CN115172829A - Photovoltaic power generation hydrogen fuel cell device and control method - Google Patents
Photovoltaic power generation hydrogen fuel cell device and control method Download PDFInfo
- Publication number
- CN115172829A CN115172829A CN202210896053.0A CN202210896053A CN115172829A CN 115172829 A CN115172829 A CN 115172829A CN 202210896053 A CN202210896053 A CN 202210896053A CN 115172829 A CN115172829 A CN 115172829A
- Authority
- CN
- China
- Prior art keywords
- module
- stack
- water
- switch unit
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
- H01M8/04164—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04567—Voltage of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
- H01M8/04626—Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04955—Shut-off or shut-down of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J15/00—Systems for storing electric energy
- H02J15/008—Systems for storing electric energy using hydrogen as energy vector
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及新能源技术领域,特别涉及一种光伏发电氢燃料电池装置及控制方法。The invention relates to the technical field of new energy, in particular to a photovoltaic power generation hydrogen fuel cell device and a control method.
背景技术Background technique
新能源逐渐普及到人们生活的方方面面,太阳能作为新能源之一,更是被广泛利用。As one of the new energy sources, solar energy is widely used.
现有的对太阳能的利用,是通过光伏板获取太阳能,经过稳压后存储于蓄电池中,再由蓄电池为负载供电,蓄电池一般选用锂电池或铅酸电池,以储存光能转化而来的电能,锂电池性能和寿命较高,但价格较高,铅酸电池价格较低,但重量、寿命和性能均劣于锂电池。但是,无论选用哪种蓄电池,由于使用过程中全依赖蓄电池承担充放电的压力,因此均需要每年更换电池,以获得较佳的储能和放电性能,由此会具有较大的保养费用以及加剧了日益严峻的电池回收现状。The existing utilization of solar energy is to obtain solar energy through photovoltaic panels, store it in the battery after voltage stabilization, and then supply power to the load from the battery. , lithium batteries have higher performance and life, but higher prices, lead-acid batteries are lower in price, but their weight, life and performance are inferior to lithium batteries. However, no matter which type of battery is selected, since the battery is fully relied on to bear the pressure of charging and discharging during use, it is necessary to replace the battery every year to obtain better energy storage and discharge performance, which will result in higher maintenance costs and aggravation. The increasingly severe situation of battery recycling.
后来,氢燃料电池逐渐出现在用户的选择中,但是假如对氢燃料电池结构的不合理配置,容易发生危险,因此,氢燃料电池未能被广泛利用。Later, hydrogen fuel cells gradually appeared in the choice of users, but if the structure of hydrogen fuel cells is not reasonably configured, it is easy to be dangerous. Therefore, hydrogen fuel cells have not been widely used.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种光伏发电氢燃料电池装置及控制方法,运行稳定,绿色清洁,提高使用安全性能。The present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a photovoltaic power generation hydrogen fuel cell device and a control method, which are stable in operation, green and clean, and improve safety in use.
根据本发明的第一方面实施例的一种光伏发电氢燃料电池装置,包括:光伏发电模组;电源管理模组,与所述光伏发电模组电连接;水电解模组,内设有电解腔、电解组件以及均与所述电解腔连通的正极输出口以及负极输出口,所述电解组件位于电解腔中,所述电源管理模组与所述电解组件连接以能够利用光伏发电模组转化的电能为电解组件供电;储水模组,内设有隔离结构以将所述储水模组内分隔成第一储水腔和第二储水腔,所述隔离结构能够允许水通过并且能够隔离氧气、氢气、氢氧根离子、过氧化氢、含氧自由基、氢离子以及金属离子中的一种或者多种,所述储水模组设置有均与所述第一储水腔连通的第一出水口、第一回流口以及氧气输出口和均与所述第二储水腔连通的第二出水口、第二回流口以及氢气输出口,所述第一出水口与所述正极输出口接通,所述第二出水口与所述负极输出口接通;储氢模组,内设有储氢腔以及与所述储氢腔连通的进氢口和出氢口,所述进氢口与所述氢气输出口接通;电堆模组,内设有膜电极组件以将所述电堆模组内分隔成第一反应腔和第二反应腔,所述膜电极组件与所述电源管理模组电连接,所述电堆模组设置有均与所述第一反应腔连通的第一进气口以及第三出水口和均与所述第二反应腔连通的第二进气口以及第四出水口,所述第一进气口用于输入氧气或者空气,所述第二进气口与所述出氢口接通,所述第三出水口与所述第一回流口接通,所述第四出水口与所述第二回流口接通。A photovoltaic power generation hydrogen fuel cell device according to the first aspect of the present invention includes: a photovoltaic power generation module; a power management module, which is electrically connected to the photovoltaic power generation module; and a water electrolysis module, which is provided with an electrolysis A cavity, an electrolysis assembly, and a positive output port and a negative electrode output port both communicated with the electrolysis cavity, the electrolysis assembly is located in the electrolysis cavity, and the power management module is connected to the electrolysis assembly so as to be able to be converted by a photovoltaic power generation module The electric energy of the water storage module is used to power the electrolysis assembly; the water storage module is provided with an isolation structure to separate the water storage module into a first water storage cavity and a second water storage cavity, and the isolation structure can allow water to pass through and can isolate oxygen and hydrogen , one or more of hydroxide ions, hydrogen peroxide, oxygen-containing free radicals, hydrogen ions and metal ions, and the water storage module is provided with a first water outlet that communicates with the first water storage cavity, The first return port, the oxygen output port and the second water outlet, the second return port and the hydrogen output port are all communicated with the second water storage cavity, and the first water outlet is connected with the positive electrode output port, so The second water outlet is connected with the negative electrode output port; the hydrogen storage module is provided with a hydrogen storage cavity, a hydrogen inlet and a hydrogen outlet communicated with the hydrogen storage cavity, and the hydrogen inlet is connected to the hydrogen storage cavity. The hydrogen output port is connected; the stack module is provided with a membrane electrode assembly to separate the stack module into a first reaction chamber and a second reaction chamber, the membrane electrode assembly and the power management module Electrically connected, the stack module is provided with a first air inlet and a third water outlet that are both communicated with the first reaction chamber, and a second air inlet and a fourth water outlet that are both communicated with the second reaction chamber Water outlet, the first air inlet is used to input oxygen or air, the second air inlet is connected with the hydrogen outlet, the third water outlet is connected with the first return port, so The fourth water outlet is connected to the second return port.
根据本发明实施例的一种光伏发电氢燃料电池装置,至少具有如下有益效果:A photovoltaic power generation hydrogen fuel cell device according to an embodiment of the present invention has at least the following beneficial effects:
本发明光伏发电氢燃料电池装置,光伏发电模组能够将太阳能转化为电能,经过电源管理模组分配,电能能够为电解组件供电,第一储水腔和第二储水腔中均存放有水,第一储水腔和第二储水腔对应地通过第一出水口和第二出水口向电解腔提供水,电解组件将电解腔中的水电解为氢气和氧气,受电解组件施加的电压作用,氧气会集聚在电解组件的正极,氢气会集聚在电解组件的负极,氧气在水中从正极输出口进入到第一储水腔,而氢气在水中则从负极输出口进入到第二储水腔,由于储水模组内设有隔离结构,氧气不会进入到第二储水腔,氢气也不会进入到第一储水腔,氧气不会与氢气混合而造成燃烧的危险,同时,隔离结构允许水通过,保持第一储水腔和第二储水腔中的水压平衡,而后,氧气可以从氧气输出口输出,氢气可以从氢气输出口输出至储氢模组中存放,从而存储了光能转化而来的能量,而当负载需要用电时,储氢模组向电堆模组输出氢气,同时第一进气口输入氧气或者空气,氢气和氧气于电堆模组反应,膜电极组件产生电能并且输出至电源管理模组,电源管理模组再输出为负载供电,第一反应腔中的氧气和第二反应腔中的氢气不会相互渗漏,氢气和氧气反应产生水,第一反应腔中的水可以从第一回流口回流至第一储水腔,第二反应腔中的水可以从第二回流口回流至第二储水腔,回流的水中有可能携带氢气或者氧气,但是采用以上的结构,氢气和氧气不会混合,本设计运行稳定,绿色清洁,提高使用安全性能。In the photovoltaic power generation hydrogen fuel cell device of the present invention, the photovoltaic power generation module can convert solar energy into electric energy, which is distributed through the power management module, and the electric energy can supply power for the electrolysis components. Water is stored in the first water storage chamber and the second water storage chamber. , the first water storage chamber and the second water storage chamber provide water to the electrolysis chamber through the first water outlet and the second water outlet correspondingly, and the electrolysis assembly electrolyzes the water in the electrolysis chamber into hydrogen and oxygen, and is subject to the voltage applied by the electrolysis assembly. Oxygen will accumulate at the positive electrode of the electrolysis component, and hydrogen will accumulate at the negative electrode of the electrolysis component. Oxygen enters the first water storage chamber from the positive output port in water, and hydrogen enters the second water storage chamber from the negative electrode output port in water. Due to the isolation structure in the water storage module, oxygen will not enter the second water storage cavity, and hydrogen will not enter the first water storage cavity, and oxygen will not be mixed with hydrogen to cause the danger of burning. Allow water to pass through, keep the water pressure in the first water storage chamber and the second water storage chamber balanced, then oxygen can be output from the oxygen output port, and hydrogen can be output from the hydrogen output port to the hydrogen storage module for storage, thus storing The energy converted from light energy, and when the load needs electricity, the hydrogen storage module outputs hydrogen to the stack module, and at the same time, the first air inlet inputs oxygen or air, and the hydrogen and oxygen react in the stack module. The electrode assembly generates electricity and outputs it to the power management module. The power management module then outputs power to supply power to the load. The oxygen in the first reaction chamber and the hydrogen in the second reaction chamber will not leak from each other, and the hydrogen and oxygen react to produce water. The water in the first reaction chamber can be returned from the first return port to the first water storage chamber, the water in the second reaction chamber can be returned from the second return port to the second water storage chamber, and the returned water may carry hydrogen or Oxygen, but with the above structure, hydrogen and oxygen will not be mixed, the design runs stably, is green and clean, and improves the safety performance.
根据本发明的一些实施例,所述储水模组位于所述水电解模组的上方,所述第一出水口位于所述第一储水腔的底部,所述第二出水口位于所述第二储水腔的底部。According to some embodiments of the present invention, the water storage module is located above the water electrolysis module, the first water outlet is located at the bottom of the first water storage cavity, and the second water outlet is located at the second water outlet Bottom of the water storage chamber.
根据本发明的一些实施例,还包括循环模组,所述循环模组包括第一水汽分离器、第一增压泵、第一止回阀以及比例阀,所述比例阀包括第一输入端、第二输入端以及混合输出端,所述第一水汽分离器包括输入端、水输出端以及汽输出端,所述第一水汽分离器的输入端与所述第四出水口接通,所述第一水汽分离器的水输出端与所述第二回流口接通,所述第一水汽分离器的气输出端与所述第一增压泵的输入端接通,所述第一增压泵的输出端与所述第一止回阀的输入端接通,所述第一止回阀的输出端与所述比例阀的第一输入端接通,所述比例阀的第二输入端与所述出氢口接通,所述比例阀的混合输出端与所述第二进气口接通。According to some embodiments of the present invention, a circulation module is further included, the circulation module includes a first water vapor separator, a first booster pump, a first check valve and a proportional valve, the proportional valve includes a first input end , a second input end and a mixed output end, the first water vapor separator includes an input end, a water output end and a steam output end, and the input end of the first water vapor separator is connected to the fourth water outlet, so The water output end of the first water vapor separator is connected to the second return port, the gas output end of the first water vapor separator is connected to the input end of the first booster pump, and the first booster pump is connected. The output end of the pressure pump is connected with the input end of the first check valve, the output end of the first check valve is connected with the first input end of the proportional valve, the second input end of the proportional valve is connected The terminal is connected to the hydrogen outlet, and the mixed output end of the proportional valve is connected to the second air inlet.
根据本发明的一些实施例,还包括氢水传输模组,所述氢水传输模组包括第二水汽分离器、第二增压泵以及第二止回阀,所述第二水汽分离器包括输入端、水输出端以及汽输出端,所述第二水汽分离器的输入端与所述氢气输出口接通,所述第二水汽分离器的汽输出端与所述第二增压泵的输入端接通,所述第二增压泵的输出端与所述第二止回阀的输入端接通,所述第二止回阀的输出端与所述进氢口接通,所述第二水汽分离器的水输出端分别与所述第一水汽分离器的水输出端以及所述第二回流口接通。According to some embodiments of the present invention, a hydrogen water transmission module is further included, the hydrogen water transmission module includes a second water vapor separator, a second booster pump and a second check valve, and the second water vapor separator includes The input end, the water output end and the steam output end, the input end of the second water vapor separator is connected with the hydrogen output port, and the steam output end of the second water vapor separator is connected with the output end of the second booster pump. The input end is connected, the output end of the second booster pump is connected with the input end of the second check valve, the output end of the second check valve is connected with the hydrogen inlet, the The water output end of the second water vapor separator is respectively connected with the water output end of the first water vapor separator and the second return port.
根据本发明的一些实施例,所述比例阀设置有流量计量器,所述流量计量器用于检测所述比例阀的第二输入端的氢气输入量,所述流量计量器与所述电源管理模组电连接。According to some embodiments of the present invention, the proportional valve is provided with a flow meter, and the flow meter is used to detect the hydrogen input amount at the second input end of the proportional valve, and the flow meter is connected to the power management module. electrical connection.
根据本发明的一些实施例,还包括氧水传输模组,所述氧水传输模组包括第三水汽分离器以及第四水汽分离器,所述第三水汽分离器和所述第四水汽分离器均包括输入端、水输出端以及汽输出端,所述第三水汽分离器的输入端与所述第三出水口接通,所述第四水汽分离器的输入端与所述氧气输出口接通,所述第三水汽分离器的水输出端分别与所述第四水汽分离器的水输出端以及所述第一回流口接通。According to some embodiments of the present invention, an oxygen-water transmission module is further included, the oxygen-water transmission module includes a third water vapor separator and a fourth water vapor separator, the third water vapor separator and the fourth water vapor separator Each of the separators includes an input end, a water output end and a steam output end. The input end of the third water vapor separator is connected to the third water outlet, and the input end of the fourth water vapor separator is connected to the oxygen output port. When connected, the water output end of the third water vapor separator is respectively connected with the water output end of the fourth water vapor separator and the first return port.
根据本发明的一些实施例,还包括供气泵以及过滤器,所述供气泵用于与空气或者氧气源接通,所述供气泵与所述过滤器的输入端连接,所述过滤器的输出端与所述第一进气口接通。According to some embodiments of the present invention, it further includes an air supply pump and a filter, the air supply pump is used to connect with an air or oxygen source, the air supply pump is connected to the input end of the filter, and the output of the filter The end is connected with the first air inlet.
根据本发明的一些实施例,所述电源管理模组包括电源控制单元、第一整流开关单元以及第二整流开关单元,所述电源控制单元包括光伏输入端、电解输出端、电堆输入端以及供电输出端,所述电源控制单元的光伏输入端与所述光伏发电模组电连接,所述电源控制单元的电解输出端与所述第一整流开关单元的输入端连接,所述第一整流开关单元的输出端与所述电解组件电连接,所述膜电极组件与所述第二整流开关单元的输入端电连接,所述第二整流开关单元的输出端与所述电源控制单元的电堆输入端电连接,所述电源控制单元的供电输出端用于与负载电连接。According to some embodiments of the present invention, the power management module includes a power control unit, a first rectifier switch unit, and a second rectifier switch unit. The power control unit includes a photovoltaic input end, an electrolysis output end, a stack input end, and a power supply output end, the photovoltaic input end of the power supply control unit is electrically connected to the photovoltaic power generation module, the electrolysis output end of the power supply control unit is connected to the input end of the first rectifier switch unit, the first rectifier The output end of the switch unit is electrically connected to the electrolysis assembly, the membrane electrode assembly is electrically connected to the input end of the second rectifier switch unit, and the output end of the second rectifier switch unit is electrically connected to the power supply control unit. The stack input terminal is electrically connected, and the power supply output terminal of the power control unit is used for electrical connection with the load.
根据本发明的一些实施例,所述电源管理模组包括蓄电池以及充放电开关单元,所述充放电开关单元的一端与所述蓄电池连接,所述电源控制单元还包括电池连接端,所述电源控制单元的电池连接端与所述充放电开关单元的另一端连接。According to some embodiments of the present invention, the power management module includes a battery and a charge and discharge switch unit, one end of the charge and discharge switch unit is connected to the battery, the power control unit further includes a battery connection end, the power source The battery connection end of the control unit is connected to the other end of the charge and discharge switch unit.
根据本发明第二方面实施例的控制方法,应用于上述任一实施例公开的一种光伏发电氢燃料电池装置,所述光伏发电氢燃料电池装置还包括电堆输出检测单元、负载功率检测单元以及光伏输入检测单元,所述电源控制单元分别与所述负载电压检测单元以及所述光伏输入检测单元连接,所述控制方法包括:获取所述负载电压检测单元检测负载需求电压变化率;获取所述光伏输入检测单元检测的光伏输入电压;获取所述电堆输出检测单元检测的电堆输出电压;当光伏输入电压小于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制所述第二整流开关单元导通以及所述电堆模组启动,控制所述第一整流开关单元断开以及控制所述充放电开关单元导通,以使得所述电堆模组为负载供电和为蓄电池充电;当光伏输入电压小于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制所述第二整流开关单元导通以及所述电堆模组启动,控制所述第一整流开关单元断开以及控制所述充放电开关单元导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,并且控制所述电堆模组恒流输出以及控制所述蓄电池恒压输出;当光伏输入电压小于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制所述第二整流开关单元导通以及所述电堆模组启动,控制所述第一整流开关单元断开以及控制所述充放电开关单元导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,并且控制所述电堆模组恒流输出以及控制所述蓄电池恒压输出;当光伏输入电压小于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制所述第二整流开关单元导通以及所述电堆模组启动,控制所述第一整流开关单元断开以及控制所述充放电开关单元导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,并且控制所述电堆模组恒压输出以及控制所述蓄电池恒流输出;当光伏输入电压高于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制所述第一整流开关单元导通,利用所述光伏发电模组转化的电能为电解组件供电,控制所述第二整流开关单元导通以及所述电堆模组启动,所述电堆模组为负载供电,获取所述蓄电池的储电量,若储电量小于满电阈值,则控制所述充放电开关单元导通以利用所述光伏发电模组转化的电能或者电堆模组输出的电能为蓄电池充电,若储电量达到满电阈值,则控制所述充放电开关单元断开;当光伏输入电压大于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制所述第一整流开关单元导通,利用所述光伏发电模组转化的电能为电解组件供电,控制所述第二整流开关单元导通以及所述电堆模组启动,控制充放电开关单元导通导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,控制所述电堆模组恒流输出以及控制所述蓄电池恒压输出;当光伏输入电压大于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制所述第一整流开关单元导通,利用所述光伏发电模组转化的电能为电解组件供电,控制所述第二整流开关单元导通以及所述电堆模组启动,控制充放电开关单元导通导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,控制所述电堆模组恒流输出以及控制所述蓄电池恒压输出;当光伏输入电压大于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制所述第一整流开关单元导通,利用所述光伏发电模组转化的电能为电解组件供电,控制所述第二整流开关单元导通以及所述电堆模组启动,控制充放电开关单元导通导通,以使得所述电堆模组以及所述蓄电池共同为负载供电,控制所述电堆模组恒压输出以及控制所述蓄电池恒流输出。The control method according to the embodiment of the second aspect of the present invention is applied to a photovoltaic power generation hydrogen fuel cell device disclosed in any of the above embodiments, and the photovoltaic power generation hydrogen fuel cell device further includes a stack output detection unit and a load power detection unit and a photovoltaic input detection unit, the power control unit is respectively connected to the load voltage detection unit and the photovoltaic input detection unit, and the control method includes: acquiring the load demand voltage change rate detected by the load voltage detection unit; acquiring the the photovoltaic input voltage detected by the photovoltaic input detection unit; obtain the stack output voltage detected by the stack output detection unit; when the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold and the load demand voltage change rate is less than the threshold value of the required voltage change rate, the second rectifier switch unit is controlled to be turned on and the stack module is activated, the first rectifier switch unit is controlled to be turned off, and the charge and discharge switch unit is controlled to be turned on, so that all The stack module supplies power to the load and charges the battery; when the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate is greater than the demand voltage change rate threshold, the second rectifier is controlled. The switch unit is turned on and the stack module is activated, the first rectifier switch unit is controlled to be turned off and the charge and discharge switch unit is controlled to be turned on, so that the stack module and the battery can jointly supply power to the load , and control the constant current output of the stack module and control the constant voltage output of the battery; when the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold and the load demand voltage change rate is less than the demand voltage change rate threshold, control the second rectifier switch unit to turn on and the stack module to start, control the first rectifier switch unit to turn off and control the charge and discharge switch unit to turn on, so as to make the stack module and the batteries together supply power for the load, and control the constant current output of the stack module and control the constant voltage output of the battery; when the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold and the load demand The voltage change rate is greater than the required voltage change rate threshold, the second rectifier switch unit is controlled to be turned on and the stack module is started, the first rectifier switch unit is controlled to be turned off and the charge and discharge switch unit is controlled to be turned on, In order to make the stack module and the battery supply power for the load together, and control the constant voltage output of the stack module and control the constant current output of the battery; when the photovoltaic input voltage is higher than the photovoltaic input threshold, the stack output When the voltage is less than the stack voltage threshold and the load demand voltage change rate is less than the demand voltage change rate threshold, the first rectifier switch unit is controlled to be turned on, the electric energy converted by the photovoltaic power generation module is used to supply power to the electrolytic assembly, and the second The rectifier switch unit is turned on and the stack module is activated. The stack module supplies power to the load and obtains the stored power of the battery. If the stored power is less than the full charge threshold, the charge and discharge switch unit is controlled to be turned on. It is output by using the electric energy converted by the photovoltaic power generation module or the stack module. The output electric energy is used to charge the battery, and if the stored electricity reaches the full charge threshold, the charge and discharge switch unit is controlled to be disconnected; when the photovoltaic input voltage is greater than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate greater than the required voltage change rate threshold, the first rectifier switch unit is controlled to be turned on, the electric energy converted by the photovoltaic power generation module is used to supply power to the electrolysis component, the second rectifier switch unit is controlled to be turned on and the stack module is controlled Start, control the conduction of the charge and discharge switch unit, so that the stack module and the battery jointly supply power for the load, control the constant current output of the stack module and control the constant voltage output of the battery; when the photovoltaic The input voltage is greater than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold, and the load demand voltage change rate is less than the demand voltage change rate threshold, the first rectifier switch unit is controlled to be turned on, and the electrical energy converted by the photovoltaic power generation module is used. Powering the electrolysis assembly, controlling the conduction of the second rectifier switch unit and the activation of the stack module, and controlling the conduction and conduction of the charge and discharge switch unit, so that the stack module and the battery can jointly supply power to the load , control the constant current output of the stack module and control the constant voltage output of the battery; when the photovoltaic input voltage is greater than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold and the load demand voltage change rate is greater than the demand voltage change rate threshold value , control the conduction of the first rectifier switch unit, use the electrical energy converted by the photovoltaic power generation module to supply power to the electrolysis component, control the conduction of the second rectifier switch unit and the start of the stack module, and control the charge and discharge switches. The unit is turned on, so that the stack module and the battery jointly supply power to the load, control the constant voltage output of the stack module and control the constant current output of the battery.
根据本发明实施例的控制方法,至少具有如下有益效果:The control method according to the embodiment of the present invention has at least the following beneficial effects:
本发明控制方法,对电堆输出电压、负载需求电压变化率以及光伏输入电压的检测,并且根据电堆输出电压、负载需求电压变化率以及光伏输入电压对第一整流开关单元、第二整流开关单元、电堆模组、充放电开关单元运行,从而稳定地为负载供电,延长蓄电池使用寿命。The control method of the present invention detects the output voltage of the stack, the rate of change of the load demand voltage and the photovoltaic input voltage, and controls the first rectifier switch unit and the second rectifier switch according to the stack output voltage, the rate of change of the load demand voltage and the photovoltaic input voltage. The unit, the stack module, and the charge and discharge switch unit operate, so as to stably supply power to the load and prolong the service life of the battery.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为本发明光伏发电氢燃料电池装置其中一种实施例的原理结构框图;1 is a schematic structural block diagram of an embodiment of the photovoltaic power generation hydrogen fuel cell device of the present invention;
图2为储水模组的结构示意图;Fig. 2 is the structural representation of water storage module;
图3为电堆模组的结构示意图。FIG. 3 is a schematic structural diagram of a stack module.
附图标记:Reference number:
光伏发电模组100;水电解模组200;正极输出口210;负极输出口220;储水模组300;隔离结构310;第一储水腔320;第一出水口321;第一回流口322;氧气输出口323;第二储水腔330;第二出水口331;第二回流口332;氢气输出口333;储氢模组400;进氢口410;出氢口420;电堆模组500;第一反应腔510;第一进气口511;第三出水口512;第二反应腔520;第二进气口521;第四出水口522;第一催化组件530;第二催化组件540;第一水汽分离器610;第一增压泵620;第一止回阀630;比例阀640;第二水汽分离器710;第二增压泵720;第二止回阀730;第三水汽分离器740;第四水汽分离器750;供气泵760;过滤器770;电源管理模组800;电源控制单元810;第一整流开关单元820;第二整流开关单元830;蓄电池840;充放电开关单元850。Photovoltaic
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
在本发明的描述中,需要理解的是,涉及到方位描述,例如术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that orientation descriptions are involved, such as the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal" "," "top", "bottom", "inside", "outside" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating Or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention.
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。In the description of the present invention, the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that, unless otherwise expressly specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
如图1-3所示,根据本发明的第一方面实施例的一种光伏发电氢燃料电池装置,包括光伏发电模组100、电源管理模组800、水电解模组200、储水模组300、储氢模组400以及电堆模组500,电源管理模组800与光伏发电模组100电连接,水电解模组200内设有电解腔、电解组件以及均与电解腔连通的正极输出口210以及负极输出口220,电解组件位于电解腔中,电源管理模组800与电解组件连接以能够利用光伏发电模组100转化的电能为电解组件供电,储水模组300内设有隔离结构310以将储水模组300内分隔成第一储水腔320和第二储水腔330,隔离结构310能够允许水通过并且能够隔离氧气、氢气、氢氧根离子、过氧化氢、含氧自由基、氢离子以及金属离子中的一种或者多种,储水模组300设置有均与第一储水腔320连通的第一出水口321、第一回流口322以及氧气输出口323和均与第二储水腔330连通的第二出水口331、第二回流口332以及氢气输出口333,第一出水口321与正极输出口210接通,第二出水口331与负极输出口220接通,储氢模组400内设有储氢腔以及与储氢腔连通的进氢口410和出氢口420,进氢口410与氢气输出口333接通,电堆模组500内设有膜电极组件以将电堆模组500内分隔成第一反应腔510和第二反应腔520,膜电极组件与电源管理模组800电连接,电堆模组500设置有均与第一反应腔510连通的第一进气口511以及第三出水口512和均与第二反应腔520连通的第二进气口521以及第四出水口522,第一进气口511用于输入氧气或者空气,第二进气口521与出氢口420接通,第三出水口512与第一回流口322接通,第四出水口522与第二回流口332接通。As shown in Figures 1-3, a photovoltaic power generation hydrogen fuel cell device according to the first aspect of the present invention includes a photovoltaic
本设计可以应用与车辆,例如货车,电源管理模组800可以与货车中的空调连接,从而为空调供电。The present design can be applied to vehicles, such as trucks, and the
本发明光伏发电氢燃料电池装置,光伏发电模组100能够将太阳能转化为电能,经过电源管理模组800分配,电能能够为电解组件供电,第一储水腔320和第二储水腔330中均存放有水,第一储水腔320和第二储水腔330对应地通过第一出水口321和第二出水口331向电解腔提供水,电解组件将电解腔中的水电解为氢气和氧气,受电解组件施加的电压作用,氧气会集聚在电解组件的正极,氢气会集聚在电解组件的负极,氧气在水中从正极输出口210进入到第一储水腔320,而氢气在水中则从负极输出口220进入到第二储水腔330,由于储水模组300内设有隔离结构310,氧气不会进入到第二储水腔330,氢气也不会进入到第一储水腔320,氧气不会与氢气混合而造成燃烧的危险,同时,隔离结构310允许水通过,保持第一储水腔320和第二储水腔330中的水压平衡,而后,氧气可以从氧气输出口323输出,氢气可以从氢气输出口333输出至储氢模组400中存放,从而存储了光能转化而来的能量,而当负载需要用电时,储氢模组400向电堆模组500输出氢气,同时第一进气口511输入氧气或者空气,氢气和氧气于电堆模组500反应,膜电极组件产生电能并且输出至电源管理模组800,电源管理模组800再输出为负载供电,第一反应腔510中的氧气和第二反应腔520中的氢气不会相互渗漏,氢气和氧气反应产生水,第一反应腔510中的水可以从第一回流口322回流至第一储水腔320,第二反应腔520中的水可以从第二回流口332回流至第二储水腔330,回流的水中有可能携带氢气或者氧气,但是采用以上的结构,氢气和氧气不会混合,本设计运行稳定,绿色清洁,提高使用安全性能。In the photovoltaic power generation hydrogen fuel cell device of the present invention, the photovoltaic
其中,光伏发电模组100可以包括光伏板以及稳压电路,光伏板吸收太阳光并转化为电能,稳压电路能够对电能稳压处理,而后输出给电源管理模组800。The photovoltaic
在本发明的一些实施例中,如图2所示,储水模组300位于水电解模组200的上方,第一出水口321位于第一储水腔320的底部,第二出水口331位于第二储水腔330的底部。In some embodiments of the present invention, as shown in FIG. 2 , the
具体地,储水模组300为储水罐体,第一储水腔320和第二储水腔330中需要保证有一定的水量,电解组件可以是质子交换膜型电解器(PEM型)或碱性膜型水电解器,当电解腔中对水分解生成氢气和氧气,氢气和氧气密度比水小,氢气会上升而后从第二出水口331进入第二储水腔330,氧气也会上升而后从第一出水口321进入第一储水腔320,从此氢气和氧气分离,不会共存于一个腔室中,大大降低了氢气和氧气混合而造成燃烧的风险,具体地,隔离结构310可以是质子交换膜。Specifically, the
而储氢模组400一般为由钢或碳纤维制成的低压氢气储罐,耐压0.8~1.2Mpa,进氢口410和出氢口420分别位于储氢模组400的两端。The
一般来说,如图3所示,电堆模组500在第一反应腔510中还设置有与第一催化组件530,第一催化组件530位于第一进气口511以及第三出水口512之间,电堆模组500在第二反应腔520中还设置有第二催化组件540,第二催化组件540位于第二进气口521以及第四出水口522之间,具体地,第一催化组件530和第二催化组件540可以根据实际需求在常规材料中进行选取,第一催化组件530用于对氧气进行催化作用,而第二催化组件540用于对氢气进行催化作用。Generally speaking, as shown in FIG. 3 , the
在本发明的一些实施例中,光伏发电氢燃料电池装置还包括循环模组,循环模组包括第一水汽分离器610、第一增压泵620、第一止回阀630以及比例阀640,比例阀640包括第一输入端、第二输入端以及混合输出端,第一水汽分离器610包括输入端、水输出端以及汽输出端,第一水汽分离器610的输入端与第四出水口522接通,第一水汽分离器610的水输出端与第二回流口332接通,第一水汽分离器610的气输出端与第一增压泵620的输入端接通,第一增压泵620的输出端与第一止回阀630的输入端接通,第一止回阀630的输出端与比例阀640的第一输入端接通,比例阀640的第二输入端与出氢口420接通,比例阀640的混合输出端与第二进气口521接通。In some embodiments of the present invention, the photovoltaic power generation hydrogen fuel cell device further includes a circulation module, and the circulation module includes a first
由于在第二反应腔520中,具有第二催化组件540的阻隔,氢气从第二进气口521进入第二反应腔520,氢气通过第二催化组件540,受第二催化组件540的催化作用,氢离子穿过膜电极组件与氧气发生反应,此时氢气消耗加上第二反应腔520的气阻,因此,第四出水口522的气压会低于第二进气口521的气压,而在反应过程中,需要第二反应腔520的氢气处于流动状态,因此,第四出水口522需要排出氢气,而为了节省资源,循环模组能够对氢气循环利用,将排出的氢气循环至第二进气口521。Since the
需要说明的是,第四出水口522既输出了氢气,也输出了水,因此,利用第一水汽分离器610将氢气与水分离,并且通过第一增压泵620施压,使得第四出水口522流出的氢气可以与储氢模组400输出的氢气混合后继续进入第二进气口521,而第一止回阀630则起到单向截止的作用,防止储氢模组400输出的氢气进入第一水汽分离器610中。It should be noted that the
在本发明的一些实施例中,还包括氢水传输模组,氢水传输模组包括第二水汽分离器710、第二增压泵720以及第二止回阀730,第二水汽分离器710包括输入端、水输出端以及汽输出端,第二水汽分离器710的输入端与氢气输出口333接通,第二水汽分离器710的汽输出端与第二增压泵720的输入端接通,第二增压泵720的输出端与第二止回阀730的输入端接通,第二止回阀730的输出端与进氢口410接通,第二水汽分离器710的水输出端分别与第一水汽分离器610的水输出端以及第二回流口332接通。In some embodiments of the present invention, a hydrogen water transmission module is further included, and the hydrogen water transmission module includes a second
从氢气输出口333输出的氢气可能夹杂有少量水,第二水汽分离器710能够将氢气与水分离,利用第二增压泵720施压,使得氢气进入储氢模组400中,而第二止回阀730则可以防止氢气从储氢模组400中泄漏以及回流。The hydrogen output from the
而此处将第二水汽分离器710的水输出端分别与第一水汽分离器610的水输出端以及第二回流口332接通,经过第一水汽分离器610以及第二水汽分离器710进行气液分离后的水,均可以回流至储水模组300的第二腔室中,对水循环利用,不需要经常为储水模组300补充水。Here, the water output end of the second
在本发明的一些实施例中,比例阀640设置有流量计量器,流量计量器用于检测比例阀640的第二输入端的氢气输入量,流量计量器与电源管理模组800电连接。In some embodiments of the present invention, the
电源管理模组800可以与比例阀640电连接,由于电堆模组500的发电量以及后续输出的电压与氢气输入量相关,此处可以通过流量计量器检测比例阀640的第二输入端的氢气输入量,将氢气输入量反馈至电源管理模组800中,电源管理模组800控制比例阀640的开度,通过准确控制氢气输入量来调节反应速度,从而控制电堆模组500的输出电压或者输出电流。The
在本发明的一些实施例中,还包括氧水传输模组,氧水传输模组包括第三水汽分离器740以及第四水汽分离器750,第三水汽分离器740和第四水汽分离器750均包括输入端、水输出端以及汽输出端,第三水汽分离器740的输入端与第三出水口512接通,第四水汽分离器750的输入端与氧气输出口323接通,第三水汽分离器740的水输出端分别与第四水汽分离器750的水输出端以及第一回流口322接通。In some embodiments of the present invention, an oxygen-water transmission module is further included, and the oxygen-water transmission module includes a third
在储水模组300的第一储水腔320流出的氧气,可能携带有水,利用第四水汽分离器750将氧气和水分离,而后第四水汽分离器750的汽输出端可以向外界排出氧气。The oxygen flowing out of the first
而同样地,第一反应腔510中氢气与氧气反应产生水,水和剩余的氧气可以均从第三出水口512输出,第三水汽分离器740可以将水和氧气分离,而后第三水汽分离器740的汽输出端可以向外界排出氧气,而第三水汽分离器740的水输出端以及第四水汽分离器750的水输出端输出的水均可以回流至储水模组300的第一腔室中,对水循环利用,不需要经常为储水模组300补充水。In the same way, the hydrogen and oxygen in the
需要说明的是,第一水汽分离器610、第二水汽分离器710、第三水汽分离器740以及第四水汽分离器750均可以在常规的挡板式、离心式、旋流式、重力式、折流式、填充式等水汽分离器中选用。It should be noted that, the first
在本发明的一些实施例中,还包括供气泵760以及过滤器770,供气泵760用于与空气或者氧气源接通,供气泵760与过滤器770的输入端连接,过滤器770的输出端与第一进气口511接通。In some embodiments of the present invention, an
同理,由于第一反应腔510中具有第一催化组件530,会对氧气的流动造成一定的阻隔,此处利用供气泵可以向第一反应腔510供入空气或者氧气,具体地,供气泵可以直接从环境中获取空气供入第一反应腔510,例如空气中的氧气与氢气反应,而过滤器能够有效地过滤环境中的粉尘等颗粒物质,防止第一反应腔510中因为粉尘而阻塞氧气流动的流道,使得电堆模组500的发电正常实施,具体地,过滤器可以由填充有石英棉、分子筛和活性炭的物件构成。Similarly, since the
在本发明的一些实施例中,如图1所示,电源管理模组800包括电源控制单元810、第一整流开关单元820以及第二整流开关单元830,电源控制单元810包括光伏输入端、电解输出端、电堆输入端以及供电输出端,电源控制单元810的光伏输入端与光伏发电模组100电连接,电源控制单元810的电解输出端与第一整流开关单元820的输入端连接,第一整流开关单元820的输出端与电解组件电连接,膜电极组件与第二整流开关单元830的输入端电连接,第二整流开关单元830的输出端与电源控制单元810的电堆输入端电连接,电源控制单元810的供电输出端用于与负载电连接。In some embodiments of the present invention, as shown in FIG. 1 , the
其中,电源控制单元810可以由PLC、ARM或FPGA等处理芯片配合附属电路构成,第一整流开关单元820以及第二整流开关单元830均可以是常规的整流电路配合开关器件构成,电源控制单元810与第一整流开关单元820或者第二整流开关单元830中的开关器件连接来分别控制第一整流开关单元820或者第二整流开关单元830的通断,流过第一整流开关单元820以及第二整流开关单元830的电流可以进行整流处理。The
在本发明的一些实施例中,电源管理模组800包括蓄电池840以及充放电开关单元850,充放电开关单元850的一端与蓄电池840连接,电源控制单元810还包括电池连接端,电源控制单元810的电池连接端与充放电开关单元850的另一端连接。In some embodiments of the present invention, the
充放电开关单元850可以是双向的整流电路,同理,电源控制单元810可以与充放电开关单元850连接来控制充放电开关单元850的线路通断,并且充放电开关单元850的一端流向另一端或者另一端流向一端的电流进能够进行整流处理。The charge-
本设计利用蓄电池840、氢燃料电池以及光伏发电模组100相互配合为负载供电,提高供电续航,同时提高蓄电池840使用的耐久度,安全可靠。This design utilizes the
根据本发明第二方面实施例的控制方法,应用于上述任一实施例公开的一种光伏发电氢燃料电池装置,光伏发电氢燃料电池装置还包括电堆输出检测单元、负载功率检测单元以及光伏输入检测单元,电源控制单元810分别与负载电压检测单元以及光伏输入检测单元连接,控制方法包括:The control method according to the embodiment of the second aspect of the present invention is applied to a photovoltaic power generation hydrogen fuel cell device disclosed in any of the above embodiments. The photovoltaic power generation hydrogen fuel cell device further includes a stack output detection unit, a load power detection unit, and a photovoltaic power generation hydrogen fuel cell device. The input detection unit, the
获取负载电压检测单元检测的电堆输出电压,并且根据负载功率得出负载需求电压变化率;获取光伏输入检测单元检测的光伏输入电压;获取电堆输出检测单元检测的电堆输出电压;Obtain the stack output voltage detected by the load voltage detection unit, and obtain the load demand voltage change rate according to the load power; obtain the photovoltaic input voltage detected by the photovoltaic input detection unit; obtain the stack output voltage detected by the stack output detection unit;
当光伏输入电压小于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制第二整流开关单元830导通以及电堆模组500启动,控制第一整流开关单元820断开以及控制充放电开关单元850导通,以使得电堆模组500为负载供电和为蓄电池840充电;When the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate is less than the demand voltage change rate threshold, the second
具体地,光伏输入阈值可以为15V、电堆电压阈值可以为24V、需求电压变化率阈值可以是50mV/s/等,此处不具体限定。Specifically, the photovoltaic input threshold may be 15V, the stack voltage threshold may be 24V, and the demand voltage change rate threshold may be 50mV/s/etc., which are not specifically limited here.
当光伏输入电压小于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制第二整流开关单元830导通以及电堆模组500启动,控制第一整流开关单元820断开以及控制充放电开关单元850导通,以使得电堆模组500以及蓄电池840共同为负载供电,并且控制电堆模组500恒流输出以及控制蓄电池840恒压输出;When the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate is greater than the demand voltage change rate threshold, the second
当光伏输入电压小于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制第二整流开关单元830导通以及电堆模组500启动,控制第一整流开关单元820断开以及控制充放电开关单元850导通,以使得电堆模组500以及蓄电池840共同为负载供电,并且控制电堆模组500恒流输出以及控制蓄电池840恒压输出;When the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold, and the load demand voltage change rate is less than the demand voltage change rate threshold, the second
当光伏输入电压小于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制第二整流开关单元830导通以及电堆模组500启动,控制第一整流开关单元820断开以及控制充放电开关单元850导通,以使得电堆模组500以及蓄电池840共同为负载供电,并且控制电堆模组500恒压输出以及控制蓄电池840恒流输出;When the photovoltaic input voltage is less than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold, and the load demand voltage change rate is greater than the demand voltage change rate threshold, the second
当光伏输入电压高于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制第一整流开关单元820导通,利用光伏发电模组100转化的电能为电解组件供电,控制第二整流开关单元830导通以及电堆模组500启动,电堆模组500为负载供电,获取蓄电池840的储电量,若储电量小于满电阈值,则控制充放电开关单元850导通以利用光伏发电模组100转化的电能或者电堆模组500输出的电能为蓄电池840充电,若储电量达到满电阈值,则控制充放电开关单元850断开;When the photovoltaic input voltage is higher than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate is less than the demand voltage change rate threshold, the first
当光伏输入电压大于光伏输入阈值、电堆输出电压小于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制第一整流开关单元820导通,利用光伏发电模组100转化的电能为电解组件供电,控制第二整流开关单元830导通以及电堆模组500启动,控制充放电开关单元850导通导通,以使得电堆模组500以及蓄电池840共同为负载供电,控制电堆模组500恒流输出以及控制蓄电池840恒压输出;When the photovoltaic input voltage is greater than the photovoltaic input threshold, the stack output voltage is less than the stack voltage threshold, and the load demand voltage change rate is greater than the demand voltage change rate threshold, the first
当光伏输入电压大于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率小于需求电压变化率阈值,控制第一整流开关单元820导通,利用光伏发电模组100转化的电能为电解组件供电,控制第二整流开关单元830导通以及电堆模组500启动,控制充放电开关单元850导通导通,以使得电堆模组500以及蓄电池840共同为负载供电,控制电堆模组500恒流输出以及控制蓄电池840恒压输出;When the photovoltaic input voltage is greater than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold, and the load demand voltage change rate is less than the demand voltage change rate threshold, the first
当光伏输入电压大于光伏输入阈值、电堆输出电压大于电堆电压阈值并且负载需求电压变化率大于需求电压变化率阈值,控制第一整流开关单元820导通,利用光伏发电模组100转化的电能为电解组件供电,控制第二整流开关单元830导通以及电堆模组500启动,控制充放电开关单元850导通导通,以使得电堆模组500以及蓄电池840共同为负载供电,控制电堆模组500恒压输出以及控制蓄电池840恒流输出。When the photovoltaic input voltage is greater than the photovoltaic input threshold, the stack output voltage is greater than the stack voltage threshold, and the load demand voltage change rate is greater than the demand voltage change rate threshold, the first
本设计通过设定光伏输入阈值电堆电压阈值以及需求电压变化率阈值,合理地控制光伏发电模组100、氢燃料电磁(水电解模组200、电堆模组500)以及蓄电池840之前的充放电关系,并且在负载需求功率的变化下稳定地为负载供电。This design reasonably controls the photovoltaic
需要说明的是,当负载需求电压稳定时,可以通过电堆模组500作为主电源输出,而蓄电池840作为辅助电源输出,两者共同为负载供电,主电源以恒流输出,而辅助电源则以恒压输出来使得供应给负载的电压稳定,但是,当负载需求电压不稳定时,由于电源控制单元810是通过控制给电堆模组500的氢气供应量来控制输出电压,同时光伏发电模组100转化的电能产生的光伏输入电压也相较不易控制,因此在负载需求电压不稳定时,选用蓄电池840作为主电源输出,而电堆模组500作为辅助电源输出,由此,蓄电池840恒流为负载供电,而电堆模组500则恒压输出来使得电压稳定。It should be noted that when the load demand voltage is stable, the
本发明控制方法,对电堆输出电压、负载需求电压变化率以及光伏输入电压的检测,并且根据电堆输出电压、负载需求电压变化率以及光伏输入电压对第一整流开关单元820、第二整流开关单元830、电堆模组500、充放电开关单元850运行,从而稳定地为负载供电,延长蓄电池840使用寿命。The control method of the present invention detects the stack output voltage, the load demand voltage change rate and the photovoltaic input voltage, and rectifies the first
进一步地,本设计还可以设置有故障保护控制,以负载需求电压为24V为例说明。Further, this design can also be provided with fault protection control, which is illustrated by taking the load demand voltage of 24V as an example.
功率过大,即任何情况下,负载需求功率大于蓄电池840额定功率2倍,断开第二整流开关单元830和充放电开关单元850。If the power is too large, that is, in any case, the power demanded by the load is twice the rated power of the
负载功率增加速率过大,断开第二整流开关单元830和充放电开关单元850。If the load power increase rate is too large, the second
极端天气造成的光伏输入功率过大,若蓄电池840未满电,且则负载需求电压变化率小,则使得第一整流开关单元820和充放电开关单元850导通,使光伏同时为水电解模组200和蓄电池840供电;若在其他情况,则断开第一整流开关单元820。The photovoltaic input power caused by extreme weather is too large. If the
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those of ordinary skill in the art that various changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, The scope of the invention is defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210896053.0A CN115172829A (en) | 2022-07-27 | 2022-07-27 | Photovoltaic power generation hydrogen fuel cell device and control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210896053.0A CN115172829A (en) | 2022-07-27 | 2022-07-27 | Photovoltaic power generation hydrogen fuel cell device and control method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115172829A true CN115172829A (en) | 2022-10-11 |
Family
ID=83496255
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210896053.0A Pending CN115172829A (en) | 2022-07-27 | 2022-07-27 | Photovoltaic power generation hydrogen fuel cell device and control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115172829A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116516414A (en) * | 2023-05-06 | 2023-08-01 | 广东明阳电气股份有限公司 | Explosion-proof system for water electrolysis hydrogen production |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002175821A (en) * | 2000-12-05 | 2002-06-21 | Toyota Central Res & Dev Lab Inc | Fuel cell system |
| KR20080045457A (en) * | 2006-11-20 | 2008-05-23 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell, method for manufacturing same and fuel cell system comprising same |
| CN107050603A (en) * | 2017-06-16 | 2017-08-18 | 深圳氢爱天下健康科技控股有限公司 | Hydrogen lung ventilator |
| CN107196418A (en) * | 2017-06-30 | 2017-09-22 | 重庆大学 | Independent photovoltaic fuel cell reclaims electrokinetic cell cogeneration energy-storage system |
| CN107359363A (en) * | 2017-07-13 | 2017-11-17 | 北京理工大学 | A kind of hydrogen fuel cell system and its electricity-generating method based on photovoltaic hydrogen manufacturing |
| CN112126939A (en) * | 2020-10-29 | 2020-12-25 | 上海茶源新能源科技有限责任公司 | High-energy hydrogen atom generating device |
| US20210395116A1 (en) * | 2020-06-22 | 2021-12-23 | Hyundai Motor Company | Water electrolysis system |
| CN216671698U (en) * | 2021-11-22 | 2022-06-03 | 北京卫星制造厂有限公司 | Novel hydrogen-oxygen fuel cell product water recycling system |
-
2022
- 2022-07-27 CN CN202210896053.0A patent/CN115172829A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002175821A (en) * | 2000-12-05 | 2002-06-21 | Toyota Central Res & Dev Lab Inc | Fuel cell system |
| KR20080045457A (en) * | 2006-11-20 | 2008-05-23 | 삼성에스디아이 주식회사 | Membrane-electrode assembly for fuel cell, method for manufacturing same and fuel cell system comprising same |
| CN107050603A (en) * | 2017-06-16 | 2017-08-18 | 深圳氢爱天下健康科技控股有限公司 | Hydrogen lung ventilator |
| CN107196418A (en) * | 2017-06-30 | 2017-09-22 | 重庆大学 | Independent photovoltaic fuel cell reclaims electrokinetic cell cogeneration energy-storage system |
| CN107359363A (en) * | 2017-07-13 | 2017-11-17 | 北京理工大学 | A kind of hydrogen fuel cell system and its electricity-generating method based on photovoltaic hydrogen manufacturing |
| US20210395116A1 (en) * | 2020-06-22 | 2021-12-23 | Hyundai Motor Company | Water electrolysis system |
| CN112126939A (en) * | 2020-10-29 | 2020-12-25 | 上海茶源新能源科技有限责任公司 | High-energy hydrogen atom generating device |
| CN216671698U (en) * | 2021-11-22 | 2022-06-03 | 北京卫星制造厂有限公司 | Novel hydrogen-oxygen fuel cell product water recycling system |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116516414A (en) * | 2023-05-06 | 2023-08-01 | 广东明阳电气股份有限公司 | Explosion-proof system for water electrolysis hydrogen production |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7846568B2 (en) | Power supply and control method therefor | |
| CN101606260B (en) | Fuel cell system | |
| CN100557877C (en) | Fuel cell system and abnormality determination method for fuel cell system | |
| CN110571857A (en) | Energy management coordination system based on photovoltaic and fuel cell combined power generation system | |
| US7576512B2 (en) | Secondary battery charging system capable of preventing drop of charged electric power | |
| CN201113548Y (en) | backup power | |
| CN113113640B (en) | Hydrogen supply system and method for fuel cell | |
| CN110676490A (en) | High-integration low-power hydrogen fuel cell management system | |
| KR102602924B1 (en) | Operating control system and control method of fuel cell | |
| CN215971896U (en) | Solid hydrogen storage fuel cell electric tricycle | |
| CN113471486B (en) | Integrated hydrogen circulating device for hydrogen fuel cell system | |
| CN106347161A (en) | Endurance control method of fuel cell vehicle and fuel cell vehicle | |
| CN115172829A (en) | Photovoltaic power generation hydrogen fuel cell device and control method | |
| CN113667997A (en) | High-pressure proton exchange membrane electrolytic water system | |
| CN106704815B (en) | Self-supporting hydrogenation station utilizing renewable energy | |
| US7788925B2 (en) | Vehicle power supply system | |
| JPH11176454A (en) | Power source for fuel cell accessory | |
| CN215496804U (en) | Hydrogen supply system for fuel cell | |
| CN105280990A (en) | Kilowatt-scale fuel cell/lithium-ion cell hybrid power device and energy management method thereof | |
| CN114976120A (en) | Vehicle-mounted power system of hydrogen and methanol dual-fuel emergency power supply | |
| CN213959823U (en) | Uninterrupted aluminum fuel power supply system based on aluminum-air battery | |
| CN102751523A (en) | Integrated cell, integrated cell stack including integrated cell and integrated cell system | |
| KR101418422B1 (en) | System for independent start-up of fuel cell for ship | |
| US20210114483A1 (en) | Fuel cell vehicle and activation method of fuel cell vehicle | |
| CN102484266A (en) | Fuel cell device and method of operating the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |