CN115188740A - On-chip low-leakage interconnected signal line system and addressable test array circuit - Google Patents
On-chip low-leakage interconnected signal line system and addressable test array circuit Download PDFInfo
- Publication number
- CN115188740A CN115188740A CN202210964102.XA CN202210964102A CN115188740A CN 115188740 A CN115188740 A CN 115188740A CN 202210964102 A CN202210964102 A CN 202210964102A CN 115188740 A CN115188740 A CN 115188740A
- Authority
- CN
- China
- Prior art keywords
- layer
- shielding
- signal line
- shielding wall
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/32—Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Automation & Control Theory (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种片上低漏电互联信号线系统及可寻址测试阵列电路,用于解决互联信号线漏电的问题,该片上低漏电互联信号线系统包括可被配置为电压相等的互联信号线和信号保护通路,其中,信号保护通路包括:第一屏蔽层和第二屏蔽层,第一屏蔽层和第二屏蔽层在芯片垂直投影方向上遮罩互联信号线,互联信号线位于第一屏蔽层和第二屏蔽层之间;第一屏蔽墙和第二屏蔽墙,第一屏蔽墙和第二屏蔽墙分别连接至第一屏蔽层和第二屏蔽层,互联信号线位于第一屏蔽墙和第二屏蔽墙之间。
The invention discloses an on-chip low-leakage interconnected signal line system and an addressable test array circuit for solving the problem of interconnected signal line leakage. The on-chip low-leakage interconnected signal line system includes interconnected signal lines that can be configured to have equal voltages and a signal protection path, wherein the signal protection path includes: a first shielding layer and a second shielding layer, the first shielding layer and the second shielding layer shield the interconnecting signal lines in the vertical projection direction of the chip, and the interconnecting signal lines are located in the first shielding layer. layer and the second shielding layer; the first shielding wall and the second shielding wall, the first shielding wall and the second shielding wall are respectively connected to the first shielding layer and the second shielding layer, and the interconnecting signal lines are located between the first shielding wall and the second shielding layer. between the second shielding wall.
Description
技术领域technical field
本发明属于半导体测试技术领域,具体是关于一种片上低漏电互联信号线系统以及应用其的可寻址测试阵列电路。The invention belongs to the technical field of semiconductor testing, and particularly relates to an on-chip low-leakage interconnection signal line system and an addressable testing array circuit using the same.
背景技术Background technique
在半导体开发过程中,通常需要利用半导体测试结构测试工艺成熟度和半导体器件性能。参图1,现有测试结构中,待测器件各端口通过片上金属线直接连接到芯片焊盘(Pad),仪表通过探针接触该Pad进行测量。During semiconductor development, it is often necessary to test process maturity and semiconductor device performance using semiconductor test structures. Referring to FIG. 1 , in the existing test structure, each port of the device under test is directly connected to a chip pad (Pad) through an on-chip metal wire, and the instrument contacts the pad through a probe to perform measurement.
通常Pad的尺寸在60μm×60μm左右,一个待测器件通过需要2到4个Pad进行测试,而一个待测器件尺寸通常在3μm^2以内,因而测试结构的大部分面积被Pad所占据,面积利用率低。此外,在测试不同待测器件时,需要将探针移动到其他测试结构的Pad上进行测量;一般来说,探针移动过程时间远大于测量时间,从而造成测试过程的时间利用效率也偏低。Usually the size of the pad is about 60μm×60μm, a device to be tested needs 2 to 4 pads to pass the test, and the size of a device to be tested is usually within 3μm^2, so most of the area of the test structure is occupied by the pad, the area Utilization is low. In addition, when testing different devices under test, the probe needs to be moved to the Pad of other test structures for measurement; generally speaking, the time of the probe movement process is much longer than the measurement time, resulting in a low time utilization efficiency in the test process. .
为了解决上述问题,提出了通过选择性地与特定待测器件连通,从而使得多个待测器件的测试端可以共用Pad,提高测试结构的面积和测试过程时间的利用率;然而,在这样的结构中,可能存在互联信号线漏电的挑战。In order to solve the above problems, it is proposed to selectively communicate with a specific device under test, so that the test terminals of multiple devices under test can share the Pad, so as to improve the area of the test structure and the utilization rate of the test process time; however, in such a case In the structure, there may be challenges of leakage of interconnected signal lines.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种片上低漏电互联信号线系统,其用于解决互联信号线漏电的问题。The purpose of the present invention is to provide an on-chip low leakage interconnection signal line system, which is used to solve the problem of interconnection signal line leakage.
为实现上述目的,本发明提供了一种片上低漏电互联信号线系统,应用于芯片上,包括可被配置为电压相等的互联信号线和信号保护通路,其中,所述信号保护通路包括:In order to achieve the above object, the present invention provides an on-chip low-leakage interconnected signal line system, which is applied on the chip and includes interconnected signal lines and signal protection paths that can be configured to have equal voltages, wherein the signal protection paths include:
第一屏蔽层和第二屏蔽层,所述第一屏蔽层和第二屏蔽层在所述芯片垂直投影方向上遮罩所述互联信号线,所述互联信号线位于所述第一屏蔽层和第二屏蔽层之间;A first shielding layer and a second shielding layer, the first shielding layer and the second shielding layer shield the interconnecting signal lines in the vertical projection direction of the chip, and the interconnecting signal lines are located between the first shielding layer and the second shielding layer. between the second shielding layer;
第一屏蔽墙和第二屏蔽墙,所述第一屏蔽墙和第二屏蔽墙分别连接至所述第一屏蔽层和第二屏蔽层,所述互联信号线位于所述第一屏蔽墙和第二屏蔽墙之间。A first shielding wall and a second shielding wall, the first shielding wall and the second shielding wall are connected to the first shielding layer and the second shielding layer, respectively, and the interconnecting signal lines are located between the first shielding wall and the second shielding wall. between two shielding walls.
一实施例中,所述第一屏蔽层包括所述芯片上互连层中的金属层。In one embodiment, the first shielding layer includes a metal layer in the on-chip interconnect layer.
一实施例中,所述第二屏蔽层包括所述芯片的衬底隔离阱或所述芯片的栅极层;或,In one embodiment, the second shielding layer includes a substrate isolation well of the chip or a gate layer of the chip; or,
所述第二屏蔽层包括所述芯片上互连层中的金属层。The second shielding layer includes a metal layer in the on-chip interconnect layer.
一实施例中,所述第一屏蔽墙和第二屏蔽墙分别包括所述芯片上内层介电层中的通孔填充介质;或,In one embodiment, the first shielding wall and the second shielding wall respectively comprise a via filling medium in the on-chip inner dielectric layer; or,
所述第一屏蔽墙和第二屏蔽墙分别包括所述芯片上内层介电层中的通孔填充介质、以及互连层中的通孔填充介质和金属层;或,The first shielding wall and the second shielding wall respectively comprise a via-filling medium in the inner-layer dielectric layer on the chip, and a via-filling medium and a metal layer in the interconnection layer; or,
所述第一屏蔽墙和第二屏蔽墙分别包括所述芯片上两个互连层中的通孔填充介质和金属层。The first shielding wall and the second shielding wall respectively include through-hole filling dielectric and metal layers in the two interconnect layers on the chip.
本申请还提供一种可寻址测试阵列电路,用于多个待测器件的测试,包括:The present application also provides an addressable test array circuit for testing multiple devices under test, including:
测试信号线;test signal line;
信号保护通路,其可被配置为与所述测试信号线上的电压相等;a signal protection path, which can be configured to be equal to the voltage on the test signal line;
多个可寻址控制开闭的开关,所述多个开关分别连接至测试信号线和对应的待测器件;其中,a plurality of switches that can be opened and closed by addressable control, the plurality of switches are respectively connected to the test signal line and the corresponding device under test; wherein,
所述信号保护通路包括:The signal protection path includes:
第一屏蔽层和第二屏蔽层,所述第一屏蔽层和第二屏蔽层在所述测试阵列电路垂直投影方向上遮罩所述互联信号线,所述互联信号线位于所述第一屏蔽层和第二屏蔽层之间;a first shielding layer and a second shielding layer, the first shielding layer and the second shielding layer shield the interconnecting signal lines in the vertical projection direction of the test array circuit, and the interconnecting signal lines are located on the first shielding between the layer and the second shielding layer;
第一屏蔽墙和第二屏蔽墙,所述第一屏蔽墙和第二屏蔽墙分别连接至所述第一屏蔽层和第二屏蔽层,所述互联信号线位于所述第一屏蔽墙和第二屏蔽墙之间。A first shielding wall and a second shielding wall, the first shielding wall and the second shielding wall are connected to the first shielding layer and the second shielding layer, respectively, and the interconnecting signal lines are located between the first shielding wall and the second shielding wall. between two shielding walls.
一实施例中,所述第一屏蔽层包括所述测试阵列电路上互连层中的金属层。In one embodiment, the first shield layer includes a metal layer in an interconnect layer on the test array circuit.
一实施例中,所述第二屏蔽层包括所述测试阵列电路的衬底隔离阱或栅极层;或,In one embodiment, the second shielding layer includes a substrate isolation well or a gate layer of the test array circuit; or,
所述第二屏蔽层包括所述测试阵列电路上互连层中的金属层。The second shield layer includes a metal layer in an interconnect layer on the test array circuit.
一实施例中,所述第一屏蔽墙和第二屏蔽墙分别包括所述测试阵列电路上内层介电层中的通孔填充介质;或,In one embodiment, the first shielding wall and the second shielding wall respectively comprise a through-hole filling medium in the inner dielectric layer on the test array circuit; or,
所述第一屏蔽墙和第二屏蔽墙分别包括所述测试阵列电路上内层介电层中的通孔填充介质、以及互连层中的通孔填充介质和金属层;或,The first shielding wall and the second shielding wall respectively comprise a through hole filling medium in the inner dielectric layer on the test array circuit, and a through hole filling medium and a metal layer in the interconnection layer; or,
所述第一屏蔽墙和第二屏蔽墙分别包括所述测试阵列电路上两个互连层中的通孔填充介质和金属层。The first shielding wall and the second shielding wall respectively comprise a through-hole filling medium and a metal layer in the two interconnection layers on the test array circuit.
一实施例中,所述开关包括MOS管,所述MOS管的栅极在其有源区上的垂直投影呈环形。In one embodiment, the switch includes a MOS transistor, and the vertical projection of the gate of the MOS transistor on the active region thereof is annular.
一实施例中,所述MOS管至少包括两个,所述至少两个MOS管共栅设置;和/或,In an embodiment, the MOS transistors include at least two, and the at least two MOS transistors are arranged in a common gate; and/or,
所述测试信号线连接至所述MOS管的低漏电有源区,其中,所述低漏电有源区为所述MOS管栅极在其有源区上垂直投影内的部分有源区。The test signal line is connected to the low-leakage active region of the MOS transistor, wherein the low-leakage active region is a part of the active region in the vertical projection of the gate of the MOS transistor on the active region.
一实施例中,所述测试信号线包括用于测量待测器件电流的漏极电压信号线,和/或,In one embodiment, the test signal line includes a drain voltage signal line for measuring the current of the device under test, and/or,
所述测试信号线包括用于测量待测器件电压的漏极感应信号线。The test signal line includes a drain sensing signal line for measuring the voltage of the device under test.
与现有技术相比,本申请的片上低漏电互联信号线系统中,信号保护通路与互联信号线可以被配置为相同电压,且在工艺结构上,信号保护通路通过第一屏蔽层、第二屏蔽层、第一屏蔽墙以及第二屏蔽墙的配合设置,可以“围绕”互联信号线布设,使得互联信号线在其延伸方向上和信号保护通路之间几乎没有电压差,进而抑制了互联信号线可能产生的漏电;Compared with the prior art, in the on-chip low-leakage interconnection signal line system of the present application, the signal protection path and the interconnection signal line can be configured with the same voltage, and in terms of process structure, the signal protection path passes through the first shielding layer, the second shielding layer and the second shielding layer. The coordinated arrangement of the shielding layer, the first shielding wall and the second shielding wall can “encircle” the interconnected signal lines, so that there is almost no voltage difference between the interconnected signal lines and the signal protection path in the extending direction, thereby suppressing the interconnection signal Leakage that may be generated by the line;
在另一个方面,本申请的片上低漏电互联信号线系统中,信号保护通路可以利用应用场景中的现有半导体结构进行构造,实施成本较低。In another aspect, in the on-chip low-leakage interconnection signal line system of the present application, the signal protection path can be constructed by using the existing semiconductor structure in the application scenario, and the implementation cost is low.
附图说明Description of drawings
图1是现有技术中半导体测试结构的示意图;1 is a schematic diagram of a semiconductor test structure in the prior art;
图2是本申请片上低漏电互联信号线系统的应用场景示意图;2 is a schematic diagram of an application scenario of an on-chip low-leakage interconnection signal line system of the present application;
图3是本申请一实施例片上低漏电互联信号线系统的结构示意图;3 is a schematic structural diagram of an on-chip low-leakage interconnection signal line system according to an embodiment of the present application;
图4是本申请又一实施例片上低漏电互联信号线系统的结构示意图;4 is a schematic structural diagram of an on-chip low-leakage interconnection signal line system according to another embodiment of the present application;
图5至图9是本申请各实施例中片上低漏电互联信号线系统的应用场景场景示意图;5 to 9 are schematic diagrams of application scenarios of the on-chip low-leakage interconnection signal line system in various embodiments of the present application;
图10是本申请一实施例可寻址测试阵列的结构示意图;10 is a schematic structural diagram of an addressable test array according to an embodiment of the present application;
图11是本申请一实施例可寻址测试阵列电路中,信号保护通路和测试信号线配合的结构示意图;11 is a schematic structural diagram of the cooperation of signal protection paths and test signal lines in an addressable test array circuit according to an embodiment of the present application;
图12是本申请一实施例可寻址测试阵列电路中,MOS管的环栅结构示意图。12 is a schematic diagram of a gate-all-around structure of a MOS transistor in an addressable test array circuit according to an embodiment of the present application.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施例的限制。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprising" or its conjugations such as "comprising" or "comprising" and the like will be understood to include the stated elements or components, and Other elements or other components are not excluded.
参图3,介绍本申请片上低漏电互联信号线系统100的一具体实施例。在本实施例中,该低漏电互联信号线系统100包括互联信号线11和信号保护通路12。Referring to FIG. 3 , a specific embodiment of the on-chip low-leakage interconnection
本申请提供的低漏电互联信号线系统100可以应用于多种芯片上,特别是例如对漏电敏感的芯片类型。信号保护通路12可以和互联信号线11被配置为电压相等,并且,在工艺结构上,信号保护通路12“围绕”互联信号线11布设,使得互联信号线11在其延伸方向上和信号保护通路12之间几乎没有电压差,进而抑制了互联信号线11可能产生的漏电。The low-leakage interconnection
一实施例中,信号保护通路12可以是通过电压跟随缓冲器复制互联信号线11上的电压,或者,互联信号线11和信号保护通路12可以分别连接至等电压的焊盘。In one embodiment, the signal protection via 12 may replicate the voltage on the interconnected
信号保护通路12包括第一屏蔽层121、第二屏蔽层122、第一屏蔽墙123、以及第二屏蔽墙124。第一屏蔽层121和第二屏蔽层122在芯片垂直投影方向上遮罩互联信号线11,且互联信号线11位于第一屏蔽层121和第二屏蔽层122之间;同时,第一屏蔽墙123和第二屏蔽墙124分别连接至第一屏蔽层121和第二屏蔽层122,且互联信号线11位于第一屏蔽墙123和第二屏蔽墙124之间。The signal protection via 12 includes a
如上的工艺结构中,第一屏蔽层121、第二屏蔽层122、第一屏蔽墙123、以及第二屏蔽墙124在互联信号线11延伸的周侧上构成了围绕互联信号线11的屏蔽结构。并且,需要说明的是,第一屏蔽层121、第二屏蔽层122、第一屏蔽墙123、以及第二屏蔽墙124在结构上并不被限定为需要完全连续的。在一些实施例中,可以只需要第一屏蔽层121、第二屏蔽层122、第一屏蔽墙123、以及第二屏蔽墙124组成的信号保护通路12能够一定程度上、或者部分地对互联信号线11具有漏电抑制效应即可。这将在以下的实施例中,进行具体的阐释。In the above process structure, the
配合参图2,在本申请片上低漏电互联信号线系统100应用的一个典型芯片中,可以包括多个半导体器件,例如场效应管(Field EffectTransistor,FET)。结构上,与本申请各实施例中信号保护通路12相关的部分主要可以包括芯片的衬底隔离阱、栅极层,芯片上的内层介电层(ILD)、互连层、通孔填充介质等。Referring to FIG. 2 , a typical chip to which the on-chip low-leakage interconnection
可以理解的是,这里的衬底隔离阱和栅极层可以是对应到芯片中多个半导体器件的隔离阱和栅极。芯片互连层是指在芯片制作的后段工艺(Back End ofLine,BEOL)中,在半导体器件区域上形成的用于连接半导体器件与外部电路的功能层。通常地,芯片上可以制作有多层互连层,每层互连层还包括介电层和金属层,金属层用于连接不同器件的栅极、源极或漏极,介电层用于隔离不同互连层之间的金属层。互连层中包括穿透介电层的通孔(via),通孔中填充有导电的通孔填充介质,从而电性连接不同互连层中的金属层。内层介电层则是指最临近衬底的第一层互连层与衬底之间的介电层。类似地,内层介电层中也包括穿透其的通孔,并同样填充有通孔填充介质,以使得芯片上的半导体器件和互连层中的金属层电性连接。It can be understood that the substrate isolation wells and gate layers here may be isolation wells and gates corresponding to a plurality of semiconductor devices in the chip. The chip interconnection layer refers to a functional layer formed on the semiconductor device region in the back end of line (BEOL) process of chip fabrication and used to connect the semiconductor device and external circuits. Generally, multiple interconnect layers can be fabricated on the chip, and each interconnect layer further includes a dielectric layer and a metal layer. The metal layer is used to connect the gates, sources or drains of different devices, and the dielectric layer is used to Isolate metal layers between different interconnect layers. The interconnection layer includes vias penetrating the dielectric layers, and the vias are filled with a conductive via-filling medium, so as to electrically connect metal layers in different interconnection layers. The inner dielectric layer refers to the dielectric layer between the first interconnect layer closest to the substrate and the substrate. Similarly, the interlayer dielectric layer also includes through holes penetrating the same, and is also filled with the through hole filling medium, so as to electrically connect the semiconductor device on the chip and the metal layer in the interconnection layer.
示范性地,上述衬底的材料可以为单晶硅(Si)、单晶锗(Ge)、硅锗(GeSi)或碳化(SiC),也可以是绝缘体上硅(SOI),绝缘体上锗(GOI),或者还可以为其它的材料,例如砷化镓等III-V族化合物。栅极层可以为包含掺杂的多晶硅或高介电常数金属(high-k metal)。互连层中的介电层可以为氧化硅、氮化硅、碳化硅、氮氧化硅等介电材料,以及黑钻石、含碳的低k介电材料、氢倍半硅氧烷(HSQ)、甲基倍半硅氧烷(MSQ)等Low-K材料;互连层中的金属层材料可以为铜(Cu)。通孔填充介质可以为钨(W)、铝(Al)、铜(Cu)、钛(Ti)、钽(Ta)、氮化钛(TiN)、氮化钽(TaN)、它们的合金和/或它们的多层。内层介电层可以为磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼掺杂的磷硅酸盐玻璃(BPSG)、氟掺杂的硅酸盐玻璃(FSG)、正硅酸乙酯(TEOS)等。Exemplarily, the material of the above substrate may be single crystal silicon (Si), single crystal germanium (Ge), silicon germanium (GeSi) or carbide (SiC), or may be silicon on insulator (SOI), germanium on insulator ( GOI), or other materials, such as III-V compounds such as gallium arsenide. The gate layer may contain doped polysilicon or high-k metal. The dielectric layer in the interconnect layer can be silicon oxide, silicon nitride, silicon carbide, silicon oxynitride and other dielectric materials, as well as black diamond, carbon-containing low-k dielectric materials, hydrogen silsesquioxane (HSQ) , methylsilsesquioxane (MSQ) and other Low-K materials; the metal layer material in the interconnection layer may be copper (Cu). Via fill dielectrics may be tungsten (W), aluminum (Al), copper (Cu), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), their alloys and/or or their multiple layers. The inner dielectric layer may be phosphosilicate glass (PSG), borosilicate glass (BSG), boron doped phosphosilicate glass (BPSG), fluorine doped silicate glass (FSG), Ethyl orthosilicate (TEOS), etc.
以下具体介绍本申请各实施例中低漏电互联信号线系统的具体工艺结构。The specific process structure of the low-leakage interconnection signal line system in each embodiment of the present application is described in detail below.
实施例1Example 1
参图5,第一屏蔽层121A为芯片上互连层30A中的金属层,第二屏蔽层122A为芯片的衬底隔离阱,第一屏蔽墙123A和第二屏蔽墙124A为芯片上内层介电层20A中的通孔填充介质。Referring to FIG. 5 , the
内层介电层中20A可以包括多个连续布设的通孔,也即,相邻的通孔填充介质之间可以存在一定的间距。并且,第一屏蔽层121A和第二屏蔽层122A还可以根据芯片设计的需要而布设有相应的互联结构。这样,利用芯片制造工艺中现有的半导体结构构造信号保护通路,实施成本较低。The inner-
可以看出,此时信号保护通路可以用于防止布设于芯片上内层介电层20A中的互联信号线11A的漏电,且互联信号线11A可以使用栅极层材料布设。It can be seen that the signal protection via can be used to prevent leakage of the interconnecting
实施例2Example 2
参图6,第一屏蔽层121B为芯片上互连层32B中的金属层,第二屏蔽层122B为芯片的栅极层,第一屏蔽墙123B和第二屏蔽墙124B包括芯片上内层介电层20B中的通孔填充介质21B、以及互连层31B中的通孔填充介质311B和金属层312B。6 , the
可以看出,此时信号保护通路实质上包括了内层介电层20B以及至少两个互连层31B、32B中的半导体结构。与实施例1不同之处在于,实施例2中使用芯片的栅极层作为第二屏蔽层122B,此时信号保护通路可以用于防止布设于芯片上互连层31B中的互联信号线11B的漏电,且互联信号线11B可以使用互连层31B中的金属层312B材料布设。It can be seen that the signal protection via substantially includes the semiconductor structures in the
实施例3Example 3
参图7,第一屏蔽层121C为芯片上互连层32C中的金属层,第二屏蔽层122C为芯片的衬底隔离阱,第一屏蔽墙123C和第二屏蔽墙124C包括芯片上内层介电层20C中的通孔填充介质21C、以及互连层31C中的通孔填充介质311C和金属层312C。7, the
可以看出,此时信号保护通路同样包括了内层介电层20C以及至少两个互连层31C、32C中的半导体结构。与实施例2不同之处在于,实施例3中使用芯片的衬底隔离阱作为第二屏蔽层122C,并且,互联信号线11C可以使用互连层31C中的金属层312C材料或者栅极层材料布设。It can be seen that the signal protection via also includes the semiconductor structures in the
实施例4Example 4
参图8,第一屏蔽层121D和第二屏蔽层122D为芯片上两个非相邻互连层33D、31D中的金属层,第一屏蔽墙123D和第二屏蔽墙124D包括两个互连层31D、32D中的通孔填充介质和金属层。具体地,可以认为第一屏蔽墙123D和第二屏蔽墙124D包括了互连层31D中的通孔填充介质311D、以及互连层32D中的通孔填充介质321D和金属层322D。8, the
可以看出,此时信号保护通路实质上包括了三个连续的互连层31D、32D、33D中的半导体结构。在这样的实施例中,互联信号线11D可以是使用互连层32D中金属层322D材料布设。It can be seen that, at this time, the signal protection path essentially includes the semiconductor structures in the three continuous interconnect layers 31D, 32D, and 33D. In such an embodiment, the
可以理解的是,在类似本实施例的替换方式中,还可以是通过四个或更多个连续互连层中的半导体结构构造信号保护通路,这样,互联信号线可以使用非顶层/非底层互连层中的金属层材料布设。It can be understood that, in an alternative manner similar to this embodiment, signal protection paths may also be constructed by semiconductor structures in four or more continuous interconnect layers, so that interconnect signal lines may use non-top/non-bottom layers. Metal layer material placement in interconnect layers.
实施例5Example 5
参图9,第一屏蔽层121E为芯片上互连层33E中的金属层,第二屏蔽层122E为芯片的衬底隔离阱,第一屏蔽墙123E和第二屏蔽墙124E为芯片上内层介电层20E中的通孔填充介质21E、以及两个互连层31E、32E中的通孔填充介质311E、321E和金属层312E、322E。9 , the
可以看出,此时信号保护通路实质上包括了内层介电层20E以及三个互连层31E、32E、33E中的半导体结构。在这样的实施例中,互联信号线11E可以是使用互连层31E中金属层312E材料、互连层32E中金属层322E材料、或者栅极层材料布设。It can be seen that, at this time, the signal protection path substantially includes the
在以上的实施例1至实施例5中,除了实施例4中的第二屏蔽层为金属层外,其它示出实施例的第二屏蔽层都为衬底隔离阱或栅极层,也即信号保护通路可以仅需一个互连层中的金属层进行构建。这样,在一些互连层较少的应用场景中,也不需要为构建信号保护通路而额外设置更多层的金属层,工艺成本较低。In the
再配合参照图3和图4,在以衬底隔离阱作为第二屏蔽层122的实施例中,互联信号线11在芯片衬底上的垂直投影可以是位于或者不位于隔离阱上的隔离槽(STI)内。其中,互联信号线11在芯片衬底上的垂直投影位于隔离阱上的隔离槽内时(如图3所示),可以具有更少的漏电且易于工艺版图的绘制。可以理解的是,在上述实施例1至实施例5示出的工艺结构中,隔离阱中的隔离槽与互联信号线的位置关系可以根据不同版图设计的需要,可选地参照图3或图4示出的方式,在此不再赘述。Referring to FIG. 3 and FIG. 4 again, in the embodiment in which the substrate isolation well is used as the
参图10,介绍本申请可寻址测试阵列电路200的一实施例。在本实施例中,该可寻址测试阵列电路200包括测试信号线21、信号保护通路22以及开关23。Referring to FIG. 10, an embodiment of the addressable
可寻址测试阵列电路200可以用于多个待测器件的测试,通常地,每个开关23对应至一个待测器件。需要说明的是,根据待测器件的不同,各待测器件所对应的测试端口数量也可能不同,这里所说的“每个开关23对应至一个待测器件”是指该开关23只对应控制连通该待测器件或该待测器件的某个端口。The addressable
以待测器件具有栅极(G)、源极(S)、漏极(D)、阱(B)为例,多个待测器件的的栅极、源极、以及阱可以连接在共同的焊盘(Pad)上,而不能复用的漏极则通过多个开关23连接在另一Pad上。测试阵列可以通过移位寄存器控制开关23是否与待测器件的漏极连通,并且,在同一时刻,测试阵列只会选择一个待测器件进行测试。Taking the device under test as an example with a gate (G), a source (S), a drain (D), and a well (B), the gates, sources, and wells of multiple devices under test can be connected in a common On the pad (Pad), the drain that cannot be reused is connected to another Pad through a plurality of
在具体的电路中,行列开关电路的输出端与待测器件的输入端连接。寻址电路中确定行地址译码器与列地址译码器的输出信号,行地址译码器与列地址译码器共享时钟信号CK,二者结合的信号传递到开关电路,从而确定对应位置待测器件开关23的通断。In a specific circuit, the output end of the row-column switching circuit is connected to the input end of the device under test. In the addressing circuit, the output signals of the row address decoder and the column address decoder are determined. The row address decoder and the column address decoder share the clock signal CK, and the combined signal of the two is transmitted to the switch circuit to determine the corresponding position. On-off of the
对于确定具体行列开关的电路,可以采用多级传输门。即:高一级的传输门的输出端连接到与之连接的低一级的传输门的输入端,最低一级的传输门的输出端与最后一个待测器件的输入端连接,从而确定特定位置待测器件的开关23通断。For circuits that determine specific row and column switches, multi-level transmission gates can be used. That is: the output end of the transmission gate of the higher level is connected to the input end of the transmission gate of the lower level connected to it, and the output end of the transmission gate of the lowest level is connected to the input end of the last device under test, so as to determine the specific The
测试信号线21可用于测量待测器件各个端口的电流和/或电压,上述的多个开关23分别连接至该测试信号线21和对应的待测器件,以控制测试信号线21和待测器件之间的通断。以测量待测器件漏极的电流和电压为例,可以在该待测器件的漏极施加相应的电压并闭合与其漏极连接的开关23,此时,在测试信号线21上的合适位置处可以测量相应的电流和电压。The
在本申请可寻址测试阵列电路200的实施例中,测试信号线21可以认为是互联信号线的一种。也即,本实施例中,实质上是应用上述实施例中片上低漏电互联信号线系统的方案,通过信号保护通路22防止测试信号线21可能产生的漏电,从而保证可寻址测试阵列电路200对待测器件测试的精度,特别是在待测器件关闭时,对测试精度的提升效果将更为明显。In the embodiment of the addressable
配合参图11,信号保护通路22包括第一屏蔽层221、第二屏蔽层222、第一屏蔽墙223以及第二屏蔽墙224。第一屏蔽层221和第二屏蔽层222在测试阵列电路200垂直投影方向上遮罩测试信号线21,且互联信号线位于所述第一屏蔽层221和第二屏蔽层222之间;同时,第一屏蔽墙223和第二屏蔽墙224分别连接至第一屏蔽层221和第二屏蔽层222,且测试信号线21位于第一屏蔽墙223和第二屏蔽墙224之间。Referring to FIG. 11 , the signal protection via 22 includes a
类似地,这里的信号保护通路22的各构成部分并非被限定为一定完全地连续。如图11中,测试信号线21可以通过导电介质连接至衬底隔离阱上的设定区域,而这将可能导致第二屏蔽层222上产生“缺失”;又或者,第一屏蔽墙223和第二屏蔽224的构成中包括通孔填充介质,而位于多个通孔中的通孔填充介质在结构上也存在相应的“间隙”。但这些示意的“缺失”和“间隙”都不会导致信号保护通路22对测试信号线21防漏电功能的失效。Similarly, the constituent parts of the signal protection path 22 here are not necessarily limited to be completely continuous. As shown in FIG. 11 , the
在本申请的可寻址测试阵列电路200中,同样可以包括多个制作在衬底上半导体器件,例如场效应管。从而在结构上,这里的信号保护通路22也可以是利用衬底隔离阱、栅极层、芯片上的内层介电层、互连层、通孔填充介质等构建。The addressable
整体上,第一屏蔽层221可以包括测试阵列电路上互连层中的金属层。第二屏蔽层222可以包括测试阵列电路的衬底隔离阱、栅极层、或互连层中的金属层。第一屏蔽墙223和第二屏蔽墙224可以分别包括测试阵列电路上内层介电层中的通孔填充介质、又或者是包括测试阵列电路上内层介电层中的通孔填充介质、以及互连层中的通孔填充介质和金属层、又或者是包括测试阵列电路上两个互连层中的通孔填充介质和金属层。As a whole, the
在具体的实施例中,信号保护通路22的工艺结构可以参考上述低漏电互联信号线系统中的实施例1至实施例5,这里不再赘述。In a specific embodiment, the process structure of the signal protection path 22 may refer to
本实施例中,信号保护通路22也可以是通过电压跟随缓冲器复制测试信号线21上的电压,或者,测试信号线21和信号保护通路22可以分别连接至等电压的焊盘。In this embodiment, the signal protection path 22 may also replicate the voltage on the
本实施例中,可以采用MOS管构建开关23。在常规的MOS管中,理想情况下,在栅极不通电时,源极信号很难穿过不导电的反型层到达漏区,漏极D与源极S之间不导通;而如果在栅极和衬底间加上电压,反型层中的电荷会在栅极下方绝缘氧化层下大量聚集,形成沟道,使得源极和漏极导通,电流就可以顺利从源极传递到漏极。然而,由于普遍采用的单栅或双栅结构,导致即便在栅极未施加开启电压时,在栅极的边缘也会聚集漏电电流,最终影响测量待测器件的测量结果。In this embodiment, the
配合参图12,本实施例中,开关23中MOS管的栅极在其有源区上的垂直投影呈环形(环形栅)。也即,MOS管的栅极边缘“被消除”,从而避免了漏电流聚集的可能。Referring to FIG. 12 , in this embodiment, the vertical projection of the gate of the MOS transistor in the
本实施例中中,每个开关23至少包括两个MOS管,且这两个MOS管共栅设置。参图10,以开关23包括第一MOS管231和第二MOS管232为例,其中第二MOS管232接入在高阻电压测量回路上。In this embodiment, each
第一MOS管231和第二MOS管232的设置分别用于对待测器件电流和电压的测量回路的开关控制。对应地,上述的测试信号线21可以包括两根:漏极电压信号线211和漏极感应信号线212,第一MOS管231的漏极连接至漏极电压信号线211,第二MOS管232的漏极连接至漏极感应信号线212,第一MOS管231和第二MOS管232的源极连接至待测器件,且第一MOS管231和第二MOS管232共栅设置。这样,可以通过同样的栅极压控信号控制第一MOS管231和第二MOS管232同时导通或关闭,从而在漏极电压信号线211和漏极感应信号线212上分别进行对待测器件相应端口电流和电压的测量。The settings of the
这里所说的“高阻电压测量回路”是指该测量回路的电阻可以被设置为极高,以使得在测量时,其上的电流可以趋近于零。由于开关23在导通状态下可能会流过毫安级别的电流,且开关23固有的导通电阻,毫安级别的电流会造成明显的电压传递损失,最终导致漏电电流测量结果出现误差。而通过将漏极感应信号线212的电压测量配置为在高压电阻测量回路进行,可以排除可寻址测试阵列电路200本身电阻的干扰,且漏极电压信号线211上的电压不影响高阻电压测量回路上的电压,因此在漏极感应信号线212的电压测量端可以准确测量待测器件的电压。The "high-resistance voltage measurement loop" mentioned here means that the resistance of the measurement loop can be set to be extremely high, so that during measurement, the current on it can approach zero. Since the
高阻电压测量回路的实现可以采用多种形式,例如可以在该回路上串联一个阻值极高的电阻,又或者,直接在漏极感应信号线212的电压测量端配置高阻电压表进行电压测量。可以看出,“高阻电压测量回路”可以是本身具有高阻特性,又或者是与外部高阻测量仪器配合以实现高阻测量。The realization of the high-resistance voltage measurement loop can take various forms, for example, a resistor with a very high resistance value can be connected in series with the loop, or, a high-resistance voltmeter can be configured directly at the voltage measurement end of the drain
继续参图10,开关23还可以包括第三MOS管233,第三MOS管233的漏极连接至信号保护通路22,第一MOS管231、第二MOS管232、以及第三MOS管233的阱电压被配置为与信号保护通路22上的电压相等,且第三MOS管233的源极也连接至待测器件。通过在第三MOS管233的栅极加载压控信号以控制其导通和关闭,可以使得开关23具有“低漏电”的特性。Continuing to refer to FIG. 10 , the
具体地,对于开关23而言,当在第一MOS管231的的栅极加载第一压控信号以使第一MOS管231导通、且在第三MOS管233的栅极加载第三压控信号以使第三MOS管233关闭时,该开关23闭合;对应地,当在第一MOS管231的栅极加载第一压控信号以使第一MOS管231关闭、且在第三MOS管233的栅极加载第三压控信号以使第三MOS管233关导通时,该开关23打开。Specifically, for the
在这样的开关23中,漏电的可能包括:①开关23打开时,第一MOS管231固有的漏极漏电;②开关23闭合时,第一MOS管231漏极到阱的漏电。In such a
具体地,对于开关23打开时,第一MOS管231固有的漏极漏电而言,包括:漏极到阱的漏电、漏极到源极的漏电、以及阱到源极的漏电。此时,由于第三MOS管233处于导通状态,且第一MOS管231的阱电压等于漏极电压信号线211上的电压,则第一MOS管231的漏极电压、阱电压、以及源极电压被拉至相等,从而有效消除此时第一MOS管231固有的源极漏电。类似地,对于开关23闭合时,第一MOS管231的漏极到阱的漏电而言,此时,由于第一MOS管231的阱电压被拉至与漏极电压相等,其漏极到阱的漏电同样可以被有效消除。Specifically, when the
类似地,第三MOS管233也可以是同样具有环形栅的设置,在此不再赘述。Similarly, the
在本实施例中,测试信号线21可以是连接至开关23中MOS管的低漏电有源区,其中,低漏电有源区为MOS管栅极在其有源区上垂直投影内的部分有源区。测试信号线21在连接至开关23时,通过对接至开关23中MOS管的低漏电有源区,可以进一步消除测试信号线21在开关23处可能的漏电。In this embodiment, the
具体地,由于第一MOS管231和第二MOS管232分别用于对待测器件电流和电压的测量回路的开关控制,可以将漏极电压信号线211连接至第一MOS管231的低漏电有源区,漏极感应信号线212连接至第二MOS管的低漏电有源区。Specifically, since the
需要说明的是,由于涉及到精确测量领域,在本申请各实施例/实施例中,以功能性限定方式定义的“相等”并未考虑电路中各器件特性和电路传递损耗等不可避免因素的影响。以“信号保护通路被配置为与测试信号线上的电压相等”为例,此时并未考虑上述测试信号线上的电压传递损失,这样设置的实际目的是为了使信号保护通路上的电压无限接近当前待测器件测量端的实际电压;因此,在设置高阻电压测量回路的实施例中,信号保护通路可以被更佳地设置为:复制几乎没有电压传递损失的电压感测信号线上的电压。It should be noted that, due to the fact that it involves the field of precise measurement, in the various embodiments/embodiments of the present application, the "equal" defined in a functionally limited manner does not take into account the unavoidable factors such as the characteristics of each device in the circuit and the transmission loss of the circuit. influences. Taking "the signal protection path is configured to be equal to the voltage on the test signal line" as an example, the voltage transmission loss on the above test signal line is not considered at this time. The actual purpose of this setting is to make the voltage on the signal protection path infinite. close to the actual voltage at the measurement terminal of the current device under test; therefore, in the embodiment where a high-impedance voltage measurement loop is provided, the signal protection path can be better set to replicate the voltage on the voltage-sensing signal line with almost no voltage transfer loss .
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and modifications are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and their practical applications, to thereby enable others skilled in the art to make and utilize various exemplary embodiments and various different aspects of the invention. Choose and change. The scope of the invention is intended to be defined by the claims and their equivalents.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210964102.XA CN115188740A (en) | 2022-08-11 | 2022-08-11 | On-chip low-leakage interconnected signal line system and addressable test array circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210964102.XA CN115188740A (en) | 2022-08-11 | 2022-08-11 | On-chip low-leakage interconnected signal line system and addressable test array circuit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115188740A true CN115188740A (en) | 2022-10-14 |
Family
ID=83524142
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210964102.XA Pending CN115188740A (en) | 2022-08-11 | 2022-08-11 | On-chip low-leakage interconnected signal line system and addressable test array circuit |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115188740A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002299340A (en) * | 2001-03-28 | 2002-10-11 | Sanyo Electric Co Ltd | Wiring structure for semiconductor device |
| CN101573626A (en) * | 2006-12-01 | 2009-11-04 | 佛姆法克特股份有限公司 | Probing apparatus with guarded signal traces |
| CN103811468A (en) * | 2013-12-10 | 2014-05-21 | 杭州广立微电子有限公司 | Addressable test chip and test method thereof |
| CN110823316A (en) * | 2019-10-25 | 2020-02-21 | 德阳市新泰自动化仪表有限公司 | Capacitance signal detection circuit with interference shielding function |
-
2022
- 2022-08-11 CN CN202210964102.XA patent/CN115188740A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002299340A (en) * | 2001-03-28 | 2002-10-11 | Sanyo Electric Co Ltd | Wiring structure for semiconductor device |
| CN101573626A (en) * | 2006-12-01 | 2009-11-04 | 佛姆法克特股份有限公司 | Probing apparatus with guarded signal traces |
| CN103811468A (en) * | 2013-12-10 | 2014-05-21 | 杭州广立微电子有限公司 | Addressable test chip and test method thereof |
| CN110823316A (en) * | 2019-10-25 | 2020-02-21 | 德阳市新泰自动化仪表有限公司 | Capacitance signal detection circuit with interference shielding function |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112424929B (en) | Heat extraction for single layer transfer integrated circuits | |
| Chen et al. | On-chip testing of blind and open-sleeve TSVs for 3D IC before bonding | |
| US7155684B2 (en) | Integrated circuit device and method for forming the same | |
| US6617681B1 (en) | Interposer and method of making same | |
| US8110875B2 (en) | Structure for charge dissipation during fabrication of integrated circuits and isolation thereof | |
| CN100578788C (en) | Method and apparatus for building integrated circuit capacitors from gate array structures | |
| US8629529B2 (en) | Semiconductor device and its manufacturing method | |
| US8581250B2 (en) | Method and apparatus of fabricating a pad structure for a semiconductor device | |
| US10879172B2 (en) | Semiconductor structure | |
| KR20010020771A (en) | Impedance control using fuses | |
| JP7639871B2 (en) | Semiconductor Device | |
| CN101236923A (en) | Integrated circuit chip with vertical plate capacitor and method of making capacitor | |
| JP4510370B2 (en) | Semiconductor integrated circuit device | |
| US20060157856A1 (en) | Semiconductor device including multiple rows of peripheral circuit units | |
| CN115188740A (en) | On-chip low-leakage interconnected signal line system and addressable test array circuit | |
| CN101459176A (en) | Semiconductor device with a plurality of transistors | |
| CN107452796A (en) | Semiconductor device with a plurality of semiconductor chips | |
| CN108666309B (en) | Semiconductor device | |
| KR101086499B1 (en) | Semiconductor integrated circuit | |
| CN107808881A (en) | Selective SAC coverings and correlation technique in fin formula field effect transistor structure | |
| US7521359B2 (en) | Interconnect structure encased with high and low k interlevel dielectrics | |
| US7375423B2 (en) | Semiconductor device | |
| KR20030027065A (en) | Semiconductor arrangement and method for production thereof | |
| US11984370B2 (en) | Semiconductor testing structure and method for forming same | |
| US20250151390A1 (en) | Array switch circuit system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20240401 Address after: Unit 141, International Science Park, 1355 Jinjihu Avenue, Suzhou Industrial Park, Jiangsu Province, 215000 Applicant after: Suzhou peifengtunan Semiconductor Co.,Ltd. Country or region after: China Address before: 200131 building C, No. 888, Huanhu West 2nd Road, Lingang New District, Pudong New Area pilot Free Trade Zone, Shanghai Applicant before: Fangsiwei (Shanghai) Semiconductor Co.,Ltd. Country or region before: China |
|
| TA01 | Transfer of patent application right |