CN115197307B - Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof - Google Patents
Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof Download PDFInfo
- Publication number
- CN115197307B CN115197307B CN202210581770.4A CN202210581770A CN115197307B CN 115197307 B CN115197307 B CN 115197307B CN 202210581770 A CN202210581770 A CN 202210581770A CN 115197307 B CN115197307 B CN 115197307B
- Authority
- CN
- China
- Prior art keywords
- ibger5
- protein
- plants
- gene
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了调控植物抗逆性的蛋白IbGER5及其编码基因与用途。具体地公开了氨基酸序列是SEQ ID No.1的蛋白质、相关生物材料,及其在调控植物耐盐性和/或抗旱性中的应用。本发明通过将来源于甘薯的IbGER5基因导入到受体对照栗子香中,得到了过表达和干扰表达IbGER5基因的转基因甘薯植株,实验表明,在逆境胁迫(如盐胁迫和/或干旱胁迫)条件下,过表达IbGER5基因的转基因甘薯植株的耐盐抗旱性显著降低,干扰表达IbGER5基因(RNAi)的转基因甘薯植株的耐盐抗旱性显著提高,表明本发明所提供的IbGER5蛋白及其编码基因具有调控植物耐盐性和/或抗旱性的功能,可广泛应用于甘薯抗逆转基因育种。The invention discloses the protein IbGER5 for regulating the stress resistance of plants, its encoding gene and application. Specifically disclosed are proteins whose amino acid sequence is SEQ ID No. 1, related biological materials, and applications thereof in regulating plant salt tolerance and/or drought resistance. In the present invention, by introducing the IbGER5 gene derived from sweet potato into the recipient control Lizixiang, transgenic sweet potato plants with overexpression and interference expression of the IbGER5 gene have been obtained. Experiments have shown that under adversity stress (such as salt stress and/or drought stress) conditions The salt and drought resistance of the transgenic sweet potato plants overexpressing the IbGER5 gene is significantly reduced, and the salt and drought resistance of the transgenic sweet potato plants that interfere with the expression of the IbGER5 gene (RNAi) is significantly improved, indicating that the IbGER5 protein and its coding gene provided by the present invention have Regulating the function of plant salt tolerance and/or drought resistance can be widely used in sweet potato anti-reverse gene breeding.
Description
技术领域technical field
本发明属于生物技术领域,具体涉及调控植物抗逆性的蛋白IbGER5及其编码基因与用途。The invention belongs to the field of biotechnology, and in particular relates to a protein IbGER5 regulating plant stress resistance, its coding gene and its use.
背景技术Background technique
甘薯(Ipomoea batatas(L.)Lam.)是一种重要的粮食、饲料及工业燃料作物,兼具保健作用和药用价值,在我国各地广泛种植。随着耕地面积的不断减少,甘薯主要种植在干旱或盐渍化等边际土地,而我国盐碱化土地的含盐量在0.6-10%,干旱地区范围广,耕地的盐渍化和水资源缺乏严重影响了作物的正常生长,给甘薯生产的进一步发展也带来极大的困难。因此,培育耐盐抗旱性强的优质甘薯新品种,成为促进甘薯产业发展的重要措施之一。Sweet potato (Ipomoea batatas (L.) Lam.) is an important food, feed and industrial fuel crop, which has both health care and medicinal value, and is widely planted throughout my country. With the continuous reduction of arable land, sweet potatoes are mainly planted on marginal lands such as drought or salinization, while the salinity of saline-alkali land in my country is 0.6-10%. The range of arid areas is wide, and the salinization of arable land and water resources The lack seriously affects the normal growth of crops and brings great difficulties to the further development of sweet potato production. Therefore, cultivating new high-quality sweet potato varieties with strong salt tolerance and drought resistance has become one of the important measures to promote the development of sweet potato industry.
虽然常规甘薯育种技术在品种改良中发挥了重要作用,但由于甘薯具有自交不亲和、杂交后代不稳定,种质资源匮乏,育种周期长等问题,传统的杂交育种方法较难选育出耐盐抗旱性强的甘薯新品种,而运用基因工程手段可克服常规育种中存在的物种隔离和基因连锁等妨碍,能够从分子水平上定向改良甘薯性状,是目前培育优质甘薯品种的一种可行途径,对甘薯品种选育和生产具有潜在的推动意义。挖掘重要的耐盐抗旱遗传资源,对于培育耐盐抗旱植物新品种起着关键的作用,耐盐抗旱植物的开发和利用具有无法估量的生态效益、经济效益和社会效益。Although conventional sweet potato breeding technology has played an important role in variety improvement, due to the problems of self-incompatibility, unstable hybrid offspring, lack of germplasm resources, and long breeding cycle, traditional hybrid breeding methods are difficult to breed. New sweet potato varieties with strong salt and drought resistance, and the use of genetic engineering methods can overcome the barriers of species isolation and gene linkage in conventional breeding, and can improve the characteristics of sweet potato from the molecular level. It is a feasible way to cultivate high-quality sweet potato varieties at present. It has potential significance in promoting the breeding and production of sweet potato varieties. Mining important salt-tolerant and drought-resistant genetic resources plays a key role in cultivating new varieties of salt-tolerant and drought-resistant plants. The development and utilization of salt-tolerant and drought-resistant plants has immeasurable ecological, economic and social benefits.
发明内容Contents of the invention
本发明所要解决的技术问题是如何调控植物(如甘薯)的抗逆性。所要解决的技术问题不限于所描述的技术主题,本领域技术人员通过以下描述可以清楚地理解本文未提及的其它技术主题。The technical problem to be solved by the invention is how to regulate the stress resistance of plants (such as sweet potato). The technical problems to be solved are not limited to the described technical subjects, and those skilled in the art can clearly understand other technical subjects not mentioned herein through the following description.
为解决上述技术问题,本发明首先提供了蛋白质或调控所述蛋白质活性和/或含量的物质的应用,所述应用可为下述任一种:In order to solve the above-mentioned technical problems, the present invention firstly provides the application of proteins or substances that regulate the activity and/or content of the proteins, and the applications can be any of the following:
D1)蛋白质或调控所述蛋白质活性和/或含量的物质在调控植物抗逆性中的应用;D1) the application of proteins or substances that regulate the activity and/or content of the proteins in regulating the stress resistance of plants;
D2)蛋白质或调控所述蛋白质活性和/或含量的物质在制备调控植物抗逆性的产品中的应用;D2) Application of proteins or substances that regulate the activity and/or content of the proteins in the preparation of products that regulate plant stress resistance;
D3)蛋白质或调控所述蛋白质活性和/或含量的物质在培育抗逆植物中的应用;D3) Application of proteins or substances that regulate the activity and/or content of said proteins in cultivating stress-resistant plants;
D4)蛋白质或调控所述蛋白质活性和/或含量的物质在制备培育抗逆植物的产品中的应用;D4) Application of proteins or substances that regulate the activity and/or content of said proteins in the preparation of products for cultivating stress-resistant plants;
D5)蛋白质或调控所述蛋白质活性和/或含量的物质在植物育种中的应用;D5) Application of protein or substances regulating the activity and/or content of said protein in plant breeding;
所述蛋白质名称为IbGER5,可为下述任一种:The name of the protein is IbGER5, which can be any of the following:
A1)氨基酸序列是SEQ ID No.1的蛋白质;A1) amino acid sequence is the protein of SEQ ID No.1;
A2)将SEQ ID No.1所示的氨基酸序列经过氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有80%以上的同一性且具有相同功能的蛋白质;A2) A protein having more than 80% identity and the same function as the protein shown in A1) obtained by substituting and/or deleting and/or adding amino acid residues to the amino acid sequence shown in SEQ ID No.1;
A3)在A1)或A2)的N端和/或C端连接标签得到的具有相同功能的融合蛋白质。A3) A fusion protein with the same function obtained by linking tags at the N-terminal and/or C-terminal of A1) or A2).
为了使A1)中的蛋白质便于纯化或检测,可在由序列表中SEQ ID No.1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接标签蛋白。In order to make the protein in A1) easy to purify or detect, the amino-terminus or carboxy-terminus of the protein composed of the amino acid sequence shown in the sequence listing as SEQ ID No.1 can be connected with a tag protein.
所述标签蛋白包括但不限于:GST(谷胱甘肽巯基转移酶)标签蛋白、His6标签蛋白(His-tag)、MBP(麦芽糖结合蛋白)标签蛋白、Flag标签蛋白、SUMO标签蛋白、HA标签蛋白、Myc标签蛋白、eGFP(增强型绿色荧光蛋白)、eCFP(增强型青色荧光蛋白)、eYFP(增强型黄绿色荧光蛋白)、mCherry(单体红色荧光蛋白)或AviTag标签蛋白。The tagged protein includes but not limited to: GST (glutathione thiol transferase) tagged protein, His6 tagged protein (His-tag), MBP (maltose binding protein) tagged protein, Flag tagged protein, SUMO tagged protein, HA tag protein, Myc-tagged protein, eGFP (enhanced green fluorescent protein), eCFP (enhanced cyan fluorescent protein), eYFP (enhanced yellow-green fluorescent protein), mCherry (monomeric red fluorescent protein) or AviTag-tagged protein.
本领域普通技术人员可以很容易地采用已知的方法,例如定向进化或点突变的方法,对本发明的编码蛋白质IbGER5的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的蛋白质IbGER5的核苷酸序列75%或75%以上同一性的核苷酸,只要编码蛋白质IbGER5且具有蛋白质IbGER5功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those skilled in the art can easily use known methods, such as directed evolution or point mutation methods, to mutate the nucleotide sequence encoding protein IbGER5 of the present invention. Those nucleotides that have been artificially modified and have 75% or more identity with the nucleotide sequence of the protein IbGER5 isolated in the present invention, as long as they encode the protein IbGER5 and have the function of the protein IbGER5, are all derived from the present invention Nucleotide sequences and are equivalent to the sequences of the present invention.
上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。The identity of 75% or more may be 80%, 85%, 90% or more.
本文中,同一性是指氨基酸序列或核苷酸序列的同一性。可使用国际互联网上的同源性检索站点测定氨基酸序列的同一性,如NCBI主页网站的BLAST网页。例如,可在高级BLAST2.1中,通过使用blastp作为程序,将Expect值设置为10,将所有Filter设置为OFF,使用BLOSUM62作为Matrix,将Gap existence cost,Per residue gap cost和Lambda ratio分别设置为11,1和0.85(缺省值)并进行检索以对氨基酸序列的同一性进行计算,然后即可获得同一性的值(%)。Herein, identity refers to the identity of amino acid sequence or nucleotide sequence. Amino acid sequence identities can be determined using homology search sites on the Internet, such as the BLAST webpage of the NCBI homepage. For example, in advanced BLAST2.1, by using blastp as the program, set the Expect value to 10, set all Filters to OFF, use BLOSUM62 as Matrix, and set Gap existence cost, Per residue gap cost and Lambda ratio to 11, 1 and 0.85 (default value) and search to calculate the identity of the amino acid sequence, then the value (%) of the identity can be obtained.
本文中,所述80%以上的同一性可为至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的同一性。Herein, the above 80% identity may be at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity.
本文中,调控所述蛋白质活性和/或含量的物质可为调控基因表达的物质,所述基因编码所述蛋白质IbGER5。Herein, the substance that regulates the activity and/or content of the protein may be a substance that regulates the expression of a gene encoding the protein IbGER5.
上文中,所述调控基因表达的物质可为进行如下6种调控中至少一种调控的物质:1)在所述基因转录水平上进行的调控;2)在所述基因转录后进行的调控(也就是对所述基因的初级转录物的剪接或加工进行的调控);3)对所述基因的RNA转运进行的调控(也就是对所述基因的mRNA由细胞核向细胞质转运进行的调控);4)对所述基因的翻译进行的调控;5)对所述基因的mRNA降解进行的调控;6)对所述基因的翻译后的调控(也就是对所述基因翻译的蛋白质的活性进行调控)。In the above, the substance that regulates gene expression can be a substance that performs at least one regulation in the following 6 kinds of regulation: 1) regulation performed at the gene transcription level; 2) regulation performed after the gene transcription ( That is, the regulation of the splicing or processing of the primary transcript of the gene); 3) the regulation of the RNA transport of the gene (that is, the regulation of the mRNA of the gene from the nucleus to the cytoplasm); 4) regulation of the translation of the gene; 5) regulation of the degradation of the mRNA of the gene; 6) regulation of the post-translation of the gene (that is, regulation of the activity of the protein translated by the gene ).
所述调控基因表达的物质具体可为下述B1)-B3)中任一所述的生物材料。The substance that regulates gene expression can specifically be the biological material described in any one of the following B1)-B3).
进一步地,所述调控基因表达的物质可为提高或上调所述蛋白质IbGER5的编码基因表达的物质(包括核酸分子或载体)。Further, the substance for regulating gene expression may be a substance (including a nucleic acid molecule or a vector) that improves or up-regulates the expression of the gene encoding the protein IbGER5.
进一步地,所述调控基因表达的物质还可为抑制或降低或下调所述蛋白质IbGER5的编码基因表达的物质(包括核酸分子或载体)。Further, the substance regulating gene expression can also be a substance (including nucleic acid molecule or vector) that inhibits or reduces or down-regulates the expression of the gene encoding the protein IbGER5.
上述应用中,所述蛋白质IbGER5可来源于甘薯(Ipomoea batatas(L.)Lam.)。In the above application, the protein IbGER5 can be derived from sweet potato (Ipomoea batatas (L.) Lam.).
进一步地,所述蛋白质IbGER5可为调控植物抗逆性的蛋白IbGER5。Further, the protein IbGER5 may be a protein IbGER5 regulating plant stress resistance.
进一步地,所述蛋白质IbGER5可为调控植物耐盐抗旱性的蛋白IbGER5。Further, the protein IbGER5 may be a protein IbGER5 that regulates the salt tolerance and drought resistance of plants.
本发明还提供了与所述蛋白质IbGER5相关的生物材料的应用,所述应用可为下述任一种:The present invention also provides the application of biological materials related to the protein IbGER5, and the application can be any of the following:
E1)与所述蛋白质IbGER5相关的生物材料在调控植物抗逆性中的应用;E1) application of biological materials related to said protein IbGER5 in regulating plant stress resistance;
E2)与所述蛋白质IbGER5相关的生物材料在制备调控植物抗逆性的产品中的应用;E2) Application of biological materials related to the protein IbGER5 in the preparation of products regulating plant stress resistance;
E3)与所述蛋白质IbGER5相关的生物材料在培育抗逆植物中的应用;E3) application of biological materials related to the protein IbGER5 in cultivating stress-resistant plants;
E4)与所述蛋白质IbGER5相关的生物材料在制备培育抗逆植物的产品中的应用;E4) Application of biological materials related to the protein IbGER5 in the preparation of products for cultivating stress-resistant plants;
E5)与所述蛋白质IbGER5相关的生物材料在植物育种中的应用;E5) Use of biological material related to said protein IbGER5 in plant breeding;
所述生物材料可为下述B1)至B8)中的任一种:The biological material can be any of the following B1) to B8):
B1)编码权利要求1或2中所述蛋白质的核酸分子;B1) nucleic acid molecule encoding the protein described in
B2)抑制或降低权利要求1或2中所述蛋白质的编码基因表达的核酸分子;B2) suppress or reduce the nucleic acid molecule of the coding gene expression of protein described in
B3)含有B1)和/或B2)所述核酸分子的表达盒;B3) an expression cassette containing the nucleic acid molecule of B1) and/or B2);
B4)含有B1)和/或B2)所述核酸分子的重组载体、或含有B3)所述表达盒的重组载体;B4) a recombinant vector containing the nucleic acid molecule described in B1) and/or B2), or a recombinant vector containing the expression cassette described in B3);
B5)含有B1)和/或B2)所述核酸分子的重组微生物、或含有B3)所述表达盒的重组微生物、或含有B4)所述重组载体的重组微生物;B5) A recombinant microorganism containing the nucleic acid molecule described in B1) and/or B2), or a recombinant microorganism containing the expression cassette described in B3), or a recombinant microorganism containing the recombinant vector described in B4);
B6)含有B1)和/或B2)所述核酸分子的转基因植物细胞系、或含有B3)所述表达盒的转基因植物细胞系、或含有B4)所述重组载体的转基因植物细胞系;B6) the transgenic plant cell line containing the nucleic acid molecules described in B1) and/or B2), or the transgenic plant cell line containing the expression cassette described in B3), or the transgenic plant cell line containing the recombinant vector described in B4);
B7)含有B1)和/或B2)所述核酸分子的转基因植物组织、或含有B3)所述表达盒的转基因植物组织;B7) Transgenic plant tissue containing the nucleic acid molecule described in B1) and/or B2), or a transgenic plant tissue containing the expression cassette described in B3);
B8)含有B1)和/或B2)所述核酸分子的转基因植物器官、或含有B3)所述表达盒的转基因植物器官。B8) A transgenic plant organ containing the nucleic acid molecule described in B1) and/or B2), or a transgenic plant organ containing the expression cassette described in B3).
上述应用中,所述核酸分子可为下述任一种:In the above application, the nucleic acid molecule can be any of the following:
C1)编码序列是SEQ ID No.2或SEQ ID No.2的第1-204位所示的DNA分子;C1) the coding sequence is the DNA molecule shown in the 1-204th positions of SEQ ID No.2 or SEQ ID No.2;
C2)核苷酸序列是SEQ ID No.2或SEQ ID No.2的第1-204位所示的DNA分子。C2) nucleotide sequence is the DNA molecule shown in the 1-204th positions of SEQ ID No.2 or SEQ ID No.2.
SEQ ID No.2所示的DNA分子(IbGER5基因)编码氨基酸序列是SEQ ID No.1的蛋白质IbGER5。The amino acid sequence encoded by the DNA molecule (IbGER5 gene) shown in SEQ ID No.2 is the protein IbGER5 of SEQ ID No.1.
SEQ ID NO.2所示的核苷酸序列为蛋白质IbGER5编码基因(CDS)的核苷酸序列。The nucleotide sequence shown in SEQ ID NO.2 is the nucleotide sequence of the protein IbGER5 coding gene (CDS).
B1)所述核酸分子还可包括在SEQ ID No.2所示核苷酸序列基础上经密码子偏好性改造得到的核酸分子。B1) The nucleic acid molecule can also include a nucleic acid molecule obtained through codon preference modification on the basis of the nucleotide sequence shown in SEQ ID No.2.
B1)所述核酸分子还包括与SEQ ID No.2所示的核苷酸序列一致性为95%以上且来源相同种属的核酸分子。B1) The nucleic acid molecule also includes a nucleic acid molecule that is more than 95% identical to the nucleotide sequence shown in SEQ ID No.2 and derived from the same species.
本发明所述的蛋白质IbGER5的基因(IbGER5基因)可以为任意能够编码蛋白质IbGER5的核苷酸序列。考虑到密码子的简并性以及不同物种密码子的偏爱性,本领域技术人员可以根据需要使用适合特定物种表达的密码子。The protein IbGER5 gene (IbGER5 gene) of the present invention can be any nucleotide sequence that can encode the protein IbGER5. Considering the degeneracy of codons and the preference of codons in different species, those skilled in the art can use codons suitable for the expression of specific species as needed.
所述表达盒包括启动子、编码所述蛋白IbGER5的核酸分子和终止子,所述启动子可为CaMV35S启动子、NOS启动子或OCS启动子,所述终止子可为NOS终止子或OCS polyA终止子。The expression cassette includes a promoter, a nucleic acid molecule encoding the protein IbGER5 and a terminator, the promoter can be a CaMV35S promoter, a NOS promoter or an OCS promoter, and the terminator can be a NOS terminator or an OCS polyA terminator.
本文所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如gRNA、mRNA、siRNA、shRNA、sgRNA、miRNA或反义RNA。The nucleic acid molecule described herein can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as gRNA, mRNA, siRNA, shRNA, sgRNA, miRNA or antisense RNA.
本文所述载体是本领域技术人员公知的,包括但不限于:质粒、噬菌体(如λ噬菌体或M13丝状噬菌体等)、黏粒(即柯斯质粒)、Ti质粒或病毒载体。具体可为pMD19-T载体和/或pCAMBIA1300载体和/或pFGC5941载体。The vectors described herein are well known to those skilled in the art, including but not limited to: plasmids, bacteriophages (such as λ phage or M13 filamentous phages, etc.), cosmids (ie Cosmids), Ti plasmids or viral vectors. Specifically, it can be pMD19-T vector and/or pCAMBIA1300 vector and/or pFGC5941 vector.
可用现有的植物表达载体构建含有IbGER5基因的重组表达载体。所述植物表达载体包括但不限于如双元农杆菌载体和可用于植物微弹轰击的载体等。所述植物表达载体还可包含外源基因的3'端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3'端,如包括但不限于农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂合成酶Nos基因)、植物基因(如大豆贮藏蛋白基因)3'端转录的非翻译区均具有类似功能。An existing plant expression vector can be used to construct a recombinant expression vector containing the IbGER5 gene. The plant expression vectors include, but are not limited to, binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment. The plant expression vector may also include the 3' untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression. The polyadenylic acid signal can guide polyadenylic acid to be added to the 3' end of the mRNA precursor, such as including but not limited to Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopain synthase Nos gene), plant gene (such as soybean storage protein gene) 3' transcribed untranslated regions have similar functions.
使用IbGER5基因构建重组植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子或组成型启动子,包括但不限于如花椰菜花叶病毒(CaMV)35S启动子、玉米的泛素启动子(ubiquitin),它们可单独使用或与其它植物启动子结合使用;此外,使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。When using the IbGER5 gene to construct a recombinant plant expression vector, any enhanced promoter or constitutive promoter can be added before its transcription initiation nucleotide, including but not limited to the cauliflower mosaic virus (CaMV) 35S promoter , maize ubiquitin promoters (ubiquitin), which can be used alone or in combination with other plant promoters; in addition, when using the gene of the present invention to construct plant expression vectors, enhancers, including translation enhancers or transcription enhancers, can also be used These enhancer regions can be ATG start codons or adjacent region start codons, etc., but must be the same as the reading frame of the coding sequence to ensure correct translation of the entire sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene.
为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入包括但不限于可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、荧光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除草剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vectors used can be processed, such as adding genes (GUS genes, luciferase gene, etc.), antibiotic markers with resistance (gentamycin marker, kanamycin marker, etc.) or chemical resistance marker genes (such as herbicide resistance genes), etc. Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.
利用任何一种可以引导外源基因在植物中表达的载体,将本发明所提供的IbGER5基因或基因的片段导入植物细胞或受体植物,可获得抗逆性改变的转基因植株。携带IbGER5基因的表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。Using any vector that can guide the expression of exogenous genes in plants, the IbGER5 gene or gene fragments provided by the present invention are introduced into plant cells or recipient plants, and transgenic plants with altered stress resistance can be obtained. The expression vector carrying the IbGER5 gene can transform plant cells or tissues by conventional biological methods such as Ti plasmids, Ri plasmids, plant virus vectors, direct DNA transformation, microinjection, electrical conductivity, and Agrobacterium-mediated, and transform the transformed plant tissues grow into plants.
本文所述微生物可为酵母、细菌、藻或真菌。其中,细菌可来自埃希氏菌属(Escherichia),欧文氏菌(Erwinia),根癌农杆菌属(Agrobacterium)、黄杆菌属(Flavobacterium),产碱菌属(Alcaligenes),假单胞菌属(Pseudomonas),芽孢杆菌属(Bacillus)等。具体可为大肠杆菌DH5α和/或根癌农杆菌EHA105。The microorganisms described herein may be yeast, bacteria, algae or fungi. Among them, the bacteria can be from Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Pseudomonas (Pseudomonas), Bacillus (Bacillus), etc. Specifically, it can be Escherichia coli DH5α and/or Agrobacterium tumefaciens EHA105.
所述重组载体具体可为重组载体pCAMBIA1300-GFP-IbGER5和/或pFGC5941-IbGER5。The recombinant vector can specifically be the recombinant vector pCAMBIA1300-GFP-IbGER5 and/or pFGC5941-IbGER5.
所述重组载体pCAMBIA1300-GFP-IbGER5是将pCAMBIA1300-GFP载体的KpnI和SalI识别位点间的片段(小片段)替换为核苷酸序列是序列表中SEQ ID No.2的DNA片段,保持pCAMBIA1300-GFP载体的其他序列不变,得到的重组表达载体。重组载体pCAMBIA1300-GFP-IbGER5表达序列表中SEQ ID No.1所示的蛋白质IbGER5。重组载体pCAMBIA1300-GFP-IbGER5具有一个表达盒,表达盒的核苷酸序列中有CaMV35S启动子、IbGER5蛋白的编码基因(SEQ ID No.2)和绿色荧光蛋白(GFP)的编码基因。Described recombinant vector pCAMBIA1300-GFP-IbGER5 is that the fragment (small fragment) between the KpnI of pCAMBIA1300-GFP carrier and the SalI recognition site is replaced with the DNA fragment of SEQ ID No.2 in the sequence listing, keeps pCAMBIA1300 The other sequences of the -GFP vector remain unchanged, and the resulting recombinant expression vector is obtained. The recombinant vector pCAMBIA1300-GFP-IbGER5 expresses the protein IbGER5 shown in SEQ ID No.1 in the sequence listing. The recombinant vector pCAMBIA1300-GFP-IbGER5 has an expression cassette, the coding gene of CaMV35S promotor, IbGER5 protein (SEQ ID No.2) and the coding gene of green fluorescent protein (GFP) are arranged in the nucleotide sequence of expression cassette.
其中pCAMBIA1300-GFP载体是以pCAMBIA1300为基础载体,在pCAMBIA1300载体的EcoRI和SacI识别位点之间插入了CaMV 35S片段,在pCAMBIA1300载体的SalI和PstI识别位点之间插入了GFP片段构建而成。The pCAMBIA1300-GFP vector is based on pCAMBIA1300, and the CaMV 35S fragment is inserted between the EcoRI and SacI recognition sites of the pCAMBIA1300 vector, and the GFP fragment is inserted between the SalI and PstI recognition sites of the pCAMBIA1300 vector.
所述重组载体pFGC5941-IbGER5是将pFGC5941载体的XhoI和SwaI识别序列间的小片段替换为序列表中SEQ ID No.2自5’末端起第1至204位所示的DNA分子片段,将限制性内切酶BamHI和XbaI识别位点间的片段(小片段)替换为核苷酸序列是序列表中SEQ ID No.2自5’末端起第1至204位所示的DNA分子的反向互补序列,保持pFGC5941载体的其他序列不变,得到的重组表达载体。重组载体pFGC5941-IbGER5干扰表达序列表中SEQ ID No.1所示的蛋白质IbGER5。重组载体pFGC5941-IbGER5具有一个表达盒,表达盒的核苷酸序列中有CaMV35S启动子、IbGER5蛋白的编码基因片段和OCS polyA终止子。所述重组微生物可通过将所述重组载体导入出发微生物得到。The recombinant vector pFGC5941-IbGER5 replaces the small fragment between the XhoI and SwaI recognition sequences of the pFGC5941 carrier with the DNA molecule fragment shown in the 1st to 204th positions of SEQ ID No.2 from the 5' end in the sequence listing, which will restrict The fragment (small fragment) between the endonuclease BamHI and XbaI recognition sites is replaced by the nucleotide sequence, which is the reverse of the DNA molecule shown in the 1st to 204th positions from the 5' end of SEQ ID No.2 in the sequence listing The complementary sequence keeps other sequences of the pFGC5941 vector unchanged to obtain a recombinant expression vector. The recombinant vector pFGC5941-IbGER5 interferes with the protein IbGER5 shown in SEQ ID No.1 in the expression sequence list. The recombinant vector pFGC5941-IbGER5 has an expression cassette, and the nucleotide sequence of the expression cassette has the CaMV35S promoter, the coding gene fragment of the IbGER5 protein and the OCS polyA terminator. The recombinant microorganism can be obtained by introducing the recombinant vector into the starting microorganism.
所述重组微生物具体可为重组农杆菌EHA105/pCAMBIA1300-GFP-IbGER5和/或EHA105/pFGC5941-IbGER5。The recombinant microorganism can specifically be recombinant Agrobacterium EHA105/pCAMBIA1300-GFP-IbGER5 and/or EHA105/pFGC5941-IbGER5.
所述重组农杆菌EHA105/pCAMBIA1300-GFP-IbGER5是将所述重组载体pCAMBIA1300-GFP-IbGER5导入根癌农杆菌EHA105得到的重组菌。The recombinant Agrobacterium EHA105/pCAMBIA1300-GFP-IbGER5 is a recombinant bacterium obtained by introducing the recombinant vector pCAMBIA1300-GFP-IbGER5 into Agrobacterium tumefaciens EHA105.
所述重组农杆菌EHA105/pFGC5941-IbGER5是将所述重组载体pFGC5941-IbGER5导入根癌农杆菌EHA105得到的重组菌。The recombinant Agrobacterium EHA105/pFGC5941-IbGER5 is a recombinant bacterium obtained by introducing the recombinant vector pFGC5941-IbGER5 into Agrobacterium tumefaciens EHA105.
本发明还提供了一种培育转基因植物的方法,所述方法包括提高和/或降低目的植物中所述蛋白质IbGER5的含量和/或活性,得到所述转基因植物。The present invention also provides a method for cultivating a transgenic plant, the method comprising increasing and/or reducing the content and/or activity of the protein IbGER5 in the target plant to obtain the transgenic plant.
上述方法中,所述提高目的植物中所述蛋白质IbGER5的含量和/或活性可通过提高目的植物中所述蛋白质IbGER5的编码基因的表达量实现。In the above method, the increase of the content and/or activity of the protein IbGER5 in the target plant can be achieved by increasing the expression of the gene encoding the protein IbGER5 in the target plant.
上述方法中,所述提高目的植物中所述蛋白质IbGER5的编码基因的表达量可通过将所述蛋白质IbGER5的编码基因导入所述目的植物实现。In the above method, the increase of the expression level of the gene encoding the protein IbGER5 in the target plant can be achieved by introducing the gene encoding the protein IbGER5 into the target plant.
上述方法中,所述降低目的植物中所述蛋白质IbGER5的含量和/或活性通过降低目的植物中所述蛋白质IbGER5的编码基因的表达量实现。In the above method, the reduction of the content and/or activity of the protein IbGER5 in the target plant is achieved by reducing the expression of the gene encoding the protein IbGER5 in the target plant.
上述方法中,所述降低目的植物中所述蛋白质IbGER5的编码基因的表达量可为利用基因突变、基因敲除、基因编辑或基因敲减技术使目的植物基因组中所述蛋白质IbGER5的编码基因活性下降或失活。In the above method, the reduction of the expression of the gene encoding the protein IbGER5 in the target plant can be the use of gene mutation, gene knockout, gene editing or gene knockout technology to make the gene encoding the protein IbGER5 in the genome of the target plant active decline or inactivation.
进一步地,所述利用基因敲除技术使目的植物基因组中所述蛋白质IbGER5的编码基因活性下降或失活可为利用RNA干扰载体进行,所述RNA干扰载体含有核苷酸序列是SEQID No.2的第1-204位所示的DNA分子。Further, the use of gene knockout technology to reduce or inactivate the activity of the gene encoding the protein IbGER5 in the genome of the target plant can be carried out by using an RNA interference vector, and the RNA interference vector contains a nucleotide sequence of SEQID No.2 DNA molecules shown at positions 1-204.
上述方法中,所述转基因植物可为抗逆性改变的植物,进一步地,所述抗逆性改变的植物可为抗逆性(如耐盐性和/或抗旱性)降低(下调)和/或提高(上调)的转基因植物。In the above method, the transgenic plant can be a plant with altered stress resistance, further, the plant with altered stress resistance can be reduced (down-regulated) in stress resistance (such as salt tolerance and/or drought resistance) and/or or improved (up-regulated) transgenic plants.
所述抗逆性降低的转基因植物是抗逆性低于所述目的植物的转基因植物。The transgenic plant with reduced stress resistance is a transgenic plant with lower stress resistance than the target plant.
所述抗逆性提高的转基因植物是抗逆性高于所述目的植物的转基因植物(抗逆植物)。The transgenic plant with improved stress resistance is a transgenic plant (stress-resistant plant) whose stress resistance is higher than that of the target plant.
上述方法中,所述蛋白质IbGER5的编码基因可为下述任一种:In the above method, the gene encoding the protein IbGER5 can be any of the following:
F1)编码序列是SEQ ID No.2的DNA分子;F1) coding sequence is the DNA molecule of SEQ ID No.2;
F2)核苷酸序列是SEQ ID No.2的DNA分子;F2) nucleotide sequence is the DNA molecule of SEQ ID No.2;
F3)编码序列是SEQ ID No.2自5’末端起第1至204位所示的DNA分子;F3) coding sequence is the DNA molecule shown in the 1st to 204th positions from the 5' end of SEQ ID No.2;
F4)核苷酸序列是SEQ ID No.2自5’端起第1至204位所示的DNA分子。F4) nucleotide sequence is the DNA molecule shown in the 1st to 204th positions from the 5' end of SEQ ID No.2.
具体地,在本发明的一个实施方案中,所述提高目的植物中所述蛋白质IbGER5的编码基因的表达量通过将SEQ ID No.2所示的DNA分子导入所述目的植物实现。Specifically, in one embodiment of the present invention, said improving the expression of the gene encoding the protein IbGER5 in the target plant is achieved by introducing the DNA molecule shown in SEQ ID No.2 into the target plant.
具体地,在本发明的一个实施方案中,所述降低目的植物中所述蛋白质IbGER5的编码基因的表达量通过将SEQ ID No.2所示的自5’末端起第1至204位的DNA分子和反向互补序列的DNA分子导入所述目的植物实现。Specifically, in one embodiment of the present invention, the reduction of the expression level of the gene encoding the protein IbGER5 in the target plant is performed by using the DNA at positions 1 to 204 from the 5' end shown in SEQ ID No.2 The molecule and the DNA molecule of the reverse complementary sequence are introduced into the target plant to achieve.
在本发明的一个实施方案中,所述培育转基因植物的方法包括如下步骤:In one embodiment of the invention, the method for cultivating transgenic plants comprises the steps of:
(1)构建包含SEQ ID NO.2所示DNA分子的重组载体;(1) constructing a recombinant vector comprising a DNA molecule shown in SEQ ID NO.2;
(2)将步骤(1)构建的重组载体导入目的植物(如作物或甘薯)中;(2) introducing the recombinant vector constructed in step (1) into the target plant (such as crops or sweet potatoes);
(3)经筛选和鉴定获得所述转基因植物。(3) Obtaining the transgenic plant through screening and identification.
所述导入指通过重组手段,包括但不限于农杆菌(Agrobacterium)介导的转化,生物射弹(biolistic)方法,电穿孔,in planta技术,等等导入。The introduction refers to introduction by recombinant means, including but not limited to transformation mediated by Agrobacterium, biolistic methods, electroporation, in planta technology, and the like.
在本发明的一个实施方案中,所述培育转基因植物(抗逆植物,如抗旱植物和/或耐盐植物)的方法包括如下步骤:In one embodiment of the present invention, the method for cultivating transgenic plants (stress-resistant plants, such as drought-resistant plants and/or salt-tolerant plants) comprises the following steps:
(1)构建抑制靶基因IbGER5基因表达的RNA干扰载体pFGC5941-IbGER5;(1) Construct the RNA interference vector pFGC5941-IbGER5 that suppresses the expression of the target gene IbGER5 gene;
(2)将步骤(1)构建的RNA干扰载体pFGC5941-IbGER5导入目的植物(如作物或甘薯)中;(2) introducing the RNA interference vector pFGC5941-IbGER5 constructed in step (1) into the target plant (such as crops or sweet potatoes);
(3)经筛选和鉴定获得抗逆性高于所述目的植物的抗逆植物。(3) Obtaining stress-resistant plants with higher stress resistance than the target plant through screening and identification.
上述方法中,所述植物可为下述任一种:In the above method, the plant can be any of the following:
G1)单子叶植物或双子叶植物;G1) monocot or dicot;
G2)旋花科植物;G2) Convolvulaceae plants;
G3)甘薯属植物;G3) Plants of the genus Ipomoea batatas;
G4)甘薯组植物;G4) plants of the sweet potato group;
G5)甘薯。G5) Sweet potato.
所述甘薯具体可为甘薯品种栗子香。The sweet potato can specifically be a sweet potato variety Lizixiang.
所述蛋白质IbGER5,和/或,所述生物材料也在本发明的保护范围内。The protein IbGER5, and/or, the biological material is also within the protection scope of the present invention.
本文中,所述抗逆性可为耐盐性和/或抗旱性。Herein, the stress resistance may be salt tolerance and/or drought resistance.
本文中,所述植物可为作物(如农作物)。Herein, the plant may be a crop (such as a crop).
本发明还提供了所述培育转基因植物的方法在创制抗逆性改变的植物中的应用,和/或,在植物育种或植物种质资源改良中的应用。The present invention also provides the application of the method for cultivating transgenic plants in creating plants with altered stress resistance, and/or the application in plant breeding or improvement of plant germplasm resources.
所述抗逆性改变的植物可为抗逆性提高或降低的植物,如抗旱植物、耐盐植物等但不限于此。The plants with altered stress resistance can be plants with increased or decreased stress resistance, such as drought-resistant plants, salt-tolerant plants, etc., but not limited thereto.
本文所述调控植物抗逆性可为上调(增加)或下调(降低)植物抗逆性。Modulating plant stress resistance as described herein may be up-regulating (increasing) or down-regulating (decreasing) plant stress resistance.
进一步地,所述调控植物抗逆性可为上调(增加)或下调(降低)甘薯的耐盐性和/或抗旱性。Further, the regulating plant stress resistance may be up-regulating (increasing) or down-regulating (decreasing) the salt tolerance and/or drought resistance of sweet potato.
本文中,所述转基因植物理解为不仅包含将所述IbGER5基因转化目的植物或将所述IbGER5基因敲除得到的第一代转基因植物,也包括其子代。可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。所述转基因植物包括种子、愈伤组织、完整植株和细胞。Herein, the transgenic plant is understood to include not only the first-generation transgenic plant obtained by transforming the target plant with the IbGER5 gene or knocking out the IbGER5 gene, but also its progeny. The gene may be propagated in the species, or transferred into other varieties of the same species, including in particular commercial varieties, using conventional breeding techniques. The transgenic plants include seeds, callus, whole plants and cells.
本发明通过将来源于甘薯(Ipomoea batatas(L.)Lam.)的调控植物抗逆性的IbGER5基因导入到受体植物甘薯品种栗子香中,得到了过表达IbGER5基因的转基因甘薯植株,将转基因植株进行耐盐抗旱性鉴定,综合各项生理生化指标测定结果表明,与未转基因的对照甘薯品种栗子香(WT)相比,过表达IbGER5基因的转基因甘薯植株在盐胁迫和/或干旱胁迫条件下,无论是离体鉴定、水培鉴定还是土壤栽培鉴定结果均显著降低了甘薯的抗逆性,即过表达IbGER5基因的转基因甘薯植株的耐盐抗旱性显著降低。In the present invention, the IbGER5 gene that regulates plant stress resistance derived from sweet potato (Ipomoea batatas (L.) Lam.) is introduced into the recipient plant sweet potato variety Lizixiang to obtain a transgenic sweet potato plant that overexpresses the IbGER5 gene. The plants were identified for salt tolerance and drought resistance, and the results of various physiological and biochemical indicators showed that compared with the non-transgenic control sweet potato variety Lizixiang (WT), the transgenic sweet potato plants overexpressing the IbGER5 gene were more resistant to salt stress and/or drought stress. Under these conditions, no matter in vitro identification, hydroponic identification or soil cultivation identification results, the stress resistance of sweet potato was significantly reduced, that is, the salt and drought resistance of transgenic sweet potato plants overexpressing the IbGER5 gene was significantly reduced.
本发明通过将来源于甘薯(Ipomoea batatas(L.)Lam.)的调控植物抗逆性的IbGER5基因片段导入到受体植物甘薯品种栗子香中,得到了干扰IbGER5基因表达的转基因甘薯植株,将转基因植株进行耐盐抗旱性鉴定,综合各项生理生化指标测定结果表明,与未转基因的对照甘薯品种栗子香(WT)相比,干扰表达IbGER5基因的转基因甘薯植株在盐胁迫和/或干旱胁迫条件下,离体鉴定提高了甘薯的抗逆性,即干扰表达IbGER5基因的转基因甘薯植株的耐盐抗旱性提高。The present invention introduces the IbGER5 gene segment derived from sweet potato (Ipomoea batatas (L.) Lam.) to regulate plant stress resistance into the recipient plant sweet potato variety Lizixiang, and obtains a transgenic sweet potato plant that interferes with the expression of the IbGER5 gene. The transgenic plants were identified for salt tolerance and drought resistance, and the results of various physiological and biochemical indicators showed that compared with the non-transgenic control sweet potato variety Lizixiang (WT), the transgenic sweet potato plants that interfered with the expression of the IbGER5 gene were more resistant to salt stress and/or drought stress. Under the conditions, the in vitro identification improves the stress resistance of the sweet potato, that is, the salt tolerance and drought resistance of the transgenic sweet potato plants that interfere with the expression of the IbGER5 gene are improved.
综上,本发明的IbGER5蛋白及其编码基因IbGER5可以调控植物的抗逆性(如耐盐性和/或抗旱性),可通过降低目的植物中IbGER5蛋白质的含量和/或活性(如抑制IbGER5基因表达)来培育耐盐和/或抗旱的植物。本发明所提供的IbGER5蛋白及其编码基因在调控甘薯耐盐抗旱性中具有重要的理论意义和应用价值。In summary, the IbGER5 protein of the present invention and its coding gene IbGER5 can regulate the stress resistance (such as salt tolerance and/or drought resistance) of plants, by reducing the content and/or activity of the IbGER5 protein in the target plant (such as inhibiting the IbGER5 gene expression) to breed salt- and/or drought-tolerant plants. The IbGER5 protein and its coding gene provided by the invention have important theoretical significance and application value in regulating the salt and drought resistance of sweet potato.
附图说明Description of drawings
图1为转基因植株的PCR检测电泳图。其中,泳道M为Maker条带,泳道W为阴性对照(水)的条带;泳道P为阳性对照(重组质粒pCAMBIA1300-GFP-IbGER5(图1中A)或pFGC5941-IbGER5(图1中B))的条带;泳道WT为对照甘薯栗子香植株的条带;泳道OE-G1、OE-G2、OE-G4、OE-G34、OE-G53为转化pCAMBIA1300-GFP-IbGER5的甘薯拟转基因植株的条带;泳道Ri-G6、Ri-G7为转化pFGC5941-IbGER5甘薯拟转基因植株的条带。Figure 1 is the PCR detection electrophoresis of the transgenic plants. Wherein, swimming lane M is the Maker band, and swimming lane W is the band of negative control (water); Swimming lane P is positive control (recombinant plasmid pCAMBIA1300-GFP-IbGER5 (A in Fig. 1) or pFGC5941-IbGER5 (B in Fig. 1) ) band; Swimming lane WT is the band of contrasting sweet potato Chestnut fragrant plant; Swimming lane OE-G1, OE-G2, OE-G4, OE-G34, OE-G53 is the sweet potato quasi-transgenic plant transformed pCAMBIA1300-GFP-IbGER5 Bands; lanes Ri-G6 and Ri-G7 are the bands of pseudo-transgenic sweet potato plants transformed with pFGC5941-IbGER5.
图2为离体培养下转基因植株的耐盐抗旱性鉴定结果图。Fig. 2 is a graph showing the identification results of salt tolerance and drought resistance of transgenic plants under in vitro culture.
图3为水培条件下转基因植株的耐盐抗旱性鉴定结果图。Fig. 3 is a graph showing the results of identification of salt tolerance and drought resistance of transgenic plants under hydroponic conditions.
图4为土壤栽培条件下转基因植株的抗旱性鉴定结果图。Fig. 4 is a graph showing the results of drought resistance identification of transgenic plants under soil cultivation conditions.
图5为盐胁迫和干旱胁迫处理后转基因植株的生理生化指标测定结果图。Fig. 5 is a diagram showing the measurement results of physiological and biochemical indexes of transgenic plants after salt stress and drought stress treatment.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be further described in detail below in conjunction with specific embodiments, and the given examples are only for clarifying the present invention, not for limiting the scope of the present invention. The examples provided below can be used as a guideline for those skilled in the art to make further improvements, and are not intended to limit the present invention in any way.
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods in the following examples, unless otherwise specified, are conventional methods, carried out according to the techniques or conditions described in the literature in this field or according to the product instructions. The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
下述实施例中的甘薯品系栗子香和ND98记载于如下文献中:张欢.甘薯耐盐转录组分析及抗逆相关基因IbBBX24和IbCPK28的克隆与功能验证.中国农业大学博士学位论文,2017。公众可从中国农业大学甘薯遗传育种研究室获得,以重复本实验。The sweet potato lines Lizixiang and ND98 in the following examples are described in the following literature: Zhang Huan. Salt tolerance transcriptome analysis of sweet potato and cloning and functional verification of stress resistance related genes IbBBX24 and IbCPK28. Doctoral dissertation of China Agricultural University, 2017. The public can obtain it from the Laboratory of Sweet Potato Genetics and Breeding of China Agricultural University to repeat this experiment.
下述实施例中的pMD19-T载体为宝生物工程(大连)公司产品,产品目录号为6013。pCAMBIA1300载体为上海联迈生物工程有限公司产品,产品目录号为LM1375。pFGC5941载体为北京华越洋生物科技有限公司产品,产品目录号为VECT0360。The pMD19-T vector in the following examples is a product of Treasure Bioengineering (Dalian) Co., Ltd., and the product catalog number is 6013. The pCAMBIA1300 vector is a product of Shanghai Lianmai Bioengineering Co., Ltd., and the product catalog number is LM1375. The pFGC5941 vector is a product of Beijing Huayueyang Biotechnology Co., Ltd., and the product catalog number is VECT0360.
下述实施例中EcoRI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0274。SacI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD1133。KpnI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0524。SalI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0644。PstI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0614。XhoI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0694。SwaI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD1244。BamHI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0054。XbaI酶为赛默飞世尔科技(中国)有限公司产品,产品目录号为FD0684。大肠杆菌DH5α为深圳康体生命科技有限公司产品,产品目录号为KTSM101L,根癌农杆菌EHA105为北京擎科生物科技有限公司产品,产品目录号为TSC-A03。The EcoRI enzyme in the following examples is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0274. SacI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD1133. KpnI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0524. SalI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0644. PstI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., the product catalog number is FD0614. XhoI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0694. SwaI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD1244. BamHI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0054. XbaI enzyme is a product of Thermo Fisher Scientific (China) Co., Ltd., and the product catalog number is FD0684. Escherichia coli DH5α is a product of Shenzhen Kangti Life Science and Technology Co., Ltd., the product catalog number is KTSM101L, and Agrobacterium tumefaciens EHA105 is a product of Beijing Qingke Biotechnology Co., Ltd., and the product catalog number is TSC-A03.
下述实施例采用SPSS统计软件对数据进行处理,实验结果以平均值±标准偏差表示,采用T检验,P<0.05(*)表示具有显著性差异,P<0.01(**)表示具有极显著性差异,采用单因素方差分析,不同字母表示差异有统计学意义。The following examples adopt SPSS statistical software to process the data, and the experimental results are represented by mean ± standard deviation, using T test, P < 0.05 (*) represents a significant difference, P < 0.01 (**) represents a very significant difference Differences in gender were analyzed by one-way analysis of variance, and different letters indicate statistically significant differences.
下述实施例中的定量试验,如无特别说明,均设置三次重复实验,结果取平均值。Quantitative experiments in the following examples, unless otherwise specified, were set up to repeat the experiments three times, and the results were averaged.
实施例1、蛋白质IbGER5在调控甘薯抗逆性中的应用Embodiment 1, the application of protein IbGER5 in regulating the stress resistance of sweet potato
本申请的发明人,从甘薯品系ND98中分离克隆出一个甘薯基因,将其命名为IbGER5。基因IbGER5的编码序列(CDS)的核苷酸序列如SEQ ID NO.2所示;基因IbGER5编码氨基酸序列是SEQ ID NO.1的蛋白质IbGER5,SEQ ID NO.1由283个氨基酸残基组成。The inventors of the present application isolated and cloned a sweet potato gene from the sweet potato line ND98, and named it IbGER5. The nucleotide sequence of the coding sequence (CDS) of the gene IbGER5 is shown in SEQ ID NO.2; the amino acid sequence encoded by the gene IbGER5 is the protein IbGER5 of SEQ ID NO.1, and the SEQ ID NO.1 consists of 283 amino acid residues.
1、植物表达载体的构建1. Construction of plant expression vectors
A、重组载体pCAMBIA1300-GFP-IbGER5的构建A, construction of recombinant vector pCAMBIA1300-GFP-IbGER5
根据甘薯IbGER5蛋白核苷酸的编码序列(SEQ ID NO.2),设计扩增出完整编码序列的引物序列,正反向引物分别引入KpnI和SalI酶切位点,引物序列如下:According to the coding sequence of the sweet potato IbGER5 protein nucleotide (SEQ ID NO.2), the primer sequences for amplifying the complete coding sequence were designed, and the forward and reverse primers were respectively introduced into KpnI and SalI restriction sites. The primer sequences were as follows:
IbGER5-OE-KpnI:IbGER5-OE-KpnI:
5’-TACGAATTCGAGCTCGGTACCATGGAGCCAAAAGGAGAAGAAT-3’(下划线部分为KpnI酶切位点),5'-TACGAATTCGAGCTC GGTACC ATGGAGCCAAAAGGAGAAGAAT-3' (the underlined part is the KpnI restriction site),
IbGER5-OE-SalI:IbGER5-OE-SalI:
5’-CTTGCATGCCTGCAGGTCGACGTTAGCAGTAGCAGGTTGTGACA-3’(下划线部分为SalI酶切位点)。5'-CTTGCATGCCTGCAG GTCGAC GTTAGCAGTAGCAGGTTGTGACA-3' (the underlined part is the SalI restriction site).
以人工合成的序列表中SEQ ID NO.2所示的双链DNA分子为模板,以IbGER5-OE-KpnI和IbGER5-OE-SalI为引物进行PCR扩增后,将产物连接到pMD19-T载体上,得到重组载体,命名为pMD-IbGER5,进行M13-F/R(5’-GTAAAACGACGGCCAGT-3’/5’-CAGGAAACAGCTATGAC-3’)的测序,保证甘薯IbGER5蛋白核苷酸的阅读框及酶切位点的正确。Use the double-stranded DNA molecule shown in SEQ ID NO.2 in the artificially synthesized sequence list as a template, and use IbGER5-OE-KpnI and IbGER5-OE-SalI as primers for PCR amplification, and then connect the product to the pMD19-T vector On the above, the recombinant vector was obtained, named pMD-IbGER5, and the sequencing of M13-F/R (5'-GTAAAACGACGGCCAGT-3'/5'-CAGGAAACAGCTATGAC-3') was carried out to ensure the reading frame and enzyme of sweet potato IbGER5 protein nucleotides The cut site is correct.
用限制性内切酶EcoRI和SacI双酶切植物表达载体pCAMBIA1300,回收约8948bp大小的片段,设计引物(5’-CGAGCTCTCTCTATCTAAACATCTCTCTCTGACC-3’和5’-CGGAATTCGCTGTGAGAGCAGATGAGGTTC-3’)从载体pCAMBIA1300上克隆携带EcoRI和SacI酶切位点的770bp大小CaMV 35S片段,回收片段后将两个片段连接,获得重组质粒pCAMBIA1300-1。The plant expression vector pCAMBIA1300 was double digested with restriction enzymes EcoRI and SacI, and a fragment of about 8948 bp was recovered. Primers (5'-CGAGCTCTCTCTATCTAAACATCTCTCTCTGACC-3' and 5'-CGGAATTCGCTGTGAGAGCAGATGAGGTTC-3') were cloned from the vector pCAMBIA1300 carrying EcoRI and the 770bp CaMV 35S fragment of the SacI restriction site, and after the fragment was recovered, the two fragments were connected to obtain the recombinant plasmid pCAMBIA1300-1.
用限制性内切酶SalI和PstI双酶切重组质粒pCAMBIA1300-1,回收约9708bp大小的片段,设计引物(5’-GCGTCGACATGGTGAGCAAGGGCGAG-3’和5’-AACTGCAGTTACTTGTACAGCTCGTCCATGC-3’)克隆携带SalI和PstI酶切位点的720bp大小GFP片段,回收片段后将两个片段连接,获得重组质粒pCAMBIA1300-GFP。Recombinant plasmid pCAMBIA1300-1 was digested with restriction endonucleases SalI and PstI, and a fragment of about 9708 bp was recovered. Primers (5'-GCGTCGACATGGTGAGCAAGGGCGAG-3' and 5'-AACTGCAGTTACTTGTACAGCTCGTCCATGC-3') were cloned to carry SalI and PstI enzymes The 720bp GFP fragment at the cutting site was recovered and the two fragments were connected to obtain the recombinant plasmid pCAMBIA1300-GFP.
将pCAMBIA1300-GFP重组载体经过KpnI和SalI双酶切,回收载体大片段,用限制性内切酶KpnI和SalI双酶切重组载体pMD-IbGER5,回收约852bp的DNA小片段,将回收的载体大片段与DNA小片段连接,得到重组载体pCAMBIA1300-GFP-IbGER5,即目的质粒。将目的质粒转化大肠杆菌DH5α,37℃培养20h,进行重组载体pCAMBIA1300-GFP-IbGER5的PCR分析和酶切鉴定,并进行测序验证。测序结果表明,在载体pCAMBIA1300-GFP的KpnI和SalI酶切位点间插入了序列表中SEQ ID No.2所示的序列,说明重组载体构建正确。The pCAMBIA1300-GFP recombinant vector was digested with KpnI and SalI, and the large fragment of the vector was recovered. The recombinant vector pMD-IbGER5 was digested with restriction endonucleases KpnI and SalI, and a small DNA fragment of about 852bp was recovered. The recovered vector was large The fragment was connected with a small DNA fragment to obtain the recombinant vector pCAMBIA1300-GFP-IbGER5, which is the target plasmid. The target plasmid was transformed into Escherichia coli DH5α, cultured at 37°C for 20 hours, PCR analysis and enzyme digestion identification of the recombinant vector pCAMBIA1300-GFP-IbGER5, and sequencing verification. The sequencing results showed that the sequence shown in SEQ ID No.2 in the sequence listing was inserted between the KpnI and SalI restriction sites of the vector pCAMBIA1300-GFP, indicating that the recombinant vector was constructed correctly.
重组载体pCAMBIA1300-GFP-IbGER5是将pCAMBIA1300-GFP载体的KpnI和SalI识别位点间的片段(小片段)替换为核苷酸序列是序列表中SEQ ID No.2的DNA片段,保持pCAMBIA1300-GFP载体的其他序列不变,得到的重组表达载体。重组载体pCAMBIA1300-GFP-IbGER5表达序列表中SEQ ID No.1所示的蛋白质IbGER5。The recombinant vector pCAMBIA1300-GFP-IbGER5 replaces the fragment (small fragment) between the KpnI and SalI recognition sites of the pCAMBIA1300-GFP carrier with a nucleotide sequence, which is the DNA fragment of SEQ ID No.2 in the sequence table, keeping pCAMBIA1300-GFP The other sequences of the vector remain unchanged, and the recombinant expression vector is obtained. The recombinant vector pCAMBIA1300-GFP-IbGER5 expresses the protein IbGER5 shown in SEQ ID No.1 in the sequence listing.
重组载体pCAMBIA1300-GFP-IbGER5具有一个表达盒,表达盒的核苷酸序列中有CaMV35S启动子、IbGER5蛋白的编码基因(SEQ ID No.2)和绿色荧光蛋白(GFP)的编码基因。The recombinant vector pCAMBIA1300-GFP-IbGER5 has an expression cassette, the coding gene of CaMV35S promotor, IbGER5 protein (SEQ ID No.2) and the coding gene of green fluorescent protein (GFP) are arranged in the nucleotide sequence of expression cassette.
B、重组载体pFGC5941-IbGER5的构建B. Construction of recombinant vector pFGC5941-IbGER5
以人工合成的序列表中SEQ ID NO.2所示的双链DNA分子为模板,以IbGER5-Ri-UF(XhoI):5’-TTTGGAGAGGACACGCTCGAGATGGAGCCAAAAGGAGAAG AATCA-3’(下划线为限制性内切酶XhoI的识别序列)和IbGER5-Ri-UR(SwaI):5’-AAGAAATTCTTACACATTTAAATAGGTTGAGGGTGGAAATCTTGG-3’(下划线为限制性内切酶SwaI的识别序列)为引物进行PCR扩增后,回收约200bp的小片段,用限制性内切酶XhoI和SwaI双酶切植物表达载体pFGC5941,回收约10kb的载体大片段,将回收的载体大片段与DNA小片段连接,得到重组载体pFGC5941-IbGER5-U1。With the double-stranded DNA molecule shown in SEQ ID NO.2 in the artificially synthesized sequence listing as a template, with IbGER5-Ri-UF (XhoI): 5'-TTTGGAGAGGACACG CTCGAG ATGGAGCCAAAAGGAGAAG AATCA-3' (the underline is a restriction enzyme Recognition sequence of XhoI) and IbGER5-Ri-UR (SwaI): 5'-AAGAAATTCTTACAC ATTTAAAT AGGTTGAGGGTGGAAATCTTGG-3' (the underline is the recognition sequence of restriction endonuclease SwaI) as primers for PCR amplification, and the recovery of about 200bp small For the fragment, the plant expression vector pFGC5941 was double-digested with restriction endonucleases XhoI and SwaI, and a large vector fragment of about 10 kb was recovered, and the recovered large vector fragment was connected with a small DNA fragment to obtain the recombinant vector pFGC5941-IbGER5-U1.
以人工合成的序列表中SEQ ID NO.2所示的双链DNA分子为模板,以IbGER5-Ri-DF(BamHI):5’-AATTTGCAGGTATTTGGATCCAGGTTGAGGGTGGAAATCTTGG-3’(下划线为限制性内切酶BamHI的识别序列)和IbGER5-Ri-DR(XbaI):5’-GGTCTTAATTAACTCTCTAGAATGGAGCCAAAAGGAGAAGAATCA-3’(下划线为限制性内切酶XbaI的识别序列)为引物进行PCR扩增后,回收约200bp的小片段,用限制性内切酶BamHI和XbaI双酶切植物表达载体pFGC5941-IbGER5-U1,回收约10kb的载体大片段,将回收的载体大片段与DNA小片段连接,得到重组载体pFGC5941-IbGER5,即目的质粒。测序结果表明,在载体pFGC5941的XhoI和SwaI酶切位点间插入了序列表中SEQ ID No.2所示的序列自5’末端起第1至204位所示的DNA分子,BamHI和XbaI酶切位点间插入了序列表中SEQ ID No.2所示的序列自5’末端起第1至204位所示的DNA分子反向互补序列。With the double-stranded DNA molecule shown in SEQ ID NO.2 in the artificially synthesized sequence listing as a template, with IbGER5-Ri-DF (BamHI): 5'-AATTTGCAGGTATTT GGATCC AGGTTGAGGGTGGAAATCTTGG-3' (the underline is the restriction enzyme BamHI recognition sequence) and IbGER5-Ri-DR (XbaI): 5'-GGTCTTAATTAACTC TCTAGA ATGGAGCCAAAAGGAGAAGAATCA-3' (the underline is the recognition sequence of restriction endonuclease XbaI) as primers for PCR amplification, and a small fragment of about 200bp was recovered , use restriction endonucleases BamHI and XbaI to double-digest the plant expression vector pFGC5941-IbGER5-U1, recover a large vector fragment of about 10kb, connect the recovered large vector fragment with a small DNA fragment, and obtain the recombinant vector pFGC5941-IbGER5, namely target plasmid. Sequencing results showed that the DNA molecule shown in the 1st to 204th positions from the 5' end of the sequence shown in SEQ ID No.2 in the sequence table, BamHI and XbaI enzymes were inserted between the XhoI and SwaI restriction sites of the vector pFGC5941 The reverse complementary sequence of the DNA molecule shown in the 1st to 204th positions from the 5' end of the sequence shown in SEQ ID No. 2 in the sequence listing is inserted between the cutting sites.
重组载体pFGC5941-IbGER5是将pFGC5941载体的XhoI和SwaI识别序列间的小片段替换为序列表中SEQ ID No.2自5’末端起第1至204位所示的DNA分子片段,将限制性内切酶BamHI和XbaI识别位点间的片段(小片段)替换为核苷酸序列是序列表中SEQ ID No.2自5’末端起第1至204位所示的DNA分子的反向互补序列,保持pFGC5941载体的其他序列不变,得到的重组表达载体。重组表达载体pFGC5941-IbGER5干扰表达序列表中SEQ ID No.1所示的蛋白质IbGER5。The recombinant vector pFGC5941-IbGER5 replaces the small fragment between the XhoI and SwaI recognition sequences of the pFGC5941 vector with the DNA molecule fragment shown in the 1st to 204th position of SEQ ID No.2 from the 5' end in the sequence listing, and the restriction internal The fragment (small fragment) between the recognition sites of Dicer BamHI and XbaI is replaced by the nucleotide sequence, which is the reverse complementary sequence of the DNA molecule shown in the 1st to 204th positions from the 5' end of SEQ ID No.2 in the sequence listing , keeping the other sequences of the pFGC5941 vector unchanged to obtain a recombinant expression vector. The recombinant expression vector pFGC5941-IbGER5 interferes with the protein IbGER5 shown in SEQ ID No.1 in the expression sequence list.
重组载体pFGC5941-IbGER5具有一个表达盒,表达盒的核苷酸序列中有CaMV35S启动子、IbGER5蛋白的编码基因片段和OCS polyA终止子。The recombinant vector pFGC5941-IbGER5 has an expression cassette, and the nucleotide sequence of the expression cassette has the CaMV35S promoter, the coding gene fragment of the IbGER5 protein and the OCS polyA terminator.
2、植物表达载体转化农杆菌2. Transformation of plant expression vector into Agrobacterium
(1)于冰上融化制备的农杆菌EHA105感受态细胞,加入2μg提取的pCAMBI A1300-GFP-IbGER5或pFGC5941-IbGER5质粒,轻弹管壁混匀,冰浴10min;(1) Thaw the prepared Agrobacterium EHA105 competent cells on ice, add 2 μg of the extracted pCAMBI A1300-GFP-IbGER5 or pFGC5941-IbGER5 plasmid, flick the tube wall to mix, and ice-bath for 10 minutes;
(2)液氮速冻5min,37℃水浴10min,冰浴5min;(2) Liquid nitrogen quick freezing for 5 minutes, 37°C water bath for 10 minutes, and ice bath for 5 minutes;
(3)加入600μL液体LB培养基,28℃,200rpm培养5h;(3) Add 600 μL of liquid LB medium, culture at 28°C, 200 rpm for 5 hours;
(4)将200μL菌液涂布于含100ug/mL卡那霉素及100ug/mL利福平的LB固体培养基上;(4) Spread 200 μL of bacterial liquid on the LB solid medium containing 100ug/mL kanamycin and 100ug/mL rifampicin;
(5)28℃倒置暗培养2天,取适量农杆菌用液体LB培养基培养备用,即得到导入pCAMBIA1300-GFP-IbGER5或pFGC5941-IbGER5载体的农杆菌菌液,将重组农杆菌命名为EHA105/pCAMBIA1300-GFP-IbGER5或EHA105/pFGC5941-IbGER5。(5) Invert and dark culture at 28°C for 2 days, take an appropriate amount of Agrobacterium and culture it with liquid LB medium for later use, and obtain the Agrobacterium liquid introduced into the pCAMBIA1300-GFP-IbGER5 or pFGC5941-IbGER5 vector, and name the recombinant Agrobacterium EHA105/ pCAMBIA1300-GFP-IbGER5 or EHA105/pFGC5941-IbGER5.
3、甘薯的遗传转化及再生3. Genetic transformation and regeneration of sweet potato
A、甘薯过表达转基因阳性植株的转化及再生A. Transformation and regeneration of sweet potato overexpression transgene positive plants
用农杆菌介导的方法将EHA105/pCAMBIA1300-GFP-IbGER5导入到甘薯品种栗子香中。具体方法如下:EHA105/pCAMBIA1300-GFP-IbGER5 was introduced into sweet potato variety Lizixiang by Agrobacterium-mediated method. The specific method is as follows:
(1)剥取甘薯品种栗子香的茎尖分生组织,置于含2.0mg/L 2,4-D的MS固体培养基上,27±1℃培养8周,获得胚性愈伤组织;(1) Stripping the shoot apical meristem of the sweet potato variety Lizixiang, placing it on MS solid medium containing 2.0mg/
(2)将胚性愈伤组织放入含2.0mg/L 2,4-D的MS液体培养基中,置于摇床上水平振荡培养8周,获得直径为0.7-1.3mm的胚性细胞团;(2) Put the embryogenic callus into MS liquid medium containing 2.0mg/
(3)将胚性细胞团经过20目网筛筛选,较大的细胞团转移至30目网筛,轻轻研磨,使胚性细胞团出现创口,将研磨后的较大胚性细胞团振荡培养3天;(3) Screen the embryogenic cell mass through a 20-mesh mesh sieve, transfer the larger cell mass to a 30-mesh mesh sieve, grind gently, so that the embryogenic cell mass has a wound, and shake the ground larger embryogenic cell mass Cultivate for 3 days;
(4)采用农杆菌介导的方法将EHA105/pCAMBIA1300-GFP-IbGER5转化胚性细胞团,然后置于共培养基(含30mg/L AS、2.0mg/L 2,4-D的MS固体培养基)上,28℃暗培养3天;(4) EHA105/pCAMBIA1300-GFP-IbGER5 was transformed into embryogenic cell mass by Agrobacterium-mediated method, and then placed in co-culture medium (MS solid culture containing 30mg/L AS, 2.0mg/
(5)将胚性细胞团用含400mg/L头孢噻肟钠(cefotaxime sodium,CS)和2.0mg/L2,4-D的MS液体培养基中洗涤一次,然后在含有2.0mg/L 2,4-D的MS液体培养基中振荡培养1周;(5) The embryogenic cell mass was washed once in MS liquid medium containing 400 mg/L cefotaxime sodium (cefotaxime sodium, CS) and 2.0 mg/
(6)将胚性细胞团置于筛选培养基(含100mg/L CS、5mg/L潮霉素(Hyg)、2,4-D的MS固体培养基)上,28℃暗培养10-12周,其中每两周更换一次培养基;(6) Place the embryogenic cell mass on the screening medium (MS solid medium containing 100mg/L CS, 5mg/L hygromycin (Hyg), 2,4-D), culture in dark at 28°C for 10-12 week, wherein the culture medium was replaced every two weeks;
(7)将胚性细胞团置于体细胞胚诱导培养基(含100mg/L CS、1.0mg/L ABA的MS固体培养基)上,28℃光暗交替培养2-4周,获得抗性愈伤组织;(7) Put the embryogenic cell mass on the somatic embryo induction medium (MS solid medium containing 100mg/L CS, 1.0mg/L ABA), and culture in alternating light and dark at 28°C for 2-4 weeks to acquire resistance callus;
(8)将抗性愈伤组织置于MS固体培养基上,28℃光暗交替培养4-8周,即可获得5株待鉴定过表达转基因植株(即拟过表达转基因植株),分别命名为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53。(8) Place the resistant callus on MS solid medium, and culture in alternating light and dark at 28°C for 4-8 weeks, and then 5 overexpressed transgenic plants to be identified (i.e. proposed overexpressed transgenic plants) can be obtained, and named respectively OE-G1, OE-G2, OE-G4, OE-G34, OE-G53.
(9)用CTAB法提取拟过表达转基因植株(OE-G1、OE-G2、OE-G4、OE-G34、OE-G53)叶片的基因组DNA,以提取的基因组DNA为模板,水和对照栗子香植株为阴性对照,质粒pCAMBIA1300-GFP-IbGER5为阳性对照,以35S-F和IbGER5-R为引物进行PCR扩增,得到PCR扩增产物;如果PCR扩增产物中含有约1090bp的条带,则相应的甘薯待鉴定转基因植株即为甘薯过表达转基因阳性植株。引物35S-F和IbGER5-R序列如下所示:(9) Extract the genomic DNA of the leaves of the overexpressed transgenic plants (OE-G1, OE-G2, OE-G4, OE-G34, OE-G53) with the CTAB method, and use the extracted genomic DNA as a template, water and contrast chestnut Fragrant plant is negative control, and plasmid pCAMBIA1300-GFP-IbGER5 is positive control, carries out PCR amplification with 35S-F and IbGER5-R as primer, obtains PCR amplification product; If contain the band of about 1090bp in the PCR amplification product, The corresponding sweet potato transgenic plants to be identified are sweet potato overexpression transgene positive plants. Primer 35S-F and IbGER5-R sequences are as follows:
35S-F:5’-TGACGCACAATCCCACTATCCT-3’35S-F: 5'-TGACGCACAATCCCACTATCCT-3'
IbGER5-R:5’-GTTAGCAGTAGCAGGTTGTGACA-3’IbGER5-R: 5'-GTTAGCAGTAGCAGGTTGTGACA-3'
电泳检测扩增结果见图1中A(图1中A,泳道M显示为Maker条带,泳道W显示为阴性对照(水)的条带;泳道P显示为阳性对照(重组质粒pCAMBIA1300-GFP-IbGER5)的条带;泳道WT显示为甘薯栗子香植株的条带;泳道OE-G1、OE-G2、OE-G4、OE-G34、OE-G53显示为转化pCAMBIA1300-GFP-IbGER5的甘薯拟过表达转基因植株的条带,从图1中A可见,泳道OE-G1、OE-G2、OE-G4、OE-G34、OE-G53和阳性对照均扩增出852bp的目标条带,表明IbGER5基因已经整合到甘薯栗子香的基因组中,并证明这些再生植株为过表达转基因植株。将经鉴定为过表达转基因的甘薯植株采用无性繁殖的方法扩繁(由一株转基因幼苗扩繁得到的植株作为一个株系),进行耐盐抗旱的抗性鉴定。Electrophoresis detection amplification results are shown in A in Fig. 1 (A in Fig. 1, swimming lane M shows as Maker band, and swimming lane W shows as the band of negative control (water); Swimming lane P shows as positive control (recombinant plasmid pCAMBIA1300-GFP- IbGER5) band; Swimming lane WT shows the band of sweet potato Chestnut fragrant plant; Swimming lane OE-G1, OE-G2, OE-G4, OE-G34, OE-G53 shows that the sweet potato that transforms pCAMBIA1300-GFP-IbGER5 is simulated The bands of expressing transgenic plants can be seen from A in Figure 1, and the target bands of 852bp are all amplified in the swimming lanes OE-G1, OE-G2, OE-G4, OE-G34, OE-G53 and the positive control, indicating that the IbGER5 gene Be integrated in the genome of sweet potato Lizixiang, and prove that these regenerated plants are over-expression transgenic plants.The sweet potato plants that are identified as over-expression transgenes are propagated by vegetative propagation (the plants obtained by the propagation of a transgenic seedling are used as A strain) for the identification of salt tolerance and drought resistance.
B、甘薯RNAi阳性植株的转化及再生B. Transformation and regeneration of sweet potato RNAi positive plants
用农杆菌介导的方法将EHA105/pFGC5941-IbGER5导入到甘薯品种栗子香中。EHA105/pFGC5941-IbGER5 was introduced into sweet potato variety Lizixiang by Agrobacterium-mediated method.
(1)按照A中步骤(1)至(8)的方法,将EHA105/pCAMBIA1300-GFP-IbGER5替换为EHA105/pFGC5941-IbGER5,筛选培养基替换为含100mg/L CS、0.3mg/L除草剂(PPT)、2,4-D的MS固体培养基,其它步骤均不变,获得2株甘薯待鉴定干扰转基因植株(即拟RNAi植株),依次命名Ri-G6、Ri-G7。(1) According to the method of steps (1) to (8) in A, replace EHA105/pCAMBIA1300-GFP-IbGER5 with EHA105/pFGC5941-IbGER5, and replace the screening medium with 100mg/L CS, 0.3mg/L herbicide (PPT), 2,4-D MS solid medium, and other steps were kept unchanged, and two sweet potato interference transgenic plants to be identified (ie pseudo-RNAi plants) were obtained, which were named Ri-G6 and Ri-G7 in turn.
(2)提取拟RNAi植株(Ri-G6、Ri-G7)叶片基因组DNA,以提取的基因组DNA为模板,水和对照栗子香植株为阴性对照,质粒pFGC5941-IbGER5为阳性对照,以int-F(5’-CAACCACAAAAGTATCTATGAGCCT-3’)和int-R(5’-TTCACATGTCAGAAACATTCTGATG-3’)为引物进行PCR扩增得到PCR扩增产物;如果PCR扩增产物中含有约888bp的条带,则相应的甘薯待鉴定转基因植株即为甘薯RNAi阳性植株。(2) Extract genomic DNA from leaves of pseudo-RNAi plants (Ri-G6, Ri-G7), use the extracted genomic DNA as a template, water and contrast Lizixiang plants as negative controls, plasmid pFGC5941-IbGER5 as positive control, and int-F (5'-CAACCACAAAAGTATCTATGAGCCT-3') and int-R(5'-TTCACATGTCAGAAACATTCTGATG-3') are primers for PCR amplification to obtain PCR amplification products; if the PCR amplification products contain a band of about 888bp, the corresponding The sweet potato transgenic plants to be identified are sweet potato RNAi positive plants.
电泳检测扩增结果见图1中B(图1中B,泳道M显示为Maker条带,泳道W显示为阴性对照(水)的条带;泳道P显示为阳性对照(重组质粒pFGC5941-IbGER5)的条带;泳道WT显示为甘薯栗子香植株的条带;泳道Ri-G6、Ri-G7显示为转化pFGC5941-IbGER5的甘薯拟RNAi植株的条带,从图1中B可见,泳道Ri-G6、Ri-G7和阳性对照均扩增出888bp的目标条带,表明pFGC5941-IbGER5载体已经转入到甘薯栗子香的基因组中,并证明这些再生植株为RNAi植株。将经鉴定为RNAi的甘薯植株采用无性繁殖的方法扩繁(由一株转基因幼苗扩繁得到的植株作为一个株系),进行耐盐抗旱的抗性鉴定。Electrophoresis detection amplification results are shown in B in Figure 1 (in B in Figure 1, swimming lane M shows as Maker band, and swimming lane W shows as the band of negative control (water); Swimming lane P shows as positive control (recombinant plasmid pFGC5941-IbGER5) The band of Swimming Lane WT shows the band of sweet potato chestnut fragrance plant; Swimming lane Ri-G6, Ri-G7 shows the band of the sweet potato quasi-RNAi plant transformed pFGC5941-IbGER5, as can be seen from B in Fig. 1, swimming lane Ri-G6 , Ri-G7 and the positive control all amplified the 888bp target band, indicating that the pFGC5941-IbGER5 vector had been transferred into the genome of sweet potato Lizixiang, and proved that these regenerated plants were RNAi plants. The sweet potato plants identified as RNAi The method of vegetative propagation is adopted for propagation (the plant obtained from the propagation of a transgenic seedling is regarded as a strain), and the resistance identification of salt tolerance and drought resistance is carried out.
4、转基因植株的耐盐性鉴定4. Salt tolerance identification of transgenic plants
受试植株:甘薯品种栗子香作对照植株(WT);株系号分别为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53、Ri-G6、Ri-G7的植株,每个株系3个植株。Tested plants: the sweet potato variety Lizixiang was used as a control plant (WT); the strain numbers were respectively OE-G1, OE-G2, OE-G4, OE-G34, OE-G53, Ri-G6, Ri-G7 plants, 3 plants per line.
将IbGER5转基因株系(株系号为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53、Ri-G6、Ri-G7)植株和栗子香对照植株(WT)分别在正常MS培养基及含150mM NaCl的MS培养基上胁迫培养4周后,观察植株的生长状况,并对植株的根长进行测量,结果见图2中A、B、D和E(图2中A为正常生长条件下甘薯植株生长状况、图2中B为盐胁迫下甘薯植株生长状况,图2中D为正常生长条件下甘薯植株根长统计结果,图2中E为盐胁迫下甘薯植株根长统计结果)。可以发现,盐胁迫处理(150mM NaCl)后,过表达转基因植株(OE-G1、OE-G2、OE-G4、OE-G34、OE-G53)的根长明显低于对照栗子香(WT),而RNAi植株(Ri-G6、Ri-G7)的根长高于对照栗子香(WT),离体鉴定结果表明过表达转基因植株的耐盐性显著降低,RNAi植株的耐盐性提高,IbGER5基因或蛋白质IbGER5可以调控植物的耐盐性。The IbGER5 transgenic lines (strain numbers are OE-G1, OE-G2, OE-G4, OE-G34, OE-G53, Ri-G6, Ri-G7) plants and Lizixiang control plants (WT) in normal After 4 weeks of stress culture on the MS medium and the MS medium containing 150mM NaCl, observe the growth status of the plant, and measure the root length of the plant, the results are shown in A, B, D and E in Fig. 2 (A in Fig. 2 For the growth status of sweet potato plants under normal growth conditions, B in Figure 2 is the growth status of sweet potato plants under salt stress, D in Figure 2 is the statistical result of the root length of sweet potato plants under normal growth conditions, and E in Figure 2 is the root length of sweet potato plants under salt stress long statistics). It can be found that after salt stress treatment (150mM NaCl), the root length of the overexpression transgenic plants (OE-G1, OE-G2, OE-G4, OE-G34, OE-G53) was significantly lower than that of the contrast Lizixiang (WT), However, the root length of RNAi plants (Ri-G6, Ri-G7) was higher than that of the control Lizixiang (WT). The results of in vitro identification showed that the salt tolerance of overexpressed transgenic plants was significantly reduced, and the salt tolerance of RNAi plants was improved. IbGER5 gene Or the protein IbGER5 can regulate the salt tolerance of plants.
进一步验证在水培条件下过表达IbGER5基因能否提高转基因甘薯的耐盐性。从隔离大田取回过表达IbGER5基因的转基因株系(株系号为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53)的植株和对照栗子香植株(WT)的茎段,每段剪切成25cm,保证一个茎节分别置入正常霍格兰溶液及含150mM NaCl的霍格兰溶液中,胁迫处理4周,每7天更换一次培养基,观察植株的生长状况,测量植株的根长结果见图3中A、B、D和E(图3中A、B中左图为甘薯植株在霍格兰溶液中生长状况,右图为从溶液中取出洗净后的甘薯植株,图3中A为正常生长条件下甘薯植株生长状况、图3中B为盐胁迫下甘薯植株生长状况,图3中D为正常生长条件下甘薯植株根长统计结果,图3中E为盐胁迫下甘薯植株根长统计结果)。可以发现,盐胁迫处理(150mM NaCl)后,过表达转基因植株的根长明显短于对照栗子香(WT),水培鉴定结果表明过表达转基因植株的耐盐性显著降低,过表达IbGER5基因可显著降低植物的耐盐性,IbGER5基因或蛋白质IbGER5具有调控植物的耐盐性的功能。It was further verified whether the overexpression of IbGER5 gene could improve the salt tolerance of transgenic sweet potato under hydroponic conditions. Get back the stems of the plants of the transgenic lines (strain numbers are OE-G1, OE-G2, OE-G4, OE-G34, OE-G53) overexpressing the IbGER5 gene and the control Lizixiang plant (WT) from the isolated field Each section was cut into 25cm, and a stem node was guaranteed to be placed in normal Hoagland's solution and Hoagland's solution containing 150mM NaCl respectively. The stress treatment was carried out for 4 weeks, and the medium was replaced every 7 days to observe the growth status of the plants. , the root length results of the measurement plant are shown in A, B, D and E in Fig. 3 (in Fig. 3, A, B, the left picture is the growth status of the sweet potato plant in Hoagland's solution, and the right picture is taken out from the solution after washing. sweet potato plant, A in Figure 3 is the growth status of sweet potato plants under normal growth conditions, B in Figure 3 is the growth status of sweet potato plants under salt stress, D in Figure 3 is the statistical result of root length of sweet potato plants under normal growth conditions, in Figure 3 E is the statistical result of root length of sweet potato plants under salt stress). It can be found that after salt stress treatment (150mM NaCl), the root length of overexpressed transgenic plants is significantly shorter than that of contrast Lizixiang (WT). Significantly reduce the salt tolerance of the plant, and the IbGER5 gene or protein IbGER5 has the function of regulating the salt tolerance of the plant.
5、转基因植株的抗旱性鉴定5. Identification of drought resistance of transgenic plants
将IbGER5转基因株系(株系号为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53、Ri-G6、Ri-G7)的植株和对照栗子香植株(WT)在含20%PEG6000的模拟干旱胁迫的MS培养基上胁迫培养4周后,观察植株的生长状况,并对植株的根长进行测量,结果见图2中C和图2中F(图2中C为干旱胁迫下甘薯植株生长状况,图2中F为干旱胁迫下甘薯植株根长统计结果)。可以发现,干旱胁迫处理(20%PEG6000)后,过表达转基因植株的根长明显低于对照栗子香(WT),生长状态明显比对照植株变差,而RNAi植株(Ri-G6、Ri-G7)的根长高于对照栗子香(WT),生长状态良好,离体鉴定结果表明过表达转基因植株的抗旱性显著降低,RNAi植株的抗旱性提高,过表达IbGER5基因可显著降低植物的抗旱性,干扰IbGER5基因表达可提高植物的抗旱性,IbGER5基因或蛋白质IbGER5可以调控植物的抗旱性。The plants of the IbGER5 transgenic lines (strain numbers are OE-G1, OE-G2, OE-G4, OE-G34, OE-G53, Ri-G6, Ri-G7) and the control Lizixiang plant (WT) in the containing After 4 weeks of stress cultivation on the MS medium of the simulated drought stress of 20% PEG6000, observe the growth status of the plant, and measure the root length of the plant, the results are shown in Fig. 2 in C and in Fig. 2 F (in Fig. 2, C is The growth status of sweet potato plants under drought stress, F in Fig. 2 is the statistical result of root length of sweet potato plants under drought stress). It can be found that after drought stress treatment (20% PEG6000), the root length of the overexpression transgenic plants was significantly lower than that of the control Lizixiang (WT), and the growth state was significantly worse than that of the control plants, while the RNAi plants (Ri-G6, Ri-G7 ) root length was higher than that of the control Lizixiang (WT), and the growth state was good. The results of in vitro identification showed that the drought resistance of overexpressed transgenic plants was significantly reduced, and the drought resistance of RNAi plants was improved. Overexpression of IbGER5 gene can significantly reduce the drought resistance of plants , Interfering with the expression of the IbGER5 gene can improve the drought resistance of the plant, and the IbGER5 gene or the protein IbGER5 can regulate the drought resistance of the plant.
进一步验证在水培条件下过表达IbGER5基因能否提高转基因甘薯的抗旱性。从隔离大田取回过表达IbGER5基因的转基因株系(株系号为OE-G1、OE-G2、OE-G4、OE-G34、OE-G53)的植株和对照栗子香植株(WT)的茎段,每段剪切成25cm,保证一个茎节置入含20%PEG6000的霍格兰溶液中,模拟干旱胁迫处理2周后复水培养2周,每7天更换一次培养基,观察植株的生长状况,测量植株的根长,结果见图3中C和图3中F(图3中C中左图为甘薯植株在干旱胁迫下的生长状况,右图为从溶液中取出洗净后的甘薯植株,图3中F为干旱胁迫下甘薯植株根长统计结果)。可以发现,干旱胁迫处理(20%PEG6000)后,转基因植株的根长明显短于对照栗子香(WT),生长状态明显比对照植株变差,表现为比对照更严重的萎蔫,水培鉴定结果表明转基因植株的抗旱性显著降低,过表达IbGER5基因可显著降低植物的抗旱性,IbGER5基因或蛋白质IbGER5具有调控植物的抗旱性的功能。It was further verified whether the overexpression of IbGER5 gene could improve the drought resistance of transgenic sweet potato under hydroponic conditions. Get back the stems of the plants of the transgenic lines (strain numbers are OE-G1, OE-G2, OE-G4, OE-G34, OE-G53) overexpressing the IbGER5 gene and the control Lizixiang plant (WT) from the isolated field Each section was cut into 25cm, and one stem node was placed in Hoagland's solution containing 20% PEG6000. After 2 weeks of simulated drought stress treatment, rehydration was carried out for 2 weeks. The medium was replaced every 7 days, and the growth status of the plants was observed. , measure the root length of the plant, the results are shown in C in Fig. 3 and F in Fig. 3 (the left picture in C in Fig. 3 is the growth status of the sweet potato plant under drought stress, and the right picture is the sweet potato plant taken out from the solution after washing , F in Fig. 3 is the statistical result of root length of sweet potato plants under drought stress). It can be found that after the drought stress treatment (20% PEG6000), the root length of the transgenic plants was significantly shorter than that of the control Lizixiang (WT), and the growth state was significantly worse than that of the control plants, showing more serious wilting than the control. It shows that the drought resistance of the transgenic plants is significantly reduced, and the overexpression of the IbGER5 gene can significantly reduce the drought resistance of the plants, and the IbGER5 gene or protein IbGER5 has the function of regulating the drought resistance of the plants.
进一步验证在土壤栽培条件下过表达IbGER5基因能否提高转基因甘薯的抗旱性。从隔离大田取回过表达IbGER5基因的转基因株系(株系号为OE-G1、OE-G2、OE-G4)的植株和对照栗子香植株(WT)的茎段,每段剪切成20cm,保证一个茎节插入土中,浇水2周至茎段正常生长后进行干旱处理(即连续8周不浇水),8周后观察植株的生长状态,测量植株根长及根数,结果见图4(图4中A为甘薯植株在旱池中生长状况,图4中B为从土中取出后的甘薯植株,图4中C为统计的甘薯植株表型指标)。可以发现,干旱胁迫处理后,转基因植株的根长明显短于对照栗子香(WT),根数较少,生长状态明显比对照植株变差,表现为比对照更严重的萎蔫,旱池结果表明转基因植株的抗旱性显著降低,过表达IbGER5基因可显著降低植物的抗旱性,IbGER5基因或蛋白质IbGER5具有调控植物的抗旱性的功能。It was further verified whether the overexpression of IbGER5 gene could improve the drought resistance of transgenic sweet potato under soil cultivation conditions. Get back the stem sections of the plants of the transgenic lines (strain numbers are OE-G1, OE-G2, OE-G4) and the contrast chestnut fragrant plant (WT) overexpressing the IbGER5 gene from the isolated field, and each section is cut into 20cm , ensure that a stem node is inserted into the soil, water for 2 weeks until the stem section grows normally, and carry out drought treatment (that is, do not water for 8 consecutive weeks), observe the growth state of the plant after 8 weeks, measure the root length and root number of the plant, the results are shown in Fig. 4 (A in Fig. 4 is the growth status of sweet potato plants in dry ponds, B in Fig. 4 is the sweet potato plants after taking out from the soil, and C in Fig. 4 is the sweet potato plant phenotype index of statistics). It can be found that after the drought stress treatment, the root length of the transgenic plants was significantly shorter than that of the control Lizixiang (WT), the number of roots was less, and the growth state was obviously worse than that of the control plants, showing more serious wilting than the control plants. The results of the dry pond showed that The drought resistance of the transgenic plant is significantly reduced, and the overexpression of the IbGER5 gene can significantly reduce the drought resistance of the plant, and the IbGER5 gene or protein IbGER5 has the function of regulating the drought resistance of the plant.
6、生理生化指标的测定6. Determination of physiological and biochemical indicators
受试植株:甘薯品种栗子香作对照植株(WT);株系号分别为OE-G1、OE-G2、OE-G4、Ri-G6、Ri-G7的植株,每个株系3个植株。Tested plants: sweet potato variety Lizixiang as control plant (WT); plants with line numbers OE-G1, OE-G2, OE-G4, Ri-G6, Ri-G7, 3 plants for each line.
(1)H2O2含量测定(1) Determination of H 2 O 2 content
H2O2是植物体内最常见的活性氧分子,可以直接或间接地氧化细胞内核酸、蛋白质等生物大分子,使细胞膜遭受损害,从而加速细胞的衰老和解体。因此,H2O2含量越高,植物受逆境伤害的程度就越大。H 2 O 2 is the most common reactive oxygen molecule in plants, which can directly or indirectly oxidize biological macromolecules such as nucleic acid and protein in cells, causing damage to cell membranes, thereby accelerating cell aging and disintegration. Therefore, the higher the H 2 O 2 content, the greater the degree of stress damage to plants.
参考文献(Zhang H,Gao X,Zhi Y,et al.A non-tandem CCCH-type zinc-fingerprotein,IbC3H18,functions as a nuclear transcriptional activator and enhancesabiotic stress tolerance in sweet potato[J].New Phytologist,2019,223:1918-1936)的DAB和NBT染色法,对甘薯叶片分别进行DAB、NBT染色。利用苏州科铭生物技术有限公司的过氧化氢含量(H2O2)试剂盒检测甘薯植株中的H2O2含量。染色甘薯叶片为耐盐抗旱离体处理10天的材料,含量测定植株为耐盐抗旱离体鉴定处理4周后的植株。实验重复3次,结果取平均值。References (Zhang H, Gao X, Zhi Y, et al. A non-tandem CCCH-type zinc-fingerprotein, IbC3H18, functions as a nuclear transcriptional activator and enhancesabiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223:1918-1936) DAB and NBT staining method, DAB, NBT staining were carried out to sweet potato leaf respectively. The hydrogen peroxide content (H 2 O 2 ) kit of Suzhou Keming Biotechnology Co., Ltd. was used to detect the H 2 O 2 content in sweet potato plants. The dyed sweet potato leaves are the materials that have been treated for 10 days in vitro for salt tolerance and drought resistance, and the plants for content determination are the plants that have been treated for 4 weeks in vitro for identification of salt tolerance and drought resistance. The experiment was repeated 3 times, and the results were averaged.
结果见图5中A、B、C、D和E(图5中A为DAB染色结果,图5中B为利用imageJ软件统计的DAB染色斑点的相对强度,以正常MS培养基中对照栗子香植株的斑点强度作为100%,图5中C为NBT染色结果,图5中D为利用imageJ软件统计的NBT染色斑点的相对强度,以正常MS培养基中对照栗子香植株的斑点强度作为100%,图5中E为H2O2含量统计结果)。可以发现,在150mM NaCl的盐胁迫处理和20%PEG6000模拟干旱胁迫处理后,过表达IbGER5基因的转基因植株(株系号为OE-G1,OE-G2,OE-G4)的H2O2含量显著高于对照栗子香植株,而RNAi植株(株系号为Ri-G6、Ri-G7)的H2O2含量显著低于对照栗子香植株。The results are shown in A, B, C, D and E in Figure 5 (A in Figure 5 is the DAB staining result, and B in Figure 5 is the relative intensity of the DAB staining spots using the imageJ software statistics, compared with the normal MS medium in the control chestnut incense The spot intensity of the plant is taken as 100%. C in Figure 5 is the NBT staining result, and D in Figure 5 is the relative intensity of the NBT staining spots counted by imageJ software, taking the spot intensity of the control Lizixiang plant in the normal MS medium as 100% , E in Fig. 5 is the statistical result of H 2 O 2 content). It can be found that after the salt stress treatment of 150mM NaCl and the simulated drought stress treatment of 20% PEG6000, the H2O2 content of the transgenic plants (strain numbers OE-G1, OE-G2, OE-G4) overexpressing the IbGER5 gene significantly higher than that of the control Lizixiang plants, while the H 2 O 2 content of the RNAi plants (strain numbers: Ri-G6 and Ri-G7) was significantly lower than that of the control Lizixiang plants.
(2)丙二醛(MDA)含量测定(2) Determination of malondialdehyde (MDA) content
植物器官衰老或在逆境下遭受伤害,往往氧自由基会作用于脂质的不饱和脂肪酸,生成过氧化脂质,而MDA是过氧化脂质的最终分解产物,其含量可反映植物遭受逆境伤害的程度。因此,MDA含量越高,植物遭受逆境上海的程度越大。When plant organs age or suffer damage under adversity, oxygen free radicals often act on unsaturated fatty acids in lipids to generate lipid peroxides, and MDA is the final decomposition product of lipid peroxides, and its content can reflect the damage of plants to adversity Degree. Therefore, the higher the MDA content, the greater the degree to which the plant was subjected to stress.
利用苏州科铭生物技术有限公司的丙二醛(malondialdehyde,MDA)含量试剂盒检测甘薯植株中的MDA含量。甘薯植株为耐盐抗旱离体鉴定处理4周后的植株。实验重复3次,结果取平均值。The malondialdehyde (MDA) content kit of Suzhou Keming Biotechnology Co., Ltd. was used to detect the content of MDA in sweet potato plants. The sweet potato plants were plants after 4 weeks of in vitro identification treatment for salt tolerance and drought resistance. The experiment was repeated 3 times, and the results were averaged.
结果见图5中F。可以发现,在150mM NaCl的盐胁迫处理和20%PEG6000模拟干旱胁迫处理后,过表达IbGER5基因的转基因植株(株系号为OE-G1,OE-G2,OE-G4)的MDA含量显著高于对照栗子香植株,而RNAi植株(株系号为Ri-G6、Ri-G7)的MDA含量显著低于对照栗子香植株。The results are shown in F in Figure 5. It can be found that after the salt stress treatment of 150mM NaCl and the simulated drought stress treatment of 20% PEG6000, the MDA content of the transgenic plants (strain number is OE-G1, OE-G2, OE-G4) overexpressing the IbGER5 gene was significantly higher than The MDA content of the RNAi plants (strain numbers Ri-G6 and Ri-G7) was significantly lower than that of the control chestnut fragrance plants.
(3)脯氨酸(Pro)含量测定(3) Determination of proline (Pro) content
脯氨酸广泛存在于植物中,在逆境条件下,植物体内的脯氨酸含量显著增加,增加量在一定程度上反映了抗逆性。因此,脯氨酸可作为植物抗逆性的一项生化指标。Proline widely exists in plants. Under stress conditions, the proline content in plants increases significantly, and the increase reflects stress resistance to a certain extent. Therefore, proline can be used as a biochemical indicator of plant stress resistance.
利用苏州科铭生物技术有限公司的脯氨酸(PRO)含量测定试剂盒检测甘薯植株中的脯氨酸含量。甘薯植株为耐盐抗旱离体鉴定处理4周后的植株。实验重复3次,结果取平均值。The Proline (PRO) Content Determination Kit of Suzhou Keming Biotechnology Co., Ltd. was used to detect the proline content in sweet potato plants. The sweet potato plants were plants after 4 weeks of in vitro identification treatment for salt tolerance and drought resistance. The experiment was repeated 3 times, and the results were averaged.
结果见图5中G。可以发现,在150mM NaCl的盐胁迫处理和20%PEG6000模拟干旱胁迫处理后,过表达IbGER5基因的转基因植株(株系号为OE-G1,OE-G2,OE-G4)的脯氨酸含量显著低于对照栗子香植株,而RNAi植株(株系号为Ri-G6、Ri-G7)的脯氨酸含量显著高于对照栗子香植株。The results are shown in G in Figure 5. It can be found that after the salt stress treatment of 150mM NaCl and the simulated drought stress treatment of 20% PEG6000, the proline content of the transgenic plants (strain numbers being OE-G1, OE-G2, OE-G4) overexpressing the IbGER5 gene was significantly The content of proline in RNAi plants (strain numbers Ri-G6 and Ri-G7) was significantly higher than that of the control Lizixiang plants.
(4)过氧化物酶(Peroxidase,POD)活性测定(4) Determination of peroxidase (Peroxidase, POD) activity
POD(EC 1.11.1.7)广泛存在于植物中,可作为植物抗逆性的一项生化指标。POD的活性越低,植物遭受逆境伤害的程度越大。POD (EC 1.11.1.7) widely exists in plants and can be used as a biochemical indicator of plant stress resistance. The lower the activity of POD, the greater the degree of stress damage to plants.
利用苏州科铭生物技术有限公司的过氧化物酶(Peroxidase,POD)试剂盒检测甘薯植株中的POD含量。甘薯植株为耐盐抗旱离体鉴定处理4周后的植株。实验重复3次,结果取平均值。The POD content in sweet potato plants was detected using the peroxidase (Peroxidase, POD) kit of Suzhou Keming Biotechnology Co., Ltd. The sweet potato plants were plants after 4 weeks of in vitro identification treatment for salt tolerance and drought resistance. The experiment was repeated 3 times, and the results were averaged.
结果见图5中H。可以发现,在150mM NaCl盐胁迫处理和20%PEG6000模拟干旱胁迫处理后,过表达IbGER5基因的转基因植株(株系号为OE-G1,OE-G2,OE-G4)的POD活性显著低于对照栗子香植株,而RNAi植株(株系号为Ri-G6、Ri-G7)的POD活性显著高于对照栗子香植株。The results are shown in Figure 5 H. It can be found that after 150mM NaCl salt stress treatment and 20% PEG6000 simulated drought stress treatment, the POD activity of the transgenic plants (strain numbers being OE-G1, OE-G2, OE-G4) overexpressing the IbGER5 gene was significantly lower than that of the control Chestnut fragrance plants, and the POD activity of RNAi plants (strain numbers Ri-G6, Ri-G7) was significantly higher than that of the control chestnut fragrance plants.
综上,在150mM NaCl的盐胁迫处理和20%PEG6000模拟干旱胁迫处理条件下,过表达IbGER5基因显著增加了H2O2和MDA含量、降低了脯氨酸(Pro)含量和POD活性,抗氧化酶类的活性降低,从而增加了盐胁迫和干旱胁迫对转基因植株造成的氧化损伤,大大降低了过表达转基因植株对逆境胁迫的耐受性,而干扰IbGER5基因表达显著降低了H2O2和MDA含量、增加了脯氨酸(Pro)含量和POD活性,抗氧化酶类的活性提高,从而降低了盐胁迫和干旱胁迫对转基因植株造成的氧化损伤,大大提高了RNAi植株对逆境胁迫的耐受性。In conclusion, under the salt stress treatment of 150mM NaCl and the simulated drought stress treatment of 20% PEG6000, the overexpression of IbGER5 gene significantly increased H 2 O 2 and MDA content, decreased proline (Pro) content and POD activity, and resisted The activity of oxidases was reduced, thereby increasing the oxidative damage caused by salt stress and drought stress to transgenic plants, and greatly reducing the tolerance of overexpressed transgenic plants to adversity stress, while interfering with IbGER5 gene expression significantly reduced H 2 O 2 and MDA content, increased proline (Pro) content and POD activity, and the activity of antioxidant enzymes increased, thereby reducing the oxidative damage caused by salt stress and drought stress to transgenic plants, and greatly improving the resistance of RNAi plants to adversity stress tolerance.
以上结果表明,在甘薯中过表达IbGER5基因会显著降低甘薯植株的耐盐抗旱性,干扰表达IbGER5基因会显著提高甘薯植株的耐盐抗旱性。本发明的IbGER5蛋白及其编码基因IbGER5可以调控植物的抗逆性(如耐盐性和/或抗旱性),通过提高目的植物中IbGER5蛋白质的含量和/或活性(如过表达IbGER5基因)可以显著降低目的植物的抗逆性,通过降低目的植物中IbGER5蛋白质的含量和/或活性(如干扰表达IbGER5基因)可以显著提高目的植物的抗逆性。The above results indicated that the overexpression of IbGER5 gene in sweet potato would significantly reduce the salt and drought tolerance of sweet potato plants, and the interference expression of IbGER5 gene would significantly improve the salt and drought tolerance of sweet potato plants. The IbGER5 protein of the present invention and its coding gene IbGER5 can regulate the stress resistance (such as salt tolerance and/or drought resistance) of plants, by increasing the content and/or activity of the IbGER5 protein in the target plant (such as overexpressing the IbGER5 gene) can Remarkably reduce the stress resistance of the target plant, and can significantly improve the stress resistance of the target plant by reducing the content and/or activity of the IbGER5 protein in the target plant (such as interfering with the expression of the IbGER5 gene).
实施例2、调控甘薯抗逆性的蛋白IbGER5及其编码基因的获得
实验材料:以甘薯品系ND98为实验材料。Experimental material: The sweet potato line ND98 was used as the experimental material.
1、甘薯总RNA提取:取1g甘薯品系ND98的幼嫩叶片在液氮中研磨成粉状,加入2mL离心管中,用TransZol法对甘薯总RNA进行提取,使用PrimeScriptTMRT reagent Kit withgDNA Eraser试剂盒(康为世纪生物科技(北京)有限公司产品)反转录出第一链cDNA。1. Sweet potato total RNA extraction: Take 1 g of young leaves of sweet potato line ND98 and grind them into powder in liquid nitrogen, add them to a 2 mL centrifuge tube, and use TransZol method to extract sweet potato total RNA, using PrimeScript TM RT reagent Kit with gDNA Eraser reagent The first-strand cDNA was reverse-transcribed using a cassette (product of Kangwei Century Biotechnology (Beijing) Co., Ltd.).
2、在已发表的甘薯耐盐转录组中,获得序列表中SEQ ID No.3所示的EST序列,通过在Sweetpotato Garden库中查找进行比对,获得序列表中SEQ ID No.4所示的同源序列。根据同源比对获得的核苷酸序列(SEQ ID No.4),设计并人工合成引物IbGER5-F和IbGER5-R,序列为:2. From the published sweet potato salt-tolerant transcriptome, obtain the EST sequence shown in SEQ ID No.3 in the sequence list, and compare it with the Sweetpotato Garden library to obtain the EST sequence shown in SEQ ID No.4 in the sequence list homologous sequences. According to the nucleotide sequence (SEQ ID No.4) obtained by homology alignment, design and artificially synthesize primers IbGER5-F and IbGER5-R, the sequences are:
IbGER5-F:5’-ATGGAGCCAAAAGGAGAAGAAT-3’IbGER5-F: 5'-ATGGAGCCAAAAGGAGAAGAAT-3'
IbGER5-R:5’-GTTAGCAGTAGCAGGTTGTGACA-3’IbGER5-R: 5'-GTTAGCAGTAGCAGGTTGTGACA-3'
3、以步骤1获得的cDNA为模板,以步骤2合成的IbGER5-F和IbGER5-R为引物,进行PCR扩增,获得约852bp的PCR扩增片段产物并测序。3. Using the cDNA obtained in step 1 as a template and the IbGER5-F and IbGER5-R synthesized in
结果表明,步骤3获得的PCR扩增产物的核苷酸序列如序列表中SEQ ID No.2所示,将该序列所示的基因命名为IbGER5基因,其编码的蛋白命名为IbGER5蛋白或蛋白IbGER5,氨基酸序列如序列表中SEQ ID No.1所示。The results show that the nucleotide sequence of the PCR amplification product obtained in step 3 is as shown in SEQ ID No.2 in the sequence table, the gene shown in the sequence is named IbGER5 gene, and the protein encoded by it is named IbGER5 protein or protein The amino acid sequence of IbGER5 is shown in SEQ ID No.1 in the sequence listing.
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, without departing from the spirit and scope of the present invention, and without unnecessary experiments, the present invention can be practiced in a wider range under equivalent parameters, concentrations and conditions. While specific embodiments of the invention have been shown, it should be understood that the invention can be further modified. In a word, according to the principles of the present invention, this application intends to include any changes, uses or improvements to the present invention, including changes made by using conventional techniques known in the art and departing from the disclosed scope of this application. Applications of some of the essential features are possible within the scope of the appended claims below.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中国农业大学<110> China Agricultural University
<120> 调控植物抗逆性的蛋白IbGER5及其编码基因与用途<120> Protein IbGER5 regulating plant stress resistance and its coding gene and application
<160> 4<160> 4
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 283<211> 283
<212> PRT<212> PRT
<213> 甘薯(Ipomoea batatas (L.) Lam.)<213> Sweet potato (Ipomoea batatas (L.) Lam.)
<400> 1<400> 1
Met Glu Pro Lys Gly Glu Glu Ser Glu Pro His Lys Pro Leu Ser SerMet Glu Pro Lys Gly Glu Glu Ser Glu Pro His Lys Pro Leu Ser Ser
1 5 10 151 5 10 15
Ser Ser Ser Glu Ser Gln Ala Pro Ala Glu Met Asp Pro Gln Lys TrpSer Ser Ser Glu Ser Gln Ala Pro Ala Glu Met Asp Pro Gln Lys Trp
20 25 3020 25 30
Gly Thr His Val Met Gly Arg Pro Ala Val Pro Thr Thr His Pro AspGly Thr His Val Met Gly Arg Pro Ala Val Pro Thr Thr His Pro Asp
35 40 4535 40 45
Asn Gln Lys Ala Ala Leu Trp Arg Ser Glu Asp Gln His Gln Asp PheAsn Gln Lys Ala Ala Leu Trp Arg Ser Glu Asp Gln His Gln Asp Phe
50 55 6050 55 60
His Pro Gln Pro Tyr Val Val Tyr Ser Pro Val Asp Arg Pro Pro SerHis Pro Gln Pro Tyr Val Val Tyr Ser Pro Val Asp Arg Pro Pro Ser
65 70 75 8065 70 75 80
Asn Asn Pro Phe Glu Ser Val Cys His Met Phe Asn Ser Trp Ser HisAsn Asn Pro Phe Glu Ser Val Cys His Met Phe Asn Ser Trp Ser His
85 90 9585 90 95
Arg Ala Glu Thr Val Ala Arg Asn Val Trp His Asn Leu Lys Thr AlaArg Ala Glu Thr Val Ala Arg Asn Val Trp His Asn Leu Lys Thr Ala
100 105 110100 105 110
Pro Ser Val Ser Glu Ala Ala Trp Gly Lys Leu Asn Met Thr Ala LysPro Ser Val Ser Glu Ala Ala Trp Gly Lys Leu Asn Met Thr Ala Lys
115 120 125115 120 125
Ala Ile Thr Glu Gly Gly Phe Glu Ala Phe Tyr Lys Gln Ile Phe AlaAla Ile Thr Glu Gly Gly Phe Glu Ala Phe Tyr Lys Gln Ile Phe Ala
130 135 140130 135 140
Thr Asp Pro Tyr Glu Lys Leu Lys Lys Thr Tyr Ala Cys Tyr Leu SerThr Asp Pro Tyr Glu Lys Leu Lys Lys Thr Tyr Ala Cys Tyr Leu Ser
145 150 155 160145 150 155 160
Thr Thr Thr Gly Pro Val Ala Gly Thr Leu Tyr Leu Ser Thr Thr LysThr Thr Thr Gly Pro Val Ala Gly Thr Leu Tyr Leu Ser Thr Thr Lys
165 170 175165 170 175
Val Ala Phe Cys Ser Asp Arg Pro Leu Thr Phe Thr Ala Pro Ser GlyVal Ala Phe Cys Ser Asp Arg Pro Leu Thr Phe Thr Ala Pro Ser Gly
180 185 190180 185 190
Gln Glu Ala Trp Ser Tyr Tyr Lys Ile Ala Val Pro Leu Ala Asn IleGln Glu Ala Trp Ser Tyr Tyr Lys Ile Ala Val Pro Leu Ala Asn Ile
195 200 205195 200 205
Ala Ala Val Asn Pro Val Val Met Arg Glu Asn Pro Gln Glu Lys TyrAla Ala Val Asn Pro Val Val Met Arg Glu Asn Pro Gln Glu Lys Tyr
210 215 220210 215 220
Ile Gln Leu Val Thr Val Asp Gly His Asp Phe Trp Phe Met Gly PheIle Gln Leu Val Thr Val Asp Gly His Asp Phe Trp Phe Met Gly Phe
225 230 235 240225 230 235 240
Val Asn Phe Glu Lys Ala Thr His Asn Leu Leu Asp Gly Leu Ser SerVal Asn Phe Glu Lys Ala Thr His Asn Leu Leu Asp Gly Leu Ser Ser
245 250 255245 250 255
Phe Arg Ala Tyr Gly Asn Asn Asn Ala Ala Gly Gln Ser Val Ser GlyPhe Arg Ala Tyr Gly Asn Asn Asn Ala Ala Gly Gln Ser Val Ser Gly
260 265 270260 265 270
His Ala Asn Val Ser Gln Pro Ala Thr Ala AsnHis Ala Asn Val Ser Gln Pro Ala Thr Ala Asn
275 280275 280
<210> 2<210> 2
<211> 852<211> 852
<212> DNA<212> DNA
<213> 甘薯(Ipomoea batatas (L.) Lam.)<213> Sweet potato (Ipomoea batatas (L.) Lam.)
<400> 2<400> 2
atggagccaa aaggagaaga atcagagccc cataaaccct tgtcatcatc ttcttctgaa 60atggagccaa aaggagaaga atcagagccc cataaaccct tgtcatcatc ttcttctgaa 60
tcccaagcac ctgcagaaat ggaccctcag aaatggggaa ctcatgtgat gggtcgtcct 120tcccaagcac ctgcagaaat ggaccctcag aaatggggaa ctcatgtgat gggtcgtcct 120
gcagtcccca ccacccaccc ggataaccag aaggcggcct tgtggaggtc tgaagatcag 180gcagtcccca ccaccacccc ggataaccag aaggcggcct tgtggaggtc tgaagatcag 180
caccaagatt tccaccctca accttacgtc gtctattctc ccgtggatcg gccccccagc 240caccaagatt tccaccctca acctacgtc gtctattctc ccgtggatcg gccccccagc 240
aacaacccct ttgaatcagt gtgccacatg ttcaattctt ggagccatag agctgagact 300aacaacccct ttgaatcagt gtgccacatg ttcaattctt ggagccatag agctgagact 300
gtagctcgta acgtatggca caacttgaaa actgcgccat ctgtatcaga agctgcttgg 360gtagctcgta acgtatggca caacttgaaa actgcgccat ctgtatcaga agctgcttgg 360
ggaaagctga acatgactgc caaggcaata acagaaggtg gatttgaggc attttacaag 420ggaaagctga acatgactgc caaggcaata acagaaggtg gatttgaggc attttacaag 420
caaatctttg caaccgatcc ttatgagaag ctaaagaaga cgtatgcttg ttacctttca 480caaatctttg caaccgatcc ttatgagaag ctaaagaaga cgtatgcttg ttacctttca 480
acaacaaccg gccctgttgc cgggaccctc tatttgtcaa ccaccaaggt tgctttctgc 540acaacaaccg gccctgttgc cgggaccctc tatttgtcaa ccaccaaggt tgctttctgc 540
agtgatcgcc ctttgacctt cacagctcct tctggccagg aggcttggag ctactacaag 600agtgatcgcc ctttgacctt cacagctcct tctggccagg aggcttggag ctactacaag 600
attgcagtac ctttggcaaa tatagcagca gtgaatccgg tggtaatgag agagaatcca 660attgcagtac ctttggcaaa tatagcagca gtgaatccgg tggtaatgag agagaatcca 660
caagagaagt acattcagtt agtgacagtt gatggtcatg acttctggtt catggggttt 720caagagaagt aattcagtt agtgacagtt gatggtcatg acttctggtt catggggttt 720
gtgaattttg agaaagcaac ccataatctc ctagacggct tgtcaagttt tagagcatat 780gtgaattttg agaaagcaac ccataatctc ctagacggct tgtcaagttt tagagcatat 780
ggaaataaca atgcagcagg gcagtctgtt agtggacatg cgaatgtgtc acaacctgct 840ggaaataaca atgcagcagg gcagtctgtt agtggacatg cgaatgtgtc acaacctgct 840
actgctaact ag 852actgctaact ag 852
<210> 3<210> 3
<211> 1736<211> 1736
<212> DNA<212> DNA
<213> 甘薯(Ipomoea batatas (L.) Lam.)<213> Sweet potato (Ipomoea batatas (L.) Lam.)
<400> 3<400> 3
taattaataa ttaaaattga tatatgtatc ttggataaat acgaagtgga tggccggaaa 60taattaataa ttaaaattga tatatgtatc ttggataaat acgaagtgga tggccggaaa 60
acccacacct ggaaacttcg ctatcatcta ttcaacggct ccacttgttg acacataaat 120acccaacacct ggaaacttcg ctatcatcta ttcaacggct ccacttgttg acacataaat 120
taagaaacaa ttactagcaa taataaatta gtaatataac gacgaacctt gttacttcta 180taagaaacaa ttactagcaa taataaatta gtaatataac gacgaacctt gttacttcta 180
cgcgtaatct cacgcttgtt ctagaacgat gctaaggttt ctattctgat cttaccagat 240cgcgtaatct cacgcttgtt ctagaacgat gctaaggttt ctattctgat cttaccagat 240
ttcttttccg gcccaattaa ccttcatctc aaagaaacca tcttcaatta atcctataaa 300ttcttttccg gcccaattaa ccttcatctc aaagaaacca tcttcaatta atcctataaa 300
ttgcagtgtt ccgatcccca tctctatcta tctcaccact tctttaccaa agtatattct 360ttgcagtgtt ccgatcccca tctctatcta tctcaccact tctttaccaa agtatattct 360
tgccttcatt ccaattcaga aagatattcc cataagtccc caaataatgg agccaaaagg 420tgccttcatt ccaattcaga aagatattcc cataagtccc caaataatgg agccaaaagg 420
agaagaatca gagccccata aacccttgtc atcatcttct tctgaatccc aagcacctgc 480agaagaatca gagccccata aacccttgtc atcatcttct tctgaatccc aagcacctgc 480
agaaatggac cctcagaaat ggggaactca tgtgatgggt cgtcctgcag tccccaccac 540agaaatggac cctcagaaat ggggaactca tgtgatgggt cgtcctgcag tccccaccac 540
ccacccagat aaccagaagg ctgccttgtg gaggtctgag gatcattacc aagagttcca 600ccaccccagat aaccagaagg ctgccttgtg gaggtctgag gatcattacc aagagttcca 600
ccctcaacct tacgtcgtct attctcccgt ggatcggccc cccagcaaca acccctttga 660ccctcaacct tacgtcgtct attctcccgt ggatcggccc cccagcaaca acccctttga 660
atcagtgtgc cacatgttca attcttggag ccatagagct gagactgtag ctcgtaacgt 720atcagtgtgc cacatgttca attcttggag ccatagagct gagactgtag ctcgtaacgt 720
atggcacaac ttgaaaactg cgccatctgt atcagaagct gcttggggaa agctgaacat 780atggcacaac ttgaaaactg cgccatctgt atcagaagct gcttggggaa agctgaacat 780
gactgccaag gcaataacag aaggtggatt tgaggcatat tacaagcaaa tctttgcaac 840gactgccaag gcaataacag aaggtggatt tgaggcatat tacaagcaaa tctttgcaac 840
cgatccttat gagaagctaa agaagacgta tgcttgttac ctttcaacaa caaccggccc 900cgatccttat gagaagctaa agaagacgta tgcttgttac ctttcaacaa caaccggccc 900
tgttgccggg accctctatt tgtcaaccac caaggttgct ttctgcagtg atcgcccttt 960tgttgccggg accctctatt tgtcaaccac caaggttgct ttctgcagtg atcgcccttt 960
gaccttcaca gctccttctg gccaggaggc ttggagctac tacaagattg cagtaccttt 1020gaccttcaca gctccttctg gccaggaggc ttggagctac tacaagattg cagtaccttt 1020
ggcaaatata gcagcagtga atccggtggt aatgagagag aatccacaag agaagtacat 1080ggcaaatata gcagcagtga atccggtggt aatgagagag aatccacaag agaagtacat 1080
tcagttagtg acagttgatg gtcatgactt ctggttcatg gggtttgtga attttgagaa 1140tcagttagtg acagttgatg gtcatgactt ctggttcatg gggtttgtga attttgagaa 1140
agcaacccat aatctcctag acggcttgtc aataaatttt agagcatatg gaaataataa 1200agcaacccat aatctcctag acggcttgtc aataaatttt agagcatatg gaaataataa 1200
tgcagcaggg cagtctgtga gtggacatgg gaatgtgtca caacttgcta gtgctaacta 1260tgcagcaggg cagtctgtga gtggacatgg gaatgtgtca caacttgcta gtgctaacta 1260
gcaataaagt agtatttcac cattcaactc ctcttacttg agttgtcttt ctgccatata 1320gcaataaagt agtatttcac cattcaactc ctcttacttg agttgtcttt ctgccatata 1320
cacagttatt gtattacttt gtgtgcttaa ttgcttggag tgtatccatg tatattgtta 1380cacagttat gtattacttt gtgtgcttaa ttgcttggag tgtatccatg tatattgtta 1380
gttgttgttg ttggatgcat tatagatttt tcccttctgg gtatcgagga tgaggttgta 1440gttgttgttg ttggatgcat tatagatttt tcccttctgg gtatcgagga tgaggttgta 1440
ggcaatctgt gtagagaatt ttcaatataa actaaggggg tttcgtacat attctttagc 1500ggcaatctgt gtagagaatt ttcaatataa actaaggggg tttcgtacat attctttagc 1500
ttaataatta cattgtttaa ttcgaagaaa ttacaattcc acggaattgt aacttcttct 1560ttaataatta cattgtttaa ttcgaagaaa ttacaattcc acggaattgt aacttcttct 1560
ttttgttgta ttgaaattca tactttcata tgaattctaa acaatgaagc atggaaaaga 1620ttttgttgta ttgaaattca tactttcata tgaattctaa acaatgaagc atggaaaaga 1620
aaaagagaag agaaagattt gtttatcaat gaagcatgga aaagaaaaag agaagagaaa 1680aaaagagaag agaaagattt gtttatcaat gaagcatgga aaagaaaaag agaagagaaa 1680
gatttgttta tcaatgaagc atggaaaaga aaaagagaag agaaagattt gtttat 1736gatttgttta tcaatgaagc atggaaaaga aaaagagaag agaaagattt gtttat 1736
<210> 4<210> 4
<211> 918<211> 918
<212> DNA<212> DNA
<213> 甘薯(Ipomoea batatas (L.) Lam.)<213> Sweet potato (Ipomoea batatas (L.) Lam.)
<220><220>
<221> misc_feature<221> misc_feature
<222> (555)..(555)<222> (555)..(555)
<223> n is a, c, g, or t<223> n is a, c, g, or t
<400> 4<400> 4
atggagccaa aaggagaaga atcagagccc cataaaccct tgtcagaaat ggaccctcag 60atggagccaa aaggagaaga atcagagccc cataaaccct tgtcagaaat ggaccctcag 60
aaatggggaa ctcatgtgat gggtcgtcct gcagtcccca ccacccaccc ggataaccag 120aaatggggaa ctcatgtgat gggtcgtcct gcagtcccca ccaccccaccc ggataaccag 120
aaggctgcct tgtggaggtc tgaggatcag caccaagatt tccaccctca accttacgtc 180aaggctgcct tgtggaggtc tgaggatcag caccaagatt tccaccctca accttacgtc 180
gtctattctc ccgtggatcg gccccccagc aacaacccct ttgaatcagt gtgccacatg 240gtctattctc ccgtggatcg gccccccagc aacaacccct ttgaatcagt gtgccacatg 240
ttcaattctt ggagccatag agctgagacc gtagctcgta acgtatggca caactcacaa 300ttcaattctt ggagccatag agctgagacc gtagctcgta acgtatggca caactcacaa 300
gagtcaatat tgactccact aaggctcgaa accaccaccc ctcttgaagc acaagagtcg 360gagtcaatat tgactccact aaggctcgaa accacaccc ctcttgaagc acaagagtcg 360
gtattgtctt cactgaggct ccacctcccg tataaaggaa aggtgaaaac tgcgccatcc 420gtattgtctt cactgaggct ccacctcccg tataaaggaa aggtgaaaac tgcgccatcc 420
gtatcagaag ctgcttgggg aaagctgaac atgactgcca aggcaataac agaaggtgga 480gtatcagaag ctgcttgggg aaagctgaac atgactgcca aggcaataac agaaggtgga 480
tttgaggcat attacaagca aatctttgca accgatccta atgagaagct aaagaagacc 540tttgaggcat attacaagca aatctttgca accgatccta atgagaagct aaagaagacc 540
tccttctggc caggnggccc tgttgccggg accctctatt tgtcaaccac caaggttgct 600tccttctggc caggnggccc tgttgccggg accctctatt tgtcaaccac caaggttgct 600
ttctgcagtg atcgcccttt gaccttcaca gctccttctg gccaggaggc ttggagctac 660ttctgcagtg atcgcccttt gaccttcaca gctccttctg gccaggaggc ttggagctac 660
tacaagattg cagtaccttt ggcaaatata gcagcagtga atccggtggt aatgagagag 720tacaagattg cagtaccttt ggcaaatata gcagcagtga atccggtggt aatgagagag 720
aatccacaag agaagtacat tcagatagtg acagttgatg gtcatgactt ctggttcatg 780aatccacaag agaagtacat tcagatagtg acagttgatg gtcatgactt ctggttcatg 780
gggtttgtga attttgataa agcaacccat aatctcctag acggcttgtc aaattttaga 840gggtttgtga attttgataa agcaacccat aatctcctag acggcttgtc aaattttaga 840
gcatatggaa ataataatgc agcagggcat tctgtgagtg gacatgcgaa tgtgtcacaa 900gcatatggaa ataataatgc agcagggcat tctgtgagtg gacatgcgaa tgtgtcacaa 900
cctgctactg ctaactag 918cctgctactg ctaactag 918
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210581770.4A CN115197307B (en) | 2022-05-26 | 2022-05-26 | Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210581770.4A CN115197307B (en) | 2022-05-26 | 2022-05-26 | Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115197307A CN115197307A (en) | 2022-10-18 |
| CN115197307B true CN115197307B (en) | 2023-05-16 |
Family
ID=83575982
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210581770.4A Active CN115197307B (en) | 2022-05-26 | 2022-05-26 | Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115197307B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101775070A (en) * | 2010-01-14 | 2010-07-14 | 中国农业科学院生物技术研究所 | Plant stress tolerance correlative protein, encoding gene and application thereof |
| AU2012244180A1 (en) * | 2004-09-24 | 2012-11-15 | Basf Plant Science Gmbh | Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress |
| CN108948164A (en) * | 2018-08-01 | 2018-12-07 | 中国农业大学 | Sweet potato salt-tolerant drought-resistant GAP-associated protein GAP IbbZIP1 and its encoding gene and application |
| CN109306000A (en) * | 2017-07-28 | 2019-02-05 | 中国农业大学 | Anti-stress related protein IbBBX24 and its encoding gene and application |
| CN111218455A (en) * | 2020-02-18 | 2020-06-02 | 中国农业大学 | IbAITR5 gene from sweet potato and its encoded protein and application |
| CN114014922A (en) * | 2022-01-05 | 2022-02-08 | 北京市农林科学院 | Proteins regulating plant salt tolerance and their encoding genes and their applications |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101416506B1 (en) * | 2012-08-10 | 2014-07-09 | 연세대학교 산학협력단 | Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof |
-
2022
- 2022-05-26 CN CN202210581770.4A patent/CN115197307B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012244180A1 (en) * | 2004-09-24 | 2012-11-15 | Basf Plant Science Gmbh | Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress |
| CN101775070A (en) * | 2010-01-14 | 2010-07-14 | 中国农业科学院生物技术研究所 | Plant stress tolerance correlative protein, encoding gene and application thereof |
| CN109306000A (en) * | 2017-07-28 | 2019-02-05 | 中国农业大学 | Anti-stress related protein IbBBX24 and its encoding gene and application |
| CN108948164A (en) * | 2018-08-01 | 2018-12-07 | 中国农业大学 | Sweet potato salt-tolerant drought-resistant GAP-associated protein GAP IbbZIP1 and its encoding gene and application |
| CN111218455A (en) * | 2020-02-18 | 2020-06-02 | 中国农业大学 | IbAITR5 gene from sweet potato and its encoded protein and application |
| CN114014922A (en) * | 2022-01-05 | 2022-02-08 | 北京市农林科学院 | Proteins regulating plant salt tolerance and their encoding genes and their applications |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115197307A (en) | 2022-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110256544B (en) | Application of NsNHX1 protein and its related biomaterials in cultivating stress-tolerant poplar | |
| CN107383179B (en) | A protein GsSLAH3 related to plant stress tolerance and its coding gene and application | |
| CN116514941B (en) | MsRGP1 protein, its encoding gene and its application in improving plant drought resistance and salt tolerance | |
| CN114369147B (en) | Application of BFNE gene in tomato plant type improvement and biological yield improvement | |
| CN116120416A (en) | Application of SlWRKY57 Gene and Its Encoded Protein in Regulation of Tomato Salt Tolerance | |
| CN116515888A (en) | Application of GmMTAs Proteins in Regulating Soybean Plant High School | |
| CN111218470A (en) | A method for regulating plant stress resistance | |
| CN113563442A (en) | Drought-resistant related protein IbSPB1 and coding gene and application thereof | |
| CN115073573B (en) | Sweet potato stress resistance related protein IbNAC087 and its coding gene and application | |
| CN112457380A (en) | Protein for regulating and controlling content of fruit shape and/or fruit juice of plant, related biological material and application thereof | |
| CN115160422B (en) | Salt-tolerant drought-resistant related protein IbMYB44 of sweet potato, and coding gene and application thereof | |
| CN110218247A (en) | Two kinds of interactions between protein collaborations of PwRBP1 and PwNAC1 improve plant stress tolerance and its application | |
| CN106749580B (en) | Plant salt tolerance-related protein TaPUB15-D and its encoding gene and application | |
| CN118910143A (en) | Application of protein GmPLATZ and coding gene thereof in regulation and control of salt tolerance of plants | |
| CN115215931B (en) | Use of protein IbC H18 related to vine cutting disease and soft rot disease or substance for regulating and controlling expression of protein IbC H18 | |
| CN115786358B (en) | Drought-resistant related protein IbbHLH118,118, and coding gene and application thereof | |
| CN117625684A (en) | Application of SmWRKY33 protein of red sage root and its coding gene in regulating and controlling salt tolerance of plant | |
| CN115197307B (en) | Protein IbGER5 for regulating stress resistance of plants, coding gene and application thereof | |
| CN113481210B (en) | Application of cotton GhDof1.7 gene in promoting plant salt tolerance | |
| CN114539373A (en) | IbPIF1 related to sweet potato stem nematode resistance as well as encoding gene and application thereof | |
| CN114478730A (en) | Wheat TaVQ14 protein and coding gene and application thereof | |
| CN110628807B (en) | Salicornia saliva SePSS protein and its encoding gene and application | |
| CN114591927B (en) | Sweet potato tuber tendon development-related protein IbPRX17 and its coding gene and application | |
| CN114805520B (en) | Stress resistance related protein IbGT1, encoding gene and application thereof | |
| CN114524868B (en) | Sweet potato leaf development and flavonoid enhancement related protein IbBBX29 and its coding gene and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |