CN115117149B - Fast recovery diode based on wet etching process and preparation method thereof - Google Patents
Fast recovery diode based on wet etching process and preparation method thereof Download PDFInfo
- Publication number
- CN115117149B CN115117149B CN202211014680.3A CN202211014680A CN115117149B CN 115117149 B CN115117149 B CN 115117149B CN 202211014680 A CN202211014680 A CN 202211014680A CN 115117149 B CN115117149 B CN 115117149B
- Authority
- CN
- China
- Prior art keywords
- type
- doped region
- groove
- type doped
- epitaxial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000008569 process Effects 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 238000001039 wet etching Methods 0.000 title claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 54
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 49
- 238000000137 annealing Methods 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 239000002019 doping agent Substances 0.000 claims description 52
- 238000002513 implantation Methods 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- -1 boron ions Chemical class 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/422—PN diodes having the PN junctions in mesas
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/045—Manufacture or treatment of PN junction diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本申请属于功率器件技术领域,尤其涉及一种基于湿法刻蚀工艺的快恢复二极管及其制备方法。The application belongs to the technical field of power devices, and in particular relates to a fast recovery diode based on a wet etching process and a preparation method thereof.
背景技术Background technique
快恢复二极管通常由PIN结构的外延构成,在全局或局部载流子寿命控制技术的应用下,降低载流子寿命,使二极管具备快速恢复的特性。该类二极管通常同IGBT并联使用,二极管反向恢复过程中产生的峰值电流通常会使IGBT的开通损耗增加,若外延缓冲层控制不好会导致较低的软度,影响IGBT的栅极电压。通常使用全局载流子寿命控制的快速恢复二极管的正向开启压降(VF)越高即阳极注入效率低,反向峰值电流(IRM)相对小,对IGBT的影响越小,但二极管的损耗增加。Fast recovery diodes are usually formed by the epitaxy of the PIN structure. Under the application of global or local carrier lifetime control technology, the carrier lifetime is reduced, so that the diode has fast recovery characteristics. This type of diode is usually used in parallel with the IGBT. The peak current generated during the reverse recovery process of the diode usually increases the turn-on loss of the IGBT. If the epitaxial buffer layer is not well controlled, it will lead to lower softness and affect the gate voltage of the IGBT. Generally, the higher the forward turn-on voltage drop (VF) of the fast recovery diode controlled by the global carrier life is, the anode injection efficiency is low, the reverse peak current (IRM) is relatively small, and the impact on the IGBT is smaller, but the loss of the diode Increase.
然而,目前的快速恢复二极管的制备过程中,肖特基的势垒较低不具备制备高压快速恢复二级管的条件,另外通过降低二极管的阳极的注入效率,降低P结的浓度及深度,但存在不利于抗浪涌电流的问题。However, in the current preparation process of fast recovery diodes, the Schottky barrier is low and does not meet the conditions for preparing high-voltage fast recovery diodes. In addition, by reducing the injection efficiency of the anode of the diode and reducing the concentration and depth of the P junction, But there is a problem that is not conducive to anti-surge current.
发明内容Contents of the invention
本申请的目的在于提供一种基于湿法刻蚀工艺的快恢复二极管及其制备方法,旨在解决现有的快恢复二极管存在的无法同时兼容高压、抗浪涌电流的问题。The purpose of the present application is to provide a fast recovery diode based on a wet etching process and its preparation method, aiming to solve the problem that the existing fast recovery diode cannot be compatible with high voltage and anti-surge current at the same time.
本申请实施例第一方面提供了一种快恢复二极管的制备方法,所述制备方法包括:The first aspect of the embodiment of the present application provides a preparation method of a fast recovery diode, the preparation method comprising:
在N型外延层的正面形成光刻胶;Forming a photoresist on the front side of the N-type epitaxial layer;
在所述光刻胶的保护下采用湿法刻蚀工艺在所述N型外延层的正面形成凹槽;其中,所述凹槽的面积大于所述光刻胶上的刻蚀孔的面积;Under the protection of the photoresist, a groove is formed on the front surface of the N-type epitaxial layer by a wet etching process; wherein, the area of the groove is larger than the area of the etching hole on the photoresist;
在所述光刻胶的保护下向所述N型外延层的正面注入第一P型掺杂离子以在所述凹槽底部形成第一P型掺杂区,并在去除所述光刻胶后退火处理;Implanting first P-type dopant ions to the front of the N-type epitaxial layer under the protection of the photoresist to form a first P-type dopant region at the bottom of the groove, and removing the photoresist Post annealing treatment;
向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区,并退火处理;其中,所述第二P型掺杂区的掺杂浓度小于所述第一P型掺杂区的掺杂浓度;Implanting second P-type dopant ions into the front side of the N-type epitaxial layer to form a second P-type doped region on the sidewall of the groove and the front side of the N-type epitaxial layer, and annealing; wherein , the doping concentration of the second P-type doped region is less than the doping concentration of the first P-type doped region;
在所述第一P型掺杂区的表面形成阳极金属层,并在所述N型外延层的背面形成阴极金属层。An anode metal layer is formed on the surface of the first P-type doped region, and a cathode metal layer is formed on the back of the N-type epitaxial layer.
在一个实施例中,所述第二P型掺杂区的厚度小于所述第一P型掺杂区的厚度。In one embodiment, the thickness of the second P-type doped region is smaller than the thickness of the first P-type doped region.
在一个实施例中,所述在所述光刻胶的保护下向所述N型外延层的正面注入第一P型掺杂离子以在所述凹槽底部形成第一P型掺杂区,并在去除所述光刻胶后退火处理的步骤包括:In one embodiment, under the protection of the photoresist, the first P-type doping ions are implanted into the front surface of the N-type epitaxial layer to form a first P-type doping region at the bottom of the groove, And the steps of annealing after removing the photoresist include:
以第一注入角度通过所述光刻胶上的刻蚀孔向所述凹槽内注入第一P型掺杂离子;其中,所述第一注入角度大于0度,且小于30度;Implanting first P-type dopant ions into the groove through the etching hole on the photoresist at a first implantation angle; wherein, the first implantation angle is greater than 0 degrees and less than 30 degrees;
去除所述光刻胶,然后在1000度-1200度的温度下退火处理100-600分钟。The photoresist is removed, and then annealed at a temperature of 1000-1200 degrees for 100-600 minutes.
在一个实施例中,向所述凹槽内注入第一P型掺杂离子的注入剂量为3*1012-8*1013。In one embodiment, the implantation dose of the first P-type dopant ions into the groove is 3*10 12 -8*10 13 .
在一个实施例中,所述向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区,并退火处理的步骤包括:In one embodiment, the implanting of second P-type dopant ions to the front surface of the N-type epitaxial layer forms a second P-type dopant ion on the sidewall of the groove and the front surface of the N-type epitaxial layer. heterogeneous regions, and the steps of annealing include:
向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区;其中,所述第二P型掺杂区包括平面P型掺杂区和圆弧状P型掺杂区,所述平面P型掺杂区位于所述凹槽的两侧,所述圆弧状P型掺杂区位于所述凹槽的侧壁;Implanting second P-type dopant ions into the front of the N-type epitaxial layer to form a second P-type doped region on the sidewall of the groove and the front of the N-type epitaxial layer; wherein, the first The two P-type doped regions include a planar P-type doped region and an arc-shaped P-type doped region, the planar P-type doped region is located on both sides of the groove, and the arc-shaped P-type doped region located on the sidewall of the groove;
在300℃-500℃的温度下退火处理60分钟-600分钟。Annealing treatment at a temperature of 300° C. to 500° C. for 60 minutes to 600 minutes.
本申请实施例第二方面还提供了一种快恢复二极管,包括:The second aspect of the embodiment of the present application also provides a fast recovery diode, including:
N型外延层,所述N型外延层的正面设有凹槽;N-type epitaxial layer, the front side of the N-type epitaxial layer is provided with grooves;
第一P型掺杂区,设于所述凹槽的底部;The first P-type doped region is located at the bottom of the groove;
平面P型掺杂区,设于所述凹槽的两侧,且所述平面P型掺杂区的厚度小于所述凹槽的深度;A planar P-type doped region is provided on both sides of the groove, and the thickness of the planar P-type doped region is smaller than the depth of the groove;
圆弧状P型掺杂区,设于所述凹槽的侧壁;其中,所述平面P型掺杂区和所述圆弧状P型掺杂区的掺杂浓度小于所述第一P型掺杂区的掺杂浓度;The arc-shaped P-type doped region is arranged on the sidewall of the groove; wherein, the doping concentration of the planar P-type doped region and the arc-shaped P-type doped region is lower than that of the first P The doping concentration of the type doping region;
正极金属层,设于所述N型外延层的正面;a positive electrode metal layer disposed on the front side of the N-type epitaxial layer;
阴极金属层,设于所述N型外延层的背面。The cathode metal layer is arranged on the back side of the N-type epitaxial layer.
在一个实施例中,所述平面P型掺杂区和所述圆弧状P型掺杂区的厚度小于所述第一P型掺杂区的厚度。In one embodiment, the thickness of the planar P-type doped region and the arc-shaped P-type doped region is smaller than the thickness of the first P-type doped region.
在一个实施例中,所述第一P型掺杂区的注入剂量为3*1012-8*1013。In one embodiment, the implantation dose of the first P-type doped region is 3*10 12 -8*10 13 .
在一个实施例中,所述凹槽的宽度由底部至顶部逐渐增加。In one embodiment, the width of the groove gradually increases from the bottom to the top.
在一个实施例中,所述凹槽的侧壁呈圆弧状,所述凹槽的横截面面积由其底部向上逐渐增加。In one embodiment, the sidewall of the groove is arc-shaped, and the cross-sectional area of the groove gradually increases from the bottom to the top.
本申请提供了一种基于湿法刻蚀工艺的快恢复二极管及其制备方法,首先在N型外延层的正面形成光刻胶,并在光刻胶的保护下采用湿法刻蚀工艺在N型外延层的正面形成凹槽;然后在光刻胶的保护下向N型外延层的正面注入第一P型掺杂离子以在凹槽底部形成第一P型掺杂区,并在去除光刻胶后退火处理;向N型外延层的正面注入掺杂浓度小于第一P型掺杂离子的第二P型掺杂离子,以在凹槽的侧壁以及N型外延层的正面形成第二P型掺杂区,并退火处理;最后形成阳极金属层和阴极金属层,通过在凹槽内同时制备高浓度P结和轻掺杂P结,不仅可以在不增加平面面积的情况下增加浅P区的面积,还可以降低二极管的IRM、VF,提升二极管的软度。The application provides a fast recovery diode based on a wet etching process and its preparation method. First, a photoresist is formed on the front side of the N-type epitaxial layer, and a wet etching process is used under the protection of the photoresist on the N-type epitaxial layer. The front of the N-type epitaxial layer forms a groove; then under the protection of the photoresist, the first P-type dopant ions are implanted into the front of the N-type epitaxial layer to form the first P-type doped region at the bottom of the groove, and after removing the light Annealing treatment after the resist; implanting the second P-type dopant ions with a doping concentration lower than the first P-type dopant ions to the front of the N-type epitaxial layer to form the first P-type dopant ions on the side walls of the groove and the front surface of the N-type epitaxial layer Two P-type doped regions, and annealing treatment; finally form the anode metal layer and cathode metal layer, by preparing high-concentration P junction and lightly doped P junction in the groove at the same time, not only can increase the surface area without increasing the plane area The area of the shallow P region can also reduce the IRM and VF of the diode and improve the softness of the diode.
附图说明Description of drawings
图1是本申请实施例提供的一种快恢复二极管的制备方法的流程示意图。FIG. 1 is a schematic flowchart of a method for preparing a fast recovery diode provided in an embodiment of the present application.
图2是本申请实施例提供的在N型外延层100的正面形成凹槽的示例图。FIG. 2 is an exemplary diagram of forming grooves on the front surface of the N-type
图3是本申请实施例提供的形成第一P型掺杂区110的示例图。FIG. 3 is an example diagram of forming the first P-type doped
图4是本申请实施例提供的形成第二P型掺杂区120的示例图。FIG. 4 is an exemplary diagram of forming the second P-type doped
图5是本申请实施例提供的形成快恢复二极管的示例图。FIG. 5 is an example diagram of forming a fast recovery diode provided by an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being “fixed” or “disposed on” another element, it may be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It is to be understood that the terms "length", "width", "top", "bottom", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inner", "outer" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present application, "plurality" means two or more, unless otherwise specifically defined.
快恢复二极管通常有PIN结构的外延构成,在全局或局部载流子寿命控制技术的应用下,降低载流子寿命,使二极管具备快速恢复的特性。该类二极管通常同IGBT并联使用,二极管反向恢复过程中产生的峰值电流通常会使IGBT的开通损耗增加,若缓冲层控制不好会导致低的软度,影响IGBT的栅极电压。通常使用全局载流子寿命控制的快速恢复二极管正向开启压降VF越高即阳极注入效率低,反向峰值电流IRM相对小,对IGBT的影响越小,但二极管的损耗增加。Fast recovery diodes usually have the epitaxial structure of PIN structure. Under the application of global or local carrier lifetime control technology, the carrier lifetime is reduced, so that the diode has the characteristics of fast recovery. This type of diode is usually used in parallel with the IGBT. The peak current generated during the reverse recovery process of the diode usually increases the turn-on loss of the IGBT. If the buffer layer is not well controlled, it will lead to low softness and affect the gate voltage of the IGBT. Generally, the higher the forward turn-on voltage drop VF of the fast recovery diode with global carrier lifetime control is, the lower the anode injection efficiency is, and the reverse peak current IRM is relatively small, and the impact on the IGBT is smaller, but the loss of the diode increases.
为了获得低VF,高软度,低IRM的快速恢复二极管,本申请实施例通过湿化学法对外延获得的1200V或更高耐电压的漂移区N-硅进行具备腐蚀,并在光刻胶的掩膜下对光刻开孔进行P结加浓局部注入,随后去除光刻胶退火推结,再次对有源区注入较轻掺杂的P结注入。由于湿化学法制备了具有圆弧状的结构,经退火后的加浓P结仅部分占据圆弧的底部,二次轻P结掺杂覆盖了所有圆弧及平面。即可制备高浓P结及轻P结结构的PN结,调节腐蚀量可获得阳极注入效率适中的P结,在全局载流子寿命控制技术的应用下,可以达到制备低VF、低IRM、高软度的快速恢复二极管的目的。In order to obtain a fast recovery diode with low VF, high softness, and low IRM, the N-silicon in the drift region with a withstand voltage of 1200V or higher obtained by epitaxy is etched in the embodiment of the present application by wet chemical method, and the photoresist is etched Under the mask, perform local implantation of P junction enrichment to the photolithographic opening, then remove the photoresist and anneal to push the junction, and then implant lightly doped P junction implantation into the active region again. Since the arc-shaped structure is prepared by the wet chemical method, the enriched P-junction after annealing only partially occupies the bottom of the arc, and the secondary light P-junction doping covers all arcs and planes. The PN junction with high-concentration P junction and light P junction structure can be prepared, and the P junction with moderate anode injection efficiency can be obtained by adjusting the amount of corrosion. Under the application of global carrier lifetime control technology, it can achieve low VF, low IRM, purpose of high softness fast recovery diodes.
本申请实施例提供了一种基于湿法刻蚀工艺的快恢复二极管的制备方法,参见图1所示,本实施例中的制备方法包括步骤S100至步骤S500。An embodiment of the present application provides a method for manufacturing a fast recovery diode based on a wet etching process. Referring to FIG. 1 , the method for manufacturing in this embodiment includes steps S100 to S500.
在步骤S100中,在N型外延层100的正面形成光刻胶。In step S100 , a photoresist is formed on the front surface of the N-
在本实施例中,结合图2所示,通过在N型外延层100的正面旋涂光刻胶200,然后进行光刻显影处理在光刻膜上得到具有刻蚀孔的光刻图案,为后续的湿法刻蚀工艺提供刻蚀图案。In this embodiment, as shown in FIG. 2, a
在步骤S200中,在所述光刻胶的保护下采用湿法刻蚀工艺在所述N型外延层的正面形成凹槽。In step S200, under the protection of the photoresist, a groove is formed on the front surface of the N-type epitaxial layer by using a wet etching process.
在本实施例中,结合图2所示,在光刻胶200的保护下对N型外延层100的正面进行湿法刻蚀工艺,在具体应用中,刻蚀液通过刻蚀孔对N型外延层100的正面露出的部分区域进行刻蚀,从而在N型外延层100的正面形成凹槽301。In this embodiment, as shown in FIG. 2, a wet etching process is performed on the front side of the N-
在一个具体应用实施例中,N型外延层100可以为N型硅层,刻蚀液可以为氢氟酸。In a specific application embodiment, the N-
在一个具体应用实施例中,凹槽301的位置位于刻蚀孔正下方,且由于凹槽301是通过湿法刻蚀工艺制备,此时凹槽301的面积大于光刻胶200上的刻蚀孔的面积。In a specific application embodiment, the position of the
在一个具体应用实施例中,凹槽302的侧壁呈圆弧状,凹槽302的横截面面积由其底部向上逐渐增加。In a specific application embodiment, the sidewall of the groove 302 is arc-shaped, and the cross-sectional area of the groove 302 gradually increases from the bottom to the top.
在一个具体应用实施例中,凹槽301的底部区域与刻蚀孔的位置相对,凹槽301的侧壁位于光刻胶200的下方,结合图2所示,凹槽301的侧壁在垂直方向上被光刻胶200遮盖。In a specific application embodiment, the bottom area of the
在步骤S300中,在所述光刻胶的保护下向所述N型外延层的正面注入第一P型掺杂离子以在所述凹槽底部形成第一P型掺杂区,并在去除所述光刻胶后退火处理。In step S300, under the protection of the photoresist, the first P-type doping ions are implanted into the front surface of the N-type epitaxial layer to form a first P-type doping region at the bottom of the groove, and after removing The photoresist is post-annealed.
在本实施例中,在光刻胶200的保护下向N型外延层100的正面注入第一P型掺杂离子,由于光刻胶200的遮盖,第一P型掺杂离子主要注入至凹槽301的底部区域,从而在凹槽301的底部形成第一P型掺杂区110,并通过退火处理将凹槽301的底部的P型结推进,使得P型结向外扩展,此时,P型结覆盖凹槽301的底部区域,凹槽301的侧壁仍保持为N型外延层,如图3所示。In this embodiment, the first P-type dopant ions are implanted into the front surface of the N-
在一个实施例中,步骤S300中,在所述光刻胶的保护下向所述N型外延层的正面注入第一P型掺杂离子以在所述凹槽底部形成第一P型掺杂区,并在去除所述光刻胶后退火处理的步骤包括步骤S310和步骤S320。In one embodiment, in step S300, the first P-type dopant ions are implanted into the front surface of the N-type epitaxial layer under the protection of the photoresist to form a first P-type dopant ion at the bottom of the groove. region, and the step of annealing after removing the photoresist includes step S310 and step S320.
在步骤S310中,以第一注入角度通过所述光刻胶上的刻蚀孔向所述凹槽内注入第一P型掺杂离子。In step S310, first P-type dopant ions are implanted into the groove through the etching hole on the photoresist at a first implantation angle.
在本实施例中,第一注入角度可以为小注入角度,例如,第一注入角度大于0度,且小于30度,使得第一P型掺杂离子注入至光刻胶200的刻蚀孔正下方。In this embodiment, the first implantation angle can be a small implantation angle, for example, the first implantation angle is greater than 0 degrees and less than 30 degrees, so that the first P-type dopant ions are implanted into the etching hole of the
在一个具体应用实施例中,第一P型掺杂离子可以为硼离子或者铝离子。In a specific application embodiment, the first P-type dopant ions may be boron ions or aluminum ions.
在一个实施例中,向凹槽301内注入第一P型掺杂离子的注入剂量可以为3*1012-8*1013。In one embodiment, the implantation dose of the first P-type dopant ions implanted into the
在步骤S320中,去除所述光刻胶,然后在1000度-1200度的温度下退火处理100-600分钟。In step S320, the photoresist is removed, and then annealed at a temperature of 1000-1200 degrees for 100-600 minutes.
在本实施例中,在去除光刻胶200后,将注入第一P型掺杂离子的器件置于1000度-1200度的温度下退火处理100-600分钟,进一步推进第一P型掺杂区110的P型结深,使得第一P型掺杂区110的P型结向外扩展,P型结覆盖凹槽301的圆弧底部区域,凹槽301的侧壁的掺杂类型仍保持为N型。In this embodiment, after removing the
在一个具体应用实施例中,结合图3所示,退火后形成的第一P型掺杂区110呈圆弧状,该圆弧状的缺口包裹凹槽301的底部,退火后形成的第一P型掺杂区110由于P型掺杂离子扩散,此时第一P型掺杂区110的横截面积由凹槽301的底部向N型外延层100的背面逐渐增加,然后再逐渐减小,可以达到增加第一P型掺杂区110与N型外延层100之间的结面积的效果。In a specific application example, as shown in FIG. 3 , the first P-type doped
在步骤S400中,向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区,并退火处理。In step S400, implanting second P-type dopant ions into the front side of the N-type epitaxial layer to form a second P-type doped region on the sidewall of the groove and the front side of the N-type epitaxial layer, and annealed.
在本实施例中,在去除光刻胶200后,向N型外延层100的正面注入第二P型掺杂离子,由于没有光刻胶200的遮盖,此时第二P型掺杂离子注入至N型外延层100的整个正面,在N型外延层100的整个正面形成第二P型掺杂区120。In this embodiment, after the
在一个具体应用实施例中,第二P型掺杂区120的掺杂浓度小于第一P型掺杂区110的掺杂浓度,此时可以使得N型外延层100的整个正面具备浅P型结构,并通过在N型外延层100的整个正面注入第二P型掺杂离子,可以对作为深P型区的第一P型掺杂区110进行P型掺杂离子的加浓处理。In a specific application embodiment, the doping concentration of the second P-type doped
在一个实施例中,第一P型掺杂区110采用高剂量注入工艺将第一P型掺杂离子注入N型外延层100的正面的凹槽底部形成,第二P型掺杂区120采用低剂量高能量的注入工艺将第二P型掺杂离子注入至N型外延层100的正面形成。In one embodiment, the first P-type doped
在一个具体应用实施例中,高剂量注入工艺的注入剂量可以为3*1012-8*1013,其注入剂量至少为低剂量高能量的注入工艺的注入剂量的10倍。In a specific application embodiment, the implantation dose of the high-dose implantation process may be 3*10 12 -8*10 13 , which is at least 10 times the implantation dose of the low-dose high-energy implantation process.
在一个实施例中,步骤S400中,向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区,并退火处理的步骤包括步骤S410和步骤S420。In one embodiment, in step S400, second P-type dopant ions are implanted into the front surface of the N-type epitaxial layer to form a second P-type dopant on the sidewall of the groove and the front surface of the N-type epitaxial layer. type doped region, and the step of annealing includes step S410 and step S420.
在步骤S410中,向所述N型外延层的正面注入第二P型掺杂离子,以在所述凹槽的侧壁以及所述N型外延层的正面形成第二P型掺杂区。In step S410 , implanting second P-type dopant ions into the front side of the N-type epitaxial layer to form a second P-type doped region on the sidewall of the groove and the front side of the N-type epitaxial layer.
在本实施例中,结合图4所示,第二P型掺杂区120包括平面P型掺杂区122和圆弧状P型掺杂区121,平面P型掺杂区122位于凹槽301的两侧,圆弧状P型掺杂区121位于凹槽301的侧壁。In this embodiment, as shown in FIG. 4, the second P-type doped
在步骤S420中,在300℃-500℃的温度下退火处理60分钟-600分钟。In step S420 , annealing is performed at a temperature of 300° C.-500° C. for 60 minutes-600 minutes.
在本实施例中,在向N型外延层100的正面注入第二P型掺杂离子后,采取低温退火的方式激活掺杂离子,例如,退火温度可以为300℃-500℃,退火时间可以为60分钟-600分钟。In this embodiment, after implanting the second P-type dopant ions into the front surface of the N-
在一个实施例中,结合图4所示,第二P型掺杂区120的厚度小于第一P型掺杂区110的厚度。In one embodiment, as shown in FIG. 4 , the thickness of the second P-type doped
在本实施例中,由于凹槽301的侧壁呈圆弧状,圆弧状P型掺杂区121位于凹槽301的侧壁,且连接于平面P型掺杂区122与第一P型掺杂区110之间,此时由于凹槽301的圆弧侧壁的存在,可以在不增加平面积的情况下,增加了浅P区(即第一P型掺杂区110)的面积,提升了硅表面的利用率,总体而言阳极注入效率减小,表面(平面加弧面)电流密度不变,但平面电流密度增加,从而达到采用全局载流子寿命控制技术制备出低IRM、低VF、高软度的快恢复二极管。In this embodiment, since the sidewall of the
在步骤S500中,在所述第一P型掺杂区的表面形成阳极金属层,并在所述N型外延层的背面形成阴极金属层。In step S500, an anode metal layer is formed on the surface of the first P-type doped region, and a cathode metal layer is formed on the back of the N-type epitaxial layer.
在本实施例中,结合图5所示,通过在第一P型掺杂区110的表面形成阳极金属层410,然后在N型外延层100的背面形成阴极金属层420,完成快恢复二极管的制备。In this embodiment, as shown in FIG. 5 , by forming an
本申请实施例还提供了一种快恢复二极管,该快恢复二极管基于湿法刻蚀工艺制备,具体应用中,可以采用上述任一项实施例所述的制备方法制备。The embodiment of the present application also provides a fast recovery diode, which is prepared based on a wet etching process. In a specific application, the preparation method described in any one of the above embodiments can be used to prepare the fast recovery diode.
在一个实施例中,结合图5所示,快恢复二极管包括:N型外延层100、第一P型掺杂区110、平面P型掺杂区122、圆弧状P型掺杂区121、正极金属层410、阴极金属层420。In one embodiment, as shown in FIG. 5 , the fast recovery diode includes: an N-
具体的,N型外延层100的正面设有凹槽;第一P型掺杂区110设于N型外延层100正面的凹槽的底部;平面P型掺杂区122设于N型外延层100正面的凹槽的两侧,且平面P型掺杂区122的厚度小于凹槽的深度;圆弧状P型掺杂区121设于N型外延层100正面的凹槽的侧壁,正极金属层410设于N型外延层100的正面;阴极金属层420设于N型外延层100的背面。Specifically, the front of the N-
在本实施例中,平面P型掺杂区122和圆弧状P型掺杂区121组成第二P型掺杂区120,平面P型掺杂区122和圆弧状P型掺杂区121的掺杂浓度小于第一P型掺杂区110的掺杂浓度,平面P型掺杂区122位于凹槽301的两侧,圆弧状P型掺杂区121位于凹槽301的侧壁。In this embodiment, the planar P-type doped
在一个具体实施例中,第一P型掺杂区110的退火温度至少为第二P型掺杂区120的退火温度的两倍。In a specific embodiment, the annealing temperature of the first P-type doped
在一个实施例中,第二P型掺杂区120的厚度小于第一P型掺杂区110的厚度。In one embodiment, the thickness of the second P-type doped
在一个实施例中,结合图5所示,平面P型掺杂区122和圆弧状P型掺杂区121的厚度小于第一P型掺杂区110的厚度。In one embodiment, as shown in FIG. 5 , the thicknesses of the planar P-type doped
在一个实施例中,第一P型掺杂区110中注入第一P型掺杂离子的注入剂量为3*1012-8*1013。In one embodiment, the implantation dose of the first P-type dopant ions in the first P-type doped
在一个实施例中,第一P型掺杂区110采用高剂量注入工艺将第一P型掺杂离子注入N型外延层100的正面的凹槽底部形成,第二P型掺杂区120采用低剂量高能量的注入工艺将第二P型掺杂离子注入至N型外延层100的正面形成。In one embodiment, the first P-type doped
在一个具体应用实施例中,高剂量注入工艺的注入剂量可以为3*1012-8*1013,其注入剂量至少为低剂量高能量的注入工艺的注入剂量的10倍。In a specific application embodiment, the implantation dose of the high-dose implantation process may be 3*10 12 -8*10 13 , which is at least 10 times the implantation dose of the low-dose high-energy implantation process.
在一个实施例中,第一P型掺杂区110的掺杂浓度至少为第二P型掺杂区120的掺杂浓度的10倍。In one embodiment, the doping concentration of the first P-type doped
在一个实施例中,N型外延层100正面的凹槽的宽度由底部至顶部逐渐增加。In one embodiment, the width of the groove on the front side of the N-
在一个具体应用实施例中,凹槽302的侧壁呈圆弧状,凹槽302的横截面面积由其底部向上逐渐增加。In a specific application embodiment, the sidewall of the groove 302 is arc-shaped, and the cross-sectional area of the groove 302 gradually increases from the bottom to the top.
本申请实施例还提供了一种芯片,包括如上述任一项实施例所述的快恢复二极管;或者如上述任一项实施例所述的制备方法所制备的快恢复二极管。The embodiment of the present application also provides a chip, including the fast recovery diode described in any one of the above embodiments; or the fast recovery diode prepared by the preparation method described in any one of the above embodiments.
本申请提供了一种基于湿法刻蚀工艺的快恢复二极管及其制备方法,首先在N型外延层的正面形成光刻胶,并在光刻胶的保护下采用湿法刻蚀工艺在N型外延层的正面形成凹槽;然后在光刻胶的保护下向N型外延层的正面注入第一P型掺杂离子以在凹槽底部形成第一P型掺杂区,并在去除光刻胶后退火处理;向N型外延层的正面注入掺杂浓度小于第一P型掺杂离子的第二P型掺杂离子,以在凹槽的侧壁以及N型外延层的正面形成第二P型掺杂区,并退火处理;最后形成阳极金属层和阴极金属层,通过在凹槽内同时制备高浓度P结和轻掺杂P结,不仅可以在不增加平面面积的情况下增加浅P区的面积,还可以降低二极管的IRM、VF,提升二极管的软度。The application provides a fast recovery diode based on a wet etching process and its preparation method. First, a photoresist is formed on the front side of the N-type epitaxial layer, and a wet etching process is used under the protection of the photoresist on the N-type epitaxial layer. The front of the N-type epitaxial layer forms a groove; then under the protection of the photoresist, the first P-type dopant ions are implanted into the front of the N-type epitaxial layer to form the first P-type doped region at the bottom of the groove, and after removing the light Annealing treatment after the resist; implanting the second P-type dopant ions with a doping concentration lower than the first P-type dopant ions to the front of the N-type epitaxial layer to form the first P-type dopant ions on the side walls of the groove and the front surface of the N-type epitaxial layer Two P-type doped regions, and annealing treatment; finally form the anode metal layer and cathode metal layer, by preparing high-concentration P junction and lightly doped P junction in the groove at the same time, not only can increase the surface area without increasing the plane area The area of the shallow P region can also reduce the IRM and VF of the diode and improve the softness of the diode.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各掺杂区区的划分进行举例说明,实际应用中,可以根据需要而将上述功能区分配由不同的掺杂区完成,即将所述装置的内部结构划分成不同的掺杂区,以完成以上描述的全部或者部分功能。Those skilled in the art can clearly understand that for the convenience and brevity of description, only the division of the above-mentioned doped regions is used as an example. In practical applications, the above-mentioned functional regions can be assigned to different doped regions according to needs. Completion means that the internal structure of the device is divided into different doped regions, so as to complete all or part of the functions described above.
实施例中的各掺杂区可以集成在一个功能区中,也可以是各个掺杂区单独物理存在,也可以两个或两个以上掺杂区集成在一个功能区中,上述集成的功能区既可以采用同种掺杂离子实现,也可以采用多种掺杂离子共同实现。另外,各掺杂区的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述器件的制备方法中的中掺杂区的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Each doped region in the embodiment can be integrated in one functional region, or each doped region can exist separately physically, or two or more doped regions can be integrated in one functional region. The above-mentioned integrated functional region It can be realized by using the same kind of dopant ions, and can also be realized by using multiple dopant ions together. In addition, the specific names of the doped regions are only for the convenience of distinguishing each other, and are not used to limit the protection scope of the present application. For the specific working process of the medium-doped region in the above-mentioned device manufacturing method, reference may be made to the corresponding process in the foregoing method embodiments, and details will not be repeated here.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-described embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still implement the foregoing embodiments Modifications to the technical solutions described in the examples, or equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application, and should be included in the Within the protection scope of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211014680.3A CN115117149B (en) | 2022-08-23 | 2022-08-23 | Fast recovery diode based on wet etching process and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211014680.3A CN115117149B (en) | 2022-08-23 | 2022-08-23 | Fast recovery diode based on wet etching process and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115117149A CN115117149A (en) | 2022-09-27 |
| CN115117149B true CN115117149B (en) | 2022-11-29 |
Family
ID=83335661
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211014680.3A Active CN115117149B (en) | 2022-08-23 | 2022-08-23 | Fast recovery diode based on wet etching process and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115117149B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116454119A (en) * | 2023-06-15 | 2023-07-18 | 广东巨风半导体有限公司 | Fast recovery diode and preparation method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104269444A (en) * | 2014-10-11 | 2015-01-07 | 丽晶美能(北京)电子技术有限公司 | Fast recovery diode and manufacturing method of fast recovery diode |
| CN107403728A (en) * | 2017-08-28 | 2017-11-28 | 广微集成技术(深圳)有限公司 | Semiconductor element and manufacture method |
| CN110970485A (en) * | 2018-10-01 | 2020-04-07 | 爱动力半导体公司 | Fast recovery diode structure controlled by carrier injection and manufacturing method thereof |
| CN114300543A (en) * | 2022-03-10 | 2022-04-08 | 安建科技(深圳)有限公司 | Electron extraction type freewheeling diode device and preparation method thereof |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7186609B2 (en) * | 1999-12-30 | 2007-03-06 | Siliconix Incorporated | Method of fabricating trench junction barrier rectifier |
| US6426541B2 (en) * | 2000-07-20 | 2002-07-30 | Apd Semiconductor, Inc. | Schottky diode having increased forward current with improved reverse bias characteristics and method of fabrication |
| US7737522B2 (en) * | 2005-02-11 | 2010-06-15 | Alpha & Omega Semiconductor, Ltd. | Trench junction barrier controlled Schottky device with top and bottom doped regions for enhancing forward current in a vertical direction |
| JP5881322B2 (en) * | 2011-04-06 | 2016-03-09 | ローム株式会社 | Semiconductor device |
| CN103531465B (en) * | 2013-09-13 | 2018-04-06 | 上海集成电路研发中心有限公司 | fast recovery diode preparation method |
| KR101802410B1 (en) * | 2016-08-10 | 2017-11-29 | 파워큐브세미(주) | Wide trench type SiC Junction barrier schottky diode and method of manufacturing the same |
| US11469333B1 (en) * | 2020-02-19 | 2022-10-11 | Semiq Incorporated | Counter-doped silicon carbide Schottky barrier diode |
-
2022
- 2022-08-23 CN CN202211014680.3A patent/CN115117149B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104269444A (en) * | 2014-10-11 | 2015-01-07 | 丽晶美能(北京)电子技术有限公司 | Fast recovery diode and manufacturing method of fast recovery diode |
| CN107403728A (en) * | 2017-08-28 | 2017-11-28 | 广微集成技术(深圳)有限公司 | Semiconductor element and manufacture method |
| CN110970485A (en) * | 2018-10-01 | 2020-04-07 | 爱动力半导体公司 | Fast recovery diode structure controlled by carrier injection and manufacturing method thereof |
| CN114300543A (en) * | 2022-03-10 | 2022-04-08 | 安建科技(深圳)有限公司 | Electron extraction type freewheeling diode device and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115117149A (en) | 2022-09-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102903633B (en) | Method for preparing anode short circuit field stop insulated gate bipolar transistor | |
| CN102623513B (en) | Diode structure with controllable injection efficiency for fast switching | |
| CN102768994B (en) | Integration of schottky diode within power MOSFET | |
| JP2007515079A (en) | Manufacturing method of super-junction device with conventional terminal | |
| JPH06169088A (en) | Semiconductor device and manufacturing method thereof | |
| JP2001127292A (en) | High density trench gate power MOSFET | |
| CN103094324B (en) | Trench-type insulated gate bipolar transistor and preparation method thereof | |
| US20140312382A1 (en) | Power device and method of manufacturing the same | |
| CN105826399A (en) | Soft fast recovery diode of multi-mixture structure and preparation method thereof | |
| CN111755503A (en) | A terminal structure with variable lateral doping and method of making the same | |
| CN114420745B (en) | Silicon carbide MOSFET and preparation method thereof | |
| WO2022042481A1 (en) | Reverse-conducting igbt chip | |
| KR20180104236A (en) | Method of Manufacturing Power Semiconductor Device | |
| CN115117149B (en) | Fast recovery diode based on wet etching process and preparation method thereof | |
| CN115223868B (en) | High-voltage fast recovery diode and preparation method thereof | |
| CN115132726B (en) | Structure, manufacturing method and electronic equipment of fast recovery power device | |
| CN108598153B (en) | Soft recovery power semiconductor diode and preparation method thereof | |
| CN117542885A (en) | Reverse-conduction IGBT device and preparation method thereof | |
| CN216698373U (en) | Schottky diode | |
| CN115295414B (en) | Silicon-based diode manufacturing method, silicon-based diode and diode device | |
| CN114899147A (en) | RC-IGBT device and preparation method thereof | |
| CN106920846A (en) | Power transistor and its manufacture method | |
| CN115172445B (en) | Structure and manufacturing method of fast recovery power device and electronic equipment | |
| CN115513054A (en) | A trench type MPS device and its preparation method | |
| CN119300377B (en) | IGBT device structure and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |