CN115184501A - Application of serum metabolite combination screening in diagnosis of dystonia - Google Patents
Application of serum metabolite combination screening in diagnosis of dystonia Download PDFInfo
- Publication number
- CN115184501A CN115184501A CN202210850304.1A CN202210850304A CN115184501A CN 115184501 A CN115184501 A CN 115184501A CN 202210850304 A CN202210850304 A CN 202210850304A CN 115184501 A CN115184501 A CN 115184501A
- Authority
- CN
- China
- Prior art keywords
- acid
- dystonia
- serum
- model
- metabolites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000002966 serum Anatomy 0.000 title claims abstract description 40
- 239000002207 metabolite Substances 0.000 title claims abstract description 38
- 208000014094 Dystonic disease Diseases 0.000 title claims abstract description 29
- 208000010118 dystonia Diseases 0.000 title claims abstract description 28
- 238000003745 diagnosis Methods 0.000 title description 2
- 238000012216 screening Methods 0.000 title 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 24
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 claims abstract description 23
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 claims abstract description 16
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 16
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 claims abstract description 16
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims abstract description 15
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 claims abstract description 14
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 claims abstract description 12
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 claims abstract description 10
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 claims abstract description 8
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 claims abstract description 8
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 claims abstract description 8
- JPIJQSOTBSSVTP-STHAYSLISA-N L-threonic acid Chemical compound OC[C@H](O)[C@@H](O)C(O)=O JPIJQSOTBSSVTP-STHAYSLISA-N 0.000 claims abstract description 8
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229930003268 Vitamin C Natural products 0.000 claims abstract description 8
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229960005261 aspartic acid Drugs 0.000 claims abstract description 8
- 229940056902 l- threonic acid Drugs 0.000 claims abstract description 8
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 claims abstract description 8
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims abstract description 8
- GKZIWHRNKRBEOH-UHFFFAOYSA-N phenylalanylphenylalanine Chemical compound C=1C=CC=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 GKZIWHRNKRBEOH-UHFFFAOYSA-N 0.000 claims abstract description 8
- 108010073025 phenylalanylphenylalanine Proteins 0.000 claims abstract description 8
- 229960003080 taurine Drugs 0.000 claims abstract description 8
- 235000019154 vitamin C Nutrition 0.000 claims abstract description 8
- 239000011718 vitamin C Substances 0.000 claims abstract description 8
- RZRNAYUHWVFMIP-QJRAZLAKSA-N 1-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)CO RZRNAYUHWVFMIP-QJRAZLAKSA-N 0.000 claims abstract description 7
- 229940114079 arachidonic acid Drugs 0.000 claims abstract description 7
- 235000021342 arachidonic acid Nutrition 0.000 claims abstract description 7
- 229960002989 glutamic acid Drugs 0.000 claims abstract description 7
- NRWMBHYHFFGEEC-UHFFFAOYSA-N selachyl alcohol Natural products CCCCCCCCC=CCCCCCCCCOCC(O)CO NRWMBHYHFFGEEC-UHFFFAOYSA-N 0.000 claims abstract description 7
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 6
- 229940107700 pyruvic acid Drugs 0.000 claims abstract description 5
- 239000002253 acid Substances 0.000 claims abstract description 3
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 238000004458 analytical method Methods 0.000 claims description 18
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 14
- QUNWUDVFRNGTCO-UHFFFAOYSA-N 1,7-dimethylxanthine Chemical compound N1C(=O)N(C)C(=O)C2=C1N=CN2C QUNWUDVFRNGTCO-UHFFFAOYSA-N 0.000 claims description 14
- 238000002705 metabolomic analysis Methods 0.000 claims description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 230000001431 metabolomic effect Effects 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 201000010099 disease Diseases 0.000 claims description 9
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229960001153 serine Drugs 0.000 claims description 7
- 239000003643 water by type Substances 0.000 claims description 6
- ZNEBXONKCYFJAF-OUKOMXQNSA-N (14S)-HDoHE Chemical compound CC\C=C/C\C=C/C[C@H](O)\C=C\C=C/C\C=C/C\C=C/CCC(O)=O ZNEBXONKCYFJAF-OUKOMXQNSA-N 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 238000003908 quality control method Methods 0.000 claims description 4
- 238000000692 Student's t-test Methods 0.000 claims description 3
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 claims description 3
- 238000010238 partial least squares regression Methods 0.000 claims description 3
- 238000003909 pattern recognition Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 238000012353 t test Methods 0.000 claims description 3
- 238000001195 ultra high performance liquid chromatography Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 230000008676 import Effects 0.000 claims description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims 3
- WPGBKAUFKZCRQN-VJOLJYIPSA-N (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoic acid (Z)-octadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O WPGBKAUFKZCRQN-VJOLJYIPSA-N 0.000 claims 1
- -1 L-aspartic acid Amino acid Chemical class 0.000 claims 1
- 229940024606 amino acid Drugs 0.000 claims 1
- 238000012360 testing method Methods 0.000 claims 1
- 238000010239 partial least squares discriminant analysis Methods 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 8
- 208000015543 Isolated dystonia Diseases 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000090 biomarker Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- HVSKLHZMTXBGOE-UHFFFAOYSA-N 3,7-dihydropurin-6-one;7h-purine Chemical compound C1=NC=C2NC=NC2=N1.O=C1N=CNC2=C1NC=N2 HVSKLHZMTXBGOE-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- 238000003748 differential diagnosis Methods 0.000 description 2
- 230000000632 dystonic effect Effects 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 201000006517 essential tremor Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 229940076788 pyruvate Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002359 drug metabolite Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 244000005709 gut microbiome Species 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000001095 motoneuron effect Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/86—Signal analysis
- G01N30/8693—Models, e.g. prediction of retention times, method development and validation
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明的目的在于提供检测血清代谢物水平的试剂在制备诊断肌张力障碍的试剂盒中的应用,其中所述血清代谢物包括:2,3‑二氨基丙酸,苯丙氨酰苯丙氨酸,花生四烯酸,L‑焦谷氨酸,L‑天门冬氨酸,L‑谷氨酸,油酸甘油酯,次黄嘌呤,D‑天门冬氨酸,丙酮酸,牛磺酸,1‑油烯基甘油,L‑苏糖酸,马来酰胺酸,DL‑苹果酸,维生素C和柠檬酸等(表1.)。
The object of the present invention is to provide the application of a reagent for detecting serum metabolite levels in the preparation of a kit for diagnosing dystonia, wherein the serum metabolites include: 2,3-diaminopropionic acid, phenylalanyl phenylalanine acid, arachidonic acid, L-pyroglutamic acid, L-aspartic acid, L-glutamic acid, glyceryl oleate, hypoxanthine, D-aspartic acid, pyruvic acid, taurine, 1-oleylglycerol, L-threonic acid, maleamic acid, DL-malic acid, vitamin C and citric acid etc. (Table 1.).
Description
技术领域technical field
本发明属于医药生物领域,涉及血清代谢组在诊断肌张力障碍症中的应用。The invention belongs to the field of medical biology, and relates to the application of serum metabolomes in the diagnosis of dystonia.
背景技术Background technique
肌张力障碍是一种复杂的高度可变的神经运动障碍综合征,其特征是持续或间断的肌肉收缩。据统计,肌张力障碍的患病率为10万分之16,是仅次于原发性震颤和帕金森病,第三大最常见的运动障碍性疾病。肌张力障碍可以是许多神经系统疾病的表现或者其它疾病的合并症状,也可能是孤立性的症状。孤立性肌张力障碍是除了震颤外,以肌张力障碍为唯一表型的肌张力综合征。目前,一些基因被证明与儿童和青少年发病的肌张力障碍有关,但大多数常见的成人发病的肌张力障碍患者往往是偶发的,没有明确的病因。Dystonia is a complex and highly variable neuromotor disorder characterized by persistent or intermittent muscle contractions. According to statistics, the prevalence of dystonia is 16 per 100,000, and it is the third most common movement disorder after essential tremor and Parkinson's disease. Dystonia can be a manifestation of many neurological diseases or a combination of other diseases, or it can be an isolated symptom. Isolated dystonia is a dystonic syndrome in which dystonia is the only phenotype other than tremor. Currently, several genes have been implicated in child- and adolescent-onset dystonia, but most common adult-onset dystonias tend to be sporadic with no clear etiology.
代谢组学是对新陈代谢过程中某一时间所有低分子量代谢产物进行定性和定量的研究,以反映生物体对外界刺激或基因修饰所发生的变化的科学。代谢产物可包括内源性代谢产物、药物代谢物、环境化学物质及从肠道菌群产生的化学物质等等。基因表达和蛋白质的改变必将产生细胞、组织、器官的代谢变化,而代谢物是细胞调节过程的最终产物。代谢组学是继基因组学、蛋白质组学、转录组学之后一个新兴的后基因组学的研究领域,是系统生物学的重要组成部分,具有快速、高效、非侵袭性、高灵敏度和高特异性的特点。大量的研究表明,代谢组在神经发育以及脑疾病如帕金森(PD),阿尔茨海默病(AD)和多发性硬化症中扮演着重要角色。代谢标记物,为疾病的早期诊断、治疗提供了重要的参考。目前,代谢组与肌张力障碍之间的关系尚处于未知。代谢组学为探索疾病的生物标记物,为发现疾病的早期诊断、有效的治疗靶点提供了重要的研究工具。Metabolomics is the qualitative and quantitative study of all low-molecular-weight metabolites at a certain time in the metabolic process to reflect changes in organisms to external stimuli or genetic modifications. Metabolites can include endogenous metabolites, drug metabolites, environmental chemicals, and chemicals produced from gut flora, among others. Changes in gene expression and proteins will inevitably produce metabolic changes in cells, tissues, and organs, and metabolites are the final products of cellular regulatory processes. Metabolomics is an emerging post-genomics research field following genomics, proteomics, and transcriptomics. It is an important part of systems biology with rapid, efficient, non-invasive, high sensitivity and high specificity. specialty. Numerous studies have shown that the metabolome plays an important role in neurodevelopment as well as in brain diseases such as Parkinson's (PD), Alzheimer's disease (AD) and multiple sclerosis. Metabolic markers provide important references for early diagnosis and treatment of diseases. Currently, the relationship between the metabolome and dystonia is unknown. Metabolomics provides an important research tool for the exploration of disease biomarkers, early diagnosis of diseases, and effective therapeutic targets.
发明内容SUMMARY OF THE INVENTION
本发明首先利用基于气相色谱-质谱联用技术(GS-MS)的非靶向代谢组学技术合计鉴定出1768个特征性物质,然后,采用偏最小二乘回归分析鉴定出了肌张力障碍患者血清中242个代谢物水平与健康人有显著差异(p<0.05,VIP>1and FC>2or<0.5)。利用人类代谢组数据库进一步的分析发现,其中的44个代谢物(表1.)在数据库中得到可靠注释和命名,并作为进一步研究的肌张力障碍的重点代谢物及组合。这些代谢物的鉴定和发现,为进一步研究发现肌张力障碍患者生物标记物,有效的治疗靶点提供了重要的参考。In the present invention, a total of 1768 characteristic substances are identified by the non-targeted metabolomics technology based on gas chromatography-mass spectrometry (GS-MS), and then the patients with dystonia are identified by partial least squares regression analysis. The levels of 242 metabolites in serum were significantly different from healthy people (p<0.05, VIP>1 and FC>2or<0.5). Further analysis using the Human Metabolome Database found that 44 of these metabolites (Table 1.) were reliably annotated and named in the database and served as key metabolites and combinations for further study in dystonia. The identification and discovery of these metabolites provides an important reference for further research to discover biomarkers and effective therapeutic targets in patients with dystonia.
本发明的目的在于提供检测血清代谢物水平的试剂在制备诊断肌张力障碍的试剂盒中的应用,其中所述血清代谢物包括:The object of the present invention is to provide the application of a reagent for detecting serum metabolite levels in the preparation of a kit for diagnosing dystonia, wherein the serum metabolites include:
2,3-二氨基丙酸,苯丙氨酰苯丙氨酸,花生四烯酸,L-焦谷氨酸,L-天门冬氨酸,L-谷氨酸,油酸甘油酯,次黄嘌呤,D-天门冬氨酸,丙酮酸,牛磺酸,1-油烯基甘油,L-苏糖酸,马来酰胺酸,DL-苹果酸,维生素C,柠檬酸,副黄嘌呤,14(S)-HDHA和L-丝氨酸等(表1.)。2,3-Diaminopropionic acid, Phenylalanylphenylalanine, Arachidonic acid, L-pyroglutamic acid, L-aspartic acid, L-glutamic acid, glyceryl oleate, hypoxanthine Purine, D-Aspartic Acid, Pyruvate, Taurine, 1-Oleylglycerol, L-Threonic Acid, Maleamic Acid, DL-Malic Acid, Vitamin C, Citric Acid, Paraxanthine, 14 (S)-HDHA and L-serine etc. (Table 1.).
本发明检测血清代谢物水平的方法为基于GC-MS的非靶向代谢组学的方法。The method for detecting serum metabolite levels of the present invention is a non-targeted metabolomics method based on GC-MS.
本发明的另一个目的在于提供一种诊断肌张力障碍的产品,该产品包括检测血清代谢物水平的试剂,其中所述血清代谢物包括:Another object of the present invention is to provide a product for diagnosing dystonia, the product comprising a reagent for detecting the level of serum metabolites, wherein the serum metabolites include:
2,3-二氨基丙酸,苯丙氨酰苯丙氨酸,花生四烯酸,L-焦谷氨酸,L-天门冬氨酸,L-谷氨酸,油酸甘油酯,次黄嘌呤,D-天门冬氨酸,丙酮酸,牛磺酸,1-油烯基甘油,L-苏糖酸,马来酰胺酸,DL-苹果酸,维生素C,柠檬酸,副黄嘌呤,14(S)-HDHA和L-丝氨酸等(表1.)。2,3-Diaminopropionic acid, Phenylalanylphenylalanine, Arachidonic acid, L-pyroglutamic acid, L-aspartic acid, L-glutamic acid, glyceryl oleate, hypoxanthine Purine, D-Aspartic Acid, Pyruvate, Taurine, 1-Oleylglycerol, L-Threonic Acid, Maleamic Acid, DL-Malic Acid, Vitamin C, Citric Acid, Paraxanthine, 14 (S)-HDHA and L-serine etc. (Table 1.).
本发明另一个目的在于提供一种诊断肌张力障碍的试剂盒,试剂盒中包括2,3-二氨基丙酸,苯丙氨酰苯丙氨酸,花生四烯酸,L-焦谷氨酸,L-天门冬氨酸,L-谷氨酸,油酸甘油酯,次黄嘌呤,D-天门冬氨酸,丙酮酸,牛磺酸,1-油烯基甘油,L-苏糖酸,马来酰胺酸,DL-苹果酸,维生素C柠檬酸,副黄嘌呤,14(S)-HDHA和L-丝氨酸等(表1.)的单一或组合试剂。Another object of the present invention is to provide a kit for diagnosing dystonia, the kit includes 2,3-diaminopropionic acid, phenylalanylphenylalanine, arachidonic acid, and L-pyroglutamic acid , L-aspartic acid, L-glutamic acid, glyceryl oleate, hypoxanthine, D-aspartic acid, pyruvic acid, taurine, 1-oleylglycerol, L-threonic acid, Single or combined reagents of maleamic acid, DL-malic acid, vitamin C citric acid, paraxanthine, 14(S)-HDHA and L-serine, etc. (Table 1.).
本发明的另一个目的在于提供通过试剂盒检测肌张力障碍的方法,即孤立性肌张力障碍病人血清代谢组学分析,见图1。包括以下步骤:Another object of the present invention is to provide a method for detecting dystonia by means of a kit, that is, serum metabolomics analysis of isolated dystonia patients, as shown in FIG. 1 . Include the following steps:
1.血清样本都在冰上解冻,质量控制(QC)样本(通过等体积混合每一个血清样本制成)用于估计代表分析过程中遇到的所有分析物的平均轮廓,1. Serum samples were all thawed on ice, and quality control (QC) samples (made by mixing equal volumes of each serum sample) were used to estimate an average profile representative of all analytes encountered during analysis,
2.用2倍体积甲醇对血清样本进行处理,然后,4℃,14000g离心10分钟,2. Treat serum samples with 2 volumes of methanol, then centrifuge at 14,000g for 10 minutes at 4°C.
3.用高效液相色谱-质谱对上清液进行代谢组学分析,样品分析采用WatersACQUITY超高性能液相色谱系统(Milford,MA)和Waters Q-TOF微质量系统(Manchester,UK)进行在正负电离两种模式下进行分析,3. Metabolomic analysis of the supernatant was carried out by high performance liquid chromatography-mass spectrometry, and the sample analysis was carried out on a Waters ACQUITY ultra-high performance liquid chromatography system (Milford, MA) and a Waters Q-TOF micromass system (Manchester, UK). The analysis was performed in both positive and negative ionization modes,
4.原始GC-MS数据的提取、对齐、反冗余后导出为包括变量(rt_mz)、观测值(样本)和峰值强度(丰度)等的一个峰值数据集文件,并进行进一步的标准化处理,4. The original GC-MS data is extracted, aligned, and de-redundant, and then exported to a peak dataset file including variables (rt_mz), observations (samples), and peak intensity (abundance), etc., and further normalized processing. ,
5.标准化的数据集,导入到R语言(版本,3.5.3,是用于统计分析、绘图的语言和操作环境。)系统中,执行偏最小二乘回归分析(Partial least squares DiscriminantAnalysis,PLS-DA),R2X(PCA)或R2Y(PLS-DA)定义为模型所解释数据的方差占比,表示拟合优度,Q2定义为模型可预测数据中的方差占比,表示当前模型的可预测性,R2X、R2Y和Q2的值被用作指标来评估模式识别模型的稳健性,差异显著的代谢物由PLS-DA模型的VIP值>1和双尾t检验对标准化峰值强度的P值(<0.05)组合确定,折叠变化(FC)以两组间平均峰值强度比的二值对数计算,VIP估计PLS-DA模型中各变量的重要性;VIP评分>1的变量在模型中有很重要作用。5. The standardized data set is imported into the R language (version, 3.5.3, which is the language and operating environment for statistical analysis and plotting.) The system performs Partial least squares Discriminant Analysis (PLS- DA), R2X (PCA) or R2Y (PLS-DA) is defined as the proportion of variance in the data explained by the model, indicating goodness of fit, and Q2 is defined as the proportion of variance in the model predictable data, indicating the predictability of the current model The values of R2X, R2Y and Q2 were used as indicators to assess the robustness of the pattern recognition model, and the significantly different metabolites were determined by the PLS-DA model for VIP values >1 and two-tailed t-test for the normalized peak intensity P value ( <0.05) combination was determined, fold change (FC) was calculated as the binary logarithm of the mean peak intensity ratio between the two groups, and VIP estimated the importance of each variable in the PLS-DA model; variables with a VIP score >1 were very high in the model important role.
6.利用受试者工作特征曲线(Receiver Operating Characteristic Curve,ROC)诊断各种代谢物在评估疾病中的重要性,并建立模型,发现重要的疾病生物分子标识及组合。6. Use Receiver Operating Characteristic Curve (ROC) to diagnose the importance of various metabolites in assessing diseases, and establish models to discover important disease biomolecular markers and combinations.
本发明的有益效果,主要表现在以下方面:The beneficial effects of the present invention are mainly manifested in the following aspects:
肌张力障碍是继原发性震颤和帕金森病后的第三大运动神经障碍性疾病,目前病因不详,治疗手段缺乏。本发明已知为首次对孤立性肌张力障碍病人血清代谢组进行了系统分析,并首次发现患者血清中多种代谢物(表1.)相对丰度显著降低,P<0.05,VIP>1andFC>2or<0.5。Dystonia is the third major motor neurological disorder after essential tremor and Parkinson's disease. The present invention is known to be the first to systematically analyze the serum metabolome of patients with isolated dystonia, and for the first time to find that the relative abundance of various metabolites (Table 1.) in the serum of patients is significantly reduced, P<0.05, VIP>1andFC> 2or<0.5.
这些血清代谢物丰度的改变对孤立性肌张力障碍病人病程的发生、发展及预后可能发挥着重要的功能和作用,为后期针对此症的诊断、生物标志物和治疗及预防药物的研发提供宝贵的候选靶标。The changes in the abundance of these serum metabolites may play an important role in the occurrence, development and prognosis of patients with isolated dystonia. Valuable candidate target.
对于说明书中出现的英文和术语作出如下解释:The English language and terms appearing in the manual are explained as follows:
FC,是fold change缩写,指某给特定代谢物在病人血清中与在正常人血清中的浓度比值。FC is the abbreviation of fold change, which refers to the ratio of the concentration of a given metabolite in patient serum to that in normal human serum.
P value,统计学中用来判断假设是否成立的依据。P value, the basis used in statistics to judge whether the hypothesis is true.
ROC,是receiver operating characteristic curve缩写,用于评价模型预测能力。ROC, short for receiver operating characteristic curve, is used to evaluate the predictive ability of the model.
VIP,是Variable Importance for the Projection缩写,衡量各代谢物的表达模式对各组样本分类判别的影响强度和解释能力。VIP is the abbreviation of Variable Importance for the Projection, which measures the impact strength and explanatory power of the expression pattern of each metabolite on the classification and discrimination of each group of samples.
附图说明Description of drawings
图1、肌张力障碍患者血清代谢物分析技术流程。Figure 1. Technical flow of serum metabolite analysis in patients with dystonia.
图2A、肌张力障碍症患者血清代谢组学偏最小二乘回归分析(Partial leastsquares Discriminant Analysis,PLS-DA)分析。结果显示肌张力障碍患者血清代谢组总体特征显著不同于健康对照。FIG. 2A . Partial least squares discriminant analysis (PLS-DA) analysis of serum metabolomics in patients with dystonia. The results showed that the overall characteristics of the serum metabolome in patients with dystonia were significantly different from those in healthy controls.
图2B、火山图直观显示在正负电离两种模式下,肌张力障碍患者血清中大量代谢物(242种)丰度都与健康对照存在显著差异。显著差异判断标准:P<0.05,VIP>1and FC>2or<0.5,其中,P为统计学P值;VIP为用来估测变量重要性参数;FC为Fold change缩写,为特定代谢物在肌张力障碍患者血清中丰度与健康对照血清丰度的比值。Figure 2B, the volcano plot visually shows that in both positive and negative ionization modes, the abundance of a large number of metabolites (242 species) in the serum of patients with dystonia is significantly different from that of healthy controls. Criteria for significant difference: P<0.05, VIP>1 and FC>2or<0.5, where P is the statistical P value; VIP is the parameter used to estimate the importance of variables; FC is the abbreviation of Fold change, which is the expression of specific metabolites in muscle. Ratio of abundance in serum of dystonic patients to that in healthy control serum.
图2C、PLS-DA分析显示,区分肌张力障碍患者与健康对照最重要的前20个血清代谢物。Figure 2C, PLS-DA analysis showing the top 20 serum metabolites most important to differentiate dystonia patients from healthy controls.
图2D、绘制受试者操作曲线(ROC),并利用ROC曲线下面积(AUC)评估前20个最重要差异血清代谢物用于鉴别诊断肌张力障碍症的效果。结果显示,利用我们鉴定的差异代谢物及组合可以精确有效的区分肌张力障碍患者与健康对照,AUC=1.Figure 2D. Receiver operating curve (ROC) was drawn, and the area under the ROC curve (AUC) was used to evaluate the effect of the top 20 most important differential serum metabolites in the differential diagnosis of dystonia. The results show that using the differential metabolites and combinations we identified can accurately and effectively distinguish dystonia patients from healthy controls, AUC=1.
具体实施方式Detailed ways
通过以下具体实施例对本发明作进一步的说明,但不作为本发明的限制。The present invention is further illustrated by the following specific examples, but not as a limitation of the present invention.
实施例1、检测过程
一、孤立性肌张力障碍病人肠道微生物组的代谢组学分析1. Metabolomic analysis of the gut microbiome in patients with isolated dystonia
1.血清样本都在冰上解冻,量控制(QC)样本(通过等体积混合每一个血清样本制成)用于估计代表分析过程中遇到的所有分析物的平均轮廓,1. Serum samples were all thawed on ice, and Quantity Control (QC) samples (made by mixing equal volumes of each serum sample) were used to estimate an average profile representative of all analytes encountered during analysis,
2.用2倍体积甲醇对血清样本进行处理,然后,4℃,14000g离心10分钟,2. Treat serum samples with 2 volumes of methanol, then centrifuge at 14,000g for 10 minutes at 4°C.
3.用高效液相色谱-质谱对上清液进行代谢组学分析,样品分析采用WatersACQUITY超高性能液相色谱系统(Milford,MA)和Waters Q-TOF微质量系统(Manchester,UK)进行在正负电离两种模式下进行分析,3. Metabolomic analysis of the supernatant was carried out by high performance liquid chromatography-mass spectrometry, and the sample analysis was carried out on a Waters ACQUITY ultra-high performance liquid chromatography system (Milford, MA) and a Waters Q-TOF micromass system (Manchester, UK). The analysis was performed in both positive and negative ionization modes,
4.原始GC-MS数据的提取、对齐、反冗余后导出为包括变量(rt_mz)、观测值(样本)和峰值强度(丰度)等的一个峰值数据集文件,并进行进一步的标准化处理,4. The original GC-MS data is extracted, aligned, and de-redundant, and then exported to a peak dataset file including variables (rt_mz), observations (samples), and peak intensity (abundance), etc., and further normalized processing. ,
5.文件导入到生物统计学软件(R(版本,3.5.3)中,执行偏最小二乘回归分析(Partial leastsquares Discriminant Analysis,PLS-DA),R2X(PCA)或R2Y(PLS-DA)定义为模型所解释数据的方差占比,表示拟合优度,Q2定义为模型可预测数据中的方差占比,表示当前模型的可预测性,R2X、R2Y和Q2的值被用作指标来评估模式识别模型的稳健性,差异显著的代谢物由PLS-DA模型的VIP值>1和双尾t检验对标准化峰值强度的P值(<0.05)组合确定,折叠变化(FC)以两组间平均峰值强度比的二值对数计算,VIP估计PLS-DA模型中各变量的重要性;VIP评分>1的变量在模型中很重要。5. Import the file into biostatistics software (R (version, 3.5.3), perform Partial least squares Discriminant Analysis (PLS-DA), R2X (PCA) or R2Y (PLS-DA) definition The proportion of variance in the data explained for the model, indicating goodness of fit, Q2 is defined as the proportion of variance in the model predictable data, indicating the predictability of the current model, the values of R2X, R2Y and Q2 are used as indicators to evaluate Robustness of the pattern recognition model, significantly different metabolites were determined by a combination of VIP values >1 for the PLS-DA model and a P value (<0.05) for the normalized peak intensity by a two-tailed t-test, and fold changes (FC) between the two groups were determined. Binary logarithm of mean peak intensity ratio, VIP estimates the importance of each variable in the PLS-DA model; variables with a VIP score >1 were important in the model.
6.利用随机森林(RandomForest)评估代谢组份重要性,建立模型,发现重要生物分子标识。6. Use Random Forest to evaluate the importance of metabolic components, build models, and discover important biomolecular markers.
研究结果:Research result:
1.通过对代谢组的偏最小二乘回归分析分析,鉴定出孤立性肌张力障碍病人血清中与正常人表达水平显著不同的242个代谢物(p<0.05,VIP>1and FC>2or<0.5)。1. Through the partial least squares regression analysis of the metabolome, 242 metabolites with significantly different expression levels in the serum of isolated dystonia patients were identified (p<0.05, VIP>1and FC>2or<0.5 ).
2.通过对差异代谢物分析发现,2,3-二氨基丙酸(升高),苯丙氨酰苯丙氨酸(降低),花生四烯酸(降低),L-焦谷氨酸(降低),L-天门冬氨酸(升高),L-谷氨酸(降低),油酸甘油酯(降低),次黄嘌呤(降低),D-天门冬氨酸(升高),丙酮酸(降低),牛磺酸(降低),1-油烯基甘油(降低),L-苏糖酸(降低),马来酰胺酸(降低),DL-苹果酸(降低),维生素C(降低),柠檬酸(升高),副黄嘌呤(升高),14(S)-HDHA(降低)和L-丝氨酸(降低)等的血清丰度的显著改变,可能参与机体多种神经递质合成和代谢物相关,并可作为肌张力障碍鉴别诊断的生物标识,以及为后续的疾病治疗提供新的靶点。(表2和图2)2. Through the analysis of differential metabolites, it was found that 2,3-diaminopropionic acid (increased), phenylalanylphenylalanine (decreased), arachidonic acid (decreased), L-pyroglutamic acid ( Decreased), L-Aspartic Acid (Increased), L-Glutamate (Decreased), Glyceryl Oleate (Decreased), Hypoxanthine (Decreased), D-Aspartic Acid (Increased), Acetone acid (reduced), taurine (reduced), 1-oleylglycerol (reduced), L-threonic acid (reduced), maleamic acid (reduced), DL-malic acid (reduced), vitamin C ( Significant changes in serum abundance of citric acid (increased), paraxanthine (increased), 14(S)-HDHA (decreased) and L-serine (decreased), etc., may be involved in various neurotransmissions in the body It can be used as a biomarker for the differential diagnosis of dystonia and provide a new target for subsequent disease treatment. (Table 2 and Figure 2)
表1.孤立性肌张力障碍病人血清代谢组学水平的显著改变。(p<0.05,VIP>1andFC>2or<0.5)。Table 1. Significant changes in serum metabolomic levels in patients with isolated dystonia. (p<0.05, VIP>1andFC>2or<0.5).
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210850304.1A CN115184501A (en) | 2022-07-20 | 2022-07-20 | Application of serum metabolite combination screening in diagnosis of dystonia |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210850304.1A CN115184501A (en) | 2022-07-20 | 2022-07-20 | Application of serum metabolite combination screening in diagnosis of dystonia |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115184501A true CN115184501A (en) | 2022-10-14 |
Family
ID=83520144
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210850304.1A Pending CN115184501A (en) | 2022-07-20 | 2022-07-20 | Application of serum metabolite combination screening in diagnosis of dystonia |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115184501A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1293573A (en) * | 1998-01-13 | 2001-05-02 | 同步神经元有限责任公司 | Methods of treating tardive dyskinesia and other movement disorders |
| RU2236682C1 (en) * | 2003-05-27 | 2004-09-20 | Государственное учреждение Тверская государственная медицинская академия | Method for diagnosing vegetative teenager dystonia syndrome severity from mineral lipid metabolism data |
| CN104388553A (en) * | 2014-11-03 | 2015-03-04 | 深圳市第二人民医院 | Detection primers, method and kit for myodystonia VPS16 gene |
| CN112029844A (en) * | 2020-07-30 | 2020-12-04 | 中国医学科学院病原生物学研究所 | Use of intestinal microorganisms for diagnosing dystonia |
| WO2022056475A1 (en) * | 2020-09-14 | 2022-03-17 | Duke University | Compositions and methods for diagnosing and treating a dystonia |
-
2022
- 2022-07-20 CN CN202210850304.1A patent/CN115184501A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1293573A (en) * | 1998-01-13 | 2001-05-02 | 同步神经元有限责任公司 | Methods of treating tardive dyskinesia and other movement disorders |
| RU2236682C1 (en) * | 2003-05-27 | 2004-09-20 | Государственное учреждение Тверская государственная медицинская академия | Method for diagnosing vegetative teenager dystonia syndrome severity from mineral lipid metabolism data |
| CN104388553A (en) * | 2014-11-03 | 2015-03-04 | 深圳市第二人民医院 | Detection primers, method and kit for myodystonia VPS16 gene |
| CN112029844A (en) * | 2020-07-30 | 2020-12-04 | 中国医学科学院病原生物学研究所 | Use of intestinal microorganisms for diagnosing dystonia |
| WO2022056475A1 (en) * | 2020-09-14 | 2022-03-17 | Duke University | Compositions and methods for diagnosing and treating a dystonia |
Non-Patent Citations (4)
| Title |
|---|
| MA, LY等: "Gut Microbiome and Serum Metabolome Alterations Associated with Isolated Dystonia", 《MSPHERE》 * |
| MULLER, UJ等: "Homocysteine and serum markers of immune activation in primary dystonia", 《MOVEMENT DISORDERS》 * |
| 吴逸雯等: "肌张力障碍遗传学发病机制及诊断策略", 《中国现代神经疾病杂志》 * |
| 孙继明等: "代谢组学检测法应用于肌张力障碍诊断的研究", 《中华神经外科疾病研究杂志》 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2016204969B2 (en) | Metabolic biomarkers of autism | |
| US10768183B2 (en) | Metabolite panel for improved screening and diagnostic testing of cystic fibrosis | |
| CN113009122B (en) | Methods and systems for determining the risk of autism spectrum disorder | |
| CN105044361A (en) | Diagnosis marker suitable for early-stage esophageal squamous cell cancer diagnosis and screening method of diagnosis marker | |
| German et al. | Serum biomarkers for Alzheimer's disease: proteomic discovery | |
| CN101903777A (en) | Methods and biomarkers for diagnosing and monitoring psychiatric disorders | |
| US9678086B2 (en) | Diagnostic assay for Alzheimer's disease | |
| CN111562338A (en) | Application of transparent renal cell carcinoma metabolic marker in renal cell carcinoma early screening and diagnosis product | |
| CN105044343B (en) | A method for constructing a diagnostic model of esophageal squamous cell carcinoma, the resulting diagnostic model, and a method for using the model | |
| CN119626532A (en) | A prediction and prognosis assessment system for amyotrophic lateral sclerosis | |
| CN105044240B (en) | A kind of diagnostic marker for being suitable for esophageal squamous cell carcinoma early diagnosis | |
| CN115184501A (en) | Application of serum metabolite combination screening in diagnosis of dystonia | |
| EP3060305A1 (en) | Biomarkers for memory loss | |
| US8206986B2 (en) | Methods for detecting Alzheimer's disease | |
| WO2024107923A1 (en) | Methods for the detection and treatment of lung cancer | |
| Wang et al. | Serum metabolomics reveals the effectiveness of human placental mesenchymal stem cell therapy for Crohn's disease | |
| CN105044342B (en) | A kind of diagnostic marker for being suitable for cancer of the esophagus early diagnosis | |
| CN112630330A (en) | Application of small molecular substance in cerebral infarction diagnosis | |
| WO2007139777A2 (en) | Methods for the diagnosis and prognosis of alzheimer's disease using csf protein profiling | |
| CN113640420B (en) | Application of serum metabolite combination in early diagnosis of pancreatic cancer | |
| CN112305123B (en) | Application of small molecular substance in atherosclerotic cerebral infarction | |
| CN120064656A (en) | Urine marker for ischemic acute kidney injury and screening method and application thereof | |
| WO2025178506A1 (en) | Method for determining the likelihood of mental disorders using blood lipids | |
| CN120009439A (en) | Serum endogenous biomarkers in patients with depression and construction of a depression diagnostic model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221014 |