CN115187904A - Object motion state detection method, device and storage medium - Google Patents
Object motion state detection method, device and storage medium Download PDFInfo
- Publication number
- CN115187904A CN115187904A CN202210824981.6A CN202210824981A CN115187904A CN 115187904 A CN115187904 A CN 115187904A CN 202210824981 A CN202210824981 A CN 202210824981A CN 115187904 A CN115187904 A CN 115187904A
- Authority
- CN
- China
- Prior art keywords
- state
- sequence value
- observation
- coordinate information
- position coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/22—Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/84—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using probabilistic graphical models from image or video features, e.g. Markov models or Bayesian networks
- G06V10/85—Markov-related models; Markov random fields
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Image Analysis (AREA)
Abstract
本发明提供了一种物体运动状态检测方法、装置及存储介质,方法包括:实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧;处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合;通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态;标定物体属于目标物体。由于本方案基于动态隐马尔科夫模型滤除了误识别和漏识别带来的干扰因子,并且能够更好处理标准隐马尔可夫模型面临的困难,进而可以提高对车辆运动状态的识别准确率。
The present invention provides a method, a device and a storage medium for detecting a motion state of an object. The method includes: collecting a video stream in a predetermined area in real time, and extracting N image frames corresponding to the current moment in the video stream based on a sliding window method; processing Obtain the N position coordinate information corresponding to the calibration object in the N image frames, and combine the N image frames to determine the observation sequence value set after excluding the predetermined observation sequence value; based on the dynamic hidden Markov model corresponding to the observation sequence value The set obtains the set of state sequence values; the motion state of the target object at the current moment in the N image frames is determined by observing the set of sequence values and the set of state sequence values; the calibration object belongs to the target object. Because this scheme is based on the dynamic hidden Markov model to filter out the interference factors caused by misrecognition and missed identification, and can better deal with the difficulties faced by the standard hidden Markov model, and thus can improve the recognition accuracy of the vehicle motion state.
Description
技术领域technical field
本发明实施例涉及运动检测技术领域,尤其涉及一种物体运动状态检测方法、装置及存储介质。Embodiments of the present invention relate to the technical field of motion detection, and in particular, to a method, a device, and a storage medium for detecting a motion state of an object.
背景技术Background technique
在智能物流园区,车辆的管理和装货卸货的管理需要高效协同才能充分保证物流操作的效率。车辆识别在车辆管理中是非常重要的环节,而车辆状态识别本身也有不同的场景,例如道闸的车辆识别和月台的车辆识别,通常是使用计算机视觉的方法。例如对车体进行识别,当车体的位置和月台的距离低于一定阈值判断为车辆到达,如果月台区域识别不到车体判断为离开。当前的技术比较大的缺点是,只能判断月台区域是否有车,而不能对车辆的运动状态进行识别。另外,由于月台的场景比较复杂,干扰多,对车辆运动状态的识别准确率较低。In a smart logistics park, the management of vehicles and the management of loading and unloading require efficient coordination to fully ensure the efficiency of logistics operations. Vehicle identification is a very important link in vehicle management, and vehicle status identification itself has different scenarios, such as vehicle identification at road gates and vehicle identification at platforms, usually using computer vision methods. For example, the vehicle body is identified. When the distance between the position of the vehicle body and the platform is lower than a certain threshold, it is determined that the vehicle arrives. If the vehicle body cannot be recognized in the platform area, it is determined to be leaving. The major disadvantage of the current technology is that it can only judge whether there is a vehicle in the platform area, but cannot identify the motion state of the vehicle. In addition, due to the complex scene of the platform and many interferences, the recognition accuracy of the vehicle motion state is low.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供的一种物体运动状态检测方法、装置及存储介质,可以提高对车辆运动状态的识别准确率。The object motion state detection method, device, and storage medium provided by the embodiments of the present invention can improve the recognition accuracy of the vehicle motion state.
本发明的技术方案是这样实现的:The technical scheme of the present invention is realized as follows:
本发明实施例提供了一种物体运动状态检测方法,包括:An embodiment of the present invention provides a method for detecting a motion state of an object, including:
实时采集预定区域的视频流,并基于滑动窗口的方法在所述视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;Collecting the video stream of the predetermined area in real time, and extracting N image frames corresponding to the current moment in the video stream based on the sliding window method; N is an integer greater than 1;
处理得到所述N个图像帧中的标定物体对应的N个位置坐标信息,并结合所述N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,所述预定观测序列值为预定位置坐标信息对应的观测序列值;所述预定位置坐标信息为对应不包括所述标定物体的图像帧进行处理得到的位置坐标信息;processing to obtain N pieces of positional coordinate information corresponding to the calibration objects in the N image frames, and combining the N image frames to determine a set of observation sequence values after excluding the predetermined observation sequence values; wherein, the predetermined observation sequence values are The sequence value is the observation sequence value corresponding to the predetermined position coordinate information; the predetermined position coordinate information is the position coordinate information obtained by processing corresponding to the image frame that does not include the calibration object;
基于动态隐马尔科夫模型对应所述观测序列值集合得到状态序列值集合;Obtaining a state sequence value set corresponding to the observation sequence value set based on the dynamic hidden Markov model;
通过所述观测序列值集合和所述状态序列值集合,确定出所述N个图像帧中目标物体的所述当前时刻的运动状态;所述标定物体属于所述目标物体。Through the observation sequence value set and the state sequence value set, the motion state of the target object at the current moment in the N image frames is determined; the calibration object belongs to the target object.
上述方案中,所述基于动态隐马尔科夫模型对应所述观测序列值集合得到状态序列值集合,包括:In the above solution, the state sequence value set obtained based on the dynamic hidden Markov model corresponding to the observation sequence value set includes:
检测得到所述观测序列值集合中的第i个观测序列值与前一个观测序列值之间的下标连续,基于所述第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到所述第i个观测序列值对应的第i组M个状态序列;i为大于或等于1的整数;M为大于1的整数;It is detected that the subscript between the i-th observation sequence value in the observation sequence value set and the previous observation sequence value is continuous, based on the i-th observation sequence value, the first preset state transition probability matrix and the first The preset observation probability matrix is processed by a preset dynamic programming algorithm to obtain the ith group of M state sequences corresponding to the ith observation sequence value; i is an integer greater than or equal to 1; M is an integer greater than 1;
检测得到第i+1个观测序列值与所述第i个观测序列值之间的下标间隔T个数值,基于所述第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵;所述第二预设状态转移概率矩阵表征对应所述第i+1个观测序列值时,M个状态序列值之间的转移概率集合;T为大于等于1的整数;Detecting the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, based on the second preset state transition probability matrix corresponding to the i+1th observation sequence value , the third state transition probability matrix is obtained by calculation; the second preset state transition probability matrix represents the transition probability set between M state sequence values when corresponding to the i+1th observation sequence value; T is greater than or equal to an integer of 1;
基于第i组M个状态序列,所述第i+1个观测序列值、所述第三状态转移概率矩阵和第三预设观测概率矩阵通过所述预设动态规划算法处理,得到所述第i+1个观测序列值对应的第i+1组M个状态序列,直至得到所述观测序列值集合中最后一个观测序列值对应的M个最终状态序列;Based on the ith group of M state sequences, the ith+1th observation sequence value, the third state transition probability matrix and the third preset observation probability matrix are processed by the preset dynamic programming algorithm to obtain the ith The i+1th group of M state sequences corresponding to the i+1 observation sequence values, until the M final state sequences corresponding to the last observation sequence value in the observation sequence value set are obtained;
在所述M个最终状态序列中确定出转移概率最大的目标状态序列的最后状态序列值;determining the final state sequence value of the target state sequence with the largest transition probability among the M final state sequences;
结合所述最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到所述状态序列值集合。Combining the final state sequence value and the preset state sequence matrix, a plurality of state sequence values are determined to obtain the state sequence value set.
上述方案中,所述基于所述第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵,包括:In the above solution, the calculation to obtain a third state transition probability matrix based on the second preset state transition probability matrix corresponding to the i+1th observation sequence value includes:
结合所述第二预设状态转移概率矩阵,计算第1个状态序列值分别与所述M个状态序列值对应的概率值,以形成所述第三状态转移概率矩阵的第一行;In combination with the second preset state transition probability matrix, the probability values corresponding to the first state sequence value and the M state sequence values are calculated to form the first row of the third state transition probability matrix;
直至结合所述第二预设状态转移概率矩阵,计算第M个状态序列值分别与所述M个状态序列值对应的概率值,以形成所述第三状态转移概率矩阵的第M行,进而得到所述第三状态转移概率矩阵。Until combined with the second preset state transition probability matrix, the probability values corresponding to the M th state sequence values and the M state sequence values respectively are calculated to form the M th row of the third state transition probability matrix, and then The third state transition probability matrix is obtained.
上述方案中,所述结合所述第二预设状态转移概率矩阵,计算第1个状态序列值分别与所述M个状态序列值对应的概率值,以形成所述第三状态转移概率矩阵的第一行,包括:In the above solution, in combination with the second preset state transition probability matrix, the probability values corresponding to the first state sequence value and the M state sequence values are calculated to form the third state transition probability matrix. The first line, including:
在所述第二预设状态转移概率矩阵中提取出,第1个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第一乘积;Extracted from the second preset state transition probability matrix, the first state sequence value is respectively multiplied by the transition probability between the M state sequence values to obtain the first product;
当T为1时,计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将所述第一乘积与所述第K乘积相加以形成所述第三状态转移概率矩阵中的第一行的第K个概率值,直至得到所述第三状态转移概率矩阵的第一行的第M个概率值,以形成所述第三状态转移概率矩阵的第一行;K为大于等于1小于等于M的整数。When T is 1, calculate the K th product corresponding to the M state sequence values and the K th state sequence value respectively, and add the first product and the K th product to form the third state transition probability matrix The K th probability value of the first row in , until the M th probability value of the first row of the third state transition probability matrix is obtained to form the first row of the third state transition probability matrix; K is An integer greater than or equal to 1 and less than or equal to M.
上述方案中,所述在所述第二预设状态转移概率矩阵中提取出,第1个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第一乘积之后,所述方法还包括:In the above solution, the first state sequence value extracted from the second preset state transition probability matrix is multiplied by the transition probabilities between the M state sequence values respectively, and after the first product is obtained, the The method also includes:
当T大于1时,提取出所述M个状态序列值中任意两个状态序列值之间的转移概率进行相乘,得到第二乘积;When T is greater than 1, extract the transition probability between any two state sequence values in the M state sequence values, and multiply them to obtain a second product;
计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将所述第一乘积、T-1个第二乘积与所述第K乘积相加以形成所述第三状态转移概率矩阵中的第一行的第K个概率值,直至得到所述第三状态转移概率矩阵的第一行的第M个概率值,以形成所述第三状态转移概率矩阵的第一行。Calculate the K th product corresponding to the M state sequence values and the K th state sequence value respectively, and add the first product, T-1 second products and the K th product to form the third state transition The Kth probability value of the first row in the probability matrix is obtained until the Mth probability value of the first row of the third state transition probability matrix is obtained, so as to form the first row of the third state transition probability matrix.
上述方案中,所述基于第i组M个状态序列,所述第i+1个观测序列值、所述第三状态转移概率矩阵和第三预设观测概率矩阵通过所述预设动态规划算法处理,得到所述第i+1个观测序列值对应的第i+1组M个状态序列,直至得到所述观测序列值集合中最后一个观测序列值对应的M个最终状态序列之后,所述结合所述最后状态序列值与所述目标状态序列对应的预设状态序列矩阵,确定出多个状态序列值,以得到所述状态序列值集合之前,所述方法还包括:In the above solution, based on the i-th group of M state sequences, the i+1-th observation sequence value, the third state transition probability matrix, and the third preset observation probability matrix pass through the preset dynamic programming algorithm. processing to obtain the i+1th group of M state sequences corresponding to the i+1th observation sequence value, until after obtaining the M final state sequences corresponding to the last observation sequence value in the observation sequence value set, the Before determining a plurality of state sequence values in combination with the preset state sequence matrix corresponding to the final state sequence value and the target state sequence, to obtain the set of state sequence values, the method further includes:
将所述M个最终状态序列按照列的顺序进行排列,进而得到所述预设状态序列矩阵。The M final state sequences are arranged in the order of columns, so as to obtain the preset state sequence matrix.
上述方案中,所述结合所述最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到所述状态序列值集合,包括:In the above solution, the combination of the final state sequence value and the preset state sequence matrix to determine a plurality of state sequence values to obtain the state sequence value set, including:
在所述预设状态序列矩阵中的最后一行中确定出与所述最后状态序列值匹配的目标序列值,进而确定所述目标序列值对应列的最终状态序列为所述多个状态序列值。A target sequence value matching the final state sequence value is determined in the last row of the preset state sequence matrix, and then the final state sequence in the column corresponding to the target sequence value is determined as the plurality of state sequence values.
上述方案中,所述基于滑动窗口的方法在所述视频流中提取出当前时刻对应的N个图像帧,包括:In the above solution, the sliding window-based method extracts N image frames corresponding to the current moment in the video stream, including:
在所述视频流中提取出所述当前时刻对应的当前图像帧;extracting the current image frame corresponding to the current moment in the video stream;
在所述视频流中以所述当前图像帧为起点,沿着时间轴每隔预定时长或者预定数量的图像帧提取出一个图像帧,直至提取得到N-1个图像帧;Taking the current image frame as a starting point in the video stream, extracting an image frame along the time axis every predetermined duration or a predetermined number of image frames, until N-1 image frames are extracted;
将所述当前图像帧和所述N-1个图像帧沿时间轴组合得到所述N个图像帧。The N image frames are obtained by combining the current image frame and the N-1 image frames along the time axis.
上述方案中,所述处理得到所述N个图像帧中的标定物体对应的N个位置坐标信息,并结合所述N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合,包括:In the above solution, the processing obtains N pieces of position coordinate information corresponding to the calibration objects in the N image frames, and combines the N image frames to determine the set of observation sequence values after excluding the predetermined observation sequence values, include:
通过预设检测模型对所述N个图像帧进行处理,得到所述N个位置坐标信息;The N image frames are processed by a preset detection model to obtain the N position coordinate information;
对所述N个图像帧分别进行区域划分,并针对每个位置坐标信息在对应的图像帧中确定出所属区域的观测序列值,以得到对应所述N个位置坐标信息的N个观测序列值;The N image frames are divided into regions respectively, and the observation sequence value of the region to which it belongs is determined in the corresponding image frame for each position coordinate information, so as to obtain N observation sequence values corresponding to the N position coordinate information ;
在所述N个观测序列值中剔除所述预定观测序列值,得到所述观测序列值集合。The predetermined observation sequence value is eliminated from the N observation sequence values to obtain the observation sequence value set.
上述方案中,所述对所述N个图像帧分别进行区域划分,并针对每个位置坐标信息在对应的图像帧中确定出所属区域的观测序列值,以得到对应所述N个位置坐标信息的N个观测序列值,包括:In the above solution, the N image frames are divided into regions respectively, and the observation sequence value of the corresponding region is determined in the corresponding image frame for each position coordinate information, so as to obtain the corresponding N position coordinate information. The N observed sequence values of , including:
将所述N个图像帧分别沿着纵坐标分割成U个区域,得到对应每个图像帧的U个区域;U为大于1的整数;The N image frames are respectively divided into U regions along the ordinate to obtain U regions corresponding to each image frame; U is an integer greater than 1;
针对每个位置坐标信息在对应的所述U个区域中确定出所述所属区域;Determine the belonging area in the corresponding U areas for each position coordinate information;
在所述U个区域中确定出所述所属区域的纵向次序,将所述纵向次序作为所述每个位置坐标信息的观测序列值,进而得到所述N个观测序列值。The vertical order of the belonging region is determined in the U regions, and the vertical order is used as the observation sequence value of each position coordinate information, and then the N observation sequence values are obtained.
上述方案中,所述通过所述观测序列值集合和所述状态序列值集合,确定出所述N个图像帧中目标物体的所述当前时刻的运动状态,包括:In the above solution, determining the motion state of the target object at the current moment in the N image frames through the observation sequence value set and the state sequence value set, including:
结合所述状态序列值集合和所述观测序列值集合,剔除所述N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息;Combining the state sequence value set and the observation sequence value set, eliminating the interference position coordinate information in the N position coordinate information to obtain a plurality of target position coordinate information;
利用所述多个目标位置坐标信息,确定出所述运动状态。Using the plurality of target position coordinate information, the motion state is determined.
上述方案中,所述结合所述状态序列值集合和所述观测序列值集合,剔除所述N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息,包括:In the above solution, the state sequence value set and the observation sequence value set are combined to eliminate the interference position coordinate information in the N position coordinate information, and obtain a plurality of target position coordinate information, including:
按照次序将所述状态序列值集合中的多个状态序列值与所述观测序列值集合中的多个观测序列值进行一一对比,若确定出至少一个状态序列值与对应次序的至少一个观测序列值不同,则将所述至少一个观测序列值对应的至少一个第二位置坐标信息从所述N个位置坐标信息中剔除,得到多个中间位置坐标信息;Compare multiple state sequence values in the state sequence value set with multiple observation sequence values in the observation sequence value set one by one in order, if at least one state sequence value and at least one observation in the corresponding order are determined If the sequence values are different, the at least one second position coordinate information corresponding to the at least one observation sequence value is eliminated from the N position coordinate information to obtain a plurality of intermediate position coordinate information;
将所述多个中间位置坐标信息中的预定位置坐标信息剔除,得到所述多个目标位置坐标信息。The predetermined position coordinate information in the plurality of intermediate position coordinate information is eliminated to obtain the plurality of target position coordinate information.
上述方案中,所述利用所述多个目标位置坐标信息,确定出所述运动状态,包括:In the above solution, determining the motion state by using the plurality of target position coordinate information includes:
对所述多个目标位置坐标信息中的多个目标纵坐标信息沿时间轴进行线性拟合,得到所述多个目标纵坐标信息的斜率值;performing linear fitting on the plurality of target ordinate information in the plurality of target position coordinate information along the time axis to obtain slope values of the plurality of target ordinate information;
根据所述斜率值的大小确定出所述运动状态。The motion state is determined according to the magnitude of the slope value.
上述方案中,所述根据所述斜率值的大小确定出所述运动状态,包括以下之一:In the above solution, determining the motion state according to the magnitude of the slope value includes one of the following:
若所述斜率值大于预设阈值,则确定所述运动状态为靠近状态;If the slope value is greater than a preset threshold, determining that the motion state is a close state;
若所述斜率值小于所述预设阈值,则确定所述运动状态为远离状态。If the slope value is smaller than the preset threshold, it is determined that the motion state is a distance state.
本发明实施例还提供了一种物体运动状态检测装置,包括:The embodiment of the present invention also provides an object motion state detection device, including:
采集提取单元,用于实时采集预定区域的视频流,并基于滑动窗口的方法在所述视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;The acquisition and extraction unit is used for real-time acquisition of the video stream of the predetermined area, and extracts N image frames corresponding to the current moment in the video stream based on the sliding window method; N is an integer greater than 1;
处理单元,用于处理得到所述N个图像帧中的标定物体对应的N个位置坐标信息,并结合所述N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,所述预定观测序列值为预定位置坐标信息对应的观测序列值;所述预定位置坐标信息为对应不包括所述标定物体的图像帧进行处理得到的位置坐标信息;a processing unit, configured to process and obtain N pieces of position coordinate information corresponding to the calibration objects in the N image frames, and combine the N image frames to determine an observation sequence value set after excluding the predetermined observation sequence value; wherein , the predetermined observation sequence value is the observation sequence value corresponding to the predetermined position coordinate information; the predetermined position coordinate information is the position coordinate information obtained by processing corresponding to the image frame that does not include the calibration object;
所述处理单元,还用于基于动态隐马尔科夫模型对应所述观测序列值集合得到状态序列值集合;The processing unit is further configured to obtain a state sequence value set corresponding to the observation sequence value set based on the dynamic hidden Markov model;
确定单元,用于通过所述观测序列值集合和所述状态序列值集合,确定出所述N个图像帧中目标物体的所述当前时刻的运动状态;所述标定物体属于所述目标物体。A determination unit, configured to determine the motion state of the target object at the current moment in the N image frames through the observation sequence value set and the state sequence value set; the calibration object belongs to the target object.
本发明实施例还提供了一种物体运动状态检测装置,包括存储器和处理器,存储器存储有可在处理器上运行的计算机程序,处理器执行程序时实现上述方法中的步骤。Embodiments of the present invention also provide an object motion state detection device, including a memory and a processor, where the memory stores a computer program that can be run on the processor, and the processor implements the steps in the above method when executing the program.
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法中的步骤。Embodiments of the present invention further provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps in the above method.
本发明实施例中,实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,预定观测序列值为预定位置坐标信息对应的观测序列值;预定位置坐标信息为对应不包括标定物体的图像帧进行处理得到的位置坐标信息;基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合;通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态;标定物体属于目标物体。由于本方案基于动态隐马尔科夫模型滤除了误识别和漏识别带来的干扰因子,并且能够更好处理标准隐马尔可夫模型面临的困难,进而可以提高对车辆运动状态的识别准确率。In the embodiment of the present invention, a video stream in a predetermined area is collected in real time, and N image frames corresponding to the current moment are extracted from the video stream based on a sliding window method; N is an integer greater than 1; The N pieces of position coordinate information corresponding to the calibration object are calibrated, and combined with the N image frames, an observation sequence value set after excluding the predetermined observation sequence value is determined; wherein, the predetermined observation sequence value is the observation sequence value corresponding to the predetermined position coordinate information; The position coordinate information is the position coordinate information obtained by processing the image frames that do not include the calibration object; the state sequence value set is obtained based on the dynamic hidden Markov model corresponding to the observation sequence value set; the observation sequence value set and the state sequence value set are determined. The motion state of the target object at the current moment in the N image frames is obtained; the calibration object belongs to the target object. Because the scheme is based on the dynamic hidden Markov model to filter out the interference factors caused by misrecognition and missed identification, and can better deal with the difficulties faced by the standard hidden Markov model, and thus can improve the recognition accuracy of the vehicle motion state.
附图说明Description of drawings
图1为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图;1 is an optional schematic flowchart of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图2为本发明实施例提供的物体运动状态检测方法的一个可选的效果示意图;2 is a schematic diagram of an optional effect of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图3为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图;3 is an optional schematic flowchart of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图4为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图;4 is an optional schematic flowchart of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图5为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图;5 is an optional schematic flowchart of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图6为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图;6 is an optional schematic flowchart of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图7为本发明实施例提供的物体运动状态检测方法的一个可选的效果示意图;7 is a schematic diagram of an optional effect of a method for detecting a motion state of an object provided by an embodiment of the present invention;
图8为本发明实施例提供的物体运动状态检测装置的结构示意图;8 is a schematic structural diagram of an object motion state detection device provided by an embodiment of the present invention;
图9为本发明实施例提供的物体运动状态检测装置的一种硬件实体示意图。FIG. 9 is a schematic diagram of a hardware entity of an apparatus for detecting a motion state of an object provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例对本发明的技术方案进一步详细阐述,所描述的实施例不应视为对本发明的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention are further elaborated below in conjunction with the accompanying drawings and embodiments. The described embodiments should not be regarded as limitations of the present invention. All other embodiments obtained without creative work fall within the protection scope of the present invention.
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。In the following description, reference is made to "some embodiments" which describe a subset of all possible embodiments, but it is understood that "some embodiments" can be the same or a different subset of all possible embodiments, and Can be combined with each other without conflict.
如果发明文件中出现“第一/第二”的类似描述则增加以下的说明,在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本发明实施例能够以除了在这里图示或描述的以外的顺序实施。If a similar description of "first/second" appears in the invention document, the following description will be added. In the following description, the term "first\second\third" involved is only to distinguish similar objects, and does not mean For a specific ordering of objects, it can be understood that "first\second\third" may be interchanged in a specific order or sequence if permitted, so that the embodiments of the present invention described herein can be used in other than those shown in the drawings. performed in an order other than that shown or described.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本发明实施例的目的,不是旨在限制本发明。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein are for the purpose of describing the embodiments of the present invention only, and are not intended to limit the present invention.
本发明实施例提供了一种物体运动状态检测方法,请参阅图1,为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,将结合图1示出的步骤进行说明。An embodiment of the present invention provides a method for detecting a motion state of an object. Please refer to FIG. 1 , which is an optional schematic flowchart of the method for detecting a motion state of an object provided by an embodiment of the present invention, which will be described in conjunction with the steps shown in FIG. 1 .
S101、实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧。S101. Collect a video stream of a predetermined area in real time, and extract N image frames corresponding to the current moment from the video stream based on a sliding window method.
本发明实施例中,物体运动状态检测装置实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧。其中,N为大于1的整数。In the embodiment of the present invention, the object motion state detection device collects the video stream of the predetermined area in real time, and extracts N image frames corresponding to the current moment from the video stream based on the sliding window method. Wherein, N is an integer greater than 1.
本发明实施例中,物体运动状态检测装置通过设置在预定区域的摄像头采集预定区域的视频流。物体运动状态检测装置每隔预定个数的图像帧提取出一个图像帧,并利用滑动窗口的方法确定出当前时刻对应的N个图像帧。In the embodiment of the present invention, the object motion state detection apparatus collects the video stream of the predetermined area through the camera set in the predetermined area. The object motion state detection device extracts one image frame every predetermined number of image frames, and uses the sliding window method to determine N image frames corresponding to the current moment.
本发明实施例中,物体运动状态检测装置在视频流中提取出当前时刻对应的图像帧,并沿着时间轴向前间隔预定时长提取出多个图像帧,以得到N个图像帧。In the embodiment of the present invention, the object motion state detection device extracts the image frame corresponding to the current moment in the video stream, and extracts multiple image frames at a predetermined time interval forward along the time axis to obtain N image frames.
本发明实施例中,物体运动状态检测装置可以为与预定区域的摄像头连接的终端或者服务器。In this embodiment of the present invention, the object motion state detection device may be a terminal or a server connected to a camera in a predetermined area.
本发明实施例中,摄像头采集的预定区域不变,摄像头实时采集预定区域的视频流。当物体运动状态检测装置检测到物体(也就是车辆)进入预定区域后,物体运动状态检测装置基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧。In this embodiment of the present invention, the predetermined area captured by the camera remains unchanged, and the camera captures the video stream of the predetermined area in real time. After the object motion state detection device detects that the object (that is, the vehicle) enters the predetermined area, the object motion state detection device extracts N image frames corresponding to the current moment in the video stream based on the sliding window method.
S102、处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合。S102, processing to obtain N position coordinate information corresponding to the calibration object in the N image frames, and combining the N image frames to determine an observation sequence value set after excluding the predetermined observation sequence value.
本发明实施例中,物体运动状态检测装置处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合。其中,所述预定观测序列值为预定位置坐标信息对应的观测序列值;所述预定位置坐标信息为对应不包括所述标定物体的图像帧进行处理得到的位置坐标信息。示例性的,预定位置坐标信息可以为(-1,-1)。In the embodiment of the present invention, the object motion state detection device obtains N position coordinate information corresponding to the calibration object in the N image frames, and combines the N image frames to determine the observation sequence value set after excluding the predetermined observation sequence value . Wherein, the predetermined observation sequence value is the observation sequence value corresponding to the predetermined position coordinate information; the predetermined position coordinate information is the position coordinate information obtained by processing corresponding to the image frame that does not include the calibration object. Exemplarily, the predetermined position coordinate information may be (-1, -1).
本发明实施例中,物体运动状态检测装置通过预设检测模型对N个图像帧进行处理,得到N个图像帧中的标定物体对应的N个位置坐标信息。In the embodiment of the present invention, the object motion state detection device processes N image frames by using a preset detection model, and obtains N position coordinate information corresponding to the calibration object in the N image frames.
本发明实施例中,物体运动状态检测装置可以通过扭曲平面物体检测网络模型(Warped Planar Object Detection Network,WPOD-NET)对N个图像帧进行处理,得到N个图像帧中的标定物体对应的N个位置坐标信息。本发明实施例中,物体运动状态检测装置也可以通过其他的预设检测模型对N个图像帧进行处理,本发明实施例中不做限制。In the embodiment of the present invention, the object motion state detection device may process N image frames by using a Warped Planar Object Detection Network (WPOD-NET) model to obtain N corresponding to the calibration objects in the N image frames. location coordinate information. In the embodiment of the present invention, the apparatus for detecting the motion state of the object may also process the N image frames by using other preset detection models, which is not limited in the embodiment of the present invention.
本发明实施例中,物体运动检测装置对N个图像帧分别进行区域划分。物体运动检测装置确定出每个位置坐标信息在对应图像帧中所属区域。物体运动检测装置通过N个位置坐标信息分别对应的所属区域,确定出N个位置坐标信息的N个观测序列值。物体运动检测装置剔除N个观测序列值中的预定观测序列值得到观测序列值集合。In the embodiment of the present invention, the object motion detection apparatus divides the N image frames into regions respectively. The object motion detection device determines the area to which each position coordinate information belongs in the corresponding image frame. The object motion detection device determines N observation sequence values of the N pieces of position coordinate information according to the respective regions corresponding to the N pieces of position coordinate information. The object motion detection device removes a predetermined observation sequence value from the N observation sequence values to obtain a set of observation sequence values.
本发明实施例中,N个图像帧中包括目标物体,目标物体上具有标定物体。示例性的,目标物体可以为汽车,对应的标定物体可以为车牌、车门或者车轮。目标物体还可以为任意移动的物体,标定物体可以为该任意移动物体上的预定部分。In the embodiment of the present invention, the N image frames include a target object, and the target object has a calibration object. Exemplarily, the target object may be a car, and the corresponding calibration object may be a license plate, a door or a wheel. The target object can also be any moving object, and the calibration object can be a predetermined part on the arbitrary moving object.
本发明实施例中,物体运动状态检测装置使用计算机视觉的方法进行月台场景车辆13到达和离开的识别。物体运动状态检测装置在识别的过程中,摄像头12设置在月台10仓库门11上方,在车辆13倒车靠近月台10的仓库门11过程中进行识别,如图2所示。对于摄像头12采集的视频流,本方案考虑不同算法的算力要求,以每5帧取1帧的频率进行采集和识别。整体的方案可以通过识别车体本身的动态或者车牌13的动态来判断车辆的动作,考虑到车牌是车辆13独有的信息,对车牌识别能够排除一些其他容易被当成车辆13的物体的干扰,并且对车辆13识别的最终目的还是识别车牌,直接利用车牌信息识别可以减少车体识别的模块。因此,本方案对每一帧采集到的图片都进行车牌检测,通过每一帧识别到的车牌的位置的变化来判断车辆到达和离开的动态。In the embodiment of the present invention, the object motion state detection device uses a computer vision method to identify the arrival and departure of the vehicle 13 in the platform scene. During the identification process of the object motion state detection device, the
本发明实施例中,在给定一个图像帧之后,物体运动状态检测装置通过预设检测模型可以返回车牌在图片中所对应区域的范围。物体运动状态检测装置通过WPOD-NET算法模型,确定出车牌的4个顶点坐标。如果在任意一个图像帧中没有检测到车牌,则检测结果为空。对于每个图像帧,物体运动状态检测装置通过WPOD-NET算法模型结合4个顶点坐标确定车牌区域中心点的横纵坐标,如果任意图像帧中没有检测出车牌,则对应横纵坐标都用-1表示。那么,在摄像头连续采集的情况下,物体运动状态检测装置可以得到两个坐标序列,分别对应横坐标和纵坐标。In this embodiment of the present invention, after an image frame is given, the object motion state detection device can return the range of the area corresponding to the license plate in the image by using a preset detection model. The object motion state detection device determines the coordinates of the four vertices of the license plate through the WPOD-NET algorithm model. If no license plate is detected in any image frame, the detection result is empty. For each image frame, the object motion state detection device determines the horizontal and vertical coordinates of the center point of the license plate area through the WPOD-NET algorithm model combined with four vertex coordinates. If the license plate is not detected in any image frame, the corresponding horizontal and vertical coordinates are used - 1 indicates. Then, in the case of continuous acquisition by the camera, the object motion state detection device can obtain two coordinate sequences, respectively corresponding to the abscissa and the ordinate.
S103、基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合。S103, obtaining a state sequence value set based on the corresponding observation sequence value set of the dynamic hidden Markov model.
本发明实施例中,物体运动状态检测装置基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合。In the embodiment of the present invention, the object motion state detection device obtains the state sequence value set based on the observation sequence value set corresponding to the dynamic hidden Markov model.
本发明实施例中,物体运动状态检测装置检测得到观测序列值集合中的第i个观测序列值与前一个观测序列值之间的下标连续,基于第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到第i个观测序列值对应的第i组M个状态序列;i为大于或等于1的整数;M为大于1的整数;检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,基于第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵;基于第i组M个状态序列,第i+1个观测序列值、第三状态转移概率矩阵和第三预设观测概率矩阵通过预设动态规划算法处理,得到第i+1个观测序列值对应的第i+1组M个状态序列,直至得到观测序列值集合中最后一个观测序列值对应的M个最终状态序列;在M个最终状态序列中确定出转移概率最大的目标状态序列的最后状态序列值;结合最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到状态序列值集合。In the embodiment of the present invention, the object motion state detection device detects that the subscript between the i-th observation sequence value and the previous observation sequence value in the observation sequence value set is continuous, based on the i-th observation sequence value, the first preset The state transition probability matrix and the first preset observation probability matrix are processed by a preset dynamic programming algorithm to obtain the ith group of M state sequences corresponding to the ith observation sequence value; i is an integer greater than or equal to 1; M is greater than 1 is an integer; the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value are obtained by detecting, and based on the second preset state transition probability matrix corresponding to the i+1th observation sequence value, The third state transition probability matrix is obtained by calculation; based on the ith group of M state sequences, the i+1th observation sequence value, the third state transition probability matrix and the third preset observation probability matrix are processed by a preset dynamic programming algorithm to obtain The i+1th group of M state sequences corresponding to the i+1th observation sequence value, until the M final state sequences corresponding to the last observation sequence value in the observation sequence value set are obtained; the transition is determined in the M final state sequences The final state sequence value of the target state sequence with the highest probability; combining the final state sequence value and the preset state sequence matrix, multiple state sequence values are determined to obtain a set of state sequence values.
S103、通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态。S103: Determine the motion state of the target object at the current moment in the N image frames by observing the sequence value set and the state sequence value set.
本发明实施例中,物体运动状态检测装置通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态。标定物体属于目标物体。In the embodiment of the present invention, the object motion state detection device determines the motion state of the target object at the current moment in the N image frames by observing the sequence value set and the state sequence value set. The calibration object belongs to the target object.
本发明实施例中,物体运动状态检测装置结合N个图像帧,剔除N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息。物体运动状态检测装置利用多个目标位置坐标信息,确定出N个图像帧中目标物体的当前时刻的运动状态。In the embodiment of the present invention, the object motion state detection device combines N image frames, removes interfering position coordinate information in the N position coordinate information, and obtains a plurality of target position coordinate information. The object motion state detection device determines the current moment motion state of the target object in the N image frames by using a plurality of target position coordinate information.
物体运动检测装置将状态序列值集合中的状态序列值和多个观测序列值按照次序一一对比,确定出异常观测序列值,进而物体运动检测装置可以在N个位置坐标信息中剔除异常观测序列值对应的位置坐标信息,进而得到多个目标位置坐标信息。The object motion detection device compares the state sequence values in the state sequence value set with multiple observation sequence values one by one in order to determine the abnormal observation sequence value, and then the object motion detection device can eliminate the abnormal observation sequence from the N position coordinate information. The position coordinate information corresponding to the value is obtained, and then multiple target position coordinate information is obtained.
本发明实施例中,物体运动状态检测装置可以将N个位置坐标信息中表征未检测到车牌的图像帧的预定位置坐标信息剔除,进而得到多个目标位置坐标信息。In the embodiment of the present invention, the object motion state detection device can remove the predetermined position coordinate information representing the image frame of the undetected license plate from the N position coordinate information, and then obtain a plurality of target position coordinate information.
本发明实施例中,物体运动状态检测装置对多个目标位置坐标信息进行线性拟合,得到斜率值。物体运动状态检测装置根据斜率值的大小确定出目标物体的当前时刻的运动状态。In the embodiment of the present invention, the object motion state detection device performs linear fitting on a plurality of target position coordinate information to obtain a slope value. The object motion state detection device determines the current motion state of the target object according to the magnitude of the slope value.
示例性的,任意的位置坐标信息可以为(X,Y)。其中,X表征对应图像帧的标定物体中点的横坐标,Y表征对应图像帧的标定物体中点的纵坐标。Exemplarily, the arbitrary position coordinate information may be (X, Y). Wherein, X represents the abscissa of the midpoint of the calibration object corresponding to the image frame, and Y represents the ordinate of the midpoint of the calibration object corresponding to the image frame.
本发明实施例中,物体运动状态检测装置只保留当前时刻最近采集的N个位置坐标信息,因此,横纵坐标的序列分别表示为X和Y。两个序列的长度均为N,本方案把N取值为20。本方案对车辆到达或者离开的动态判断方式为,对Y的趋势进行判断,如果车辆由远及近,则Y中元素的取值呈上升趋势,由近及远则为下降趋势。为了实现这一逻辑,本方案增加一个时间下标序列t,并对Y和t进行线性拟合,即y=at+b。如果拟合的斜率a大于一定的阈值,则判断为车辆为进入状态,如果a小于一定阈值,则判断为车辆为离开状态。由于并不是所有的图片中都能识别到车牌,因此,在拟合之前,需要把Y中取值为-1的元素都移除,假设移除之后的长度为M,则t=[1、2……M],再进行线性拟合。如果M的取值太小,即有效数据太少,比如少于10个,就不进行拟合,不判断本次的车辆运动状态。In the embodiment of the present invention, the object motion state detection device only retains N pieces of position coordinate information recently collected at the current moment, therefore, the sequence of the abscissa and the ordinate is represented as X and Y respectively. The lengths of the two sequences are both N, and the value of N is 20 in this scheme. The dynamic judgment method of vehicle arrival or departure in this scheme is to judge the trend of Y. If the vehicle is from far to near, the value of the element in Y is on an upward trend, and from near to far, it is a downward trend. In order to realize this logic, this scheme adds a time subscript sequence t, and performs linear fitting on Y and t, that is, y=at+b. If the fitted slope a is greater than a certain threshold, it is determined that the vehicle is in the entering state, and if a is less than a certain threshold, it is determined that the vehicle is in the leaving state. Since not all the license plates can be recognized in the pictures, before fitting, all elements with a value of -1 in Y need to be removed. Assuming that the length after removal is M, then t=[1, 2...M], and then perform linear fitting. If the value of M is too small, that is, there are too few valid data, such as less than 10, the fitting will not be performed, and the current vehicle motion state will not be judged.
本发明实施例中,实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,预定观测序列值为预定位置坐标信息对应的观测序列值;预定位置坐标信息为对应不包括标定物体的图像帧进行处理得到的位置坐标信息;基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合;通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态;标定物体属于目标物体。由于本方案基于动态隐马尔科夫模型滤除了误识别和漏识别带来的干扰因子,并且能够更好处理标准隐马尔可夫模型面临的困难,进而可以提高对车辆运动状态的识别准确率。In the embodiment of the present invention, a video stream in a predetermined area is collected in real time, and N image frames corresponding to the current moment are extracted from the video stream based on a sliding window method; N is an integer greater than 1; The N pieces of position coordinate information corresponding to the calibration object are calibrated, and combined with the N image frames, an observation sequence value set after excluding the predetermined observation sequence value is determined; wherein, the predetermined observation sequence value is the observation sequence value corresponding to the predetermined position coordinate information; The position coordinate information is the position coordinate information obtained by processing the image frames that do not include the calibration object; the state sequence value set is obtained based on the dynamic hidden Markov model corresponding to the observation sequence value set; the observation sequence value set and the state sequence value set are determined. The motion state of the target object at the current moment in the N image frames is obtained; the calibration object belongs to the target object. Because the scheme is based on the dynamic hidden Markov model to filter out the interference factors caused by misrecognition and missed identification, and can better deal with the difficulties faced by the standard hidden Markov model, and thus can improve the recognition accuracy of the vehicle motion state.
在一些实施例中,参见图3,图3为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图1示出的S103还可以通过S105至S109实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 3 , FIG. 3 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S103 shown in FIG. 1 can also be implemented through S105 to S109 , and each step will be combined with each other. Be explained.
S105、检测得到观测序列值集合中的第i个观测序列值与前一个观测序列值之间的下标连续,基于第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到第i个观测序列值对应的第i组M个状态序列。S105. Detecting that the subscript between the i-th observation sequence value in the observation sequence value set and the previous observation sequence value is continuous, based on the i-th observation sequence value, the first preset state transition probability matrix and the first preset The observation probability matrix is processed by a preset dynamic programming algorithm to obtain the ith group of M state sequences corresponding to the ith observation sequence value.
本发明实施例中,物体运动状态检测装置检测得到观测序列值集合中的第i个观测序列值与前一个观测序列值之间的下标连续,基于第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到第i个观测序列值对应的第i组M个状态序列。i为大于或等于1的整数;M为大于1的整数。In the embodiment of the present invention, the object motion state detection device detects that the subscript between the i-th observation sequence value and the previous observation sequence value in the observation sequence value set is continuous, based on the i-th observation sequence value, the first preset The state transition probability matrix and the first preset observation probability matrix are processed by a preset dynamic programming algorithm to obtain the ith group of M state sequences corresponding to the ith observation sequence value. i is an integer greater than or equal to 1; M is an integer greater than 1.
本发明实施例中,物体运动检测装置可以通过viterbi算法对每个观测序列值进行处理。以得到每个观测序列值对应的M个状态序列。当物体运动检测装置检测到第i个观测序列值与前一个观测序列值之间的下标连续(也就是第i个观测序列值对应的图像帧与前一个观测序列值的图像帧之间的间隔时长不变)。物体运动检测装置基于第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到第i个观测序列值对应的第i组M个状态序列。相邻两个观测序列值对应的第一预设状态转移概率矩阵、第一预设观测概率矩阵均不同。In the embodiment of the present invention, the object motion detection apparatus may process each observation sequence value through the viterbi algorithm. to obtain M state sequences corresponding to each observation sequence value. When the object motion detection device detects that the subscript between the ith observation sequence value and the previous observation sequence value is continuous (that is, the difference between the image frame corresponding to the ith observation sequence value and the image frame of the previous observation sequence value) the interval time remains unchanged). The object motion detection device is processed by a preset dynamic programming algorithm based on the ith observation sequence value, the first preset state transition probability matrix, and the first preset observation probability matrix, and obtains the ith group of M corresponding to the ith observation sequence value. state sequence. The first preset state transition probability matrix and the first preset observation probability matrix corresponding to two adjacent observation sequence values are different.
本发明实施例中对预设动态规划算法不做限制,物体运动状态检测装置还可以通过其他的预设动态规划算法处理得到状态序列。第一预设状态转移概率矩阵表征任意两个状态序列值之间的转移概率的集合;第一预设观测概率矩阵表征任意的状态序列值与观测序列值之间的转移概率的集合。The preset dynamic programming algorithm is not limited in the embodiment of the present invention, and the object motion state detection device can also obtain the state sequence by processing other preset dynamic programming algorithms. The first preset state transition probability matrix represents a set of transition probabilities between any two state sequence values; the first preset observation probability matrix represents a set of transition probabilities between any state sequence value and observation sequence value.
其中,第一预设状态转移概率矩阵是人工得到的经验概率矩阵。当存在M个状态序列值时,人工确认任意两个状态序列值之间的转移概率,进而可以得到M乘M个概率以得到预设状态转移概率矩阵。第一预设状态转移概率矩阵的任意一行中的转移概率代表了对应的两个状态序列值之间的转移概率。The first preset state transition probability matrix is an empirical probability matrix obtained manually. When there are M state sequence values, the transition probability between any two state sequence values is manually confirmed, and then M times M probabilities can be obtained to obtain a preset state transition probability matrix. The transition probability in any row of the first preset state transition probability matrix represents the transition probability between the corresponding two state sequence values.
其中,第一预设观测概率矩阵是预设检测模型在训练时得到的概率矩阵。当存在M个状态序列值和M个观测序列值时,预设检测模型在训练时得到任意状态序列值和观测序列值之间的转移概率,进而可以得到M乘M个概率以得到预设观测概率矩阵。第一预设观测概率矩阵任意一行中的转移概率代表了对应的状态序列值和观测序列值之间的转移概率。The first preset observation probability matrix is a probability matrix obtained by the preset detection model during training. When there are M state sequence values and M observation sequence values, the preset detection model obtains the transition probability between any state sequence value and observation sequence value during training, and then M times M probabilities can be obtained to obtain the preset observation probability matrix. The transition probability in any row of the first preset observation probability matrix represents the transition probability between the corresponding state sequence value and the observation sequence value.
S106、检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,基于第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵。S106. Detect and obtain the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, and calculate the second preset state transition probability matrix corresponding to the i+1th observation sequence value based on the A third state transition probability matrix is obtained.
本发明实施例中,物体运动状态检测装置检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,基于第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵。T为大于等于1的整数。In the embodiment of the present invention, the object motion state detection device detects and obtains the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, based on the ith value corresponding to the i+1th observation sequence value Two preset state transition probability matrices are calculated to obtain a third state transition probability matrix. T is an integer greater than or equal to 1.
其中,第二预设状态转移概率矩阵表征对应第i+1个观测序列值时,M个状态序列值之间的转移概率集合。Wherein, the second preset state transition probability matrix represents a transition probability set between M state sequence values when corresponding to the i+1th observation sequence value.
示例性的,观测序列值集合可以为ox(1)ox(2)…ox(N)。其中,ox(i)对应有下标Θ。若两个观测序列值是连续的两个图像帧对应的观测序列值,则该两个观测序列值的下标连续(也就是后一个下标比前一个下标大1)。若两个观测序列值不是连续的两个图像帧对应的观测序列值,则该两个观测序列值的下标数值不连续(也就是后一个下标比前一个下标至少大2)。若后一个下标比前一个下标大2,则说明该两个观测序列值之间1个序列值,若后一个下标比前一个下标大3,则说明该两个观测序列值之间2个序列值。Exemplarily, the set of observation sequence values may be o x (1)o x (2)...o x (N). Among them, o x (i) corresponds to the subscript Θ. If the two observation sequence values are observation sequence values corresponding to two consecutive image frames, the subscripts of the two observation sequence values are consecutive (that is, the latter subscript is greater than the previous subscript by 1). If the two observation sequence values are not the observation sequence values corresponding to two consecutive image frames, the subscript values of the two observation sequence values are discontinuous (that is, the latter subscript is at least 2 larger than the former subscript). If the latter subscript is larger than the previous subscript by 2, it indicates that there is one sequence value between the two observation sequence values; if the latter subscript is larger than the previous subscript by 3, it indicates that the two observation sequence values are between between 2 sequence values.
S107、基于第i组M个状态序列,第i+1个观测序列值、第三状态转移概率矩阵和第三预设观测概率矩阵通过预设动态规划算法处理,得到第i+1个观测序列值对应的第i+1组M个状态序列,直至得到观测序列值集合中最后一个观测序列值对应的M个最终状态序列。S107. Based on the i-th group of M state sequences, the i+1-th observation sequence value, the third state transition probability matrix and the third preset observation probability matrix are processed by a preset dynamic programming algorithm to obtain the i+1-th observation sequence value corresponding to the i+1th group of M state sequences, until the M final state sequences corresponding to the last observation sequence value in the observation sequence value set are obtained.
本发明实施例中,物体运动状态检测装置基于第i组M个状态序列,第i+1个观测序列值、第三状态转移概率矩阵和第三预设观测概率矩阵通过预设动态规划算法处理,得到第i+1个观测序列值对应的第i+1组M个状态序列,直至得到观测序列值集合中最后一个观测序列值对应的M个最终状态序列。In the embodiment of the present invention, the object motion state detection device is processed by a preset dynamic programming algorithm based on the ith group of M state sequences, the i+1th observation sequence value, the third state transition probability matrix, and the third preset observation probability matrix. , obtain the i+1th group of M state sequences corresponding to the i+1th observation sequence value, until the M final state sequences corresponding to the last observation sequence value in the observation sequence value set are obtained.
S108、在M个最终状态序列中确定出转移概率最大的目标状态序列的最后状态序列值。S108: Determine the final state sequence value of the target state sequence with the largest transition probability among the M final state sequences.
本发明实施例中,物体运动状态检测装置在M个最终状态序列中确定出转移概率最大的目标状态序列的最后状态序列值。In the embodiment of the present invention, the object motion state detection device determines the final state sequence value of the target state sequence with the largest transition probability among the M final state sequences.
本发明实施例中,物体运动状态检测装置可以通过每个最终状态序列中的多个状态序列值与观测序列值集合中的多个观测序列值,计算得到对应每个最终状态序列的概率。其中,物体运动状态检测装置可以将多个状态序列值之间对应的多个状态转移概率连乘后得到一个乘积。物体运动状态检测装置可以将多个观测序列值与对应次序的多个状态序列值之间多个观测概率连乘后得到另一个乘积。物体运动状态检测装置求该两个乘积之积,得到了每个最终状态序列的概率。In the embodiment of the present invention, the object motion state detection apparatus may calculate the probability corresponding to each final state sequence by using multiple state sequence values in each final state sequence and multiple observation sequence values in the observation sequence value set. Wherein, the object motion state detection device may multiply multiple state transition probabilities corresponding to multiple state sequence values to obtain a product. The object motion state detection device may multiply multiple observation probabilities between the multiple observation sequence values and the multiple state sequence values in the corresponding order to obtain another product. The object motion state detection device calculates the product of the two products, and obtains the probability of each final state sequence.
本发明实施例中,物体运动状态检测装置将M个最终状态序列按照列的顺序进行排列,进而得到预设状态序列矩阵。In the embodiment of the present invention, the object motion state detection device arranges the M final state sequences in the order of columns, thereby obtaining a preset state sequence matrix.
S109、结合最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到状态序列值集合。S109. Combine the final state sequence value and the preset state sequence matrix, and determine a plurality of state sequence values to obtain a state sequence value set.
本发明实施例中,物体运动状态检测装置结合最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到状态序列值集合。In the embodiment of the present invention, the object motion state detection device combines the final state sequence value and the preset state sequence matrix to determine a plurality of state sequence values to obtain a state sequence value set.
本发明实施例中,物体运动状态检测装置在预设状态序列矩阵的最后一行中确定出与最后状态序列值匹配的对应列,以得到多个状态序列值。In the embodiment of the present invention, the object motion state detection device determines a corresponding column matching the last state sequence value in the last row of the preset state sequence matrix, so as to obtain a plurality of state sequence values.
本发明实施例中,状态序列值集合包括:针对观测序列值集合预测得到的,N个图像帧中标定物体在对应的图像帧中实际所属区域信息的集合。In this embodiment of the present invention, the set of state sequence values includes: a set of information about the area to which the calibration object actually belongs in the corresponding image frame in the N image frames, which is predicted and obtained from the set of observation sequence values.
本发明实施例中,物体运动状态检测装置通过第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵,也就是基于动态隐马尔科夫模型的思想,确定出第三状态转移概率矩阵,以进行状态序列的成长。进而剔除了O0对应的干扰因素,得到了更加精准的状态序列值集合。In the embodiment of the present invention, the object motion state detection device calculates and obtains the third state transition probability matrix by using the second preset state transition probability matrix corresponding to the i+1th observation sequence value, that is, the dynamic hidden Markov model-based The idea is to determine the third state transition probability matrix for the growth of the state sequence. Furthermore, the interference factors corresponding to O 0 are eliminated, and a more accurate set of state sequence values is obtained.
在一些实施例中,参见图4,图4为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图3示出的S106还可以通过S110至S111实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 4 , FIG. 4 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S106 shown in FIG. 3 can also be implemented through S110 to S111, and each step will be combined Be explained.
S110、检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,基于第二预设状态转移概率矩阵,计算第1个状态序列值分别与M个状态序列值对应的概率值,以形成第三状态转移概率矩阵的第一行。S110. Detect and obtain the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, and calculate the first state sequence value and the M value based on the second preset state transition probability matrix. probability values corresponding to the state sequence values to form the first row of the third state transition probability matrix.
本发明实施例中,物体运动状态检测装置检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,基于第二预设状态转移概率矩阵,计算第1个状态序列值分别与M个状态序列值对应的概率值,以形成第三状态转移概率矩阵的第一行。In the embodiment of the present invention, the object motion state detection device detects and obtains the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, and calculates the th value based on the second preset state transition probability matrix. 1 state sequence value and probability values corresponding to the M state sequence values respectively, to form the first row of the third state transition probability matrix.
本发明实施例中,物体运动状态检测装置检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,在第二预设状态转移概率矩阵中提取出,第1个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第一乘积。当T为1时,物体运动状态检测装置计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将第一乘积与第K乘积相加以形成第三状态转移概率矩阵中的第一行的第K个概率值,直至得到第三状态转移概率矩阵的第一行的第M个概率值,以形成第三状态转移概率矩阵的第一行。K为大于等于1小于等于M的整数。In the embodiment of the present invention, the object motion state detection device detects and obtains the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, and extracts the value from the second preset state transition probability matrix. , the first state sequence value is multiplied by the transition probability between the M state sequence values, respectively, to obtain the first product. When T is 1, the object motion state detection device calculates the K th product corresponding to the M state sequence values and the K th state sequence value respectively, and adds the first product and the K th product to form the third state transition probability matrix. The Kth probability value of the first row of , until the Mth probability value of the first row of the third state transition probability matrix is obtained, so as to form the first row of the third state transition probability matrix. K is an integer greater than or equal to 1 and less than or equal to M.
本发明实施例中,物体运动状态检测装置检测得到第i+1个观测序列值与第i个观测序列值之间的下标间隔T个数值,在第二预设状态转移概率矩阵中提取出,第1个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第一乘积。当T大于1时,物体运动状态检测装置提取出M个状态序列值中任意两个状态序列值之间的转移概率进行相乘,得到第二乘积。物体运动状态检测装置计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将第一乘积、T-1个第二乘积与第K乘积相加以形成第三状态转移概率矩阵中的第一行的第K个概率值,直至得到第三状态转移概率矩阵的第一行的第M个概率值,以形成第三状态转移概率矩阵的第一行。In the embodiment of the present invention, the object motion state detection device detects and obtains the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value, and extracts the value from the second preset state transition probability matrix. , the first state sequence value is multiplied by the transition probability between the M state sequence values, respectively, to obtain the first product. When T is greater than 1, the object motion state detection device extracts the transition probability between any two state sequence values among the M state sequence values, and multiplies them to obtain a second product. The object motion state detection device calculates the K th product corresponding to the M state sequence values and the K th state sequence value respectively, and adds the first product, T-1 second products and the K th product to form a third state transition probability The Kth probability value of the first row in the matrix is obtained until the Mth probability value of the first row of the third state transition probability matrix is obtained, so as to form the first row of the third state transition probability matrix.
其中,物体运动状态检测装置计算M个状态序列值分别与第K个状态序列值对应的第K个乘积为,物体运动状态检测装置提取出M个状态序列值分别与第K个状态序列值对应转移概率,进行相乘得到第K乘积。Wherein, the object motion state detection device calculates the K th product of the M state sequence values and the K th state sequence value respectively, and the object motion state detection device extracts the M state sequence values corresponding to the K th state sequence value respectively. Transition probability, multiplied to get the Kth product.
S111、直至结合第二预设状态转移概率矩阵,计算第M个状态序列值分别与M个状态序列值对应的概率值,以形成第三状态转移概率矩阵的第M行,进而得到第三状态转移概率矩阵。S111, until combined with the second preset state transition probability matrix, calculate the probability values of the M th state sequence value corresponding to the M state sequence values respectively, so as to form the M th row of the third state transition probability matrix, and then obtain the third state Transition probability matrix.
本发明实施例中,物体运动状态检测装置直至结合第二预设状态转移概率矩阵,计算第M个状态序列值分别与M个状态序列值对应的概率值,以形成第三状态转移概率矩阵的第M行,进而得到第三状态转移概率矩阵。In the embodiment of the present invention, the object motion state detection device calculates the probability values corresponding to the M th state sequence values and the M state sequence values respectively, in combination with the second preset state transition probability matrix, to form the third state transition probability matrix. In the Mth row, the third state transition probability matrix is obtained.
本发明实施例中,物体运动状态检测装置在第二预设状态转移概率矩阵中提取出,第M个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第M1乘积。当T为1时,物体运动状态检测装置计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将第M1乘积与第K乘积相加以形成第三状态转移概率矩阵中的第一行的第K个概率值,直至得到第三状态转移概率矩阵的第M行的第M个概率值,以形成第三状态转移概率矩阵的第M行。In the embodiment of the present invention, the object motion state detection device extracts from the second preset state transition probability matrix, and the M th state sequence value is multiplied by the transition probability between the M state sequence values to obtain the
本发明实施例中,物体运动状态检测装置在第二预设状态转移概率矩阵中提取出,第M个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第M1乘积。当T大于1时,物体运动状态检测装置提取出M个状态序列值中任意两个状态序列值之间的转移概率进行相乘,得到第M2乘积。物体运动状态检测装置计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将第M1乘积、T-1个第M2乘积与第K乘积相加以形成第三状态转移概率矩阵中的第M行的第K个概率值,直至得到第三状态转移概率矩阵的第M行的第M个概率值,以形成第三状态转移概率矩阵的第一行。In the embodiment of the present invention, the object motion state detection device extracts from the second preset state transition probability matrix, and the M th state sequence value is multiplied by the transition probability between the M state sequence values to obtain the
本发明实施例中,物体运动状态检测装置基于动态隐马尔可夫模型计算出第三状态转移概率矩阵,在月台车辆状态识别的场景滤除误识别和漏识别带来的干扰,并且能够更好处理标准隐马尔可夫模型面临的困难。进而提高了物体运动状态的检测精度。In the embodiment of the present invention, the object motion state detection device calculates the third state transition probability matrix based on the dynamic hidden Markov model, filters out the interference caused by misrecognition and missed recognition in the scene of vehicle state recognition on the platform, and can improve It handles the difficulties faced by standard Hidden Markov Models. Thus, the detection accuracy of the motion state of the object is improved.
在一些实施例中,参见图4,图4为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图3示出的S109还可以通过S112至S113实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 4, FIG. 4 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S109 shown in FIG. 3 can also be implemented through S112 to S113, and each step will be combined Be explained.
S112、将M个最终状态序列按照列的顺序进行排列,进而得到预设状态序列矩阵。S112: Arrange the M final state sequences in the order of columns, thereby obtaining a preset state sequence matrix.
本发明实施例中,物体运动状态检测装置将M个最终状态序列按照列的顺序进行排列,进而得到预设状态序列矩阵。In the embodiment of the present invention, the object motion state detection device arranges the M final state sequences in the order of columns, thereby obtaining a preset state sequence matrix.
S113、在预设状态序列矩阵中的最后一行中确定出与最后状态序列值匹配的目标序列值,进而确定目标序列值对应列的最终状态序列为多个状态序列值,以得到状态序列值集合。S113. Determine a target sequence value matching the final state sequence value in the last row of the preset state sequence matrix, and then determine that the final state sequence of the column corresponding to the target sequence value is a plurality of state sequence values, so as to obtain a state sequence value set .
本发明实施例中,物体运动状态检测装置在预设状态序列矩阵中的最后一行中确定出与最后状态序列值匹配的目标序列值,进而确定目标序列值对应列的最终状态序列为多个状态序列值,以得到状态序列值集合。In the embodiment of the present invention, the object motion state detection device determines a target sequence value matching the final state sequence value in the last row of the preset state sequence matrix, and further determines that the final state sequence of the column corresponding to the target sequence value is a plurality of states sequence values to get a set of state sequence values.
本发明实施例中,由于现场的一些因素的影响,物体运动状态检测装置有可能把其它物体误识别为车牌,进而造成对整个车辆动态的误识别。因此,物体运动状态检测装置可以根据整个观测序列的趋势对于其中的一些误识别进行判断。例如,由于车辆的运动特性,车牌的位置不可能在短时间能有过大的移动。这一特性可以由马尔可夫状态转移来描述,当前时刻如果车牌出现在一个位置,那么下一时刻,有较大的概率出现在原位置或者临近的位置,而出现在较远位置的概率会随着距离增大而递减。因此,本方案采用隐马尔可夫模型的方式,通过观测到的车牌位置序列估计真实的车牌位置序列。In the embodiment of the present invention, due to the influence of some factors on site, the object motion state detection device may misidentify other objects as license plates, thereby causing misidentification of the entire vehicle dynamics. Therefore, the object motion state detection device can judge some of the misidentifications according to the trend of the whole observation sequence. For example, due to the motion characteristics of the vehicle, the position of the license plate cannot be moved too much in a short period of time. This characteristic can be described by the Markov state transition. If the license plate appears in one position at the current moment, then at the next moment, there is a greater probability of appearing in the original position or a nearby position, and the probability of appearing in a farther position will vary with decreases as the distance increases. Therefore, this scheme uses the hidden Markov model to estimate the real license plate position sequence through the observed license plate position sequence.
本发明实施例中,物体运动状态检测装置可以将监控的区域在纵坐标方向划为M个区域设定M个状态,每个状态表示车牌出现在了对应的区域,用{s1,s2,…,sm}表示,其中si∈{s1,s2,…,sm}表示车牌出现在第i个区域里。对应每个状态,都有一个相应的观测,用{o1,o2,…,om}表示,其中Oi∈{o1,o2,…,om}表示在第i个区域里检测到车牌。在隐马尔可夫模型中,给定了一个观测序列,需要利用状态转移概率和观测概率。其中,状态转移概率P(sj|si)定义为上一时刻状态为si,而下一时刻状态为sj的概率。观测概率P(Oj|si)为状态为si,而观测为Oj的概率。在标准隐马尔可夫模型中,给定了一个时间窗口内的观测序列o(1),o(2),…,o(N),O(τ)∈{o(1),o(2),…,o(N)}之后,根据状态转移概率和观测概率,就可以使用Viterbi算法估计出实际的状态序列S(1),S(2),…,S(N),S(τ)∈{S(1),S(2),…,S(N)}。进而,如果在一个时刻τ,S(τ)和O(τ)相互不匹配,则把这一时刻的车牌位置坐标信息Y(τ)去掉,再去拟合线性模型y=at+b。然而,在动态隐马尔可夫模型的情况下,由于没有S0(监控区域中没有车牌)和O0(未检测到车牌)的设定,必须将观测值O0对应的时刻从序列中o(1),o(2),…,o(N)删除,同时也不考虑相关的状态转移。为了解决这个问题,本方案考虑可变长度采样时间对应的状态转移。例如,由于经过的时间不同,P(S(τ+η)=sj|s(τ)=si)≠P(sj|si),η>1。但可以由Chapman-Kolmogorov等式得到公式(1):In the embodiment of the present invention, the object motion state detection device can divide the monitored area into M areas in the ordinate direction to set M states, each state indicates that the license plate appears in the corresponding area, and use {s 1 , s 2 ,…,s m }, where s i ∈{s 1 ,s 2 ,…,s m } indicates that the license plate appears in the ith area. Corresponding to each state, there is a corresponding observation, which is represented by {o 1 ,o 2 ,…,o m }, where O i ∈{o 1 ,o 2 ,…,o m } is represented in the ith region License plate detected. In the hidden Markov model, given an observation sequence, the state transition probability and observation probability need to be used. Among them, the state transition probability P(s j |s i ) is defined as the probability that the state at the previous moment is s i and the state at the next moment is s j . The observation probability P(O j |s i ) is the probability that the state is s i and the observation is O j . In the standard hidden Markov model, given a sequence of observations in a time window o(1), o(2), ..., o(N), O(τ) ∈ {o(1), o(2 ),...,o(N)}, according to the state transition probability and observation probability, the actual state sequence S(1), S(2),...,S(N), S(τ can be estimated using the Viterbi algorithm )∈{S(1),S(2),…,S(N)}. Furthermore, if at a moment τ, S(τ) and O(τ) do not match each other, remove the license plate position coordinate information Y(τ) at this moment, and then fit the linear model y=at+b. However, in the case of the dynamic hidden Markov model, since there is no setting of S 0 (no license plate in the monitored area) and O 0 (no license plate detected), the time corresponding to the observation value O 0 must be removed from the sequence o (1), o(2), ..., o(N) are deleted, and the related state transitions are not considered. To solve this problem, this scheme considers state transitions corresponding to variable length sampling times. For example, since the elapsed time is different, P(S(τ+η)=s j |s(τ)=s i )≠P(s j |s i ), and η>1. But formula (1) can be obtained from the Chapman-Kolmogorov equation:
P(S(τ+η)=sj|s(τ)=si)=∑kP(S(τ+η-1)=sk|s(τ)=si)P(sj|sk) (1)P(S(τ+η)=s j |s(τ)=s i )=∑ k P(S(τ+η-1)=s k |s(τ)=s i )P(s j | s k ) (1)
其中,P(sj|sk)代表第K个和第j个状态序列值的转移概率、P(S(τ+η-1)代表第τ+η-1时刻的序列值的状态转移概率。s(τ)代表第个状态序列值,si代表第i个状态序列值,sk代表第k个状态序列值。Among them, P(s j |s k ) represents the transition probability of the K-th and j-th state sequence values, and P(S(τ+η-1) represents the state transition probability of the sequence value at the τ+η-1 moment. .s(τ) represents the ith state sequence value, si represents the ith state sequence value, and sk represents the kth state sequence value.
因此,在动态隐马尔可夫模型中需要通过最大化Therefore, in the dynamic hidden Markov model, it is necessary to maximize the
∏τP(O(θτ)|S(θτ))×∏τθ-1P(S(θτ+1)|S(θτ)) (2)∏ τ P(O(θτ)|S(θτ))×∏ τ θ-1P(S(θτ+1)|S(θτ)) (2)
其中,P(O(θτ)|S(θτ))代表第τ个状态序列值和第τ个观测序列值之间的观测转移概率。P(S(θτ+1)|S(θτ))代表第τ个状态序列值和第τ+1个状态序列值之间的状态转移概率。Among them, P(O(θτ)|S(θτ)) represents the observed transition probability between the τth state sequence value and the τth observation sequence value. P(S(θτ+1)|S(θτ)) represents the state transition probability between the τth state sequence value and the τ+1th state sequence value.
物体运动状态检测装置来求解相应的状态序列,其中Θ=[θ1,θ2,.....]为去掉了观测为O0的时段后剩下的观测的下标。The object motion state detection device is used to solve the corresponding state sequence, where Θ=[θ1, θ2, .....] is the subscript of the remaining observations after removing the observation period of O 0 .
为了求解动态隐马尔可夫模型的问题,Viterbi算法也要有相应的改动,形成动态Viterbi算法。给定观测序列和状态转移概率,状态概率后,动态Viterbi算法流程如下:In order to solve the problem of the dynamic hidden Markov model, the Viterbi algorithm should also be modified accordingly to form the dynamic Viterbi algorithm. Given the observation sequence and state transition probability, after the state probability, the dynamic Viterbi algorithm flow is as follows:
1.创建矩阵A[|Θ|,M],B[|Θ|,M]来记录子序列的概率和子序列中当前时刻每个状态对应的上一个状态。1. Create matrices A[|Θ|,M], B[|Θ|,M] to record the probability of the subsequence and the previous state corresponding to each state at the current moment in the subsequence.
2.在第一个时刻A[θ1,M]=P(O(θτ)|S(θτ)),B[θ1,M]=<start>,<start>表示系统状态开始。2. At the first moment A[θ1,M]=P(O(θτ)|S(θτ)), B[θ1,M]=<start>, <start> indicates the start of the system state.
3.在时刻θ2到θ|Θ|,使用公式(1)求取当前状态转移概率,A[θτ,i]=maxjP(O(θτ)|S(θτ))=Si)P(S(θτ)=Si|S(θτ-1)=sj)A[θτ-1,sj],B[θτ,i]=argmaxjP(S(θτ)=Si|S(θτ-1)=sj)A[θτ-1,sj]。3. From time θ2 to θ|Θ|, use formula (1) to obtain the current state transition probability, A[θτ,i]=max j P(O(θτ)|S(θ τ ))=S i )P (S(θ τ )=S i |S(θ τ-1 )=s j )A[θ τ-1 ,s j ], B[θτ,i]=argmax j P(S(θ τ )=S i |S(θ τ-1 )=s j )A[θ τ-1 ,s j ].
4.找到使A[θ|Θ|,i]转移概率最大的i,将估计所得最终状态序列中的最后一个序列值,S(θ|Θ|)=Si。4. Find the i that maximizes the transition probability of A[θ|Θ|,i], will estimate the last sequence value in the resulting final state sequence, S(θ|Θ|)=S i .
5.根据矩阵B[|Θ|,M]的指向,从后向前得到估计的状态序列。5. According to the orientation of the matrix B[|Θ|, M], the estimated state sequence is obtained from the back to the front.
在一些实施例中,参见图5,图5为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图1示出的S101至S102还可以通过S114至S119实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 5, FIG. 5 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S101 to S102 shown in FIG. 1 can also be implemented by S114 to S119, which will be combined with Each step is explained.
S114、在视频流中提取出当前时刻对应的当前图像帧。S114: Extract the current image frame corresponding to the current moment from the video stream.
本发明实施例中,物体运动状态检测装置在视频流中提取出当前时刻对应的当前图像帧。In the embodiment of the present invention, the object motion state detection device extracts the current image frame corresponding to the current moment in the video stream.
示例性的,摄像头实时采集当前预定区域的视频流传送给物体运动状态检测装置。物体运动状态检测装置接收到实时的视频流后提取出当前时刻对应的图像帧。Exemplarily, the camera collects the video stream of the current predetermined area in real time and sends it to the object motion state detection device. The object motion state detection device extracts the image frame corresponding to the current moment after receiving the real-time video stream.
S115、在视频流中以当前图像帧为起点,沿着时间轴每隔预定时长或者预定数量的图像帧提取出一个图像帧,直至提取得到N-1个图像帧。S115. Taking the current image frame as a starting point in the video stream, extract one image frame along the time axis every predetermined time length or a predetermined number of image frames, until N-1 image frames are extracted.
本发明实施例中,物体运动状态检测装置在视频流中以当前图像帧为起点,沿着时间轴每隔预定时长或者预定数量的图像帧提取出一个图像帧,直至提取得到N-1个图像帧。In the embodiment of the present invention, the object motion state detection device takes the current image frame as a starting point in the video stream, and extracts an image frame every predetermined time or a predetermined number of image frames along the time axis until N-1 images are extracted. frame.
本发明实施例中,视频流中包括了沿着时间轴分布的多个图像帧。物体运动状态检测装置可以以当前图像帧为起点,每隔1秒提取出一个图像帧,直至提取出N-1个图像帧。本发明实施例中,对预定时长不做限制。In this embodiment of the present invention, the video stream includes a plurality of image frames distributed along the time axis. The object motion state detection device may take the current image frame as a starting point, and extract an image frame every 1 second until N-1 image frames are extracted. In this embodiment of the present invention, the predetermined duration is not limited.
本发明实施例中,视频流中包括了沿着时间轴分布的多个图像帧。物体运动状态检测装置可以以当前图像帧为起点,每隔5个图像帧提取出一个图像帧,直至提取出N-1个图像帧。本发明实施例中,对预定数量不做限制。In this embodiment of the present invention, the video stream includes a plurality of image frames distributed along the time axis. The object motion state detection device may take the current image frame as a starting point, and extract an image frame every 5 image frames until N-1 image frames are extracted. In this embodiment of the present invention, the predetermined number is not limited.
S116、将当前图像帧和N-1个图像帧沿时间轴组合得到N个图像帧。S116, combine the current image frame and N-1 image frames along the time axis to obtain N image frames.
本发明实施例中,物体运动状态检测装置将当前图像帧和N-1个图像帧沿时间轴组合得到N个图像帧。In the embodiment of the present invention, the object motion state detection apparatus combines the current image frame and N-1 image frames along the time axis to obtain N image frames.
本发明实施例中,物体运动状态检测装置将当前图像帧和N-1个图像帧,沿着各自对应的时间点从前到后的顺序进行组合得到N个图像帧。In the embodiment of the present invention, the object motion state detection apparatus combines the current image frame and N-1 image frames in an order from front to back along the respective corresponding time points to obtain N image frames.
S117、通过预设检测模型对N个图像帧进行处理,得到N个位置坐标信息。S117: Process N image frames by using a preset detection model to obtain N pieces of position coordinate information.
本发明实施例中,物体运动状态检测装置通过预设检测模型对N个图像帧进行处理,得到N个位置坐标信息。In the embodiment of the present invention, the object motion state detection device processes N image frames by using a preset detection model, and obtains N pieces of position coordinate information.
其中,预设检测模型可以为WPOD-NET算法模型,本发明实施例中对预设检测模型不做限制。The preset detection model may be a WPOD-NET algorithm model, and the preset detection model is not limited in this embodiment of the present invention.
S118、对N个图像帧分别进行区域划分,并针对每个位置坐标信息在对应的图像帧中确定出所属区域的观测序列值,以得到对应N个位置坐标信息的N个观测序列值。S118: Divide the N image frames into regions respectively, and determine the observation sequence value of the region in the corresponding image frame for each position coordinate information, so as to obtain N observation sequence values corresponding to the N position coordinate information.
本发明实施例中,物体运动状态检测装置对N个图像帧分别进行区域划分,并针对每个位置坐标信息在对应的图像帧中确定出所属区域的观测序列值,以得到对应N个位置坐标信息的N个观测序列值。In the embodiment of the present invention, the object motion state detection device divides the N image frames into regions, and determines the observation sequence value of the corresponding region in the corresponding image frame for each position coordinate information, so as to obtain the corresponding N position coordinates The N observed sequence values of the information.
本发明实施例中,物体运动状态检测装置对N个图像帧按照一定的规则分别进行区域划分,得到对应每个图像帧的多个区域。物体运动状态检测装置针对每个位置坐标信息在对应的图像帧中确定出所属区域,再结合该所属区域的次序得到观测序列值,最终得到N个观测序列值。In the embodiment of the present invention, the object motion state detection device divides the N image frames into regions according to certain rules, so as to obtain a plurality of regions corresponding to each image frame. The object motion state detection device determines the region to which each position coordinate information belongs in the corresponding image frame, and then combines the order of the region to obtain observation sequence values, and finally obtains N observation sequence values.
S119、在N个观测序列值中剔除预定观测序列值,得到观测序列值集合。S119: Eliminate the predetermined observation sequence value from the N observation sequence values to obtain a set of observation sequence values.
本发明实施例中,物体运动状态检测装置在N个观测序列值中剔除预定观测序列值,得到观测序列值集合。In the embodiment of the present invention, the object motion state detection device removes a predetermined observation sequence value from the N observation sequence values, and obtains a set of observation sequence values.
本发明实施例中,物体运动状态检测装置基于滑动窗口的方法提取得到当前时刻的N个图像帧,利用N个图像帧的动态特征,可以准确的判断是否有车辆到达或者离开月台。In the embodiment of the present invention, the object motion state detection device extracts N image frames at the current moment based on the sliding window method, and can accurately determine whether a vehicle arrives or leaves the platform by using the dynamic characteristics of the N image frames.
在一些实施例中,参见图5,图5为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图1示出的S104还可以通过S120至S121实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 5 , FIG. 5 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S104 shown in FIG. 1 can also be implemented through S120 to S121, and each step will be combined Be explained.
S120、结合状态序列值集合和观测序列值集合,剔除N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息。S120 , combining the state sequence value set and the observation sequence value set, remove the interfering position coordinate information in the N pieces of position coordinate information, and obtain a plurality of target position coordinate information.
本发明实施例中,物体运动状态检测装置结合状态序列值集合和观测序列值集合,剔除N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息。In the embodiment of the present invention, the object motion state detection device combines the state sequence value set and the observation sequence value set to eliminate the interfering position coordinate information in the N position coordinate information to obtain a plurality of target position coordinate information.
本发明实施例中,物体运动状态检测装置将状态序列值集合中的多个状态序列值与观测序列值集合中的多个观测序列值,按照次序进行一一对比。若检测到至少一个观测序列值与对应的状态序列值不同,则物体运动状态检测装置在N个位置坐标信息中剔除该观测序列值对应的位置坐标信息,进而得到多个目标位置坐标信息。In the embodiment of the present invention, the object motion state detection apparatus compares multiple state sequence values in the state sequence value set and multiple observation sequence values in the observation sequence value set one by one in order. If it is detected that at least one observation sequence value is different from the corresponding state sequence value, the object motion state detection device removes the position coordinate information corresponding to the observation sequence value from the N position coordinate information, thereby obtaining multiple target position coordinate information.
S121、利用多个目标位置坐标信息,确定出运动状态。S121. Determine the motion state by using multiple target position coordinate information.
本发明实施例中,物体运动状态检测装置利用多个目标位置坐标信息,确定出运动状态。In the embodiment of the present invention, the object motion state detection device determines the motion state by using a plurality of target position coordinate information.
本发明实施例中,物体运动状态检测装置将多个目标位置坐标信息进行线性拟合,得到斜率值。并根据斜率值的大小确定出运动状态。In the embodiment of the present invention, the object motion state detection device performs linear fitting on a plurality of target position coordinate information to obtain a slope value. And determine the motion state according to the magnitude of the slope value.
本发明实施例中,物体运动状态检测装置结合状态序列值集合和观测序列值集合,剔除N个位置坐标信息中的干扰位置坐标信息,进而可以计算出更加精准的运动状态。In the embodiment of the present invention, the object motion state detection device combines the state sequence value set and the observation sequence value set to eliminate the interfering position coordinate information in the N position coordinate information, and then can calculate a more accurate motion state.
在一些实施例中,参见图6,图6为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图5示出的S118还可以通过S122至S124实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 6 , FIG. 6 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S118 shown in FIG. 5 can also be implemented through S122 to S124, and each step will be combined Be explained.
S122、将N个图像帧分别沿着纵坐标分割成U个区域,得到对应每个图像帧的U个区域。S122: Divide the N image frames into U regions along the ordinate, respectively, to obtain U regions corresponding to each image frame.
本发明实施例中,物体运动状态检测装置将N个图像帧分别沿着纵坐标分割成U个区域,得到对应每个图像帧的U个区域。U为大于1的整数。In the embodiment of the present invention, the object motion state detection device divides the N image frames into U regions along the ordinate, respectively, to obtain U regions corresponding to each image frame. U is an integer greater than 1.
本发明实施例中,物体运动状态检测装置将每个图像帧沿着纵坐标分为10个区域。进而可以得到对应每个图像帧的10个区域。In the embodiment of the present invention, the object motion state detection device divides each image frame into 10 regions along the ordinate. Then, 10 regions corresponding to each image frame can be obtained.
S123、针对每个位置坐标信息在对应的U个区域中确定出所属区域。S123: Determine the belonging area in the corresponding U areas for each position coordinate information.
本发明实施例中,物体运动状态检测装置针对每个位置坐标信息在对应的多个区域中确定出所属区域。In the embodiment of the present invention, the object motion state detection apparatus determines the area to which each position coordinate information belongs from the corresponding multiple areas.
其中,每个区域都包括了一定数量的位置坐标信息。物体运动状态检测装置可以在每个图像帧的U个区域中确定出对应的位置坐标信息的所属区域。Among them, each area includes a certain amount of position coordinate information. The object motion state detection device may determine the region to which the corresponding position coordinate information belongs in the U regions of each image frame.
S124、在U个区域中确定出所属区域的纵向次序,将纵向次序作为每个位置坐标信息的观测序列值,进而得到N个观测序列值。S124: Determine the vertical order of the region in the U regions, use the vertical order as the observation sequence value of each position coordinate information, and then obtain N observation sequence values.
本发明实施例中,物体运动状态检测装置在U个区域中确定出所属区域的纵向次序,将纵向次序作为每个位置坐标信息的观测序列值,进而得到N个观测序列值。In the embodiment of the present invention, the object motion state detection device determines the vertical order of the region in the U regions, and uses the vertical order as the observation sequence value of each position coordinate information, and then obtains N observation sequence values.
示例性的,结合图7,物体运动状态检测装置将每个图像帧沿着纵坐标分为10个区域,进而可以得到对应每个图像帧的10个区域。物体运动状态检测装置根据车辆的车牌14的中心点的位置坐标信息,在10个区域中确定出所属区域(在图5中用加粗实线标记的区域)。物体运动状态检测装置在沿着纵坐标分为10个区域中确定出所属区域对应的次序5,进而得到该位置坐标信息对应的纵向观测序列值5。Exemplarily, with reference to FIG. 7 , the object motion state detection apparatus divides each image frame into 10 regions along the ordinate, and then 10 regions corresponding to each image frame can be obtained. The object motion state detection device determines the area to which it belongs (the area marked with a bold solid line in FIG. 5 ) from 10 areas according to the position coordinate information of the center point of the license plate 14 of the vehicle. The object motion state detection device determines the order 5 corresponding to the region in which it is divided into 10 regions along the ordinate, and then obtains the longitudinal observation sequence value 5 corresponding to the position coordinate information.
本发明实施例中,物体运动状态检测装置将N个图像帧分别沿着纵坐标分割成U个区域,以得到对应每个位置坐标信息的观测序列值,通过将N个图像帧进行区域划分的方法,可以准确的确定出位置坐标信息所述的区域,进而得到的观测序列值也更加准确。In the embodiment of the present invention, the object motion state detection device divides the N image frames into U regions along the ordinate to obtain the observation sequence value corresponding to each position coordinate information. The method can accurately determine the area described by the position coordinate information, and the obtained observation sequence value is also more accurate.
在一些实施例中,参见图6,图6为本发明实施例提供的物体运动状态检测方法的一个可选的流程示意图,图5示出的S120至S121还可以通过S125至S128实现,将结合各步骤进行说明。In some embodiments, referring to FIG. 6 , FIG. 6 is an optional schematic flowchart of the object motion state detection method provided by the embodiment of the present invention. S120 to S121 shown in FIG. 5 can also be implemented through S125 to S128, which will be combined Each step is explained.
S125、按照次序将状态序列值集合中的多个状态序列值与观测序列值集合中的多个观测序列值进行一一对比,若确定出至少一个状态序列值与对应次序的至少一个观测序列值不同,则将至少一个观测序列值对应的至少一个第二位置坐标信息从N个位置坐标信息中剔除,得到多个中间位置坐标信息。S125: Compare the multiple state sequence values in the state sequence value set with the multiple observation sequence values in the observation sequence value set one by one in order, if at least one state sequence value and at least one observation sequence value in the corresponding order are determined If it is different, at least one second position coordinate information corresponding to at least one observation sequence value is eliminated from the N pieces of position coordinate information to obtain a plurality of intermediate position coordinate information.
本发明实施例中,物体运动状态检测装置按照次序将状态序列值集合中的多个状态序列值与观测序列值集合中的多个观测序列值进行一一对比,若确定出至少一个状态序列值与对应次序的至少一个观测序列值不同,则将至少一个观测序列值对应的至少一个第二位置坐标信息从N个位置坐标信息中剔除,得到多个中间位置坐标信息。In the embodiment of the present invention, the object motion state detection device compares multiple state sequence values in the state sequence value set with multiple observation sequence values in the observation sequence value set one by one in order, and if at least one state sequence value is determined Different from the at least one observation sequence value in the corresponding order, at least one second position coordinate information corresponding to the at least one observation sequence value is eliminated from the N position coordinate information to obtain a plurality of intermediate position coordinate information.
S126、将多个中间位置坐标信息中的预定位置坐标信息剔除,得到多个目标位置坐标信息。S126: Eliminate the predetermined position coordinate information from the plurality of intermediate position coordinate information to obtain a plurality of target position coordinate information.
本发明实施例中,物体运动状态检测装置将多个中间位置坐标信息中的预定位置坐标信息剔除,得到多个目标位置坐标信息。In the embodiment of the present invention, the object motion state detection device removes predetermined position coordinate information from a plurality of intermediate position coordinate information to obtain a plurality of target position coordinate information.
S127、对多个目标位置坐标信息中的多个目标纵坐标信息沿时间轴进行线性拟合,得到多个目标纵坐标信息的斜率值。S127 , performing linear fitting on the plurality of target ordinate information in the plurality of target position coordinate information along the time axis to obtain the slope values of the plurality of target ordinate information.
本发明实施例中,物体运动状态检测装置对多个目标位置坐标信息中的多个目标纵坐标信息沿时间轴进行线性拟合,得到多个目标纵坐标信息的斜率值。In the embodiment of the present invention, the object motion state detection device performs linear fitting on the plurality of target ordinate information in the plurality of target position coordinate information along the time axis to obtain the slope values of the plurality of target ordinate information.
S128、根据斜率值的大小确定出运动状态。S128. Determine the motion state according to the magnitude of the slope value.
本发明实施例中,物体运动状态检测装置根据斜率值的大小确定出运动状态In the embodiment of the present invention, the object motion state detection device determines the motion state according to the magnitude of the slope value
若所述斜率值大于预设阈值,则确定所述运动状态为靠近状态;If the slope value is greater than a preset threshold, determining that the motion state is a close state;
若所述斜率值小于所述预设阈值,则确定所述运动状态为远离状态。If the slope value is smaller than the preset threshold, it is determined that the motion state is a distance state.
其中,阈值可以为任意的数值,本发明实施例中对阈值的大小不做限制。The threshold value may be any numerical value, and the size of the threshold value is not limited in this embodiment of the present invention.
在实际的使用过程中,本方案的流程如下:In the actual use process, the process of this solution is as follows:
配置:工作人员调整摄像头的位置,角度,设定监控区域,并在横坐标和纵坐标两个方向划分网格区域。Configuration: The staff adjusts the position and angle of the camera, sets the monitoring area, and divides the grid area in the abscissa and ordinate directions.
物体运动状态检测装置使用摄像头持续收集数据,将每时刻获得的帧抽取并保留最近N个。The object motion state detection device uses the camera to continuously collect data, and extracts the frames obtained at each moment and retains the most recent N frames.
物体运动状态检测装置使用WPOD-NET算法对每张图片进行车牌检测并保存车牌的位置(横纵坐标)(实际上每个时刻只需要检测当前获得的帧,因为之前的检测结果已经被保存)。The object motion state detection device uses the WPOD-NET algorithm to detect the license plate of each picture and save the position (horizontal and vertical coordinates) of the license plate (in fact, only the currently obtained frame needs to be detected at each moment, because the previous detection results have been saved) .
物体运动状态检测装置将每一帧图片车牌的纵坐标对应到观测{o1,o2,…,om}。The object motion state detection device corresponds the ordinate of the license plate of each frame to the observation {o 1 , o 2 ,..., o m }.
物体运动状态检测装置去除观测序列o(1),o(2),…,o(N)中的O0,得到o(θ1),o(θ2),…,o(θ|Θ|)。The object motion state detection device removes O 0 in the observation sequence o(1), o(2), ..., o(N), and obtains o(θ1), o(θ2), ..., o(θ|Θ|).
物体运动状态检测装置使用动态隐马尔可夫模型将观测序列o(θ1),o(θ2),…,o(θ|Θ|)对应到状态序列。The object motion state detection device uses a dynamic hidden Markov model to map the observation sequence o(θ1), o(θ2), ..., o(θ|Θ|) to the state sequence.
物体运动状态检测装置在车牌纵坐标序列Y中剔除状态值与观测值不一致的位置的元素,更新Y。The object motion state detection device removes the elements at the position where the state value is inconsistent with the observed value in the license plate ordinate sequence Y, and updates Y.
物体运动状态检测装置对Y和t进行最小二乘拟合,得到斜率值。The object motion state detection device performs least squares fitting on Y and t to obtain a slope value.
物体运动状态检测装置根据斜率大小与预设阈值的比较判断是否有车辆到达或离开月台。The object motion state detection device judges whether a vehicle arrives or leaves the platform according to the comparison between the magnitude of the slope and the preset threshold.
本发明实施例中,物体运动状态检测装置利用滑动窗口的方法提取出N个图像帧,利用车辆的动态特征进行判断运动状态,提升对车辆到达/离开判断的准确性。同时基于动态隐马尔科夫模型的思想剔除了干扰因子,进而提高了检测效率。In the embodiment of the present invention, the object motion state detection device extracts N image frames by using the sliding window method, and uses the dynamic characteristics of the vehicle to determine the motion state, so as to improve the accuracy of the vehicle arrival/departure determination. At the same time, based on the idea of dynamic hidden Markov model, the interference factor is eliminated, thereby improving the detection efficiency.
参见图8,图8为本发明实施例提供的物体运动状态检测装置的结构示意图。Referring to FIG. 8 , FIG. 8 is a schematic structural diagram of an apparatus for detecting a motion state of an object according to an embodiment of the present invention.
本发明实施例还提供了一种物体运动状态检测装置800,包括:采集提取单元803、处理单元804和确定单元805。The embodiment of the present invention further provides an object motion
采集提取单元803,用于实时采集预定区域的视频流,并基于滑动窗口的方法在所述视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;The acquisition and
处理单元804,用于处理得到所述N个图像帧中的标定物体对应的N个位置坐标信息,并结合所述N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,所述预定观测序列值为预定位置坐标信息对应的观测序列值;所述预定位置坐标信息为对应不包括所述标定物体的图像帧进行处理得到的位置坐标信息;The
所述处理单元804,还用于基于动态隐马尔科夫模型对应所述观测序列值集合得到状态序列值集合;The
确定单元805,用于通过所述观测序列值集合和所述状态序列值集合,确定出所述N个图像帧中目标物体的所述当前时刻的运动状态;所述标定物体属于所述目标物体。A
本发明实施例中,物体运动状态检测装置800中的处理单元804用于检测得到所述观测序列值集合中的第i个观测序列值与前一个观测序列值之间的下标连续,基于所述第i个观测序列值、第一预设状态转移概率矩阵和第一预设观测概率矩阵通过预设动态规划算法处理,得到所述第i个观测序列值对应的第i组M个状态序列;i为大于或等于1的整数;M为大于1的整数;检测得到第i+1个观测序列值与所述第i个观测序列值之间的下标间隔T个数值,基于所述第i+1个观测序列值对应的第二预设状态转移概率矩阵,计算得到第三状态转移概率矩阵;所述第二预设状态转移概率矩阵表征对应所述第i+1个观测序列值时,M个状态序列值之间的转移概率集合;T为大于等于1的整数;基于第i组M个状态序列,所述第i+1个观测序列值、所述第三状态转移概率矩阵和第三预设观测概率矩阵通过所述预设动态规划算法处理,得到所述第i+1个观测序列值对应的第i+1组M个状态序列,直至得到所述观测序列值集合中最后一个观测序列值对应的M个最终状态序列;在所述M个最终状态序列中确定出转移概率最大的目标状态序列的最后状态序列值;结合所述最后状态序列值与预设状态序列矩阵,确定出多个状态序列值,以得到所述状态序列值集合。In the embodiment of the present invention, the processing unit 804 in the object motion state detection device 800 is configured to detect and obtain the continuous subscript between the i-th observation sequence value in the observation sequence value set and the previous observation sequence value, based on the The i-th observation sequence value, the first preset state transition probability matrix and the first preset observation probability matrix are processed by a preset dynamic programming algorithm to obtain the i-th group of M state sequences corresponding to the i-th observation sequence value ; i is an integer greater than or equal to 1; M is an integer greater than 1; the subscript interval T values between the i+1th observation sequence value and the ith observation sequence value are detected, based on the The second preset state transition probability matrix corresponding to the i+1 observation sequence value is calculated to obtain the third state transition probability matrix; the second preset state transition probability matrix represents the time corresponding to the i+1th observation sequence value , the set of transition probabilities between M state sequence values; T is an integer greater than or equal to 1; based on the ith group of M state sequences, the i+1th observation sequence value, the third state transition probability matrix and The third preset observation probability matrix is processed by the preset dynamic programming algorithm to obtain the i+1 th group of M state sequences corresponding to the i+1 th observation sequence value, until the last observation sequence value set is obtained. M final state sequences corresponding to one observation sequence value; among the M final state sequences, determine the final state sequence value of the target state sequence with the largest transition probability; combining the final state sequence value and the preset state sequence matrix, A plurality of state sequence values are determined to obtain the set of state sequence values.
本发明实施例中,物体运动状态检测装置800中的处理单元804用于结合所述第二预设状态转移概率矩阵,计算第1个状态序列值分别与所述M个状态序列值对应的概率值,以形成所述第三状态转移概率矩阵的第一行;直至结合所述第二预设状态转移概率矩阵,计算第M个状态序列值分别与所述M个状态序列值对应的概率值,以形成所述第三状态转移概率矩阵的第M行,进而得到所述第三状态转移概率矩阵。In the embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的处理单元804用于在所述第二预设状态转移概率矩阵中提取出,第1个状态序列值分别与M个状态序列值之间的转移概率进行相乘,得到第一乘积;当T为1时,计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将所述第一乘积与所述第K乘积相加以形成所述第三状态转移概率矩阵中的第一行的第K个概率值,直至得到所述第三状态转移概率矩阵的第一行的第M个概率值,以形成所述第三状态转移概率矩阵的第一行;K为大于等于1小于等于M的整数。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的处理单元804用于当T大于1时,提取出所述M个状态序列值中任意两个状态序列值之间的转移概率进行相乘,得到第二乘积;计算M个状态序列值分别与第K个状态序列值对应的第K个乘积,将所述第一乘积、T-1个第二乘积与所述第K乘积相加以形成所述第三状态转移概率矩阵中的第一行的第K个概率值,直至得到所述第三状态转移概率矩阵的第一行的第M个概率值,以形成所述第三状态转移概率矩阵的第一行。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的处理单元804用于将所述M个最终状态序列按照列的顺序进行排列,进而得到所述预设状态序列矩阵。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的处理单元804用于在所述预设状态序列矩阵中的最后一行中确定出与所述最后状态序列值匹配的目标序列值,进而确定所述目标序列值对应列的最终状态序列为所述多个状态序列值。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的采集提取单元803用于在所述视频流中提取出所述当前时刻对应的当前图像帧;在所述视频流中以所述当前图像帧为起点,沿着时间轴每隔预定时长或者预定数量的图像帧提取出一个图像帧,直至提取得到N-1个图像帧;将所述当前图像帧和所述N-1个图像帧沿时间轴组合得到所述N个图像帧。In this embodiment of the present invention, the acquisition and
本发明实施例中,物体运动状态检测装置800中的处理单元804用于通过预设检测模型对所述N个图像帧进行处理,得到所述N个位置坐标信息;对所述N个图像帧分别进行区域划分,并针对每个位置坐标信息在对应的图像帧中确定出所属区域的观测序列值,以得到对应所述N个位置坐标信息的N个观测序列值;在所述N个观测序列值中剔除所述预定观测序列值,得到所述观测序列值集合。In the embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的处理单元804用于将所述N个图像帧分别沿着纵坐标分割成U个区域,得到对应每个图像帧的U个区域;U为大于1的整数;针对每个位置坐标信息在对应的所述U个区域中确定出所述所属区域;在所述U个区域中确定出所述所属区域的纵向次序,将所述纵向次序作为所述每个位置坐标信息的观测序列值,进而得到所述N个观测序列值。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的确定单元805用于结合所述状态序列值集合和所述观测序列值集合,剔除所述N个位置坐标信息中的干扰位置坐标信息,得到多个目标位置坐标信息;In the embodiment of the present invention, the
利用所述多个目标位置坐标信息,确定出所述运动状态。Using the plurality of target position coordinate information, the motion state is determined.
本发明实施例中,物体运动状态检测装置800中的确定单元805用于按照次序将所述状态序列值集合中的多个状态序列值与所述观测序列值集合中的多个观测序列值进行一一对比,若确定出至少一个状态序列值与对应次序的至少一个观测序列值不同,则将所述至少一个观测序列值对应的至少一个第二位置坐标信息从所述N个位置坐标信息中剔除,得到多个中间位置坐标信息;将所述多个中间位置坐标信息中的预定位置坐标信息剔除,得到所述多个目标位置坐标信息。In this embodiment of the present invention, the
本发明实施例中,物体运动状态检测装置800中的确定单元805用于对所述多个目标位置坐标信息中的多个目标纵坐标信息沿时间轴进行线性拟合,得到所述多个目标纵坐标信息的斜率值;根据所述斜率值的大小确定出所述运动状态。In this embodiment of the present invention, the determining
本发明实施例中,物体运动状态检测装置800中的确定单元805用于若所述斜率值大于预设阈值,则确定所述运动状态为靠近状态;若所述斜率值小于所述预设阈值,则确定所述运动状态为远离状态。In the embodiment of the present invention, the
本发明实施例中,通过采集提取单元803实时采集预定区域的视频流,并基于滑动窗口的方法在视频流中提取出当前时刻对应的N个图像帧;N为大于1的整数;通过处理单元804处理得到N个图像帧中的标定物体对应的N个位置坐标信息,并结合N个图像帧,确定出剔除了预定观测序列值后的观测序列值集合;其中,预定观测序列值为预定位置坐标信息对应的观测序列值;预定位置坐标信息为对应不包括标定物体的图像帧进行处理得到的位置坐标信息;通过处理单元804基于动态隐马尔科夫模型对应观测序列值集合得到状态序列值集合;通过确定单元805通过观测序列值集合和状态序列值集合,确定出N个图像帧中目标物体的当前时刻的运动状态;标定物体属于目标物体。由于本方案基于动态隐马尔科夫模型滤除了误识别和漏识别带来的干扰因子,并且能够更好处理标准隐马尔可夫模型面临的困难,进而可以提高对车辆运动状态的识别准确率。In the embodiment of the present invention, the video stream of the predetermined area is collected in real time by the acquisition and
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的物体运动状态检测方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台物体运动状态检测装置(可以是个人计算机等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read OnlyMemory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。It should be noted that, in the embodiment of the present invention, if the above-mentioned object motion state detection method is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium. Based on such understanding, the technical solutions of the embodiments of the present invention may be embodied in the form of software products in essence or the parts that make contributions to related technologies. The computer software products are stored in a storage medium and include several instructions for making An object motion state detection device (which may be a personal computer, etc.) executes all or part of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: a U disk, a removable hard disk, a read only memory (Read Only Memory, ROM), a magnetic disk or an optical disk and other mediums that can store program codes. As such, embodiments of the present invention are not limited to any particular combination of hardware and software.
对应地,本发明实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法中的步骤。Correspondingly, an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps in the above method.
对应地,本发明实施例提供一种物体运动状态检测装置,包括存储器802和处理器801,所述存储器802存储有可在处理器801上运行的计算机程序,所述处理器801执行所述程序时实现上述方法中的步骤。Correspondingly, an embodiment of the present invention provides an object motion state detection device, including a
这里需要指出的是:以上存储介质和装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本发明存储介质和装置实施例中未披露的技术细节,请参照本发明方法实施例的描述而理解。It should be pointed out here that the descriptions of the above storage medium and device embodiments are similar to the descriptions of the above method embodiments, and have similar beneficial effects to the method embodiments. For technical details not disclosed in the embodiments of the storage medium and device of the present invention, please refer to the description of the method embodiments of the present invention to understand.
需要说明的是,图9为本发明实施例提供的物体运动状态检测装置的一种硬件实体示意图,如图9所示,该物体运动状态检测装置800的硬件实体包括:处理器801和存储器802,其中;It should be noted that FIG. 9 is a schematic diagram of a hardware entity of an object motion state detection device provided by an embodiment of the present invention. As shown in FIG. 9 , the hardware entity of the object motion
处理器801通常控制物体运动状态检测装置800的总体操作。The
存储器802配置为存储由处理器801可执行的指令和应用,还可以缓存待处理器801以及物体运动状态检测装置800中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(RandomAccess Memory,RAM)实现。The
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。It is to be understood that reference throughout the specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic associated with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in various embodiments of the present invention, the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, rather than the embodiments of the present invention. implementation constitutes any limitation. The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。In the several embodiments provided by the present invention, it should be understood that the disclosed apparatus and method may be implemented in other manners. The apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored, or not implemented. In addition, the coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms. of.
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。The unit described above as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit; it may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may all be integrated into one processing unit, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above-mentioned integration The unit can be implemented either in the form of hardware or in the form of hardware plus software functional units.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储装置、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps of implementing the above method embodiments can be completed by program instructions related to hardware, the aforementioned program can be stored in a computer-readable storage medium, and when the program is executed, the execution includes: The steps of the above method embodiments; and the aforementioned storage medium includes: a removable storage device, a read only memory (Read Only Memory, ROM), a magnetic disk or an optical disk and other media that can store program codes.
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机、服务器、或者网络装置等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储装置、ROM、磁碟或者光盘等各种可以存储程序代码的介质。Alternatively, if the above-mentioned integrated unit of the present invention is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium. Based on such understanding, the technical solutions of the embodiments of the present invention may be embodied in the form of software products in essence or the parts that make contributions to related technologies. The computer software products are stored in a storage medium and include several instructions for making A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes various media that can store program codes, such as a removable storage device, a ROM, a magnetic disk, or an optical disk.
以上所述,仅为本发明的实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only the embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. Included within the scope of protection of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210824981.6A CN115187904A (en) | 2022-07-13 | 2022-07-13 | Object motion state detection method, device and storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210824981.6A CN115187904A (en) | 2022-07-13 | 2022-07-13 | Object motion state detection method, device and storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115187904A true CN115187904A (en) | 2022-10-14 |
Family
ID=83518950
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210824981.6A Pending CN115187904A (en) | 2022-07-13 | 2022-07-13 | Object motion state detection method, device and storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115187904A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119179257A (en) * | 2024-08-19 | 2024-12-24 | 成都飞机工业(集团)有限责任公司 | Exercise timing method, apparatus, electronic device and storage medium |
| CN120544187A (en) * | 2025-07-24 | 2025-08-26 | 宁波微科光电股份有限公司 | An intelligent AI target detection method and system for elevator door 3D trends |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012059879A2 (en) * | 2010-11-03 | 2012-05-10 | Eqsquest Ltd. | System and method for searching functions having symbols |
| CN108960181A (en) * | 2018-07-17 | 2018-12-07 | 东南大学 | Black smoke vehicle detection method based on multiple dimensioned piecemeal LBP and Hidden Markov Model |
-
2022
- 2022-07-13 CN CN202210824981.6A patent/CN115187904A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012059879A2 (en) * | 2010-11-03 | 2012-05-10 | Eqsquest Ltd. | System and method for searching functions having symbols |
| CN108960181A (en) * | 2018-07-17 | 2018-12-07 | 东南大学 | Black smoke vehicle detection method based on multiple dimensioned piecemeal LBP and Hidden Markov Model |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119179257A (en) * | 2024-08-19 | 2024-12-24 | 成都飞机工业(集团)有限责任公司 | Exercise timing method, apparatus, electronic device and storage medium |
| CN120544187A (en) * | 2025-07-24 | 2025-08-26 | 宁波微科光电股份有限公司 | An intelligent AI target detection method and system for elevator door 3D trends |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109784162B (en) | Pedestrian behavior recognition and trajectory tracking method | |
| CN108388879B (en) | Object detection method, device and storage medium | |
| CN110008867B (en) | Early warning method and device based on person abnormal behavior and storage medium | |
| CN108388885B (en) | Multi-person close-up real-time identification and automatic screenshot method for large live broadcast scene | |
| CN103971386B (en) | A kind of foreground detection method under dynamic background scene | |
| CN112634326A (en) | Target tracking method and device, electronic equipment and storage medium | |
| CN112434599B (en) | Pedestrian re-identification method based on random occlusion recovery of noise channel | |
| CN115187904A (en) | Object motion state detection method, device and storage medium | |
| CN102609720B (en) | Pedestrian detection method based on position correction model | |
| CN111353338B (en) | A method for improving energy efficiency based on video surveillance in business halls | |
| US20220405527A1 (en) | Target Detection Methods, Apparatuses, Electronic Devices and Computer-Readable Storage Media | |
| CN106570439B (en) | Vehicle detection method and device | |
| CN111814690B (en) | Target re-identification method, device and computer readable storage medium | |
| CN113673383B (en) | Time-space domain obstacle detection method and system for complex road scene | |
| CN104392239A (en) | A license plate recognition method and system | |
| CN108647587B (en) | People counting method, device, terminal and storage medium | |
| Shah et al. | OCR-based chassis-number recognition using artificial neural networks | |
| CN113450387B (en) | Target tracking method, device, electronic device and computer readable storage medium | |
| WO2013075295A1 (en) | Clothing identification method and system for low-resolution video | |
| CN111046769B (en) | A method, device and system for detecting queuing time | |
| CN113537077A (en) | Label multi-Bernoulli video multi-target tracking method based on feature pool optimization | |
| CN114821722A (en) | Improved face recognition system and method based on Mahalanobis distance | |
| CN115082832A (en) | Information identification method, device and storage medium | |
| CN111027427B (en) | A target gate detection method for small UAV racing competition | |
| CN112926676A (en) | False target identification method and device and computer equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |