corresponding to the sample data, there are usually the following two methods: the first method is to record the associated data corresponding to each sample identifier in the data table one by one in the form of recording log data. For the same sample identifier, there may be multiple associated data items corresponding to the sample identifier; the second method is to combine the multiple associated data identifiers corresponding to each sample according to the preset separator. For a certain sample identifier, there is a long string used to represent all associated data identifiers.
但是,第一种方式中数据表占用的存储空间较大,由于数据项条目过多,导致数据读取效率较低;第二种方式中在读取数据时,需要对表示全部关联数据标识的字符串进行拆分,由于该字符串较长,同样导致数据读取耗时较久,读取效率较低。However, the storage space occupied by the data table in the first method is relatively large, and the data reading efficiency is low due to too many data items; in the second method, when reading data, it is necessary to The string is split, because the string is long, it also takes a long time to read the data, and the reading efficiency is low.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种关联数据的存储方法、装置、设备及存储介质,可以减小数据表的存储空间,提高关联数据的读取效率。The present invention provides a storage method, device, device and storage medium for associated data, which can reduce the storage space of the data table and improve the reading efficiency of the associated data.
根据本发明的一方面,提供了一种关联数据的存储方法,包括:According to an aspect of the present invention, a method for storing associated data is provided, comprising:
在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识;Acquire each data node and a plurality of node attributes corresponding to each data node in the target database, and determine the attribute identifier corresponding to each node attribute for each data node according to a preset value interval;
根据各所述数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各所述数据节点分别对应的节点信息表;constructing a node information table corresponding to each of the data nodes according to the plurality of node attributes corresponding to each of the data nodes and the attribute identifiers corresponding to the respective node attributes;
根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下对应的属性标识集;According to the attribute of the associated node corresponding to each sample in the target database and each of the node information tables, obtain the attribute identifier set corresponding to each sample under different associated nodes;
根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表。The sample association information table is constructed according to the attribute identification sets corresponding to each sample under different association nodes and the sample identification of each sample.
根据本发明的另一方面,提供了一种关联数据的存储装置,所述装置包括:According to another aspect of the present invention, there is provided a storage device for associated data, the device comprising:
属性标识确定模块,用于在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识;an attribute identifier determination module, configured to obtain each data node and a plurality of node attributes corresponding to each data node in the target database, and determine the attribute identifier corresponding to each node attribute for each data node according to a preset value interval;
节点信息表构建模块,用于根据各所述数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各所述数据节点分别对应的节点信息表;a node information table construction module, configured to construct a node information table corresponding to each of the data nodes according to the plurality of node attributes corresponding to each of the data nodes and the attribute identifiers corresponding to each of the node attributes;
标识集获取模块,用于根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下对应的属性标识集;an identification set acquisition module, configured to acquire attribute identification sets corresponding to each sample under different associated nodes according to the associated node attributes corresponding to each sample in the target database and each of the node information tables;
关联信息表构建模块,用于根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表。The association information table building module is used for constructing the sample association information table according to the attribute identification sets corresponding to each sample under different association nodes and the sample identification of each sample.
根据本发明的另一方面,提供了一种电子设备,所述电子设备包括:According to another aspect of the present invention, an electronic device is provided, the electronic device comprising:
至少一个处理器;以及at least one processor; and
与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例所述的关联数据的存储方法。The memory stores a computer program executable by the at least one processor, the computer program being executed by the at least one processor to enable the at least one processor to perform any of the embodiments of the present invention. The storage method of the associated data.
根据本发明的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本发明任一实施例所述的关联数据的存储方法。According to another aspect of the present invention, a computer-readable storage medium is provided, where computer instructions are stored in the computer-readable storage medium, and the computer instructions are used to cause a processor to implement any of the embodiments of the present invention when executed. The storage method of the associated data.
本发明实施例提供的技术方案,通过在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识,根据各数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各数据节点分别对应的节点信息表,根据目标数据库中各样本对应的关联节点属性,以及各节点信息表,获取各样本在不同关联节点下对应的属性标识集,根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表的技术手段,可以减小数据表的存储空间,提高关联数据的读取效率。According to the technical solution provided by the embodiments of the present invention, by acquiring each data node and a plurality of node attributes corresponding to each data node in a target database, according to a preset value interval, the attribute corresponding to each node attribute is determined for each data node. Identification, according to the multiple node attributes corresponding to each data node, and the attribute identification corresponding to each node attribute, construct the node information table corresponding to each data node, according to the associated node attribute corresponding to each sample in the target database, and each node information Table, to obtain the attribute identification set corresponding to each sample under different associated nodes, and according to the corresponding attribute identification set of each sample under different associated nodes, as well as the sample identification of each sample, the technical means of constructing the sample association information table can reduce the data The storage space of the table improves the reading efficiency of the associated data.
应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or critical features of the embodiments of the invention, nor is it intended to limit the scope of the invention. Other features of the present invention will become readily understood from the following description.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是根据本发明实施例提供的一种关联数据的存储方法的流程图;1 is a flowchart of a method for storing associated data according to an embodiment of the present invention;
图2是根据本发明实施例提供的另一种关联数据的存储方法的流程图;2 is a flowchart of another method for storing associated data according to an embodiment of the present invention;
图3是根据本发明实施例提供的另一种关联数据的存储方法的流程图;3 is a flowchart of another method for storing associated data according to an embodiment of the present invention;
图4是根据本发明实施例提供的一种关联数据的存储装置的结构示意图;4 is a schematic structural diagram of a storage device for associated data provided according to an embodiment of the present invention;
图5是实现本发明实施例的关联数据的存储方法的电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device implementing the method for storing associated data according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used may be interchanged under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
图1为本发明实施例一提供的一种关联数据的存储方法的流程图,本实施例可适用于在数据库中存储样本关联数据的情况,该方法可以由关联数据的存储装置来执行,该关联数据的存储装置可以采用硬件和/或软件的形式实现,该关联数据的存储装置可配置于具备数据处理功能的电子设备(例如终端或者服务器)中。如图1所示,该方法包括:FIG. 1 is a flowchart of a method for storing associated data according to Embodiment 1 of the present invention. This embodiment is applicable to the case of storing sample associated data in a database. The method can be executed by a storage device for associated data. The storage device of the associated data may be implemented in the form of hardware and/or software, and the storage device of the associated data may be configured in an electronic device (such as a terminal or a server) with a data processing function. As shown in Figure 1, the method includes:
步骤110、在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识。Step 110: Acquire each data node and a plurality of node attributes corresponding to each data node in the target database, and determine the attribute identifier corresponding to each node attribute for each data node according to a preset value interval.
在本实施例中,所述目标数据库可以为用于存储样本数据、以及样本关联数据的数据库。所述数据节点可以理解为目标数据库中的某一数据存储模块,用于存储用户输入的数据表以及数据等。具体的,所述数据节点可以为样本属性,例如,假设样本为人员,所述数据节点可以为具体的人员属性,例如兴趣爱好、奖项等。In this embodiment, the target database may be a database for storing sample data and sample-related data. The data node can be understood as a data storage module in the target database, which is used to store the data table and data input by the user. Specifically, the data node may be a sample attribute, for example, assuming that the sample is a person, the data node may be a specific person attribute, such as hobbies, awards, and the like.
在一个具体的实施例中,每个数据节点可以对应多个节点属性,以数据节点为兴趣爱好为例,对应的节点属性可以包括游泳、绘画、看电影、读书以及唱歌等。以数据节点为奖项为例,对应的节点属性可以包括学业奖、竞赛奖、运动奖以及摄影奖等。In a specific embodiment, each data node may correspond to multiple node attributes. Taking the data node as a hobby as an example, the corresponding node attributes may include swimming, painting, watching movies, reading, and singing. Taking data nodes as awards as an example, the corresponding node attributes may include academic awards, competition awards, sports awards, and photography awards.
获取到各数据节点对应的多个节点属性之后,可以按照固定的数值区间,为每个数据节点确定各节点属性分别对应的属性标识。After acquiring the multiple node attributes corresponding to each data node, the attribute identifier corresponding to each node attribute can be determined for each data node according to a fixed value interval.
在此步骤中,以一个数据节点为例,假设预设的数值区间中包括m(m>0)个整数,可以依次将各整数,作为该数据节点中各节点属性分别对应的属性标识。In this step, taking a data node as an example, assuming that the preset value interval includes m (m>0) integers, each integer can be sequentially used as the attribute identifier corresponding to each node attribute in the data node.
步骤120、根据各所述数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各所述数据节点分别对应的节点信息表。
在此步骤中,可以根据各数据节点中,节点属性与属性标识之间的映射关系,构建各数据节点分别对应的节点信息表。In this step, a node information table corresponding to each data node may be constructed according to the mapping relationship between node attributes and attribute identifiers in each data node.
在一个具体的实施例中,以一个数据节点为例,与该数据节点对应的节点信息表可以如表1所示:In a specific embodiment, taking a data node as an example, the node information table corresponding to the data node may be as shown in Table 1:
表1Table 1
如表1所示,数据节点对应的节点信息表中,存储了每个节点属性与对应的属性标识(也即属性ID)。As shown in Table 1, in the node information table corresponding to the data node, each node attribute and the corresponding attribute identifier (ie, attribute ID) are stored.
步骤130、根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下对应的属性标识集。
在此步骤中,可以根据各样本对应的关联数据,确定样本对应的关联节点属性。例如假设样本为人员,该人员喜欢看某一特定类型的电影,阅读某某作者的书籍,并获取了写作奖和摄影一等奖,则可以确定与该人员对应的关联节点为“兴趣爱好”和“奖项”,对应的关联节点属性为“看电影”、“读书”、“学业奖”和“摄影奖”。In this step, the attribute of the associated node corresponding to the sample may be determined according to the associated data corresponding to each sample. For example, assuming that the sample is a person, the person likes to watch a certain type of movie, read books by a certain author, and has won the first prize for writing and photography, then the associated node corresponding to the person can be determined as "hobbies" and "Awards", the corresponding associated node attributes are "Watching Movies", "Readings", "Academic Awards" and "Photography Awards".
在本实施例中,以一个样本为例,可选的,获取到该样本对应的关联节点属性后,可以在上述各节点信息表中,获取与各关联节点属性对应的属性标识(也即关联节点属性标识),并将该样本在特定关联节点下对应的多个关联节点属性标识进行组合,得到该样本在该关联节点下对应的属性标识集。采用同样方法,可以得到该样本在不同关联节点下对应的属性标识集。In this embodiment, taking a sample as an example, optionally, after obtaining the associated node attributes corresponding to the sample, the attribute identifiers (that is, association Node attribute identifier), and combine multiple associated node attribute identifiers corresponding to the sample under a specific associated node to obtain an attribute identifier set corresponding to the sample under the associated node. Using the same method, the corresponding attribute identification sets of the sample under different associated nodes can be obtained.
在一个具体的实施例中,假设样本为人员,与该人员对应的关联节点属性为“看电影”、“读书”、“学业奖”和“摄影奖”,假设“看电影”对应的属性标识为“a”,“读书”对应的属性标识为“b”,则可以确定该人员在关联节点“兴趣爱好”下的属性标识集为“a&b”;假设“学业奖”对应的属性标识为“c”,“摄影奖”对应的属性标识为“d”,则可以确定该人员在关联节点“奖项”下的属性标识集为“c&d”。In a specific embodiment, it is assumed that the sample is a person, the associated node attributes corresponding to the person are "movie watching", "reading", "academic award" and "photography award", and it is assumed that the attribute identifier corresponding to "movie watching" is "a" and the attribute identifier corresponding to "reading" is "b", then it can be determined that the attribute identifier set of the person under the associated node "hobbies" is "a&b"; assuming that the attribute identifier corresponding to "academic award" is " c", and the attribute identifier corresponding to "Photography Award" is "d", then it can be determined that the attribute identifier set of the person under the associated node "Award" is "c&d".
由此,通过上述方法可以获取各样本在不同关联节点下对应的属性标识集。Therefore, through the above method, the attribute identifier sets corresponding to each sample under different associated nodes can be obtained.
步骤140、根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表。Step 140: Construct a sample association information table according to the attribute identifier sets corresponding to each sample under different association nodes and the sample identifier of each sample.
在本实施例中,可以根据各样本标识、各关联节点,以及样本在关联节点下对应的属性标识集之间的映射关系,构建样本关联信息表,如表2所示:In this embodiment, a sample association information table can be constructed according to the mapping relationship between each sample identifier, each associated node, and the attribute identifier set corresponding to the sample under the associated node, as shown in Table 2:
表2Table 2
其中,表2中以两个关联节点为例,X1表示样本1在关联节点A下对应的属性标识集,X2表示样本1在关联节点B下对应的属性标识集,Y1表示样本2在关联节点A下对应的属性标识集,Y2表示样本2在关联节点B下对应的属性标识集。Among them, two associated nodes are taken as an example in Table 2, X 1 represents the attribute identifier set corresponding to sample 1 under the associated node A, X 2 represents the attribute identifier set corresponding to the sample 1 under the associated node B, and Y 1 represents the sample 2 The attribute identification set corresponding to the association node A, Y 2 represents the attribute identification set corresponding to the sample 2 under the association node B.
在一个具体的实施例中,通过上述方式对关联数据进行存储后,如果接收到用户针对某一样本的关联数据查询请求,则可以在上述样本关联信息表中,获取与该样本对应的各个属性标识集,然后将各个属性标识集进行拆分,得到多个节点属性标识,最后根据上述节点信息表中获取与各节点属性标识对应的节点属性信息,并将此节点属性信息作为结果数据反馈给用户。In a specific embodiment, after the associated data is stored in the above manner, if a user's query request for associated data for a certain sample is received, each attribute corresponding to the sample can be obtained in the above-mentioned sample association information table Identification set, then split each attribute identification set to obtain multiple node attribute identifications, and finally obtain the node attribute information corresponding to each node attribute identification according to the above node information table, and feed this node attribute information as the result data to the user.
在本实施例中,无需逐条记录每个样本标识对应的关联数据标识,通过构建节点信息表和样本关联信息表,可以减小数据表占用的存储空间;其次,通过按照预设的数值区间,限定节点属性的标识,可以避免属性标识集中字符串情况复杂,导致数据读取耗时较久的问题。In this embodiment, it is not necessary to record the associated data identifier corresponding to each sample identifier one by one, and by constructing a node information table and a sample associated information table, the storage space occupied by the data table can be reduced; Restricting the identifiers of node attributes can avoid the problem of complicated strings in attribute identifiers, resulting in a long time for data reading.
本发明实施例提供的技术方案,通过在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识,根据各数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各数据节点分别对应的节点信息表,根据目标数据库中各样本对应的关联节点属性,以及各节点信息表,获取各样本在不同关联节点下对应的属性标识集,根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表的技术手段,可以减小数据表的存储空间,提高关联数据的读取效率。According to the technical solution provided by the embodiments of the present invention, by acquiring each data node and a plurality of node attributes corresponding to each data node in a target database, according to a preset value interval, the attribute corresponding to each node attribute is determined for each data node. Identification, according to the multiple node attributes corresponding to each data node, and the attribute identification corresponding to each node attribute, construct the node information table corresponding to each data node, according to the associated node attribute corresponding to each sample in the target database, and each node information Table, to obtain the attribute identification set corresponding to each sample under different associated nodes, and according to the corresponding attribute identification set of each sample under different associated nodes, as well as the sample identification of each sample, the technical means of constructing the sample association information table can reduce the data The storage space of the table improves the reading efficiency of the associated data.
图2为本发明实施例二提供的一种关联数据的存储方法的流程图,本实施例是对上述实施例的进一步细化。如图2所示,该方法包括:FIG. 2 is a flowchart of a method for storing associated data according to Embodiment 2 of the present invention. This embodiment is a further refinement of the above-mentioned embodiment. As shown in Figure 2, the method includes:
步骤201、在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性。Step 201: Acquire each data node and multiple node attributes corresponding to each data node in the target database.
步骤202、根据所述目标数据库对应的整型数据取值范围,确定符合所述取值范围的多个2的整数次幂。Step 202 : According to the value range of the integer data corresponding to the target database, determine a plurality of integer powers of 2 that conform to the value range.
在一个具体的实施例中,假设目标数据库的整型数据取值范围为-2^31-2^30,则可以在该范围中取31个正的2的整数次幂,例如2^0、2^1、2^2……2^30(1073741824)。In a specific embodiment, assuming that the range of integer data of the target database is -2^31-2^30, 31 positive integer powers of 2 can be taken in this range, such as 2^0, 2^1, 2^2...2^30 (1073741824).
步骤203、将所述多个2的整数次幂进行排列,并根据排列结果依次将各2的整数次幂,作为每个数据节点中各节点属性分别对应的属性标识。Step 203: Arrange the multiple integer powers of 2, and sequentially use each integer power of 2 as an attribute identifier corresponding to each node attribute in each data node according to the arrangement result.
在此步骤中,可选的,可以将多个2的整数次幂按照从小到大的顺序进行排列,并根据排列结果依次将各2的整数次幂,作为每个数据节点中各节点属性分别对应的属性标识。In this step, optionally, multiple integer powers of 2 can be arranged in ascending order, and each integer power of 2 can be used as the attribute of each node in each data node according to the arrangement result. The corresponding attribute identifier.
步骤204、根据各所述数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各所述数据节点分别对应的节点信息表。Step 204: Construct a node information table corresponding to each of the data nodes according to the plurality of node attributes corresponding to each of the data nodes and the attribute identifiers corresponding to each of the node attributes.
在一个具体的实施例中,以数据节点为“兴趣爱好”为例,与该数据节点对应的节点信息表可以如表3所示:In a specific embodiment, taking the data node as "hobbies" as an example, the node information table corresponding to the data node may be as shown in Table 3:
表3table 3
其中,如表3所示,每个节点属性的属性标识可以为对应的2的整数次幂。Wherein, as shown in Table 3, the attribute identifier of each node attribute may be a corresponding integer power of 2.
步骤205、根据目标数据库中各样本对应的关联节点属性,以及各所述关联节点属性在节点信息表中的属性标识,获取各样本在不同关联节点下对应的2的整数次幂求和结果,并将所述2的整数次幂求和结果作为属性标识集。Step 205: According to the associated node attribute corresponding to each sample in the target database, and the attribute identifier of each associated node attribute in the node information table, obtain the summation result of the integer power of 2 corresponding to each sample under different associated nodes, The result of summing the integer powers of 2 is taken as the attribute identification set.
在本实施例中,以一个样本为例,可选的,获取到该样本对应的关联节点属性后,可以在上述各节点信息表中,获取与各关联节点属性对应的属性标识,然后将该样本在特定关联节点下对应的多个关联节点属性标识进行相加,得到该样本在该关联节点下对应的2的整数次幂求和结果,并将所述2的整数次幂求和结果作为属性标识集。采用同样方法,可以得到该样本在不同关联节点下对应的属性标识集。In this embodiment, taking a sample as an example, optionally, after obtaining the associated node attribute corresponding to the sample, the attribute identifier corresponding to each associated node attribute can be obtained in the above-mentioned node information table, and then the Add the attribute identifiers of multiple associated nodes corresponding to the sample under a specific associated node to obtain the summation result of the integer power of 2 corresponding to the sample under the associated node, and use the summation result of the integer power of 2 as Property ID set. Using the same method, the corresponding attribute identification sets of the sample under different associated nodes can be obtained.
在一个具体的实施例中,假设样本为人员,与该人员对应的关联节点属性为“看电影”、“读书”、“学业奖”和“摄影奖”,假设“看电影”对应的属性标识为“4”,“读书”对应的属性标识为“8”,则可以确定该人员在关联节点“兴趣爱好”下的属性标识集为“12”;假设“学业奖”对应的属性标识为“16”,“摄影奖”对应的属性标识为“64”,则可以确定该人员在关联节点“奖项”下的属性标识集为“80”。In a specific embodiment, it is assumed that the sample is a person, the associated node attributes corresponding to the person are "movie watching", "reading", "academic award" and "photography award", and it is assumed that the attribute identifier corresponding to "movie watching" is "4", and the attribute identification corresponding to "Reading" is "8", then it can be determined that the attribute identification set of the person under the associated node "Hobbies" is "12"; assuming that the attribute identification corresponding to "Academic Award" is " 16", and the attribute identification corresponding to "Photography Award" is "64", then it can be determined that the attribute identification set of the person under the associated node "Award" is "80".
由此,通过上述方法可以获取各样本在不同关联节点下对应的属性标识集。Therefore, through the above method, the attribute identifier sets corresponding to each sample under different associated nodes can be obtained.
步骤206、根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表。
在一个具体的实施例中,以关联节点“兴趣爱好”和“奖项”为例,假设人员1在关联节点“兴趣爱好”下的属性标识集为“12”,在关联节点“奖项”下的属性标识集为“80”,人员2在关联节点“兴趣爱好”下的属性标识集为“30”,在关联节点“奖项”下的属性标识集为“20”,构建的样本关联信息表可以如表4所示:In a specific embodiment, taking the associated nodes "hobbies" and "awards" as examples, it is assumed that the attribute identifier set of Person 1 under the associated node "hobbies" is "12", and the attribute identifier set under the associated node "awards" is "12", The attribute identification set is "80", the attribute identification set of Person 2 under the association node "Hobbies" is "30", and the attribute identification set under the association node "Awards" is "20". The constructed sample association information table can be As shown in Table 4:
表4Table 4
其中,如表4所示,各样本在不同关联节点下对应的属性标识集可以为2的整数次幂求和结果。Among them, as shown in Table 4, the attribute identification set corresponding to each sample under different associated nodes may be the summation result of integer powers of 2.
步骤207、接收到关联数据查询请求之后,获取所述关联数据查询请求中包括的目标样本标识以及目标关联节点。Step 207: After receiving the associated data query request, acquire the target sample identifier and target associated node included in the associated data query request.
在此步骤中,接收到用户输入的关联数据查询请求后,可以根据预设的标识符在该请求中,提取目标样本标识,以及目标关联节点。其中,目标样本标识可以为用户想要查询的样本所对应的标识,目标关联节点可以为用户针对该样本,想要查询的样本属性。In this step, after receiving the associated data query request input by the user, the target sample identifier and the target associated node can be extracted from the request according to the preset identifier. The target sample identifier may be the identifier corresponding to the sample the user wants to query, and the target associated node may be the sample attribute that the user wants to query for the sample.
步骤208、根据所述目标样本标识以及目标关联节点,在所述样本关联信息表中获取目标属性标识集。Step 208: Acquire a target attribute identifier set in the sample association information table according to the target sample identifier and the target associated node.
在此步骤中,可以根据样本关联信息表中,获取目标样本标识下,目标关联节点对应的属性标识集(也即目标属性标识集)。In this step, the attribute identification set (ie, the target attribute identification set) corresponding to the target associated node under the target sample identification can be obtained according to the sample association information table.
在一个具体的实施例中,假设目标样本标识为1,目标关联节点为“兴趣爱好”,则可以在表4中确定目标属性标识集为12。In a specific embodiment, assuming that the target sample identifier is 1 and the target associated node is "hobbies", the target attribute identifier set can be determined to be 12 in Table 4.
步骤209、将所述目标属性标识集按照2的整数次幂进行拆分。Step 209: Split the target attribute identification set according to the integer power of 2.
在此步骤中,对目标属性标识集按照2的整数次幂进行拆分时,可以先计算与目标属性标识集对应的最大2的整数次幂,然后计算目标属性标识集与最大2的整数次幂之间的差值,如果差值大于0,则继续计算该差值对应的最大2的整数次幂,并计算该差值与最大2的整数次幂的差值,直至差值等于0为止。In this step, when the target attribute identification set is split according to the integer power of 2, the maximum integer power of 2 corresponding to the target attribute identification set can be calculated first, and then the target attribute identification set and the maximum integer power of 2 can be calculated. The difference between the powers. If the difference is greater than 0, continue to calculate the maximum integer power of 2 corresponding to the difference, and calculate the difference between the difference and the maximum integer power of 2 until the difference is equal to 0. .
步骤210、获取与所述目标关联节点对应的节点信息表,根据所述目标属性标识集的拆分结果,在所述目标关联节点对应的节点信息表中获取与所述查询请求对应的关联数据。Step 210: Obtain the node information table corresponding to the target associated node, and obtain the associated data corresponding to the query request from the node information table corresponding to the target associated node according to the split result of the target attribute identifier set .
在此步骤中,对目标属性标识集进行拆分后,可以得到多个节点属性标识,然后根据节点信息表中获取与各节点属性标识对应的节点属性信息,并将此节点属性信息,作为与查询请求对应的关联数据。In this step, after the target attribute identification set is split, multiple node attribute identifications can be obtained, and then the node attribute information corresponding to each node attribute identification is obtained according to the node information table, and the node attribute information is used as the corresponding node attribute information. Query the associated data corresponding to the request.
在一个具体的实施例中,假设目标样本标识为2,目标关联节点为“兴趣爱好”,则可以在表4中确定目标属性标识集为30,然后将该目标属性标识集拆分成16、8、4和2,并在表3中获取对应的节点属性分别为“绘画”、“看电影”、“读书”和“唱歌”。In a specific embodiment, assuming that the target sample identifier is 2 and the target associated node is "hobbies", the target attribute identifier set can be determined as 30 in Table 4, and then the target attribute identifier set is divided into 16, 8, 4 and 2, and the corresponding node attributes obtained in Table 3 are "painting", "watching a movie", "reading" and "singing".
在本实施例中,通过将2的整数次幂作为属性标识,并将2的整数次幂求和结果作为属性标识集,可以避免属性标识集中字符串过长,导致数据读取耗时的问题;其次,由于任意大于零的正整数均可拆分为唯一一组包含最大2的幂指数的集合的特性,通过将属性标识集按照2的整数次幂进行拆分,可以提高字符串的拆分效率,以及拆分结果的准确性。In this embodiment, by taking the integer power of 2 as the attribute identifier, and using the summation result of the integer power of 2 as the attribute identifier set, it is possible to avoid the problem that the character string in the attribute identifier set is too long, resulting in time-consuming data reading. ; secondly, since any positive integer greater than zero can be split into a unique set of sets containing the largest power of 2, by splitting the attribute identifier set according to the power of 2, the performance of the string can be improved. Splitting efficiency, and the accuracy of splitting results.
本发明实施例提供的技术方案,通过在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,根据目标数据库对应的整型数据取值范围,确定符合所述取值范围的多个2的整数次幂,将多个2的整数次幂进行排列并根据排列结果依次将各2的整数次幂,作为各节点属性分别对应的属性标识,根据各数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识构建节点信息表,根据目标数据库中各样本对应的关联节点属性以及属性标识,获取各样本在不同关联节点下对应的2的整数次幂求和结果作为属性标识集,根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表,接收到关联数据查询请求之后,根据目标样本标识以及目标关联节点,在样本关联信息表中获取目标属性标识集,将目标属性标识集按照2的整数次幂进行拆分,根据目标属性标识集的拆分结果,在目标关联节点对应的节点信息表中获取关联数据的技术手段,可以减小数据表的存储空间,提高关联数据的读取效率。According to the technical solution provided by the embodiment of the present invention, by acquiring each data node and a plurality of node attributes corresponding to each data node in the target database, and according to the value range of the integer data corresponding to the target database, determine the value range that conforms to the value range. Multiple integer powers of 2, arrange multiple integer powers of 2, and sequentially take each integer power of 2 as the attribute identifier corresponding to each node attribute, according to the multiple nodes corresponding to each data node. Attributes, as well as the attribute identifiers corresponding to the attributes of each node, construct a node information table. According to the associated node attributes and attribute identifiers corresponding to each sample in the target database, the summation results of the integer powers of 2 corresponding to each sample under different associated nodes are obtained as Attribute identification set, according to the attribute identification set corresponding to each sample under different association nodes, and the sample identification of each sample, construct the sample association information table, after receiving the associated data query request, according to the target sample identification and target association node, in the sample The technology of obtaining the target attribute identification set from the association information table, splitting the target attribute identification set according to the integer power of 2, and obtaining the association data in the node information table corresponding to the target association node according to the split result of the target attribute identification set The method can reduce the storage space of the data table and improve the reading efficiency of the associated data.
图3为本发明实施例三提供的一种关联数据的存储方法的流程图,本实施例是对上述实施例的进一步细化。如图3所示,该方法包括:FIG. 3 is a flowchart of a method for storing associated data according to Embodiment 3 of the present invention. This embodiment is a further refinement of the above-mentioned embodiment. As shown in Figure 3, the method includes:
步骤301、在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性。Step 301: Acquire each data node and multiple node attributes corresponding to each data node in the target database.
步骤302、根据所述目标数据库对应的整型数据取值范围,确定符合所述取值范围的多个2的整数次幂。Step 302: According to the value range of the integer data corresponding to the target database, determine a plurality of integer powers of 2 that conform to the value range.
步骤303、将所述多个2的整数次幂进行排列。Step 303: Arrange the multiple integer powers of 2.
步骤304、判断各所述数据节点中节点属性的全部数量,是否大于或等于所述多个2的整数次幂的目标数量,若是,则执行步骤305-307,若否,执行步骤308。Step 304: Determine whether the total number of node attributes in each of the data nodes is greater than or equal to the target number of the multiple integer powers of 2; if so, execute steps 305-307; if not, execute
在本实施例中,所述目标数量可以为2的整数次幂的全部数量。假设目标数据库的整型数据取值范围为-2^31-2^30,则可以在该范围中取31个正的2的整数次幂,例如2^0、2^1、2^2……2^30(1073741824),也即所述目标数量为31。In this embodiment, the target number may be the entire number of integer powers of 2. Assuming that the range of integer data of the target database is -2^31-2^30, you can take 31 positive integer powers of 2 in this range, such as 2^0, 2^1, 2^2... ...2^30(1073741824), that is, the target number is 31.
步骤305、在所述数据节点的多个节点属性中,获取目标数量的节点属性,并根据排列结果依次将各2的整数次幂,作为各节点属性分别对应的属性标识。Step 305: Obtain a target number of node attributes from the multiple node attributes of the data node, and sequentially use the integer power of 2 as the attribute identifier corresponding to each node attribute according to the arrangement result.
在本实施例中,如果某一数据节点中,节点属性的全部数量大于目标数量,则可以在全部节点属性中先提取一部分节点属性。具体的,可以根据节点属性的排列次数,依次获取目标数量的节点属性,并将各2的整数次幂作为各节点属性分别对应的属性标识。In this embodiment, if the total number of node attributes in a certain data node is greater than the target number, a part of the node attributes may be firstly extracted from all the node attributes. Specifically, a target number of node attributes may be sequentially acquired according to the number of arrangement of the node attributes, and each integer power of 2 may be used as the attribute identifier corresponding to each node attribute.
步骤306、统计所述数据节点中剩余节点属性的数量,判断所述数量是否小于或等于目标数量,若是,执行步骤307,若否,则返回执行步骤305,直至所述数据节点中剩余节点属性的数量小于或等于目标数量。Step 306: Count the number of remaining node attributes in the data node, and determine whether the number is less than or equal to the target number, if so, go to step 307, if not, return to step 305 until the remaining node attributes in the data node The quantity is less than or equal to the target quantity.
步骤307、根据排列结果依次获取与所述数量相等的2的整数次幂,并将各2的整数次幂,作为各剩余节点属性分别对应的属性标识。Step 307: Acquire the integer powers of 2 equal to the number in sequence according to the arrangement result, and use each integer power of 2 as the attribute identifier corresponding to each remaining node attribute respectively.
步骤308、根据排列结果依次将各2的整数次幂,作为每个数据节点中各节点属性分别对应的属性标识。
在本实施例中,如果某一数据节点中节点属性的全部数量大于目标数量,在全部节点属性中提取部分节点属性后,可以统计剩余节点属性的数量,如果该数量小于或等于目标数量,则可以在全部2的整数次幂中,再次提取与该数量相等的2的整数次幂,并将各2的整数次幂,作为各剩余节点属性分别对应的属性标识;如果该数量大于目标数量,则可以继续在剩余节点属性中按照目标数量再次提取一部分节点属性,直至剩余节点属性的数量小于或等于目标数量为止。In this embodiment, if the total number of node attributes in a certain data node is greater than the target number, after extracting some node attributes from all node attributes, the number of remaining node attributes can be counted. If the number is less than or equal to the target number, then From all the integer powers of 2, the integer power of 2 equal to the number can be extracted again, and each integer power of 2 can be used as the attribute identifier corresponding to each remaining node attribute; if the number is greater than the target number, Then, continue to extract a part of the node attributes from the remaining node attributes according to the target number until the number of the remaining node attributes is less than or equal to the target number.
步骤309、根据各所述数据节点中各属性标识的排列次序,以及各属性标识的出现次数,确定与各所述节点属性对应的数据项标识。Step 309: Determine a data item identifier corresponding to each of the node attributes according to the arrangement order of each attribute identifier in each of the data nodes and the number of occurrences of each attribute identifier.
在此步骤中,如果数据节点中同一个属性标识出现了多次,则可以按照该属性标识的出现次序(也即排列次序),为该属性标识对应的各节点属性确定数据项标识。In this step, if the same attribute identifier appears multiple times in the data node, the data item identifier can be determined for each node attribute corresponding to the attribute identifier according to the appearance order of the attribute identifier (ie, the arrangement order).
在一个具体的实施例中,假设某一数据节点中,属性标识“8”一共出现了3次,第一次对应的节点属性为“属性D”,第二次对应的节点属性为“属性P”,第三次对应的节点属性为“属性Z”,则可以根据属性标识“8”的排列次序,确定“属性D”对应的数据项标识为“1”,“属性P”对应的数据项标识为“2”,“属性Z”对应的数据项标识为“3”。In a specific embodiment, it is assumed that in a data node, the attribute identifier "8" appears three times in total, the node attribute corresponding to the first time is "attribute D", and the node attribute corresponding to the second time is "attribute P" ”, the node attribute corresponding to the third time is “attribute Z”, then according to the arrangement order of the attribute identifier “8”, it can be determined that the data item identifier corresponding to “attribute D” is “1”, and the data item corresponding to “attribute P” The identifier is "2", and the data item corresponding to "attribute Z" is marked as "3".
步骤310、根据各所述数据节点对应的多个节点属性、各节点属性分别对应的属性标识以及数据项标识,构建各所述数据节点分别对应的节点信息表。Step 310: Build a node information table corresponding to each of the data nodes according to a plurality of node attributes corresponding to each of the data nodes, an attribute identifier corresponding to each node attribute, and a data item identifier.
在一个具体的实施例中,以数据节点为“兴趣爱好”为例,与该数据节点对应的节点信息表可以如表5所示:In a specific embodiment, taking the data node as "hobbies" as an example, the node information table corresponding to the data node may be as shown in Table 5:
表5table 5
如表5所示,由于数据节点中节点属性的全部数量,大于2的整数次幂的全部数量,则可以为多个节点属性分配相同的属性标识。当多个节点属性对应同一属性标识时,可以按照该属性标识的排列次序,为各节点属性依次确定数据项标识。As shown in Table 5, since the total number of node attributes in the data node is greater than the total number of integer powers of 2, the same attribute identifier can be assigned to multiple node attributes. When multiple node attributes correspond to the same attribute identifier, the data item identifiers may be sequentially determined for each node attribute according to the arrangement order of the attribute identifiers.
步骤311、根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下不同数据项标识对应的属性标识集。
在此步骤中,以一个关联节点为例,可以根据该关联节点对应的节点信息表,获取样本在不同数据项标识下对应的属性标识集。以表5为例,假设样本对应的关联节点属性为“绘画”、“看电影”、“旅游”、“打球”以及“听音乐”,则可以确定该样本在数据项ID为1时对应的属性标识集为6,在数据项ID为2时对应的属性标识集为3,在数据项ID为3时对应的属性标识集为1。In this step, taking an associated node as an example, the attribute identifier sets corresponding to the samples under different data item identifiers can be obtained according to the node information table corresponding to the associated node. Taking Table 5 as an example, assuming that the associated node attributes corresponding to the sample are "painting", "watching a movie", "travel", "playing ball" and "listening to music", it can be determined that the sample corresponds to when the data item ID is 1. The attribute identification set is 6, when the data item ID is 2, the corresponding attribute identification set is 3, and when the data item ID is 3, the corresponding attribute identification set is 1.
由此,通过上述方式可以获取各个样本在不同关联节点下不同数据项标识对应的属性标识集。Thus, in the above manner, attribute identification sets corresponding to different data item identifications of each sample under different associated nodes can be obtained.
步骤312、根据各样本在不同关联节点下不同数据项标识对应的属性标识集,以及各样本的样本标识,构建与各关联节点分别对应的样本关联信息表。
在此步骤中,可选的,以关联节点“兴趣爱好”为例,与该关联节点对应的样本关联信息表可以如表6所示:In this step, optionally, taking the associated node "hobbies" as an example, the sample association information table corresponding to the associated node may be as shown in Table 6:
表6Table 6
如表6所示,所述样本关联信息表中存储了,各样本在特定关联节点下不同数据项标识对应的属性标识集。As shown in Table 6, the sample association information table stores attribute identification sets corresponding to different data item identifications of each sample under a specific association node.
在本实施例中,可以采用上述相同方式,构建与各关联节点分别对应的样本关联信息表。In this embodiment, a sample association information table corresponding to each association node may be constructed in the same manner as described above.
在一个具体的实施例中,通过上述方式对关联数据进行存储后,如果接收到用户针对某一样本的关联数据查询请求,则可以获取关联数据查询请求中包括的目标样本标识以及目标关联节点,假设目标样本标识为2,目标关联节点为“兴趣爱好”,则可以在样本关联信息表(如表6)中获取与该样本对应的各个数据项ID对应的属性标识集,例如123、118、328……28等。In a specific embodiment, after the associated data is stored in the above manner, if a user's associated data query request for a certain sample is received, the target sample identifier and target associated node included in the associated data query request can be obtained, Assuming that the target sample ID is 2 and the target associated node is "hobbies", the attribute ID set corresponding to each data item ID corresponding to the sample can be obtained in the sample association information table (such as Table 6), such as 123, 118, 328…28 etc.
在获取到与该样本对应的各属性标识集后,可以对各属性标识集按照2的整数次幂进行拆分,得到多个属性标识。具体的:123=64+32+16+8+2+1,118=64+32+16+4+2,328=256+64+8,……,28=16+8+4,然后在节点信息表(如表5)中获取各数据项ID下的各个属性标识对应的节点属性信息,作为与查询请求对应的关联数据。After acquiring each attribute identification set corresponding to the sample, each attribute identification set may be split according to the integer power of 2 to obtain multiple attribute identifications. Specifically: 123=64+32+16+8+2+1, 118=64+32+16+4+2, 328=256+64+8, ..., 28=16+8+4, then in The node attribute information corresponding to each attribute identifier under each data item ID is obtained from the node information table (eg, Table 5), as the associated data corresponding to the query request.
具体的,以样本2在数据项ID为1时的属性标识集123为例,该属性标识集可被拆分为以下属性标识:64、32、16、8、2和1,则可以在表5中获取数据项ID为1时这些属性标识对应的节点属性信息,即:游泳、绘画、读书、唱歌……等。Specifically, taking the attribute identification set 123 of sample 2 when the data item ID is 1 as an example, the attribute identification set can be divided into the following attribute identifications: 64, 32, 16, 8, 2 and 1, then the attribute identification set can be divided into the following attribute marks: 64, 32, 16, 8, 2 and 1. In 5, when the ID of the acquired data item is 1, these attribute identifiers correspond to the node attribute information, namely: swimming, painting, reading, singing, etc.
本发明实施例提供的技术方案,通过在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,根据目标数据库对应的整型数据取值范围,确定符合取值范围的多个2的整数次幂,将多个2的整数次幂进行排列,判断各数据节点中节点属性的全部数量,是否大于或等于目标数量,若是,获取目标数量的节点属性,并根据排列结果依次将各2的整数次幂作为各节点属性分别对应的属性标识,统计剩余节点属性的数量判断数量是否小于或等于目标数量,若是,根据排列结果依次获取与数量相等的2的整数次幂,并将各2的整数次幂作为各剩余节点属性分别对应的属性标识,根据各数据节点中各属性标识的排列次序,以及各属性标识的出现次数,确定与各所述节点属性对应的数据项标识,构建各数据节点分别对应的节点信息表,根据目标数据库中各样本对应的关联节点属性,以及各节点信息表,获取各样本在不同关联节点下不同数据项标识对应的属性标识集,根据各样本在不同关联节点下不同数据项标识对应的属性标识集,以及各样本的样本标识,构建与各关联节点分别对应的样本关联信息表的技术手段,可以减小数据表的存储空间,提高关联数据的读取效率。According to the technical solution provided by the embodiment of the present invention, by acquiring each data node and multiple node attributes corresponding to each data node in the target database, and according to the value range of the integer data corresponding to the target database, a plurality of nodes that meet the value range are determined. Integer power of 2, arrange multiple integer powers of 2 to determine whether the total number of node attributes in each data node is greater than or equal to the target number. Each integer power of 2 is used as the attribute identifier corresponding to each node attribute, and the number of remaining node attributes is counted to determine whether the number is less than or equal to the target number. Each integer power of 2 is used as the attribute identifier corresponding to each remaining node attribute respectively, and according to the arrangement order of each attribute identifier in each data node, and the number of occurrences of each attribute identifier, the data item identifier corresponding to each described node attribute is determined, Construct the node information table corresponding to each data node, and obtain the attribute identifier sets corresponding to different data item identifiers under different associated nodes for each sample according to the associated node attributes corresponding to each sample in the target database and each node information table. The set of attribute identifiers corresponding to different data item identifiers under different associated nodes, as well as the sample identifiers of each sample, are the technical means of constructing sample associated information tables corresponding to each associated node, which can reduce the storage space of the data table and improve the associated data. read efficiency.
图4为本发明实施例四提供的一种关联数据的存储装置的结构示意图,如图4所示,该装置包括:属性标识确定模块410、节点信息表构建模块420、标识集获取模块430和关联信息表构建模块440。FIG. 4 is a schematic structural diagram of a storage device for associated data according to Embodiment 4 of the present invention. As shown in FIG. 4 , the device includes: an attribute
其中,属性标识确定模块410,用于在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识;The attribute
节点信息表构建模块420,用于根据各所述数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各所述数据节点分别对应的节点信息表;The node information
标识集获取模块430,用于根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下对应的属性标识集;The identification set obtaining
关联信息表构建模块440,用于根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表。The association information
本发明实施例提供的技术方案,通过在目标数据库中获取各数据节点,以及各数据节点对应的多个节点属性,按照预设的数值区间,为每个数据节点确定各节点属性分别对应的属性标识,根据各数据节点对应的多个节点属性,以及各节点属性分别对应的属性标识,构建各数据节点分别对应的节点信息表,根据目标数据库中各样本对应的关联节点属性,以及各节点信息表,获取各样本在不同关联节点下对应的属性标识集,根据各样本在不同关联节点下对应的属性标识集,以及各样本的样本标识,构建样本关联信息表的技术手段,可以减小数据表的存储空间,提高关联数据的读取效率。According to the technical solution provided by the embodiments of the present invention, by acquiring each data node and a plurality of node attributes corresponding to each data node in a target database, according to a preset value interval, the attribute corresponding to each node attribute is determined for each data node. Identification, according to the multiple node attributes corresponding to each data node, and the attribute identification corresponding to each node attribute, construct the node information table corresponding to each data node, according to the associated node attribute corresponding to each sample in the target database, and each node information Table, to obtain the attribute identification set corresponding to each sample under different associated nodes, and according to the corresponding attribute identification set of each sample under different associated nodes, as well as the sample identification of each sample, the technical means of constructing the sample association information table can reduce the data The storage space of the table improves the reading efficiency of the associated data.
在上述实施例的基础上,所述属性标识确定模块410包括:On the basis of the above embodiment, the attribute
整数次幂确定单元,用于根据所述目标数据库对应的整型数据取值范围,确定符合所述取值范围的多个2的整数次幂;an integer power determination unit, configured to determine, according to the value range of the integer data corresponding to the target database, a plurality of integer powers of 2 that conform to the value range;
整数次幂排列单元,用于将所述多个2的整数次幂进行排列,并根据排列结果依次将各2的整数次幂,作为每个数据节点中各节点属性分别对应的属性标识;an integer power arranging unit, used for arranging the multiple integer powers of 2, and sequentially taking each integer power of 2 as the attribute identifier corresponding to each node attribute in each data node according to the arrangement result;
属性数量判断单元,用于判断各所述数据节点中节点属性的全部数量,是否大于或等于所述多个2的整数次幂的目标数量;若是,则在所述数据节点的多个节点属性中,获取目标数量的节点属性,并根据排列结果依次将各2的整数次幂,作为各节点属性分别对应的属性标识;The attribute quantity judgment unit is used to judge whether the total quantity of node attributes in each of the data nodes is greater than or equal to the target quantity of the multiple integer powers of 2; , obtain the node attributes of the target number, and sequentially use the integer power of 2 as the attribute identifier corresponding to each node attribute according to the arrangement result;
剩余属性数量统计单元,用于统计所述数据节点中剩余节点属性的数量,判断所述数量是否小于或等于目标数量;若是,则根据排列结果依次获取与所述数量相等的2的整数次幂,并将各2的整数次幂,作为各剩余节点属性分别对应的属性标识。The remaining attribute quantity statistics unit is used to count the quantity of the remaining node attributes in the data node, and judge whether the quantity is less than or equal to the target quantity; , and each integer power of 2 is used as the attribute identifier corresponding to each remaining node attribute.
所述节点信息表构建模块420包括:The node information
数据项标识确定单元,用于根据各所述数据节点中各属性标识的排列次序,以及各属性标识的出现次数,确定与各所述节点属性对应的数据项标识;a data item identification determining unit, configured to determine the data item identification corresponding to each described node attribute according to the arrangement order of each attribute identification in each described data node, and the number of occurrences of each attribute identification;
信息表构建单元,用于根据各所述数据节点对应的多个节点属性、各节点属性分别对应的属性标识以及数据项标识,构建各所述数据节点分别对应的节点信息表。An information table construction unit is configured to construct a node information table corresponding to each of the data nodes according to a plurality of node attributes corresponding to each of the data nodes, an attribute identifier corresponding to each node attribute, and a data item identifier.
标识集获取模块430包括:The identity set
求和结果获取单元,用于根据目标数据库中各样本对应的关联节点属性,以及各所述关联节点属性在节点信息表中的属性标识,获取各样本在不同关联节点下对应的2的整数次幂求和结果,并将所述2的整数次幂求和结果作为属性标识集;The summation result obtaining unit is used to obtain the integer times of 2 corresponding to each sample under different associated nodes according to the associated node attributes corresponding to each sample in the target database and the attribute identifiers of the associated node attributes in the node information table The power summation result, and the integer power summation result of 2 is used as the attribute identification set;
属性标识集获取单元,用于根据目标数据库中各样本对应的关联节点属性,以及各所述节点信息表,获取各样本在不同关联节点下不同数据项标识对应的属性标识集。The attribute identification set obtaining unit is configured to obtain attribute identification sets corresponding to different data item identifications of each sample under different associated nodes according to the associated node attributes corresponding to each sample in the target database and each of the node information tables.
关联信息表构建模块440包括:The association information
查询请求接收单元,用于接收到关联数据查询请求之后,获取所述关联数据查询请求中包括的目标样本标识以及目标关联节点;a query request receiving unit, configured to acquire the target sample identifier and the target associated node included in the associated data query request after receiving the associated data query request;
目标标识集获取单元,用于根据所述目标样本标识以及目标关联节点,在所述样本关联信息表中获取目标属性标识集;a target identification set obtaining unit, configured to obtain a target attribute identification set in the sample association information table according to the target sample identification and the target associated node;
整数次幂拆分单元,用于将所述目标属性标识集按照2的整数次幂进行拆分;an integer power splitting unit, used for splitting the target attribute identification set according to the integer power of 2;
关联数据获取单元,用于获取与所述目标关联节点对应的节点信息表,根据所述目标属性标识集的拆分结果,在所述目标关联节点对应的节点信息表中获取与所述查询请求对应的关联数据;an associated data acquisition unit, configured to acquire the node information table corresponding to the target associated node, and obtain the query request from the node information table corresponding to the target associated node according to the split result of the target attribute identifier set Corresponding Linked Data;
样本关联信息表构建单元,用于根据各样本在不同关联节点下不同数据项标识对应的属性标识集,以及各样本的样本标识,构建与各关联节点分别对应的样本关联信息表。The sample association information table construction unit is used for constructing a sample association information table corresponding to each association node according to the attribute identification sets corresponding to different data item identifications of each sample under different association nodes, and the sample identification of each sample.
上述装置可执行本发明前述所有实施例所提供的方法,具备执行上述方法相应的功能模块和有益效果。未在本发明实施例中详尽描述的技术细节,可参见本发明前述所有实施例所提供的方法。The above-mentioned apparatus can execute the methods provided by all the foregoing embodiments of the present invention, and has corresponding functional modules and beneficial effects for executing the above-mentioned methods. For technical details not described in detail in the embodiments of the present invention, reference may be made to the methods provided by all the foregoing embodiments of the present invention.
图5示出了可以用来实施本发明的实施例的电子设备10的结构示意图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。FIG. 5 shows a schematic structural diagram of an
如图5所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(ROM)12、随机访问存储器(RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在只读存储器(ROM)12中的计算机程序或者从存储单元18加载到随机访问存储器(RAM)13中的计算机程序,来执行各种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的各种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(I/O)接口15也连接至总线14。As shown in FIG. 5, the
电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如各种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the
处理器11可以是各种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的各个方法和处理,例如关联数据的存储方法。The
在一些实施例中,关联数据的存储方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的关联数据的存储方法的一个或多个步骤。备选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行关联数据的存储方法。In some embodiments, the storage method of associated data may be implemented as a computer program tangibly embodied in a computer-readable storage medium, such as
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described herein above may be implemented in digital electronic circuitry, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips system (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
用于实施本发明的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Computer programs for implementing the methods of the present invention may be written in any combination of one or more programming languages. These computer programs may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus, such that the computer programs, when executed by the processor, cause the functions/operations specified in the flowcharts and/or block diagrams to be carried out. The computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
在本发明的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with the instruction execution system, apparatus or device. Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. Alternatively, the computer-readable storage medium may be a machine-readable signal medium. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein may be implemented on an electronic device having a display device (eg, a CRT (cathode ray tube) or an LCD (liquid crystal display)) for displaying information to the user monitor); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the electronic device. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), blockchain networks, and the Internet.
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。A computing system can include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the traditional physical host and VPS services, which are difficult to manage and weak in business scalability. defect.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present invention can be performed in parallel, sequentially or in different orders, and as long as the desired results of the technical solutions of the present invention can be achieved, no limitation is imposed herein.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present invention. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210750490.1A CN115098506B (en) | 2022-06-28 | 2022-06-28 | A method, device, equipment and storage medium for storing associated data |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210750490.1A CN115098506B (en) | 2022-06-28 | 2022-06-28 | A method, device, equipment and storage medium for storing associated data |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115098506A true CN115098506A (en) | 2022-09-23 |
| CN115098506B CN115098506B (en) | 2025-08-22 |
Family
ID=83295167
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210750490.1A Active CN115098506B (en) | 2022-06-28 | 2022-06-28 | A method, device, equipment and storage medium for storing associated data |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115098506B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8185534B1 (en) * | 2009-02-05 | 2012-05-22 | Google Inc. | Consolidated record generation with stable identifiers for data integration systems |
| CN105787112A (en) * | 2016-03-24 | 2016-07-20 | 浪潮通信信息系统有限公司 | Data presentation method and device |
| CN106959960A (en) * | 2016-01-11 | 2017-07-18 | 杭州海康威视数字技术股份有限公司 | Data capture method and device |
| CN110245329A (en) * | 2018-03-07 | 2019-09-17 | 珠海金山办公软件有限公司 | Text management method, device, electronic device, and computer-readable storage medium |
| WO2021073242A1 (en) * | 2019-10-18 | 2021-04-22 | 蚂蚁区块链科技(上海)有限公司 | Index creation and data querying methods, apparatus and device |
-
2022
- 2022-06-28 CN CN202210750490.1A patent/CN115098506B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8185534B1 (en) * | 2009-02-05 | 2012-05-22 | Google Inc. | Consolidated record generation with stable identifiers for data integration systems |
| CN106959960A (en) * | 2016-01-11 | 2017-07-18 | 杭州海康威视数字技术股份有限公司 | Data capture method and device |
| CN105787112A (en) * | 2016-03-24 | 2016-07-20 | 浪潮通信信息系统有限公司 | Data presentation method and device |
| CN110245329A (en) * | 2018-03-07 | 2019-09-17 | 珠海金山办公软件有限公司 | Text management method, device, electronic device, and computer-readable storage medium |
| WO2021073242A1 (en) * | 2019-10-18 | 2021-04-22 | 蚂蚁区块链科技(上海)有限公司 | Index creation and data querying methods, apparatus and device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115098506B (en) | 2025-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105608113B (en) | Judge the method and device of POI data in text | |
| CN114387061A (en) | Product push method, device, electronic device and readable storage medium | |
| CN106682190B (en) | Method, device, application search method and server for constructing tag knowledge base | |
| CN113239295A (en) | Search method, search device, electronic equipment and storage medium | |
| CN113220710A (en) | Data query method and device, electronic equipment and storage medium | |
| CN112860993A (en) | Method, device, equipment, storage medium and program product for classifying points of interest | |
| CN112506864A (en) | File retrieval method and device, electronic equipment and readable storage medium | |
| CN112989190A (en) | Commodity mounting method and device, electronic equipment and storage medium | |
| WO2019056502A1 (en) | Variety game result prediction method and apparatus, and storage medium | |
| CN113360602B (en) | Method, apparatus, device and storage medium for outputting information | |
| CN113868508A (en) | Writing material query method and device, electronic equipment and storage medium | |
| CN114064728A (en) | A data query method, device, electronic device, medium and product | |
| CN117668171B (en) | Text generation method, training device, electronic equipment and storage medium | |
| CN113032258A (en) | Electronic map testing method and device, electronic equipment and storage medium | |
| CN103514167B (en) | Data processing method and equipment | |
| CN115098506A (en) | Associated data storage method, device, equipment and storage medium | |
| CN117539987A (en) | A keyword search method, device, electronic equipment and medium | |
| CN115017145A (en) | Data expansion method, device and storage medium | |
| CN116226533A (en) | Method, device and medium for news association recommendation based on association prediction model | |
| CN115718821A (en) | Search ranking model generation method, ranking display method, device and equipment | |
| CN114756746A (en) | Virtual space recommendation method and device, electronic equipment and storage medium | |
| CN114444514A (en) | Semantic matching model training method, semantic matching method and related device | |
| CN113420781A (en) | Brand identification method, apparatus, device, storage medium and program product | |
| CN113268987A (en) | Entity name identification method and device, electronic equipment and storage medium | |
| CN112926319A (en) | Method, device, equipment and storage medium for determining domain vocabulary |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |