CN115192092B - Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo - Google Patents
Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo Download PDFInfo
- Publication number
- CN115192092B CN115192092B CN202210779466.0A CN202210779466A CN115192092B CN 115192092 B CN115192092 B CN 115192092B CN 202210779466 A CN202210779466 A CN 202210779466A CN 115192092 B CN115192092 B CN 115192092B
- Authority
- CN
- China
- Prior art keywords
- target
- controller
- sampling
- control
- collision avoidance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 title claims abstract description 130
- 238000001574 biopsy Methods 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000001727 in vivo Methods 0.000 title claims abstract description 15
- 230000004927 fusion Effects 0.000 claims abstract description 28
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000003902 lesion Effects 0.000 claims description 79
- 230000006870 function Effects 0.000 claims description 68
- 238000011156 evaluation Methods 0.000 claims description 42
- 239000011159 matrix material Substances 0.000 claims description 27
- 230000001186 cumulative effect Effects 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 11
- 229940066220 doctor's choice Drugs 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000002357 laparoscopic surgery Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/06—Biopsy forceps, e.g. with cup-shaped jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/04—Endoscopic instruments, e.g. catheter-type instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/107—Visualisation of planned trajectories or target regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biodiversity & Conservation Biology (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及活检组织学诊断技术领域,具体涉及一种面向体内柔性动态环境的机器人自主活检取样方法、系统、存储介质和电子设备。The present invention relates to the technical field of biopsy histological diagnosis, and in particular to a robot autonomous biopsy sampling method, system, storage medium and electronic equipment for a flexible dynamic environment in vivo.
背景技术Background Art
活检组织学诊断在临床疾病确诊、病变评估等方面有重要作用,能及时发现器官局部病变,使患者得到早期治疗。目前,临床上活检方式主要是将取样器随腔镜伸入患者体内指定位置,夹取该区域的病灶点细胞。Biopsy histological diagnosis plays an important role in clinical disease diagnosis and lesion assessment. It can timely detect local organ lesions and enable patients to receive early treatment. At present, the main method of clinical biopsy is to insert the sampler with the laparoscope into the designated position of the patient's body to clamp the lesion cells in the area.
目前,传统的活检取样都是由外科医生根据术前影像或者术中腔镜影像确定特定时刻固定位置的深度信息。然而在整个操作过程中,取样区域是会随时间动态变化,重复的定位校对不仅影响活检取样的效率和也影响取样的精准度。另外,活检取样的操作时长及取样的精准度依赖外科医生的经验及操作水平,因操作失误的重复取样以及因取样偏差造成的漏诊,对患者的伤害都是不可逆的。At present, traditional biopsy sampling is done by surgeons who determine the depth information of a fixed position at a specific moment based on preoperative images or intraoperative laparoscopic images. However, during the entire operation, the sampling area will change dynamically over time, and repeated positioning and calibration will not only affect the efficiency of biopsy sampling but also the accuracy of sampling. In addition, the operation time and accuracy of biopsy sampling depend on the surgeon's experience and operation level. Repeated sampling due to operational errors and missed diagnosis due to sampling deviations are irreversible harm to patients.
鉴于此,有必要提供一种能够保证取样质量和效率的机器人自主活检取样方案。In view of this, it is necessary to provide a robotic autonomous biopsy sampling solution that can ensure sampling quality and efficiency.
发明内容Summary of the invention
(一)解决的技术问题1. Technical issues to be solved
针对现有技术的不足,本发明提供了一种面向体内柔性动态环境的机器人自主活检取样方法、系统、存储介质和电子设备,解决了无法保证取样质量和效率的技术问题。In view of the deficiencies in the prior art, the present invention provides a robotic autonomous biopsy sampling method, system, storage medium and electronic device for a flexible dynamic environment in the body, which solves the technical problem of being unable to guarantee sampling quality and efficiency.
(二)技术方案(II) Technical solution
为实现以上目的,本发明通过以下技术方案予以实现:To achieve the above objectives, the present invention is implemented through the following technical solutions:
一种面向体内柔性动态环境的机器人自主活检取样方法,包括:A robotic autonomous biopsy sampling method for an in vivo flexible dynamic environment, comprising:
S1、读取腹腔镜图像,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;S1, read the laparoscopic image, mark the lesion point and collision avoidance area to be sampled on the image frame according to the doctor's choice, and locate them on the three-dimensional image;
S2、分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;S2, respectively converting the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps into the robot base coordinate system;
S3、采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;其中多目标包括从初始位置到目标点规划路径跟踪、目标点跟踪和碰撞规避;S3, using a multi-target motion fusion control method to control the end of the biopsy forceps to move from the initial position to the lesion point; the multi-target includes path tracking from the initial position to the target point, target point tracking and collision avoidance;
S4、接近病灶点位置后,停止移动活检钳末端并打开活检钳,获取活检钳末端与组织的接触力,完成夹持取样操作;S4. After approaching the lesion, stop moving the end of the biopsy forceps and open the biopsy forceps to obtain the contact force between the end of the biopsy forceps and the tissue, and complete the clamping and sampling operation;
S5、再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。S5. The multi-target motion fusion control method is used again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position.
优选的,所述S1包括:Preferably, the S1 comprises:
S11、读取腹腔镜图像,根据医生的选择在初始图像帧上标记待取样的病灶点xp0和碰撞规避区域Ad;S11, reading the laparoscopic image, and marking the lesion point xp 0 to be sampled and the collision avoidance area Ad on the initial image frame according to the doctor's choice;
S12、分别在病灶点和碰撞规避区域附近,标出若干个关键特征点Px和Pa,并分别以病灶点和碰撞规避区域为中心确定大小为L×L的区域;S12, mark several key feature points Px and Pa near the lesion point and the collision avoidance area, and determine an area of size L×L with the lesion point and the collision avoidance area as the center respectively;
S13、对腹腔镜图像进行深度估计,得到与内窥镜图像相对应的深度图像;从深度图像和内窥镜图像中获得每个像素点的空间信息和颜色信息构建三维点云;S13, performing depth estimation on the laparoscopic image to obtain a depth image corresponding to the endoscopic image; obtaining spatial information and color information of each pixel from the depth image and the endoscopic image to construct a three-dimensional point cloud;
S14、通过特征提取和匹配,对连续的三维点云进行配准,得到坐标变换参数旋转矩阵R和平移向量t,把源点云转换到目标点云同一坐标系下;S14, registering the continuous three-dimensional point clouds through feature extraction and matching, obtaining the coordinate transformation parameter rotation matrix R and translation vector t, and transforming the source point cloud to the same coordinate system as the target point cloud;
S15、利用光流法对相邻两帧图像进行病灶点和碰撞规避区域的特征匹配,利用病灶点和碰撞规避区域点对的像素坐标的平均差值获取两帧间的移动方向和距离,获取随时间变化的病灶点腔镜视像位置xpc(t)以及碰撞规避区域腔镜视像位置Adc(t)。S15. Use the optical flow method to perform feature matching of the lesion point and the collision avoidance area for two adjacent image frames, use the average difference in pixel coordinates of the lesion point and the collision avoidance area point pair to obtain the moving direction and distance between the two frames, and obtain the laparoscope video position xp c (t) of the lesion point and the laparoscope video position Ad c (t) of the collision avoidance area that change with time.
优选的,所述S2包括:Preferably, S2 includes:
S21、通过光学定位仪,测算腹腔镜与机器人坐标系的空间坐标转换矩阵将病灶点的腔镜视像三维坐标xpc(t)转换到取样机器人基座标系下,获取病灶点在机器人坐标系下的三维位姿xpr(t),以及将碰撞规避区域的腔镜视像三维坐标Adc(t))转换到取样机器人基座标系下,获取病灶点在机器人坐标系下的三维位姿Adr(t);S21. Calculate the spatial coordinate transformation matrix between the laparoscope and the robot coordinate system through the optical locator The laparoscope image three-dimensional coordinates xp c (t) of the lesion point are converted to the sampling robot base coordinate system to obtain the three-dimensional position xp r (t) of the lesion point in the robot coordinate system, and the laparoscope image three-dimensional coordinates Ad c (t) of the collision avoidance area are converted to the sampling robot base coordinate system to obtain the three-dimensional position Ad r (t) of the lesion point in the robot coordinate system;
S22、根据多自由度活检钳末端到机器人末端的坐标转换矩阵获取多自由度活检钳末端初始时刻ts在机器人基座标系的三维位姿xbr(ts);S22, based on the coordinate transformation matrix from the end of the multi-degree-of-freedom biopsy forceps to the end of the robot Obtain the three-dimensional position xbr ( ts ) of the end of the multi-degree-of-freedom biopsy forceps at the initial time ts in the robot base coordinate system;
其中,xrr(ts)为机械臂末端初始时刻ts在机器人基座标系的三维位姿;Among them, xr r (t s ) is the three-dimensional pose of the end of the manipulator at the initial time t s in the robot base coordinate system;
依据病灶点的空间位置,设置固定的RCM点xm,在RCM点约束下,限制机器人自主取样过程的姿态为qt;According to the spatial position of the lesion, a fixed RCM point xm is set. Under the constraint of the RCM point, the posture of the robot in the autonomous sampling process is limited to qt ;
Yt=Zt×Xt-1 Yt = Zt × Xt-1
qt=[Xt Yt Zt]q t = [X t Y t Z t ]
其中,xb(t)为活检钳末端移动的位置,Xt表示姿态矩阵的X轴向量,Yt表示姿态矩阵的Y轴向量,Zt表示姿态矩阵的Z轴向量,xb(ts)为xbr(ts)的初始时刻ts的位置向量。Among them, xb(t) is the position of the end of the biopsy forceps, Xt represents the X-axis vector of the posture matrix, Yt represents the Y-axis vector of the posture matrix, Zt represents the Z-axis vector of the posture matrix, and xb( ts ) is the position vector of xbr ( ts ) at the initial time ts .
优选的,所述S3包括:Preferably, S3 includes:
S31、构建总体线性控制系统并建立状态方程,针对腹腔镜手术场景下的各个目标实现需求,分别设计目标控制器;所述目标控制器包括规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器;S31, constructing an overall linear control system and establishing a state equation, and designing target controllers for each target realization requirement in a laparoscopic surgery scenario; the target controllers include a planning path tracking controller, a target guidance controller, and a collision avoidance controller;
S32、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立对应的运动控制预测模型以及目标评价函数,在当前时刻的系统运动状态基础上估计未来一段预测时间区间的运动状态,并计算相应的目标评价函数累计值;S32, establishing corresponding motion control prediction models and target evaluation functions for the planned path tracking controller, the target guidance controller, and the collision avoidance controller, respectively, estimating the motion state of a future prediction time interval based on the system motion state at the current moment, and calculating the corresponding target evaluation function cumulative value;
S33、分别计算各个控制器目标评价函数累计值在当前时刻的目标梯度;并根据预设的权重函数,按照权重层次序列由低到高依次嵌套融合各个控制器对应的目标梯度值,并将其加入系统总的控制输入中;S33, respectively calculating the target gradient of the cumulative value of the target evaluation function of each controller at the current moment; and according to the preset weight function, nesting and fusing the target gradient values corresponding to each controller in sequence from low to high according to the weight hierarchy sequence, and adding them to the total control input of the system;
S34、将融合后的位置输出转换为手术机器人的关节角,实现机器人从初始位置向病灶点位置移动过程中的自主切割操作。S34, converting the fused position output into the joint angle of the surgical robot to realize the autonomous cutting operation when the robot moves from the initial position to the lesion point.
优选的,所述S31包括:Preferably, the S31 includes:
S311、构建总体线性控制系统并建立状态方程;S311. Construct an overall linear control system and establish the state equation;
y(t)=Cx(t)+Du(t)y(t)=Cx(t)+Du(t)
其中,x(t)为系统t时刻的运动状态,为系统t时刻的运动速度,u(t)为t时刻的系统总的控制输入,y(t)为t时刻的系统总的控制输出,A、B、C、D为状态方程的计算参数;Among them, x(t) is the motion state of the system at time t, is the motion speed of the system at time t, u(t) is the total control input of the system at time t, y(t) is the total control output of the system at time t, A, B, C, D are the calculation parameters of the state equation;
S312、针对腹腔镜手术场景下的各个目标实现需求,分别设计目标控制器;S312. Design target controllers for each target realization requirement in the laparoscopic surgery scenario;
ui(t)=f(y(t),ri(t))u i (t) = f (y (t), r i (t))
其中,ui(t)为控制器i的控制输入,是t时刻系统总的控制输出与期望控制目标的函数,ri(t)为控制目标t时刻的期望值。Among them, ui (t) is the control input of controller i, which is a function of the total control output of the system at time t and the expected control target, and ri (t) is the expected value of the control target at time t.
所述目标控制器包括规划路径跟踪控制器、目标引导控制器、切割深度限制控制器以及碰撞规避控制器;The target controller includes a planning path tracking controller, a target guidance controller, a cutting depth limit controller and a collision avoidance controller;
其中,针对规划路径跟踪控制设置控制器:Among them, the controller is set for the planned path tracking control:
es(t)=rs(t)-y(t)e s (t) = r s (t) - y (t)
rs(t)=ψ(xb(ts),xp(t))r s (t) = ψ (xb (t s ), xp (t))
其中,us(t)为规划路径跟踪控制器的输入,为规划路径跟踪控制器PD控制的比例系数和微分系数,rs(t)为t时刻规划路径跟踪控制器的期望状态,es(t)为规划路径跟踪控制器所控制对象期望位置与系统总的控制输出的偏差;Where u s (t) is the input of the planning path tracking controller, are the proportional coefficient and differential coefficient of the planned path tracking controller PD control, rs (t) is the expected state of the planned path tracking controller at time t, and es (t) is the deviation between the expected position of the object controlled by the planned path tracking controller and the total control output of the system;
针对目标引导控制器:To boot the controller against the target:
ro(t)=xp(t)r o (t) = x p (t)
其中,uo(t)为目标引导控制器的输入,为目标引导控制器PD控制的比例系数和微分系数,ro(t)为目标点的位置,eo(t)为目标引导控制器所控制对象向目标靠近的速度,tf为目标引导控制器期望完成切割任务的时间;Where u o (t) is the input of the target guidance controller, are the proportional coefficient and differential coefficient controlled by the target guidance controller PD, r o (t) is the position of the target point, e o (t) is the speed at which the object controlled by the target guidance controller approaches the target, and t f is the time the target guidance controller expects to complete the cutting task;
针对碰撞规避控制设置控制器:Set up the controller for collision avoidance control:
cd(t)=‖y(t)-ra(t)‖cd(t)=‖y(t) -ra (t)‖
ra(t)=H(Ad(t)) ra (t)=H(Ad(t))
其中,ua(t)为碰撞规避控制器的输入,为碰撞规避控制器PD控制的比例系数和微分系数,ra(t)为t时刻障碍物Ad(t)中心点的位置,R为以障碍物中心点为球体碰撞检测区域的半径,r为以障碍物中心点为球体碰撞规避区域的半径,cd(t)为系统总的控制输出与障碍物中心点的距离,ε为很小的常数;Where ua (t) is the input of the collision avoidance controller, are the proportional coefficient and differential coefficient of the collision avoidance controller PD, ra (t) is the position of the center point of the obstacle Ad(t) at time t, R is the radius of the spherical collision detection area with the center point of the obstacle as the radius, r is the radius of the spherical collision avoidance area with the center point of the obstacle as the radius, cd(t) is the distance between the total control output of the system and the center point of the obstacle, and ε is a very small constant;
优选的,所述S32包括:Preferably, the S32 includes:
S321、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立对应的运动控制预测模型;S321, establishing corresponding motion control prediction models for the planned path tracking controller, the target guidance controller, and the collision avoidance controller respectively;
其中,为预测区间内t时刻控制器i的预测运动状态,为预测区间内t时刻控制器i的预测运动速度,为预测区间内t时刻控制目标i的预测控制输出;in, is the predicted motion state of controller i at time t within the prediction interval, is the predicted motion speed of controller i at time t within the prediction interval, is the predicted control output of the control target i at time t within the prediction interval;
S322、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立目标评价函数,结合对应的所述运动控制预测模型,在当前时刻t0的系统运动状态基础上估计未来一段预测时间区间的运动状态,并计算相应的目标评价函数累计值;S322, establishing target evaluation functions for the planned path tracking controller, the target guidance controller, and the collision avoidance controller, respectively, and estimating the motion state of a future prediction time interval based on the system motion state at the current time t0 in combination with the corresponding motion control prediction model, and calculating the corresponding target evaluation function cumulative value;
其中,Ji(t0)为第i个控制器t0时刻的目标函数累计值,Gi为第i个控制器预测区间t0到t0+T内单时刻点的目标评价函数值,T为预测时间区间;Where, Ji (t 0 ) is the cumulative value of the objective function of the i-th controller at time t 0 , Gi is the target evaluation function value of the i-th controller at a single time point in the prediction interval from t 0 to t 0 +T, and T is the prediction time interval;
其中,所述S322中:Among them, in said S322:
针对规划路径跟踪控制目标建立目标评价函数,评估规划路径跟踪控制器在预测区间内的有效性;Establish a target evaluation function for the planned path tracking control objective to evaluate the effectiveness of the planned path tracking controller within the prediction interval;
其中,Js(t0)是规划路径跟踪控制器t0时刻的目标函数值,Gs是规划路径跟踪控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻规划路径跟踪控制目标的预测控制输出;Where, Js ( t0 ) is the objective function value of the planned path tracking controller at time t0 , Gs is the objective evaluation function value of the planned path tracking controller at a single time point in the prediction interval t0 to t0 +T, is the predicted control output of the planned path tracking control target at time t within the prediction interval;
针对目标引导控制目标建立目标评价函数,评估目标引导控制器在预测区间内的有效性;A target evaluation function is established for the target guidance control objective to evaluate the effectiveness of the target guidance controller within the prediction interval;
其中,Jo(t0)是目标引导控制器t0时刻的目标函数值,Go是目标引导控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻目标引导控制目标的预测控制输出;Where, J o (t 0 ) is the objective function value of the target guidance controller at time t 0 , and G o is the target evaluation function value of the target guidance controller at a single time point in the prediction interval t 0 to t 0 +T. is the predicted control output of the target-guided control target at time t within the prediction interval;
针对碰撞规避控制目标建立目标评价函数,评估碰撞规避控制器在预测区间内的有效性;Establish a target evaluation function for the collision avoidance control objective to evaluate the effectiveness of the collision avoidance controller within the prediction interval;
其中,Ja(t0)是碰撞规避控制器t0时刻的目标函数值,Ga是碰撞规避控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻碰撞规避控制目标的预测控制输出,rz为很小的常数。Where, Ja ( t0 ) is the objective function value of the collision avoidance controller at time t0 , Ga is the objective evaluation function value of the collision avoidance controller at a single time point in the prediction interval t0 to t0 +T, is the predicted control output of the collision avoidance control target at time t within the prediction interval, and rz is a very small constant.
优选的,所述S33包括:Preferably, the S33 includes:
S331、通过优化的方式,分别计算各个控制器目标评价函数在当前状态t0时刻的下降梯度;S331, calculating the descent gradient of each controller objective evaluation function at the current state t 0 respectively by optimization;
其中,gs(t0)、go(t0)、ga(t0)分别是规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器t0时刻的目标评价函数下降梯度;Among them, gs ( t0 ), go ( t0 ), ga ( t0 ) are the target evaluation function descent gradients of the planned path tracking controller, target guidance controller and collision avoidance controller at time t0 respectively;
S332、输入各个控制目标的参数以及控制目标的重要程度,将控制器按目标的重要程度排序确定各个控制器的优先级;S332, inputting the parameters of each control target and the importance of the control target, and sorting the controllers according to the importance of the target to determine the priority of each controller;
M=[gs,go,ga]M=[ gs , g0 , ga ]
其中,M是目标控制器的权重层次序列;Where M is the weight hierarchy sequence of the target controller;
S333、按权重层次由低到高依次嵌套计算融合后的目标梯度值,获取3个控制器嵌套融合后的目标梯度值;S333, nesting and calculating the fused target gradient value in order from low to high weight levels, and obtaining the target gradient value after nesting and fusion of the three controllers;
其中,是关于梯度g的归一化函数,α表示分层参数,wL(t0)是3个控制器嵌套融合后的目标梯度值;in, is the normalized function of the gradient g, α represents the layering parameter, and w L (t 0 ) is the target gradient value after the three controllers are nested and fused;
S334、将嵌套融合后的目标梯度值加总到融合后的控制器中,由此实现多种不同目标运动控制器的运动融合;S334, summing the target gradient values after nested fusion to the fused controller, thereby achieving motion fusion of multiple different target motion controllers;
u(t)=us(t)+uo(t)+ua(t)-KwL(t)u(t)=u s (t)+u o (t)+u a (t)-Kw L (t)
其中,K为比例系数。Among them, K is the proportionality coefficient.
优选的,所述S34中将融合后的位置输出转换为手术机器人的关节角具体是指:Preferably, converting the fused position output into the joint angle of the surgical robot in S34 specifically refers to:
xb(t)=y(t)xb(t)=y(t)
θ(t)=ζ(q(t))θ(t)=ζ(q(t))
其中,函数ζ表示将姿态旋转矩阵转换为笛卡坐标系下的欧拉角,θ(t)为笛卡坐标系下的欧拉角,为欧拉角变化的速度,为机器人关节角的转动速度,J-1(Θ)为雅可比矩阵。Among them, the function ζ represents the conversion of the attitude rotation matrix into the Euler angle in the Cartesian coordinate system, θ(t) is the Euler angle in the Cartesian coordinate system, is the speed of change of Euler angles, is the rotation speed of the robot joint angle, and J -1 (Θ) is the Jacobian matrix.
优选的,所述S4包括:Preferably, S4 includes:
接近病灶点位置后打开活检钳,启动机器人自主取样控制器,沿qt方向给定活检钳v0恒定速度,接近病灶点区域,当力传感器检测到力时,活检钳开始减速;在活检钳接触到病灶区域表面时,力传感器测得活检钳接触组织表面的力fd(t),采用PID控制的方式,使活检钳开始减速,直到力传感器获得期望稳定的fe时停止;After approaching the lesion, the biopsy forceps are opened, the robot autonomous sampling controller is started, and a constant speed of v 0 of the biopsy forceps is given in the direction of q t. When the force sensor detects the force, the biopsy forceps starts to decelerate when approaching the lesion area. When the biopsy forceps touches the surface of the lesion area, the force sensor measures the force f d (t) of the biopsy forceps contacting the tissue surface, and the PID control method is used to make the biopsy forceps start to decelerate until the force sensor obtains the expected stable fe and stops.
所述自主取样控制系统是指:The autonomous sampling control system refers to:
yf(t)=Cfxf(t)+Dfuf(t)y f (t)=C f x f (t)+D f u f (t)
e(t)=fe-fd(t)e(t)= fe - fd (t)
其中,是自主取样控制系统的速度,xf(t)是自主取样控制系统的状态,uf(t)是自主取样控制系统的控制输入,yf(t)是自主取样控制系统的控制输出,Af、Bf、Cf和Df是该控制系统的状态方程参数,uf是系统的控制输入,e(t)为期望力与实际检测力的误差,kp、ki和kd为系统的PID参数。in, is the speed of the autonomous sampling control system, xf (t) is the state of the autonomous sampling control system, uf (t) is the control input of the autonomous sampling control system, yf (t) is the control output of the autonomous sampling control system, Af , Bf , Cf and Df are the state equation parameters of the control system, uf is the control input of the system, e(t) is the error between the expected force and the actual detected force, kp , ki and kd are the PID parameters of the system.
将控制器求得的运动速度输出和姿态变化的速度转换为机器人的关节角,实现机器人自主取样:The motion speed output and posture change speed obtained by the controller are converted into the joint angles of the robot to realize autonomous sampling of the robot:
xb(t)=yf(t)xb(t)= yf (t)
θ(t)=ζ(q(t))θ(t)=ζ(q(t))
其中,为机器人关节角的转动速度,J-1(Θ)为雅可比矩阵。in, is the rotation speed of the robot joint angle, and J -1 (Θ) is the Jacobian matrix.
一种面向体内柔性动态环境的机器人自主活检取样系统,包括:A robotic autonomous biopsy sampling system for flexible dynamic environments in vivo, comprising:
标记模块,用于读取腹腔镜图像,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;The marking module is used to read the laparoscopic image, mark the lesion points and collision avoidance areas to be sampled on the image frame according to the doctor's choice, and locate them on the three-dimensional image;
转换模块,用于分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;A conversion module, used to convert the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps into the robot base coordinate system;
移动模块,用于采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;其中多目标包括从初始位置到目标点规划路径跟踪、目标点跟踪和碰撞规避;A mobile module is used to control the end of the biopsy forceps to move from the initial position to the lesion point using a multi-target motion fusion control method; the multi-target includes path tracking, target point tracking and collision avoidance from the initial position to the target point;
取样模块,用于到达病灶点位置附近后,根据预设的自主取样控制系统,获取活检钳末端与组织的接触力,完成夹持取样操作;The sampling module is used to obtain the contact force between the end of the biopsy forceps and the tissue after reaching the vicinity of the lesion point according to the preset autonomous sampling control system to complete the clamping sampling operation;
返回模块,用于再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。The return module is used to use the multi-objective motion fusion control method again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position.
一种存储介质,其存储有用于面向体内柔性动态环境的机器人自主活检取样的计算机程序,其中,所述计算机程序使得计算机执行如上所述的机器人自主活检取样方法。A storage medium stores a computer program for robotic autonomous biopsy sampling in a flexible dynamic environment in vivo, wherein the computer program enables a computer to execute the robotic autonomous biopsy sampling method as described above.
一种电子设备,包括:An electronic device, comprising:
一个或多个处理器;one or more processors;
存储器;以及Memory; and
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行如上所述的机器人自主活检取样方法。One or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the programs including instructions for performing the robotic autonomous biopsy sampling method as described above.
(三)有益效果(III) Beneficial effects
本发明提供了一种面向体内柔性动态环境的机器人自主活检取样方法、系统、存储介质和电子设备。与现有技术相比,具备以下有益效果:The present invention provides a robot autonomous biopsy sampling method, system, storage medium and electronic device for flexible dynamic environment in vivo. Compared with the prior art, it has the following beneficial effects:
本发明中,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;到达病灶点位置附近后,根据预设的自主取样控制系统,获取活检钳末端与组织的接触力,完成夹持取样操作;再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。不仅能实现医生标记的取样点三维动态追踪,而且能实现取样过程的自主化,缩短取样时间,提高取样的质量和效率。In the present invention, the lesion point and the collision avoidance area to be sampled are marked on the image frame according to the doctor's choice, and positioned on the three-dimensional image; the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps are respectively converted to the robot base coordinate system; a multi-target motion fusion control method is adopted to control the end of the biopsy forceps to move from the initial position to the lesion point position; after reaching the vicinity of the lesion point position, the contact force between the end of the biopsy forceps and the tissue is obtained according to the preset autonomous sampling control system to complete the clamping sampling operation; the multi-target motion fusion control method is adopted again to control the end of the multi-degree-of-freedom biopsy forceps to return to the initial position from the sampling end position. Not only can the three-dimensional dynamic tracking of the sampling point marked by the doctor be realized, but also the autonomy of the sampling process can be realized, the sampling time can be shortened, and the quality and efficiency of sampling can be improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例提供的一种面向体内柔性动态环境的机器人自主活检取样方法的流程示意图。FIG1 is a schematic flow chart of a method for autonomous biopsy sampling by a robot in a flexible dynamic environment in vivo provided by an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention are clearly and completely described. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
本申请实施例通过提供一种面向体内柔性动态环境的机器人自主活检取样方法、系统、存储介质和电子设备,解决了无法保证取样质量和效率的技术问题。The embodiments of the present application solve the technical problem of being unable to guarantee sampling quality and efficiency by providing a robotic autonomous biopsy sampling method, system, storage medium and electronic device for a flexible dynamic environment in the body.
本申请实施例中的技术方案为解决上述技术问题,总体思路如下:The technical solution in the embodiment of the present application is to solve the above technical problems, and the overall idea is as follows:
针对现有活检取样点不能随影像动态更新以及取样效果与医生经验高度相关的不足,构建了一套面向体内柔性动态环境的机器人自主活检取样方法,不仅能实现医生标记的取样点三维动态追踪,而且能实现取样过程的自主化,缩短取样时间,提高取样的质量和效率。In view of the shortcomings of existing biopsy sampling points that cannot be dynamically updated with images and the sampling effect is highly related to the doctor's experience, a robotic autonomous biopsy sampling method for flexible dynamic environments in the body was constructed. It can not only achieve three-dimensional dynamic tracking of the sampling points marked by the doctor, but also realize the autonomy of the sampling process, shorten the sampling time, and improve the quality and efficiency of sampling.
具体而言,本发明实施例中,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;到达病灶点位置附近后,根据预设的自主取样控制系统,获取活检钳末端与组织的接触力,完成夹持取样操作;再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。Specifically, in an embodiment of the present invention, the lesion point and the collision avoidance area to be sampled are marked on the image frame according to the doctor's choice and positioned on the three-dimensional image; the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, as well as the three-dimensional position of the multi-degree-of-freedom biopsy forceps end are respectively converted to the robot base coordinate system; a multi-target motion fusion control method is used to control the end of the biopsy forceps to move from the initial position to the lesion point position; after reaching the vicinity of the lesion point position, the contact force between the end of the biopsy forceps and the tissue is obtained according to the preset autonomous sampling control system to complete the clamping sampling operation; the multi-target motion fusion control method is used again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position.
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。In order to better understand the above technical solution, the above technical solution will be described in detail below in conjunction with the accompanying drawings and specific implementation methods.
实施例:Example:
如图1所示,本发明实施例提供了一种面向体内柔性动态环境的机器人自主活检取样方法,包括:As shown in FIG1 , an embodiment of the present invention provides a robotic autonomous biopsy sampling method for a flexible dynamic environment in vivo, comprising:
S1、读取腹腔镜图像,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;S1, read the laparoscopic image, mark the lesion point and collision avoidance area to be sampled on the image frame according to the doctor's choice, and locate them on the three-dimensional image;
S2、分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;S2, respectively converting the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps into the robot base coordinate system;
S3、采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;其中多目标包括从初始位置到目标点规划路径跟踪、目标点跟踪和碰撞规避;S3, using a multi-target motion fusion control method to control the end of the biopsy forceps to move from the initial position to the lesion point; the multi-target includes path tracking from the initial position to the target point, target point tracking and collision avoidance;
S4、接近病灶点位置后,停止移动活检钳末端并打开活检钳,获取活检钳末端与组织的接触力,完成夹持取样操作;S4. After approaching the lesion, stop moving the end of the biopsy forceps and open the biopsy forceps to obtain the contact force between the end of the biopsy forceps and the tissue, and complete the clamping and sampling operation;
S5、再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。S5. The multi-target motion fusion control method is used again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position.
本发明实施例不仅能实现医生标记的取样点三维动态追踪,而且能实现取样过程的自主化,缩短取样时间,提高取样的质量和效率。The embodiment of the present invention can not only realize the three-dimensional dynamic tracking of the sampling points marked by the doctor, but also realize the autonomy of the sampling process, shorten the sampling time, and improve the quality and efficiency of sampling.
下面将结合具体内容详细介绍上述技术方案的各个步骤:The following will introduce each step of the above technical solution in detail with specific content:
在步骤S1中,读取腹腔镜图像,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上,包括:In step S1, the laparoscopic image is read, and the lesion point and collision avoidance area to be sampled are marked on the image frame according to the doctor's choice, and positioned on the three-dimensional image, including:
S11、读取腹腔镜图像,根据医生的选择在初始图像帧上标记待取样的病灶点xp0和碰撞规避区域Ad;S11, reading the laparoscopic image, and marking the lesion point xp 0 to be sampled and the collision avoidance area Ad on the initial image frame according to the doctor's choice;
S12、分别在病灶点和碰撞规避区域附近,标出若干个关键特征点Px和Pa,并分别以病灶点和碰撞规避区域为中心确定大小为L×L的区域;S12, mark several key feature points Px and Pa near the lesion point and the collision avoidance area, and determine an area of size L×L with the lesion point and the collision avoidance area as the center respectively;
S13、对腹腔镜图像进行深度估计,得到与内窥镜图像相对应的深度图像;从深度图像和内窥镜图像中获得每个像素点的空间信息和颜色信息构建三维点云;S13, performing depth estimation on the laparoscopic image to obtain a depth image corresponding to the endoscopic image; obtaining spatial information and color information of each pixel from the depth image and the endoscopic image to construct a three-dimensional point cloud;
S14、通过特征提取和匹配,对连续的三维点云进行配准,得到坐标变换参数旋转矩阵R和平移向量t,把源点云转换到目标点云同一坐标系下;S14, registering the continuous three-dimensional point clouds through feature extraction and matching, obtaining the coordinate transformation parameter rotation matrix R and translation vector t, and transforming the source point cloud to the same coordinate system as the target point cloud;
S15、利用光流法对相邻两帧图像进行病灶点和碰撞规避区域的特征匹配,利用病灶点和碰撞规避区域点对的像素坐标的平均差值获取两帧间的移动方向和距离,获取随时间变化的病灶点腔镜视像位置xpc(t)以及碰撞规避区域腔镜视像位置Adc(t)。S15. Use the optical flow method to perform feature matching of the lesion point and the collision avoidance area for two adjacent image frames, use the average difference in pixel coordinates of the lesion point and the collision avoidance area point pair to obtain the moving direction and distance between the two frames, and obtain the laparoscope video position xp c (t) of the lesion point and the laparoscope video position Ad c (t) of the collision avoidance area that change with time.
本步骤中,医生可在图像上标记出待取样的病灶点,直观方便简洁,能够提升医生的工作效率。In this step, the doctor can mark the lesion points to be sampled on the image, which is intuitive, convenient and concise, and can improve the doctor's work efficiency.
在步骤S2中,分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下,包括:In step S2, the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps are respectively converted to the robot base coordinate system, including:
S21、通过光学定位仪,测算腹腔镜与机器人坐标系的空间坐标转换矩阵将病灶点的腔镜视像三维坐标xpc(t)转换到取样机器人基座标系下,获取病灶点在机器人坐标系下的三维位姿xpr(t),以及将碰撞规避区域的腔镜视像三维坐标Adc(t))转换到取样机器人基座标系下,获取病灶点在机器人坐标系下的三维位姿Adr(t);S21. Calculate the spatial coordinate transformation matrix between the laparoscope and the robot coordinate system through the optical locator The laparoscope image three-dimensional coordinates xp c (t) of the lesion point are converted to the sampling robot base coordinate system to obtain the three-dimensional position xp r (t) of the lesion point in the robot coordinate system, and the laparoscope image three-dimensional coordinates Ad c (t) of the collision avoidance area are converted to the sampling robot base coordinate system to obtain the three-dimensional position Ad r (t) of the lesion point in the robot coordinate system;
S22、根据多自由度活检钳末端到机器人末端的坐标转换矩阵获取多自由度活检钳末端初始时刻ts在机器人基座标系的三维位姿xbr(ts);S22, based on the coordinate transformation matrix from the end of the multi-degree-of-freedom biopsy forceps to the end of the robot Obtain the three-dimensional position xbr ( ts ) of the end of the multi-degree-of-freedom biopsy forceps at the initial time ts in the robot base coordinate system;
其中,xrr(ts)为机械臂末端初始时刻ts在机器人基座标系的三维位姿;Among them, xr r (t s ) is the three-dimensional pose of the end of the manipulator at the initial time t s in the robot base coordinate system;
依据病灶点的空间位置,设置固定的RCM点xm,在RCM点约束下,限制机器人自主取样过程的姿态为qt;According to the spatial position of the lesion, a fixed RCM point xm is set. Under the constraint of the RCM point, the posture of the robot in the autonomous sampling process is limited to qt ;
Yt=Zt×Xt-1 Yt = Zt × Xt-1
qt=[Xt Yt Zt]q t = [X t Y t Z t ]
其中,xb(t)为活检钳末端移动的位置,Xt表示姿态矩阵的X轴向量,Yt表示姿态矩阵的Y轴向量,Zt表示姿态矩阵的Z轴向量,xb(ts)为xbr(ts)的初始时刻ts的位置向量。Among them, xb(t) is the position of the end of the biopsy forceps, Xt represents the X-axis vector of the posture matrix, Yt represents the Y-axis vector of the posture matrix, Zt represents the Z-axis vector of the posture matrix, and xb( ts ) is the position vector of xbr ( ts ) at the initial time ts .
在步骤S3中,采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;其中多目标包括从初始位置到目标点规划路径跟踪、目标点跟踪和碰撞规避;包括:In step S3, a multi-target motion fusion control method is used to control the end of the biopsy forceps to move from the initial position to the lesion point; wherein the multi-target includes path tracking, target point tracking and collision avoidance from the initial position to the target point; including:
S31、构建总体线性控制系统并建立状态方程,针对腹腔镜手术场景下的各个目标实现需求,分别设计目标控制器;所述目标控制器包括规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器。S31. Construct an overall linear control system and establish a state equation, and design target controllers according to the various target realization requirements in the laparoscopic surgery scenario; the target controller includes a planning path tracking controller, a target guidance controller, and a collision avoidance controller.
S311、构建总体线性控制系统并建立状态方程;S311. Construct an overall linear control system and establish the state equation;
y(t)=Cx(t)+Du(t)y(t)=Cx(t)+Du(t)
其中,x(t)为系统t时刻的运动状态,为系统t时刻的运动速度,u(t)为t时刻的系统总的控制输入,y(t)为t时刻的系统总的控制输出,A、B、C、D为状态方程的计算参数;Among them, x(t) is the motion state of the system at time t, is the motion speed of the system at time t, u(t) is the total control input of the system at time t, y(t) is the total control output of the system at time t, A, B, C, D are the calculation parameters of the state equation;
S312、针对腹腔镜手术场景下的各个目标实现需求,分别设计目标控制器;S312. Design target controllers for each target realization requirement in the laparoscopic surgery scenario;
ui(t)=f(y(t),ri(t))u i (t) = f (y (t), r i (t))
其中,ui(t)为控制器i的控制输入,是t时刻系统总的控制输出与期望控制目标的函数,ri(t)为控制目标t时刻的期望值。Among them, ui (t) is the control input of controller i, which is a function of the total control output of the system at time t and the expected control target, and ri (t) is the expected value of the control target at time t.
所述目标控制器包括规划路径跟踪控制器、目标引导控制器、切割深度限制控制器以及碰撞规避控制器;The target controller includes a planning path tracking controller, a target guidance controller, a cutting depth limit controller and a collision avoidance controller;
其中,为了保证机器人自主切割执行过程满足规划轨迹的设定,所述规划路径跟踪控制设置控制器具体是指:Among them, in order to ensure that the robot's autonomous cutting execution process meets the setting of the planned trajectory, the planned path tracking control setting controller specifically refers to:
es(t)=rs(t)-y(t)e s (t) = r s (t) - y (t)
rs(t)=ψ(xb(ts),xp(t))r s (t) = ψ (xb (t s ), xp (t))
其中,us(t)为规划路径跟踪控制器的输入,为规划路径跟踪控制器PD控制的比例系数和微分系数,rs(t)为t时刻规划路径跟踪控制器的期望状态,es(t)为规划路径跟踪控制器所控制对象期望位置与系统总的控制输出的偏差;Where u s (t) is the input of the planning path tracking controller, are the proportional coefficient and differential coefficient of the planned path tracking controller PD control, rs (t) is the expected state of the planned path tracking controller at time t, and es (t) is the deviation between the expected position of the object controlled by the planned path tracking controller and the total control output of the system;
为保证机器人沿切割路径有向目标点的跟踪速度,控制输入是关于当前位置和目标位置的函数,所述目标引导控制器具体是指:To ensure the tracking speed of the robot toward the target point along the cutting path, the control input is a function of the current position and the target position. The target guidance controller specifically refers to:
ro(t)=xp(t)r o (t) = x p (t)
其中,uo(t)为目标引导控制器的输入,为目标引导控制器PD控制的比例系数和微分系数,ro(t)为目标点的位置,eo(t)为目标引导控制器所控制对象向目标靠近的速度,tf为目标引导控制器期望完成切割任务的时间;Where u o (t) is the input of the target guidance controller, are the proportional coefficient and differential coefficient controlled by the target guidance controller PD, r o (t) is the position of the target point, e o (t) is the speed at which the object controlled by the target guidance controller approaches the target, and t f is the time the target guidance controller expects to complete the cutting task;
为保证器械末端与碰撞规避区域的距离最短,最大程度的保证非目标区域的安全性,控制输入是与当前位置和障碍物位置相关的函数,所述碰撞规避控制设置控制器具体是指:In order to ensure the shortest distance between the end of the device and the collision avoidance area and to ensure the safety of the non-target area to the greatest extent, the control input is a function related to the current position and the obstacle position. The collision avoidance control setting controller specifically refers to:
cd(t)=‖y(t)-ra(t)‖cd(t)=‖y(t) -ra (t)‖
ra(t)=H(Ad(t)) ra (t)=H(Ad(t))
其中,ua(t)为碰撞规避控制器的输入,为碰撞规避控制器PD控制的比例系数和微分系数,ra(t)为t时刻障碍物Ad(t)中心点的位置,R为以障碍物中心点为球体碰撞检测区域的半径,r为以障碍物中心点为球体碰撞规避区域的半径,cd(t)为系统总的控制输出与障碍物中心点的距离,ε为很小的常数,保证当进入碰撞规避区域内,有较大的向外排斥速度。Where ua (t) is the input of the collision avoidance controller, are the proportional coefficient and differential coefficient of the collision avoidance controller PD, ra (t) is the position of the center point of the obstacle Ad(t) at time t, R is the radius of the spherical collision detection area with the center point of the obstacle as the radius, r is the radius of the spherical collision avoidance area with the center point of the obstacle as the radius, cd(t) is the distance between the total control output of the system and the center point of the obstacle, and ε is a very small constant, which ensures that when entering the collision avoidance area, there is a large outward repulsion speed.
S32、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立对应的运动控制预测模型以及目标评价函数,在当前时刻的系统运动状态基础上估计未来一段预测时间区间的运动状态,并计算相应的目标评价函数累计值。S32. Establish corresponding motion control prediction models and target evaluation functions for the planned path tracking controller, target guidance controller and collision avoidance controller respectively, estimate the motion state of a future predicted time interval based on the system motion state at the current moment, and calculate the corresponding cumulative value of the target evaluation function.
S321、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立对应的运动控制预测模型;S321, establishing corresponding motion control prediction models for the planned path tracking controller, the target guidance controller, and the collision avoidance controller respectively;
其中,为预测区间内t时刻控制器i的预测运动状态,为预测区间内t时刻控制器i的预测运动速度,为预测区间内t时刻控制目标i的预测控制输出;in, is the predicted motion state of controller i at time t within the prediction interval, is the predicted motion speed of controller i at time t within the prediction interval, is the predicted control output of the control target i at time t within the prediction interval;
S322、针对规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器分别建立目标评价函数,结合对应的所述运动控制预测模型,在当前时刻t0的系统运动状态基础上估计未来一段预测时间区间的运动状态,并计算相应的目标评价函数累计值;S322, establishing target evaluation functions for the planned path tracking controller, the target guidance controller, and the collision avoidance controller, respectively, and estimating the motion state of a future prediction time interval based on the system motion state at the current time t0 in combination with the corresponding motion control prediction model, and calculating the corresponding target evaluation function cumulative value;
其中,Ji(t0)为第i个控制器t0时刻的目标函数累计值,Gi为第i个控制器预测区间t0到t0+T内单时刻点的目标评价函数值,T为预测时间区间;Where, Ji (t 0 ) is the cumulative value of the objective function of the i-th controller at time t 0 , Gi is the target evaluation function value of the i-th controller at a single time point in the prediction interval from t 0 to t 0 +T, and T is the prediction time interval;
其中,所述S322中:Among them, in said S322:
针对规划路径跟踪控制目标建立目标评价函数,评估规划路径跟踪控制器在预测区间内的有效性;Establish a target evaluation function for the planned path tracking control objective to evaluate the effectiveness of the planned path tracking controller within the prediction interval;
其中,Js(t0)是规划路径跟踪控制器t0时刻的目标函数值,Gs是规划路径跟踪控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻规划路径跟踪控制目标的预测控制输出;Where, Js ( t0 ) is the objective function value of the planned path tracking controller at time t0 , Gs is the objective evaluation function value of the planned path tracking controller at a single time point in the prediction interval t0 to t0 +T, is the predicted control output of the planned path tracking control target at time t within the prediction interval;
针对目标引导控制目标建立目标评价函数,评估目标引导控制器在预测区间内的有效性;A target evaluation function is established for the target guidance control objective to evaluate the effectiveness of the target guidance controller within the prediction interval;
其中,Jo(t0)是目标引导控制器t0时刻的目标函数值,Go是目标引导控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻目标引导控制目标的预测控制输出;Where, J o (t 0 ) is the objective function value of the target guidance controller at time t 0 , and G o is the target evaluation function value of the target guidance controller at a single time point in the prediction interval t 0 to t 0 +T. is the predicted control output of the target-guided control target at time t within the prediction interval;
针对碰撞规避控制目标建立目标评价函数,评估碰撞规避控制器在预测区间内的有效性;Establish a target evaluation function for the collision avoidance control objective to evaluate the effectiveness of the collision avoidance controller within the prediction interval;
其中,Ja(t0)是碰撞规避控制器t0时刻的目标函数值,Ga是碰撞规避控制器在预测区间t0到t0+T内单时刻点的目标评价函数值,是预测区间内t时刻碰撞规避控制目标的预测控制输出,rz为很小的常数。Where, Ja ( t0 ) is the objective function value of the collision avoidance controller at time t0 , Ga is the objective evaluation function value of the collision avoidance controller at a single time point in the prediction interval t0 to t0 +T, is the predicted control output of the collision avoidance control target at time t within the prediction interval, and rz is a very small constant.
S33、分别计算各个控制器目标评价函数累计值在当前时刻的目标梯度;并根据预设的权重函数,按照权重层次序列由低到高依次嵌套融合各个控制器对应的目标梯度值,并将其加入系统总的控制输入中。S33. Calculate the target gradient of the cumulative value of the target evaluation function of each controller at the current moment respectively; and according to the preset weight function, nest and fuse the target gradient values corresponding to each controller in sequence from low to high according to the weight hierarchy sequence, and add them to the total control input of the system.
S331、通过优化的方式,分别计算各个控制器目标评价函数在当前状态t0时刻的下降梯度;S331, calculating the descent gradient of each controller objective evaluation function at the current state t 0 respectively by optimization;
其中,gs(t0)、go(t0)、ga(t0)分别是规划路径跟踪控制器、目标引导控制器以及碰撞规避控制器t0时刻的目标评价函数下降梯度;Among them, gs ( t0 ), go ( t0 ), ga ( t0 ) are the target evaluation function descent gradients of the planned path tracking controller, target guidance controller and collision avoidance controller at time t0 respectively;
S332、输入各个控制目标的参数以及控制目标的重要程度,将控制器按目标的重要程度排序确定各个控制器的优先级(假设优先级方面。碰撞规避控制器>目标引导控制器>规划路径跟踪控制器);S332, input the parameters of each control target and the importance of the control target, sort the controllers according to the importance of the target to determine the priority of each controller (assuming that in terms of priority, collision avoidance controller>target guidance controller>planning path tracking controller);
M=[gs,go,ga]M=[ gs , g0 , ga ]
其中,M是目标控制器的权重层次序列;Where M is the weight hierarchy sequence of the target controller;
S333、按权重层次由低到高依次嵌套计算融合后的目标梯度值,获取3个控制器嵌套融合后的目标梯度值;S333, nesting and calculating the fused target gradient value in order from low to high weight levels, and obtaining the target gradient value after nesting and fusion of the three controllers;
其中,是关于梯度g的归一化函数,α表示分层参数,wL(t0)是3个控制器嵌套融合后的目标梯度值;in, is the normalized function of the gradient g, α represents the layering parameter, and w L (t 0 ) is the target gradient value after the three controllers are nested and fused;
S334、将嵌套融合后的目标梯度值加总到融合后的控制器中,由此实现多种不同目标运动控制器的运动融合;S334, summing the target gradient values after nested fusion to the fused controller, thereby achieving motion fusion of multiple different target motion controllers;
u(t)=us(t)+uo(t)+ua(t)-KwL(t)u(t)=u s (t)+u o (t)+u a (t)-Kw L (t)
其中,K为比例系数。Where K is the proportionality coefficient.
S34、将融合后的位置输出转换为手术机器人的关节角,实现机器人从初始位置向病灶点位置移动过程中的自主切割操作。其中,将融合后的位置输出转换为手术机器人的关节角具体是指:S34, converting the fused position output into the joint angle of the surgical robot, so as to realize the autonomous cutting operation of the robot during the movement from the initial position to the lesion point. Wherein, converting the fused position output into the joint angle of the surgical robot specifically refers to:
xb(t)=y(t)xb(t)=y(t)
θ(t)=ζ(q(t))θ(t)=ζ(q(t))
其中,函数ζ表示将姿态旋转矩阵转换为笛卡坐标系下的欧拉角,θ(t)为笛卡坐标系下的欧拉角,为欧拉角变化的速度,为机器人关节角的转动速度,J-1(Θ)为雅可比矩阵。Among them, the function ζ represents the conversion of the attitude rotation matrix into the Euler angle in the Cartesian coordinate system, θ(t) is the Euler angle in the Cartesian coordinate system, is the speed of change of Euler angles, is the rotation speed of the robot joint angle, and J -1 (Θ) is the Jacobian matrix.
在步骤S4中,接近病灶点位置后,停止移动活检钳末端并打开活检钳,获取活检钳末端与组织的接触力,完成夹持取样操作;包括:In step S4, after approaching the lesion point, stop moving the end of the biopsy forceps and open the biopsy forceps to obtain the contact force between the end of the biopsy forceps and the tissue, and complete the clamping sampling operation; including:
接近病灶点位置后打开活检钳,启动机器人自主取样控制器,沿qt方向给定活检钳v0恒定速度,接近病灶点区域,当力传感器检测到力时,活检钳开始减速;在活检钳接触到病灶区域表面时,力传感器测得活检钳接触组织表面的力fd(t),采用PID控制的方式,使活检钳开始减速,直到力传感器获得期望稳定的fe时停止;After approaching the lesion, the biopsy forceps are opened, the robot autonomous sampling controller is started, and a constant speed of v 0 of the biopsy forceps is given in the direction of q t. When the force sensor detects the force, the biopsy forceps starts to decelerate when approaching the lesion area. When the biopsy forceps touches the surface of the lesion area, the force sensor measures the force f d (t) of the biopsy forceps contacting the tissue surface, and the PID control method is used to make the biopsy forceps start to decelerate until the force sensor obtains the expected stable fe and stops.
所述自主取样控制系统是指:The autonomous sampling control system refers to:
yf(t)=Cfxf(t)+Dfuf(t)y f (t)=C f x f (t)+D f u f (t)
e(t)=fe-fd(t)e(t)= fe - fd (t)
其中,是自主取样控制系统的速度,xf(t)是自主取样控制系统的状态,uf(t)是自主取样控制系统的控制输入,yf(t)是自主取样控制系统的控制输出,Af、Bf、Cf和Df是该控制系统的状态方程参数,uf是系统的控制输入,e(t)为期望力与实际检测力的误差,kp、ki和kd为系统的PID参数。in, is the speed of the autonomous sampling control system, xf (t) is the state of the autonomous sampling control system, uf (t) is the control input of the autonomous sampling control system, yf (t) is the control output of the autonomous sampling control system, Af , Bf , Cf and Df are the state equation parameters of the control system, uf is the control input of the system, e(t) is the error between the expected force and the actual detected force, kp , ki and kd are the PID parameters of the system.
将控制器求得的运动速度输出和姿态变化的速度转换为机器人的关节角,实现机器人自主取样:The motion speed output and posture change speed obtained by the controller are converted into the joint angles of the robot to realize autonomous sampling of the robot:
xb(t)=yf(t)xb(t)= yf (t)
θ(t)=ζ(q(t))θ(t)=ζ(q(t))
其中,为机器人关节角的转动速度,J-1(Θ)为雅可比矩阵。in, is the rotation speed of the robot joint angle, and J -1 (Θ) is the Jacobian matrix.
在步骤S5中,再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置;包括In step S5, the multi-target motion fusion control method is used again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position; including
活检钳完成夹持取样操作,并退出取样控制系统,执行返回操作,根据活检钳末端的初始位置xb(ts),机器人执行从当前多自由度活检钳末端到活检钳末端的初始位置无碰撞目标跟踪控制,采用了步骤S3中介绍的多目标运动融合方法,实现从取样结束位置xb(te)到xb(ts)路径跟踪、目标点xb(ts)跟踪和碰撞规避Ad(t)的融合控制,由此实现腹腔镜手术的术中自助取样操作,此处不再赘述。The biopsy forceps completes the clamping sampling operation, exits the sampling control system, and performs a return operation. According to the initial position xb(t s ) of the end of the biopsy forceps, the robot performs collision-free target tracking control from the current end of the multi-degree-of-freedom biopsy forceps to the initial position of the end of the biopsy forceps. The multi-target motion fusion method introduced in step S3 is used to realize the fusion control of path tracking from the sampling end position xb(t e ) to xb(t s ), target point xb(t s ) tracking and collision avoidance Ad(t), thereby realizing the intraoperative self-service sampling operation of laparoscopic surgery, which will not be repeated here.
因此,本发明实施例提供的自主取样方法摆脱了传统取样对医生经验与操作能力的依赖,提高活检取样的效率与精准度。Therefore, the autonomous sampling method provided by the embodiment of the present invention breaks away from the reliance of traditional sampling on the doctor's experience and operating ability, and improves the efficiency and accuracy of biopsy sampling.
本发明实施例提供了一种面向体内柔性动态环境的机器人自主活检取样系统,包括:The embodiment of the present invention provides a robotic autonomous biopsy sampling system for a flexible dynamic environment in vivo, comprising:
标记模块,用于读取腹腔镜图像,根据医生的选择在图像帧上标记待取样的病灶点和碰撞规避区域,并定位到三维影像上;The marking module is used to read the laparoscopic image, mark the lesion points and collision avoidance areas to be sampled on the image frame according to the doctor's choice, and locate them on the three-dimensional image;
转换模块,用于分别将病灶点和碰撞规避区域在三维影像上的三维位置、以及多自由度的活检钳末端的三维位置转换到机器人基坐标系下;A conversion module, used to convert the three-dimensional positions of the lesion point and the collision avoidance area on the three-dimensional image, and the three-dimensional position of the end of the multi-degree-of-freedom biopsy forceps into the robot base coordinate system;
移动模块,用于采用多目标运动融合控制方法,控制活检钳末端从初始位置向病灶点位置移动;其中多目标包括从初始位置到目标点规划路径跟踪、目标点跟踪和碰撞规避;A mobile module is used to control the end of the biopsy forceps to move from the initial position to the lesion point using a multi-target motion fusion control method; the multi-target includes path tracking, target point tracking and collision avoidance from the initial position to the target point;
取样模块,用于到达病灶点位置附近后,根据预设的自主取样控制系统,获取活检钳末端与组织的接触力,完成夹持取样操作;The sampling module is used to obtain the contact force between the end of the biopsy forceps and the tissue after reaching the vicinity of the lesion point according to the preset autonomous sampling control system to complete the clamping sampling operation;
返回模块,用于再次采用所述多目标运动融合控制方法,控制多自由度活检钳末端从取样结束位置返回初始位置。The return module is used to use the multi-objective motion fusion control method again to control the end of the multi-degree-of-freedom biopsy forceps to return from the sampling end position to the initial position.
本发明实施例提供了一种存储介质,其存储有用于面向体内柔性动态环境的机器人自主活检取样的计算机程序,其中,所述计算机程序使得计算机执行如上所述的机器人自主活检取样方法。An embodiment of the present invention provides a storage medium storing a computer program for robotic autonomous biopsy sampling in a flexible dynamic environment in vivo, wherein the computer program enables a computer to execute the robotic autonomous biopsy sampling method as described above.
本发明实施例还提供了一种电子设备,包括:An embodiment of the present invention further provides an electronic device, including:
一个或多个处理器;one or more processors;
存储器;以及Memory; and
一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述程序包括用于执行如上所述的机器人自主活检取样方法One or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the programs including a method for executing the robotic autonomous biopsy sampling method as described above
可理解的是,本发明实施例提供的面向体内柔性动态环境的机器人自主活检取样系统、存储介质和电子设备与本发明实施例提供的面向体内柔性动态环境的机器人自主活检取样方法相对应,其有关内容的解释、举例和有益效果等部分可以参考机器人自主活检取样方法中的相应部分,此处不再赘述。It is understandable that the robotic autonomous biopsy sampling system, storage medium and electronic device for a flexible and dynamic environment in vivo provided in the embodiments of the present invention correspond to the robotic autonomous biopsy sampling method for a flexible and dynamic environment in vivo provided in the embodiments of the present invention. The explanations, examples and beneficial effects of the relevant contents can refer to the corresponding parts in the robotic autonomous biopsy sampling method and will not be repeated here.
综上所述,与现有技术相比,具备以下有益效果:In summary, compared with the prior art, the present invention has the following beneficial effects:
1、本发明实施例不仅能实现医生标记的取样点三维动态追踪,而且能实现取样过程的自主化,缩短取样时间,提高取样的质量和效率。1. The embodiment of the present invention can not only realize the three-dimensional dynamic tracking of the sampling points marked by the doctor, but also realize the autonomy of the sampling process, shorten the sampling time, and improve the quality and efficiency of sampling.
2、本发明实施例中,医生可在图像上标记出待取样的病灶点,直观方便简洁,能够提升医生的工作效率。2. In the embodiment of the present invention, the doctor can mark the lesion point to be sampled on the image, which is intuitive, convenient and concise, and can improve the doctor's work efficiency.
3、本发明实施例提供的自主取样方法摆脱了传统取样对医生经验与操作能力的依赖,提高活检取样的效率与精准度。3. The autonomous sampling method provided by the embodiment of the present invention breaks away from the reliance of traditional sampling on the doctor's experience and operating ability, and improves the efficiency and accuracy of biopsy sampling.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the sentence "comprise a ..." do not exclude the presence of other identical elements in the process, method, article or device including the elements.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features thereof may be replaced by equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210779466.0A CN115192092B (en) | 2022-07-04 | 2022-07-04 | Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210779466.0A CN115192092B (en) | 2022-07-04 | 2022-07-04 | Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115192092A CN115192092A (en) | 2022-10-18 |
| CN115192092B true CN115192092B (en) | 2024-06-25 |
Family
ID=83577541
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210779466.0A Active CN115192092B (en) | 2022-07-04 | 2022-07-04 | Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115192092B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116269758A (en) * | 2023-02-13 | 2023-06-23 | 河南大学第一附属医院 | Automatic laparoscope movement guiding method and system |
| CN118542728B (en) * | 2024-07-29 | 2024-10-15 | 天津市鹰泰利安康医疗科技有限责任公司 | Incapacity in vessel System for reverse electroporation ablation |
| CN119896533B (en) * | 2025-03-31 | 2025-07-11 | 合肥工业大学 | Autonomous three-dimensional tissue ablation control system based on soft robot |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2536325B1 (en) * | 2010-02-18 | 2015-10-28 | Koninklijke Philips N.V. | System for tumor motion simulation and motion compensation using tracked bronchoscopy |
| US9757206B2 (en) * | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
| EP3397187A1 (en) * | 2015-12-30 | 2018-11-07 | Koninklijke Philips N.V. | Image based robot guidance |
| JP6549545B2 (en) * | 2016-10-11 | 2019-07-24 | ファナック株式会社 | Control device and robot system for learning a human action and controlling a robot |
| CN109343350A (en) * | 2018-11-20 | 2019-02-15 | 清华大学 | A Path Tracking Control Method for Underwater Robots Based on Model Predictive Control |
| US12096993B2 (en) * | 2019-02-28 | 2024-09-24 | Koninklijke Philips N.V. | Feedback continuous positioning control of end-effectors |
| CN110161995B (en) * | 2019-06-10 | 2020-06-19 | 北京工业大学 | Optimal control method of urban sewage treatment process based on dynamic multi-objective particle swarm optimization |
| CN113633387B (en) * | 2021-06-21 | 2024-01-26 | 安徽理工大学 | Surgical field tracking supporting laparoscopic minimally invasive robot touch interaction method and system |
| CN114367986B (en) * | 2022-01-14 | 2023-12-29 | 赛恩医疗科技(连云港)有限公司 | Intelligent robot low-temperature biopsy method, device and control system |
-
2022
- 2022-07-04 CN CN202210779466.0A patent/CN115192092B/en active Active
Non-Patent Citations (2)
| Title |
|---|
| 三维超声影像导航机器人系统的临床应用;刘少丽;杨向东;冯涛;陈恳;梁萍;;中国生物医学工程学报;20091220(第06期);第80-86页 * |
| 微创血管手术导管机器人系统无模型自适应控制;朱国昕;程浩;;伺服控制;20150415(第Z2期);第61-63页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115192092A (en) | 2022-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115192092B (en) | Robotic autonomous biopsy sampling method for flexible dynamic environment in vivo | |
| US12150713B2 (en) | Confidence-based robotically-assisted surgery system | |
| US20250064529A1 (en) | Systems and methods for localizing, tracking and/or controlling medical instruments | |
| Özgüner et al. | Camera-robot calibration for the da vinci robotic surgery system | |
| CN112472297B (en) | Pose monitoring system, pose monitoring method, surgical robot system and storage medium | |
| CA3041707C (en) | Method of real-time tracking of moving/flexible surfaces | |
| Peng et al. | Autonomous recognition of multiple surgical instruments tips based on arrow OBB-YOLO network | |
| US12279841B2 (en) | Robotic surgical safety via video processing | |
| KR20080027256A (en) | Methods and systems for performing three-dimensional tool tracking by fusion with data derived from sensors and / or cameras during minimally invasive robotic surgery | |
| CN116672031B (en) | Robot control method and device, processor and electronic equipment | |
| Peng et al. | Endoscope FOV autonomous tracking method for robot-assisted surgery considering pose control, hand–eye coordination, and image definition | |
| Molnár et al. | Visual servoing-based camera control for the da vinci surgical system | |
| Beyl et al. | Time-of-flight-assisted Kinect camera-based people detection for intuitive human robot cooperation in the surgical operating room | |
| Maric et al. | Unsupervised optimization approach to in situ calibration of collaborative human-robot interaction tools | |
| Piccinelli et al. | Rigid 3D registration of pre-operative information for semi-autonomous surgery | |
| Sun et al. | Development of a novel intelligent laparoscope system for semi‐automatic minimally invasive surgery | |
| Krupa et al. | Control of an ultrasound probe by adaptive visual servoing | |
| Tauscher et al. | High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control | |
| CN115281841A (en) | Robotic autonomous cutting method and system for flexible dynamic environment in vivo | |
| Qian et al. | Development of a flexible endoscopic robot with autonomous tracking control ability using machine vision and deep learning | |
| CN118139729A (en) | Calibration method for automatically calibrating a camera of a medical robot and surgical assistance system | |
| CN115813565A (en) | Hair follicle transplantation robot control method and device, computer equipment and storage medium | |
| Attanasio et al. | An open source motion planning framework for autonomous minimally invasive surgical robots | |
| Li et al. | Real-Time Geometric Joint Uncertainty Tracking for Surgical Automation on the dVRK System | |
| Greene et al. | dVPose: Automated data collection and dataset for 6D pose estimation of robotic surgical instruments |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |