CN115092888A - Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage - Google Patents
Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage Download PDFInfo
- Publication number
- CN115092888A CN115092888A CN202210738553.1A CN202210738553A CN115092888A CN 115092888 A CN115092888 A CN 115092888A CN 202210738553 A CN202210738553 A CN 202210738553A CN 115092888 A CN115092888 A CN 115092888A
- Authority
- CN
- China
- Prior art keywords
- reactor
- energy
- heat
- catalysis
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 34
- 238000004146 energy storage Methods 0.000 title claims abstract description 24
- 230000008878 coupling Effects 0.000 title claims abstract description 7
- 238000010168 coupling process Methods 0.000 title claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 7
- 238000005338 heat storage Methods 0.000 claims abstract description 27
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 238000005485 electric heating Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 50
- 239000007789 gas Substances 0.000 claims description 44
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 239000010453 quartz Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 230000002457 bidirectional effect Effects 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 3
- 239000012495 reaction gas Substances 0.000 claims description 3
- 238000006057 reforming reaction Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 238000009529 body temperature measurement Methods 0.000 claims 1
- KDRIEERWEFJUSB-UHFFFAOYSA-N carbon dioxide;methane Chemical compound C.O=C=O KDRIEERWEFJUSB-UHFFFAOYSA-N 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000007790 solid phase Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/348—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents by direct contact with heat accumulating liquids, e.g. molten metals, molten salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及太阳能利用技术领域,特别涉及一种耦合太阳能聚光催化及储能的连续流转化系统。The invention relates to the technical field of solar energy utilization, in particular to a continuous flow conversion system coupled with solar energy concentrating catalysis and energy storage.
背景技术Background technique
太阳能具有清洁、取之不尽用之不竭等特点,但是存在时间分布不均问题,太阳能基本无法用于稳定的光热催化。Solar energy is clean and inexhaustible, but there is a problem of uneven time distribution, and solar energy cannot be used for stable photothermal catalysis.
甲烷作为天然气和可燃冰的主要成分,在地球上的储量巨大并有望取代化石燃料成为较清洁的能源,同时基于甲烷合成的高附加值产物也在化工上具有重要地位,例如:乙烯、甲硫醇、合成气等。而目前利用太阳能进行催化的材料大多为氧化铈和氧化锌,催化反应多为甲烷热催化制取合成气,温度大多高于700摄氏度,但催化甲烷制取其他高附加值产物的催化剂多种多样,反应所需条件也多为光催化或光热催化,700摄氏度的高温可能会造成催化材料的烧结。如果能开发一种新的反应器,该反应器可以有效控制反应器的温度,使之可以应用于多种甲烷催化反应,同时将多余的太阳能转化为热能再次加以利用,将太阳能光热化学储能与太阳能生热进行有机结合,会对太阳能光热利用领域带来巨大变化。As the main component of natural gas and combustible ice, methane has huge reserves on earth and is expected to replace fossil fuels as a cleaner energy source. At the same time, high value-added products based on methane synthesis also play an important role in chemical industry, such as: ethylene, methyl sulfide Alcohol, syngas, etc. At present, most of the materials catalyzed by solar energy are cerium oxide and zinc oxide. The catalytic reaction is mostly methane thermal catalysis to produce synthesis gas, and the temperature is mostly higher than 700 degrees Celsius. However, there are various catalysts for catalyzing methane to produce other high value-added products. , the conditions required for the reaction are mostly photocatalysis or photothermal catalysis, and the high temperature of 700 degrees Celsius may cause the sintering of the catalytic material. If a new reactor can be developed, the reactor can effectively control the temperature of the reactor, so that it can be applied to a variety of methane catalytic reactions, and at the same time convert excess solar energy into thermal energy for reuse, and convert solar thermal chemical storage into solar energy. It can be organically combined with solar heat generation, which will bring great changes to the field of solar thermal utilization.
在我国西北地区,太阳能资源丰富,因此,如果能够开发出一种新的反应器,该反应器可以将甲烷高附加值利用与太阳能光热催化进行有机的结合,会对太阳能光热领域带来巨大变化。In northwestern China, solar energy resources are abundant. Therefore, if a new reactor can be developed, which can organically combine the high value-added utilization of methane with solar photothermal catalysis, it will bring benefits to the solar photothermal field. Huge change.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本发明的目的在于提供一种耦合太阳能聚光催化及储能的连续流转化系统,将甲烷高附加值利用与太阳能光热催化相结合,能够实现对太阳能进行平稳持续的利用。In order to overcome the above-mentioned deficiencies of the prior art, the purpose of the present invention is to provide a continuous flow conversion system coupled with solar energy concentrating catalysis and energy storage, which combines the high value-added utilization of methane with solar photothermal catalysis, which can realize the conversion of solar energy to solar energy. Smooth and continuous use.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种耦合太阳能聚光催化及储能的连续流转化系统,其特征在于,包括:A continuous flow conversion system coupled with solar energy concentrating catalysis and energy storage, is characterized in that, comprising:
a)可进行吸收热量和反应的反应器1,该反应器可以收集太阳能和由太阳能产生的热量,从而供给甲烷二氧化碳转化的进行;a) a
b)一个储能系统,该系统包括储热罐2,由反应器系统中由太阳能产生的多余的能量将熔融金属加热并重新为无光条件下的反应器提供反应热﹔b) an energy storage system comprising a thermal storage tank 2 for heating the molten metal from the excess energy generated by solar energy in the reactor system and resupplying the reaction heat for the reactor in dark conditions;
c)一个补偿系统,该系统包括电加热系统3,用于补偿储能系统中流失的热量,通过精确测温并控制加热熔融金属,使熔融金属可以恒定温度流入反应器1内部进行反应;c) a compensation system, which includes an
d)一个气体分离系统,由氢气分离器15和一氧化碳分离器16组成,该系统可以将流出的气体经双管式套管分离,收集所需要的化工产品﹔d) A gas separation system, consisting of a
反应器1配有符合尺寸的石英管,石英管内可以装载或更换固体颗粒催化剂固定床,工作温度为550℃-650℃。
石英管的气体入口13与二氧化碳和甲烷气瓶连通,气瓶通过分压阀控制反应系统内总压强小于0.1Mpa。The
反应器内部有传热介质水道,由反应器的侧面进出,在反应器中部环绕,进出口有配合尺寸的水头螺纹。There is a heat transfer medium water channel inside the reactor, which enters and exits from the side of the reactor and surrounds the middle of the reactor. The inlet and outlet are provided with water head threads of matching sizes.
反应器1对应位置设置有用于将太阳光聚焦于反应器1上的太阳能聚光装置。A solar concentrating device for focusing sunlight on the
储能系统包括储热罐、液态金属、储热罐出口AB、保温外壳、冷却风扇和双向高温泵。The energy storage system includes heat storage tank, liquid metal, heat storage tank outlet AB, thermal insulation shell, cooling fan and bidirectional high temperature pump.
液态金属中有大量陶瓷颗粒8,以提高液态金属的储热能力,降低热损失和减少体积的作用。There are a large number of
储热罐2与保温外壳9间有冷却风道7,可使冷却风扇10可以将储热罐多余热量传出;储热罐顶部有相应规格的遮雨罩。There is a
所述储热罐出口有滤网11以过滤陶瓷颗粒;There is a
所述双向高温泵4通过电脑控制,当反应器1温度高于额定值,双向高温泵4正向流通,储热盐由出口6流出,由出口5流入,电加热丝3不工作;当反应器1温度低于额定值,双向高温泵4反向流通,储热盐由出口5流出,由出口6流入;当储热罐2温度和反应器1温度都低于额定值,电加热丝3开始工作;双向高温泵4的具体流速由反应器1表面实际温度决定,通过电脑程序控制。The two-way high-
气体分离系统由氢气分离器15和一氧化碳分离器16组成,气体分离器由双筒构成,反应器气体出口连接分离器内筒,内筒壁上附有相应气体的透膜,可供特定气体定向透过,外筒连接气体检测装置。The gas separation system consists of a
一种耦合太阳能聚光催化及储能的连续流转化系统,包括以下步骤:A continuous flow conversion system coupling solar energy concentrating catalysis and energy storage, comprising the following steps:
当太阳辐射充足时,气体入口13向反应器1的石英管中充入反应气体,反应器1受到光热开始反应,产物通过气体出口14流出至气体收集装置系统15和16的内管,内管壁上有吸附产物气体的对应钯膜,产物气体透过内管进入外管由外管出口流出至色谱定量分析,未反应的气体由内管出口继续通入反应器的气体入口13进行反应。反应器1内部的马蹄状换热管将太阳能催化反应中多余的能量用以加热熔融金属后流入储热罐2。此时,电加热系统3不工作,双向高温泵4正向流通,熔融金属由出口6流出,其具体流速由反应器外部温度探头监控,通过电脑程序定向控制以保证反应器的温度在550℃-650℃。当储热罐2内部温度探头检测到储热罐温度高于额定值,冷却风扇将启动以保证使用安全。完成循环;When the solar radiation is sufficient, the
当没有太阳辐射时,温度探头检测到储热罐2中的熔融金属温度高于反应器表面温度,则双向高温泵4逆向流通,熔融金属由出口5流出,通过太阳辐射充足时加热的熔融金属的温度以加热反应器,气体入口13向反应器1的石英管中充入反应气体,反应器1受热进行反应,产物通过气体收集装置15和16的内管,通过内管壁上吸附产物气体的对应钯膜,产物气体透过内管进入外管由外管出口12流出至储气罐收集,未反应的气体由内管出口继续通入反应器的气体入口13进行反应,完成循环。When there is no solar radiation, the temperature probe detects that the temperature of the molten metal in the heat storage tank 2 is higher than the surface temperature of the reactor, the bidirectional
当没有太阳辐射,且温度探头检测到储热罐温度和反应器温度都低于额定值时,电加热器3开始工作,双向高温泵4逆向流通,熔融金属由出口5流出,通过电加热器补偿缺失能量以保证通入反应器的熔融金属温度大于600℃,完成循环。When there is no solar radiation, and the temperature probe detects that the temperature of the heat storage tank and the reactor are both lower than the rated value, the
附图说明Description of drawings
图1是太阳能光热催化反应系统装置示意图Figure 1 is a schematic diagram of a solar photothermal catalytic reaction system device
图2是太阳能光热催化反应器示意图Figure 2 is a schematic diagram of a solar photothermal catalytic reactor
图3是气体分离装置示意图Figure 3 is a schematic diagram of a gas separation device
图4是四面体状Ni1/CeO2应用太阳能聚光催化的产率活性图Figure 4 is a graph of the yield activity of tetrahedral Ni 1 /CeO 2 applied to solar concentrating catalysis
本发明的有益效果:Beneficial effects of the present invention:
本发明所述的基于甲烷高附加值利用的太阳能光热催化反应器在具体工作时,通过聚光器利用太阳能对熔融金属进行加热或电加热装置对熔融金属进行加热,控制反应器内部温度恒定于一个区间内,管程中的反应物在吸收了热量和光后进行催化反应,从而实现甲烷高附加值利用和稳定的太阳能光热催化的有机结合。The solar photothermal catalytic reactor based on the high value-added utilization of methane according to the present invention uses solar energy to heat the molten metal through a concentrator or an electric heating device to heat the molten metal during specific operation, and the internal temperature of the reactor is controlled to be constant. Within a certain interval, the reactants in the tube side undergo a catalytic reaction after absorbing heat and light, thereby realizing the organic combination of high value-added utilization of methane and stable solar photothermal catalysis.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with the examples. limit.
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的结构、材料或方法。In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that these specific details need not be employed to practice the present invention. In other instances, well-known structures, materials, or methods have not been described in detail in order to avoid obscuring the present invention.
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。Throughout this specification, references to "one embodiment," "an embodiment," "an example," or "an example" mean that a particular feature, structure, or characteristic described in connection with the embodiment or example is included in the present invention in at least one embodiment. Thus, appearances of the phrases "one embodiment," "an embodiment," "one example," or "an example" in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, or characteristics, may be combined in any suitable combination and/or subcombination in one or more embodiments or examples. Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and that the drawings are not necessarily drawn to scale. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
实施例1:以99.99%甲烷和二氧化碳通入反应器进行太阳能光热催化。Example 1: Passing 99.99% methane and carbon dioxide into the reactor for solar photothermal catalysis.
本实施例中,甲烷和二氧化碳管路流经反应器1和气体分离装置形成循环,甲烷干重整产物氢气和一氧化碳被交替分离,促使甲烷干重整反应平衡向正向移动,使甲烷转化率相比于单次反应转化率大幅度提升。In the present embodiment, the methane and carbon dioxide pipelines flow through the
其中,太阳能聚光器汇聚后温度达到1200℃以上,通过熔融金属的能量交换使温度维持在600℃。Among them, the temperature of the solar concentrator reaches more than 1200 °C after concentrating, and the temperature is maintained at 600 °C through the energy exchange of molten metal.
本示例采用四面体状Ni1/CeO2作为催化剂应用太阳能聚光催化。甲烷和二氧化碳以总流速为30sccm的速度流入反应器1,催化剂为Ni1/CeO2经造粒后筛选30-70目的颗粒,总质量为200mg,置于反应器1中部石英管中。经测算,通过反应器1对应的聚光器汇聚的光照强度为17.25W。反应后的产物进入气相色谱GC-7900进行分析并计算获得产物产量。在此示例中对Ni1/CeO2催化剂进行了1000h的活性测算,在1000小时内共产生约1300L一氧化碳和1200L氢气。每小时具体产量如图4所示。In this example, tetrahedral Ni 1 /CeO 2 is used as a catalyst for solar concentrating catalysis. Methane and carbon dioxide flowed into
实施例2:以20%甲烷和二氧化碳通入反应器进行长时间200小时测试。Example 2: A long-term 200-hour test was conducted with 20% methane and carbon dioxide into the reactor.
本实施例中,纯度为20%的甲烷和二氧化碳管路流经反应器1和气体分离装置形成循环,甲烷干重整产物氢气和一氧化碳被交替分离,最后进入岛津GC-7900色谱定量分析。In this example, the methane and carbon dioxide pipelines with a purity of 20% flow through the
其中,太阳能聚光器汇聚后温度达到1200℃以上,通过熔融金属的能量交换使温度维持在600℃。Among them, the temperature of the solar concentrator reaches more than 1200 °C after concentrating, and the temperature is maintained at 600 °C through the energy exchange of molten metal.
本示例采用棒状Ni1/CeO2作为催化剂应用太阳能聚光催化。甲烷和二氧化碳以总流速为20sccm的速度流入反应器1,催化剂Ni1/CeO2经造粒后筛选30-70目的颗粒,总质量为30mg,置于反应器1中部石英管中。经测算,通过反应器1对应的聚光器汇聚的光照强度为17.25W。反应后的产物进入气相色谱GC-7900进行分析并计算获得产物产量。在此示例中对Ni1/CeO2催化剂进行持续反应共250小时的活性测算,观测在太阳能光热催化状态下,催化剂与系统的稳定性,系统能稳定长时间运行。In this example, rod-shaped Ni 1 /CeO 2 is used as a catalyst for solar concentrating catalysis. Methane and carbon dioxide flowed into
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the essential technical content of the present invention. The essential technical content of the present invention is broadly defined in the scope of the claims of the application, and any technical entity completed by others Or method, if it is exactly the same as that defined in the scope of the claims of the application, or an equivalent change, it will be deemed to be covered by the scope of the claims.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210738553.1A CN115092888A (en) | 2022-06-24 | 2022-06-24 | Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210738553.1A CN115092888A (en) | 2022-06-24 | 2022-06-24 | Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115092888A true CN115092888A (en) | 2022-09-23 |
Family
ID=83294623
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210738553.1A Pending CN115092888A (en) | 2022-06-24 | 2022-06-24 | Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115092888A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116443815A (en) * | 2023-04-18 | 2023-07-18 | 西南石油大学 | Circulation system and method for realizing carbon dioxide production by solar energy supply |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102744027A (en) * | 2012-07-24 | 2012-10-24 | 南京工业大学 | Solar high-temperature thermochemical coupling phase change reactor |
| CN204212934U (en) * | 2014-11-18 | 2015-03-18 | 张建城 | Photospot solar electric power storage electricity generating device |
| CN110167665A (en) * | 2016-10-17 | 2019-08-23 | 瑞士苏黎世联邦理工学院 | Method for having the thermochemical reactor system of the temperature varied cyclical process of integrated recuperation of heat and for operating it |
| CN111219893A (en) * | 2019-12-30 | 2020-06-02 | 赫普能源环境科技股份有限公司 | Power station boiler coupling photo-thermal molten salt heat collection heating system and method |
| WO2020141153A1 (en) * | 2019-01-02 | 2020-07-09 | L2 Consultancy B.V. | System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier |
| CN113620243A (en) * | 2021-08-24 | 2021-11-09 | 西安交通大学 | A solar-photothermal coupling utilization system and method suitable for methane dry reforming reaction |
-
2022
- 2022-06-24 CN CN202210738553.1A patent/CN115092888A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102744027A (en) * | 2012-07-24 | 2012-10-24 | 南京工业大学 | Solar high-temperature thermochemical coupling phase change reactor |
| CN204212934U (en) * | 2014-11-18 | 2015-03-18 | 张建城 | Photospot solar electric power storage electricity generating device |
| CN110167665A (en) * | 2016-10-17 | 2019-08-23 | 瑞士苏黎世联邦理工学院 | Method for having the thermochemical reactor system of the temperature varied cyclical process of integrated recuperation of heat and for operating it |
| WO2020141153A1 (en) * | 2019-01-02 | 2020-07-09 | L2 Consultancy B.V. | System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier |
| CN111219893A (en) * | 2019-12-30 | 2020-06-02 | 赫普能源环境科技股份有限公司 | Power station boiler coupling photo-thermal molten salt heat collection heating system and method |
| CN113620243A (en) * | 2021-08-24 | 2021-11-09 | 西安交通大学 | A solar-photothermal coupling utilization system and method suitable for methane dry reforming reaction |
Non-Patent Citations (1)
| Title |
|---|
| 孔果果: "直接耦合热催化加氢和光催化分解水转化CO2-H2O制燃料", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116443815A (en) * | 2023-04-18 | 2023-07-18 | 西南石油大学 | Circulation system and method for realizing carbon dioxide production by solar energy supply |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101289164B (en) | System and method for hydrogen production by thermochemical reaction driven by solar medium and low temperature heat | |
| CN201040718Y (en) | Thermochemical reaction hydrogen production system driven by solar medium and low temperature heat | |
| CN101222975B (en) | Compact reforming reactor | |
| CN101177240B (en) | An integrated dimethyl ether steam reforming hydrogen production device and method | |
| CN103372413B (en) | A kind of metallic foam support catalytic bed solar absorption reaction unit | |
| Yao et al. | Design and optimization of solar-dish volumetric reactor for methane dry reforming process with three-dimensional optics-CFD method | |
| CN107596863A (en) | A kind of Photospot solar distributed heat hydrogen production system employing reforming technology based on cylindrical shape high-temperature heat pipe | |
| CN103738918A (en) | Solar energy methane reforming reactor based on photo-thermal cooperative utilization | |
| CN102721312B (en) | Solar energy thermochemistry hybrid energy storage device and method | |
| CN102126704A (en) | System and method for producing hydrogen by collecting solar energy in multi-plate mode and coupling biomass supercritical water gasification | |
| Xie et al. | Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector | |
| CN112142001A (en) | A kind of iodine-sulfur cycle hydrogen production method and system based on high-efficiency light energy utilization | |
| CN110354765A (en) | Photo-thermal fixed bed reaction experimental provision and method for hydrogenation of carbon dioxide methanation reaction | |
| CN117680048A (en) | A solar-driven gas reactor | |
| CN115092888A (en) | Continuous flow conversion system for coupling solar light-gathering catalysis and energy storage | |
| CN202442516U (en) | Indirect intermediate temperature solar thermochemical energy storing device based on chemical-looping combustion | |
| US20210154634A1 (en) | Reactor for performing equilibrium-reduced reactions | |
| CN108644880B (en) | A solar heating system based on a spiral plate reactor and its working method | |
| Jin et al. | Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy | |
| Wang | Solar Thermochemical Fuel | |
| CN108854897B (en) | Phase-change heat storage type solar thermochemical reaction device | |
| CN102115030B (en) | Supercritical water gasification hydrogen production and heat absorption reactor for multi-disk solar heat-collecting coupling biomass | |
| US20140271382A1 (en) | Parabolic concentrating solar collector | |
| CN112661111B (en) | Medium-low temperature linear solar hydrogen production electrothermal simulation experiment platform and experiment method | |
| CN113603057A (en) | Device and method for preparing synthesis gas by reforming methane/carbon dioxide by using solar energy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |