CN115221646A - Purifier Turbulence Fitting System, Evaluation System and Control System - Google Patents
Purifier Turbulence Fitting System, Evaluation System and Control System Download PDFInfo
- Publication number
- CN115221646A CN115221646A CN202210625814.9A CN202210625814A CN115221646A CN 115221646 A CN115221646 A CN 115221646A CN 202210625814 A CN202210625814 A CN 202210625814A CN 115221646 A CN115221646 A CN 115221646A
- Authority
- CN
- China
- Prior art keywords
- turbulence
- vector
- neural network
- time
- slice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/12—Timing analysis or timing optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Fluid Mechanics (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及净化器智能控制领域,具体涉及一种基于对抗神经网络的净化器湍流拟合系统、智能状态评估系统以及智能控制系统。The invention relates to the field of purifier intelligent control, in particular to a purifier turbulence fitting system, an intelligent state evaluation system and an intelligent control system based on an adversarial neural network.
背景技术Background technique
公共空间空气净化方案中,传统的方式为读取固定点位值,当其中有超标值时控制净化器进行固定角度与固定风量的净化,更进阶的也有采用智能控制自动调节净化器参数。但是,以往的智能调节方法没有拟合关键的输出湍流模型,进而无法有效拟合净化器实际的净化效能,不能有效的对净化器进行智能控制,同时也不能通过湍流拟合判断当前设备工作质量从而提示维修与更换。In the public space air purification scheme, the traditional method is to read the fixed point value. When there is an excessive value, the purifier is controlled to purify at a fixed angle and a fixed air volume. More advanced ones also use intelligent control to automatically adjust the parameters of the purifier. However, the previous intelligent adjustment method did not fit the key output turbulence model, and thus could not effectively fit the actual purification efficiency of the purifier, could not effectively control the purifier intelligently, and could not judge the working quality of the current equipment through turbulence fitting. Thereby prompting maintenance and replacement.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明的目的在于提供一种基于对抗神经网络的净化器湍流拟合系统、智能状态评估系统以及智能控制系统,以实现对净化器的更有效更准确地控制。In view of the problems existing in the prior art, the purpose of the present invention is to provide a purifier turbulence fitting system, an intelligent state evaluation system and an intelligent control system based on an adversarial neural network, so as to realize more effective and accurate control of the purifier.
为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:
基于对抗神经网络的净化器湍流拟合系统,其包括A purifier turbulence fitting system based on adversarial neural network, which includes
净化器湍流向量预训练模型,用于根据净化器出厂前的运行情况模拟并输出湍流向量模型;The purifier turbulence vector pre-training model is used to simulate and output the turbulence vector model according to the operating conditions of the purifier before leaving the factory;
邻域空气质量监测器集群,由多个设置在净化器不同位置点的空气质量监测器组成,其用于采集空气污染物浓度,每一空气污染物浓度都附带有位置信息;The neighborhood air quality monitor cluster consists of multiple air quality monitors installed at different locations of the purifier, which are used to collect air pollutant concentrations, and each air pollutant concentration is accompanied by location information;
净化器多点位流速传感器,由多个设置在净化器不同为位置点的流速传感器组成,其用于采集为位置点的实时空气流速;The multi-point flow velocity sensor of the purifier is composed of a plurality of flow velocity sensors arranged at different positions of the purifier, which are used to collect the real-time air flow velocity of the position points;
神经网络湍流向量修正模块,连接云端净化器湍流向量预训练模型、领域空气质量监测器集群、净化器多点位流速传感器,用于输入湍流向量、附带位置信息的空气污染物浓度、以及多个位置点的实时空气流速;神经网络湍流向量修正模块根据输入的空气污染物浓度和实时空气流速对输入的湍流向量模型进行修正,得到湍流向量预处理模型;The neural network turbulence vector correction module is connected to the cloud purifier turbulence vector pre-training model, the domain air quality monitor cluster, and the purifier multi-point flow velocity sensor, which is used to input the turbulence vector, air pollutant concentration with location information, and multiple The real-time air velocity at the location point; the neural network turbulence vector correction module corrects the input turbulent vector model according to the input air pollutant concentration and real-time air velocity, and obtains the turbulent vector preprocessing model;
生成神经网络湍流向量单时间片生成模块,连接邻域空气质量监测器集群、净化器多点位流速传感器,该生成神经网络湍流向量单时间片生成模块用于输入附带位置信息的空气污染物浓度、多个位置点的实时空气流速,并根据输入的信息,生成多个单时间片湍流向量预拟合向量;The generating neural network turbulence vector single time slice generation module is connected to the neighborhood air quality monitor cluster and the purifier multi-point flow velocity sensor. The generating neural network turbulence vector single time slice generation module is used to input the air pollutant concentration with location information. , real-time air velocity at multiple locations, and generate multiple single-time slice turbulence vector pre-fitting vectors according to the input information;
判别神经网络湍流向量单时间片评估模块,连接湍流向量预处理模型、生成神经网络湍流向量单时间片生成模块,用于输入湍流向量预处理模型、以及多个单时间片湍流向量预拟合向量,并通过神经网络给每个湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的湍流向量并输出;Discriminant neural network turbulence vector single time slice evaluation module, connected to turbulence vector preprocessing model, generating neural network turbulence vector single time slice generation module, used to input turbulence vector preprocessing model and multiple single time slice turbulence vector pre-fitting vectors , and score each turbulence vector pre-fitting vector through the neural network, select the highest scoring turbulence vector as the single time slice turbulence vector and output it;
生成神经网络湍流向量多时间片生成模块,连接判别神经网络湍流向量单时间片评估模块,输入当前单时间片的湍流向量,生成神经网络根据当前单时间片的湍流向量与多个之前时间片的湍流向量,生成多个多时间片湍流向量预拟合向量;Generate neural network turbulence vector multi-time slice generation module, connect the discriminative neural network turbulence vector single time slice evaluation module, input the turbulence vector of the current single time slice, and generate the neural network according to the current single time slice turbulence vector and multiple previous time slices. Turbulence vector, generating multiple multi-time slice turbulence vector pre-fitting vectors;
判别神经网络湍流向量多时间片评估模块,用于输入湍流向量预处理模型、多个多时间片湍流向量预拟合向量、以及多时间片湍流向量预拟合向量对应的多个单时间片的湍流向量评分,通过训练好的神经网络给每个多时间片湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的多时间片修正湍流向量并输出;The discriminant neural network turbulence vector multi-time slice evaluation module is used to input the turbulence vector preprocessing model, multiple multi-time slice turbulence vector pre-fitting vectors, and multiple time slice turbulence vector pre-fitting vectors corresponding to multiple single time slices. Turbulence vector score, score each multi-time slice turbulence vector pre-fitting vector through the trained neural network, and select the highest score as the multi-time slice corrected turbulence vector of a single time slice and output it;
神经网络湍流向量拟合流向模块,连接判别神经网络湍流向量多时间片评估模块,用于输入多时间片修正湍流向量,神经网络根据多时间片修正湍流向量,输出邻域湍流矢量图。The neural network turbulence vector fitting flow direction module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, which is used to input the multi-time slice corrected turbulence vector.
所述拟合系统还包括The fitting system also includes
生成神经网络湍流向量单时间片生成模块实时训练模块,连接生成神经网络湍流向量单时间片生成模块、判别神经网络湍流向量单时间片评估模块,其每间隔一段时间输入生成神经网络湍流向量单时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量单时间片评估模块给出的对应时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量单时间片生成模块的网络权重,并覆盖原先的网络权重。Generating Neural Network Turbulence Vector Single Time Slice Generation Module The real-time training module is connected to the Generating Neural Network Turbulence Vector Single Time Slice Generation Module and the Discriminant Neural Network Turbulence Vector Single Time Slice Evaluation Module, and the input generates a neural network turbulence vector single time slice at intervals. The current network weight of the slice generation module, and the evaluation score of the turbulence vector fitting vector of the corresponding time slice given by all the discriminative neural network turbulence vector single-time slice evaluation modules in this time interval, training to generate neural network turbulence vector single-time The network weights of the slice generation module and overwrite the original network weights.
所述拟合系统还包括The fitting system also includes
生成神经网络湍流向量多时间片生成模块实时训练模块,连接判别神经网络湍流向量多时间片评估模块,每间隔一段时间输入生成神经网络湍流向量多时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量多时间片评估模块给出的对应多时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量多时间片生成模块的网络权重,并覆盖原先的网络权重。Generating neural network turbulence vector multi-time slice generation module The real-time training module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, and the current network weight of the neural network turbulence vector multi-time slice generation module is input at intervals, which is the same as the current time. The evaluation scores of the turbulence vector fitting vectors corresponding to multiple time slices given by the multi-time slice evaluation module of all discriminative neural network turbulence vectors in the interval are trained to generate the network weights of the neural network turbulence vector multi-time slice generation module, and cover the original network weight.
基于对抗神经网络的净化器智能状态评估系统,其包括A purifier intelligent state assessment system based on adversarial neural network, which includes
净化器湍流向量预训练模型,用于根据净化器出厂前的运行情况模拟并输出湍流向量模型;The purifier turbulence vector pre-training model is used to simulate and output the turbulence vector model according to the operating conditions of the purifier before leaving the factory;
邻域空气质量监测器集群,由多个设置在净化器不同位置点的空气质量监测器组成,其用于采集空气污染物浓度,每一空气污染物浓度都附带有位置信息;The neighborhood air quality monitor cluster consists of multiple air quality monitors installed at different locations of the purifier, which are used to collect air pollutant concentrations, and each air pollutant concentration is accompanied by location information;
净化器多点位流速传感器,由多个设置在净化器不同为位置点的流速传感器组成,其用于采集为位置点的实时空气流速;The multi-point flow velocity sensor of the purifier is composed of a plurality of flow velocity sensors arranged at different positions of the purifier, which are used to collect the real-time air flow velocity of the position points;
神经网络湍流向量修正模块,连接云端净化器湍流向量预训练模型、领域空气质量监测器集群、净化器多点位流速传感器,用于输入湍流向量、附带位置信息的空气污染物浓度、以及多个位置点的实时空气流速;神经网络湍流向量修正模块根据输入的空气污染物浓度和实时空气流速对输入的湍流向量模型进行修正,得到湍流向量预处理模型;The neural network turbulence vector correction module is connected to the cloud purifier turbulence vector pre-training model, the domain air quality monitor cluster, and the purifier multi-point flow velocity sensor, which is used to input the turbulence vector, air pollutant concentration with location information, and multiple The real-time air velocity at the location point; the neural network turbulence vector correction module corrects the input turbulent vector model according to the input air pollutant concentration and real-time air velocity, and obtains the turbulent vector preprocessing model;
生成神经网络湍流向量单时间片生成模块,连接邻域空气质量监测器集群、净化器多点位流速传感器,该生成神经网络湍流向量单时间片生成模块用于输入附带位置信息的空气污染物浓度、多个位置点的实时空气流速,并根据输入的信息,生成多个单时间片湍流向量预拟合向量;The generating neural network turbulence vector single time slice generation module is connected to the neighborhood air quality monitor cluster and the purifier multi-point flow velocity sensor. The generating neural network turbulence vector single time slice generation module is used to input the air pollutant concentration with location information. , real-time air velocity at multiple locations, and generate multiple single-time slice turbulence vector pre-fitting vectors according to the input information;
判别神经网络湍流向量单时间片评估模块,连接湍流向量预处理模型、生成神经网络湍流向量单时间片生成模块,用于输入湍流向量预处理模型、以及多个单时间片湍流向量预拟合向量,并通过神经网络给每个湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的湍流向量并输出;Discriminant neural network turbulence vector single time slice evaluation module, connected to turbulence vector preprocessing model, generating neural network turbulence vector single time slice generation module, used to input turbulence vector preprocessing model and multiple single time slice turbulence vector pre-fitting vectors , and score each turbulence vector pre-fitting vector through the neural network, select the highest scoring turbulence vector as the single time slice turbulence vector and output it;
生成神经网络湍流向量多时间片生成模块,连接判别神经网络湍流向量单时间片评估模块,输入当前单时间片的湍流向量,生成神经网络根据当前单时间片的湍流向量与多个之前时间片的湍流向量,生成多个多时间片湍流向量预拟合向量;Generate neural network turbulence vector multi-time slice generation module, connect the discriminative neural network turbulence vector single time slice evaluation module, input the turbulence vector of the current single time slice, and generate the neural network according to the current single time slice turbulence vector and multiple previous time slices. Turbulence vector, generating multiple multi-time slice turbulence vector pre-fitting vectors;
判别神经网络湍流向量多时间片评估模块,用于输入湍流向量预处理模型、多个多时间片湍流向量预拟合向量、以及多时间片湍流向量预拟合向量对应的多个单时间片的湍流向量评分,通过训练好的神经网络给每个多时间片湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的多时间片修正湍流向量并输出;The discriminant neural network turbulence vector multi-time slice evaluation module is used to input the turbulence vector preprocessing model, multiple multi-time slice turbulence vector pre-fitting vectors, and multiple time slice turbulence vector pre-fitting vectors corresponding to multiple single time slices. Turbulence vector score, score each multi-time slice turbulence vector pre-fitting vector through the trained neural network, and select the highest score as the multi-time slice corrected turbulence vector of a single time slice and output it;
神经网络净化器运行状况评估模块,连接判别神经网络湍流向量多时间片评估模块,用于输入多时间片修正湍流向量,神经网络根据多时间片修正湍流向量,输出净化器运行状况评估值。The neural network purifier operation status evaluation module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, which is used to input the multi-time slice correction turbulence vector.
所述状态评估系统还包括The state assessment system also includes
生成神经网络湍流向量单时间片生成模块实时训练模块,连接生成神经网络湍流向量单时间片生成模块、判别神经网络湍流向量单时间片评估模块,其每间隔一段时间输入生成神经网络湍流向量单时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量单时间片评估模块给出的对应时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量单时间片生成模块的网络权重,并覆盖原先的网络权重。Generating Neural Network Turbulence Vector Single Time Slice Generation Module The real-time training module is connected to the Generating Neural Network Turbulence Vector Single Time Slice Generation Module and the Discriminant Neural Network Turbulence Vector Single Time Slice Evaluation Module, and the input generates a neural network turbulence vector single time slice at intervals. The current network weight of the slice generation module, and the evaluation score of the turbulence vector fitting vector of the corresponding time slice given by all the discriminative neural network turbulence vector single-time slice evaluation modules in this time interval, training to generate neural network turbulence vector single-time The network weights of the slice generation module and overwrite the original network weights.
所述状态评估系统还包括The state assessment system also includes
生成神经网络湍流向量多时间片生成模块实时训练模块,连接判别神经网络湍流向量多时间片评估模块,每间隔一段时间输入生成神经网络湍流向量多时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量多时间片评估模块给出的对应多时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量多时间片生成模块的网络权重,并覆盖原先的网络权重。Generating neural network turbulence vector multi-time slice generation module The real-time training module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, and the current network weight of the neural network turbulence vector multi-time slice generation module is input at intervals, which is the same as the current time. The evaluation scores of the turbulence vector fitting vectors corresponding to multiple time slices given by the multi-time slice evaluation module of all discriminative neural network turbulence vectors in the interval are trained to generate the network weights of the neural network turbulence vector multi-time slice generation module, and cover the original network weight.
基于对抗神经网络的净化器智能控制系统,其包括如上所述的湍流拟合系统和如上所述的智能状态评估系统;An intelligent control system for a purifier based on an adversarial neural network, which includes the above-mentioned turbulence fitting system and the above-mentioned intelligent state assessment system;
所述智能控制系统还包括智能控制模块,其连接神经网络净化器运行状况评估模块、神经网络湍流向量流向模块,用于输入净化器运行状态评估值和邻域湍流矢量图,并根据净化器运行状态评估值和邻域湍流矢量图调整净化器的工作模式。The intelligent control system also includes an intelligent control module, which is connected to the neural network purifier operating condition evaluation module and the neural network turbulence vector flow direction module, and is used to input the purifier operating state evaluation value and the neighborhood turbulence vector diagram, and operate according to the purifier. The state evaluation value and the neighborhood turbulence vector diagram adjust the working mode of the purifier.
采用上述方案后,本发明用多个检测点位的共同检测,与净化器预训练模型,拟合并迭代修正净化器湍流输出,从而实现对净化器的准确控制。本发明不仅考虑了单个时间片的湍流向量,还在此基础上考虑单时间片前后的其他单时间片,从而多时间片的湍流向量,使得形成的湍流向量更加准确,进而能够准确控制净化器。具体地,本发明利用单时间片概念用于拟合神经网络认为的湍流向量,再利用多时间片概念从这些生成的向量中挑出符合湍流向量随时间变化的情况。简单来说,就是湍流向量其实是单时间片生成的,多时间片是进行一个选取过程,然后拿这个选取的结果去和最终获得的传感器数据进行比对,从而得到准确的湍流向量。After adopting the above scheme, the present invention uses the joint detection of multiple detection points, and the pre-training model of the purifier to fit and iteratively correct the turbulent output of the purifier, thereby realizing accurate control of the purifier. The invention not only considers the turbulence vector of a single time slice, but also considers other single time slices before and after the single time slice on this basis, so that the turbulence vector of multiple time slices makes the formed turbulence vector more accurate, and then can accurately control the purifier . Specifically, the present invention uses the concept of single time slice to fit the turbulence vector considered by the neural network, and then uses the concept of multiple time slices to pick out the situation that the turbulence vector changes with time from these generated vectors. To put it simply, the turbulence vector is actually generated in a single time slice, and a selection process is performed for multiple time slices, and then the selection result is compared with the final sensor data to obtain an accurate turbulence vector.
附图说明Description of drawings
图1为本发明的原理框图。FIG. 1 is a principle block diagram of the present invention.
具体实施方式Detailed ways
如图1所示,本发明揭示了一种基于对抗神经网络的净化器智能控制系统,其包括:As shown in Figure 1, the present invention discloses an intelligent control system for a purifier based on an adversarial neural network, which includes:
净化器湍流向量预训练模型,用于根据净化器出厂前的运行情况模拟并输出湍流向量模型。该净化器湍流向量预训练模型目前设置在云端,亦可以设置在本地。The purifier turbulence vector pre-training model is used to simulate and output the turbulence vector model according to the operating conditions of the purifier before leaving the factory. The purifier turbulence vector pre-training model is currently set up in the cloud, and can also be set up locally.
邻域空气质量监测器集群,由多个设置在净化器不同位置点的空气质量监测器组成,其用于采集空气污染物浓度,每一空气污染物浓度都附带有位置信息。The neighborhood air quality monitor cluster consists of a plurality of air quality monitors arranged at different positions of the purifier, which are used to collect air pollutant concentrations, and each air pollutant concentration is accompanied by location information.
净化器多点位流速传感器,由多个设置在净化器不同为位置点的流速传感器组成,其用于采集为位置点的实时空气流速。The multi-point flow velocity sensor of the purifier is composed of a plurality of flow velocity sensors arranged at different positions of the purifier, which are used to collect the real-time air flow velocity of the position points.
神经网络湍流向量修正模块,连接云端净化器湍流向量预训练模型、领域空气质量监测器集群、净化器多点位流速传感器,用于输入湍流向量、附带位置信息的空气污染物浓度、以及多个位置点的实时空气流速;神经网络湍流向量修正模块根据输入的空气污染物浓度和实时空气流速对输入的湍流向量模型进行修正,得到湍流向量预处理模型。The neural network turbulence vector correction module is connected to the cloud purifier turbulence vector pre-training model, the domain air quality monitor cluster, and the purifier multi-point flow velocity sensor, which is used to input the turbulence vector, air pollutant concentration with location information, and multiple The real-time air velocity at the location point; the neural network turbulence vector correction module corrects the input turbulence vector model according to the input air pollutant concentration and real-time air velocity, and obtains the turbulence vector preprocessing model.
生成神经网络湍流向量单时间片生成模块,连接邻域空气质量监测器集群、净化器多点位流速传感器,用于输入附带位置信息的空气污染物浓度、多个位置点的实时空气流速,神经网络根据输入的信息,生成多个单时间片湍流向量预拟合向量。A neural network turbulence vector single time slice generation module is connected to the neighborhood air quality monitor cluster and the purifier multi-point flow velocity sensor, which is used to input the air pollutant concentration with location information and the real-time air flow velocity of multiple location points. According to the input information, the network generates multiple single-time slice turbulence vector pre-fitting vectors.
判别神经网络湍流向量单时间片评估模块,连接湍流向量预处理模型、生成神经网络湍流向量单时间片生成模块,用于输入湍流向量预处理模型、以及多个单时间片湍流向量预拟合向量,通过神经网络给每个湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的湍流向量并输出。Discriminant neural network turbulence vector single time slice evaluation module, connected to turbulence vector preprocessing model, generating neural network turbulence vector single time slice generation module, used to input turbulence vector preprocessing model and multiple single time slice turbulence vector pre-fitting vectors , and score each turbulence vector pre-fitting vector through the neural network, and select the highest scoring turbulence vector as the single time slice turbulence vector and output it.
生成神经网络湍流向量单时间片生成模块实时训练模块,连接生成神经网络湍流向量单时间片生成模块、判别神经网络湍流向量单时间片评估模块,其每间隔一段时间输入生成神经网络湍流向量单时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量单时间片评估模块给出的对应时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量单时间片生成模块的网络权重,并覆盖原先的网络权重。Generating Neural Network Turbulence Vector Single Time Slice Generation Module The real-time training module is connected to the Generating Neural Network Turbulence Vector Single Time Slice Generation Module and the Discriminant Neural Network Turbulence Vector Single Time Slice Evaluation Module, and the input generates a neural network turbulence vector single time slice at intervals. The current network weight of the slice generation module, and the evaluation score of the turbulence vector fitting vector of the corresponding time slice given by all the discriminative neural network turbulence vector single-time slice evaluation modules in this time interval, training to generate neural network turbulence vector single-time The network weights of the slice generation module and overwrite the original network weights.
生成神经网络湍流向量多时间片生成模块,连接判别神经网络湍流向量单时间片评估模块,输入当前时间片的湍流向量,生成神经网络根据当前时间片的湍流向量与多个之前时间片的湍流向量,生成多个多时间片湍流向量预拟合向量。Generate neural network turbulence vector multi-time slice generation module, connect the discriminative neural network turbulence vector single time slice evaluation module, input the turbulence vector of the current time slice, and generate the neural network according to the turbulence vector of the current time slice and the turbulence vector of multiple previous time slices , to generate multiple multi-time slice turbulence vector pre-fit vectors.
判别神经网络湍流向量多时间片评估模块,特征为输入云端湍流向量预处理模型,多个多时间片湍流向量预拟合向量,以及多时间片湍流向量预拟合向量对应的多个单时间片的湍流向量评分,通过训练好的神经网络给每个多时间片湍流向量预拟合向量进行打分,从中选取评分最高的作为单时间片的多时间片修正湍流向量并输出。The discriminant neural network turbulence vector multi-time slice evaluation module is characterized by the input cloud turbulence vector preprocessing model, multiple multi-time slice turbulence vector pre-fitting vectors, and multiple single time slices corresponding to the multi-time slice turbulence vector pre-fitting vectors Each multi-time slice turbulence vector pre-fitting vector is scored through the trained neural network, and the highest score is selected as the multi-time slice corrected turbulence vector of a single time slice and output.
生成神经网络湍流向量多时间片生成模块实时训练模块,连接判别神经网络湍流向量多时间片评估模块,每间隔一段时间输入生成神经网络湍流向量多时间片生成模块的当前网络权重,与本次时间间隔内的所有判别神经网络湍流向量多时间片评估模块给出的对应多时间片的湍流向量拟合向量的评估得分,训练生成神经网络湍流向量多时间片生成模块的网络权重,并覆盖原先的网络权重。Generating neural network turbulence vector multi-time slice generation module The real-time training module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, and the current network weight of the neural network turbulence vector multi-time slice generation module is input at intervals, which is the same as the current time. The evaluation scores of the turbulence vector fitting vectors corresponding to multiple time slices given by the multi-time slice evaluation module of all discriminative neural network turbulence vectors in the interval are trained to generate the network weights of the neural network turbulence vector multi-time slice generation module, and cover the original network weight.
神经网络湍流向量拟合流向模块,连接判别神经网络湍流向量多时间片评估模块,用于输入多时间片修正湍流向量,神经网络根据多时间片修正湍流向量,输出邻域湍流矢量图。The neural network turbulence vector fitting flow direction module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, which is used to input the multi-time slice corrected turbulence vector.
神经网络净化器运行状况评估模块,连接判别神经网络湍流向量多时间片评估模块,用于输入多时间片修正湍流向量,神经网络根据多时间片修正湍流向量,输出净化器运行状况评估值。神经网络净化器运行状况评估模块将多时间片修正湍流向量与历史的多时间向量进行比对,看看在相近状况下的具体输出有没有发生大的变化,因为一般出现大变化都预示着问题。The neural network purifier operation status evaluation module is connected to the discriminative neural network turbulence vector multi-time slice evaluation module, which is used to input the multi-time slice correction turbulence vector. The neural network purifier operating condition evaluation module compares the multi-time slice corrected turbulence vector with the historical multi-time vector to see if the specific output has changed significantly under similar conditions, because generally large changes indicate problems .
智能控制模块,连接神经网络净化器运行状况评估模块、神经网络湍流向量流向模块,用于输入净化器运行状态评估值和邻域湍流矢量图,并根据净化器运行状态评估值和邻域湍流矢量图调整净化器的工作模式。The intelligent control module is connected to the neural network purifier operating condition evaluation module and the neural network turbulence vector flow direction module, which is used to input the purifier operating state evaluation value and the neighborhood turbulence vector diagram, and according to the purifier operating state evaluation value and the neighborhood turbulence vector Figure to adjust the working mode of the purifier.
上述云端净化器湍流向量预训练模型、净化器多点位流速传感器、神经网络湍流向量修正模块、湍流向量预处理模型、生成神经网络湍流向量单时间片生成模块、判别神经网络湍流向量单时间片评估模块、生成神经网络湍流向量单时间片生成模块实时训练模块、生成神经网络湍流向量多时间片生成模块、判别神经网络湍流向量多时间片评估模块、生成神经网络湍流向量多时间片生成模块实时训练模块、神经网络湍流向量拟合流向模块可以构成基于对抗神经网络的净化器湍流拟合系统,用于获取净化器的邻域湍流矢量图。The above cloud purifier turbulence vector pre-training model, purifier multi-point flow velocity sensor, neural network turbulence vector correction module, turbulence vector preprocessing model, generating neural network turbulence vector single time slice generation module, discriminant neural network turbulence vector single time slice Evaluation Module, Generative Neural Network Turbulence Vector Single Time Slice Generation Module Real-time Training Module, Generative Neural Network Turbulence Vector Multi-Time Slice Generation Module, Discriminant Neural Network Turbulence Vector Multi-Time Slice Evaluation Module, Generative Neural Network Turbulence Vector Multi-Time Slice Generation Module Real-time The training module and the neural network turbulence vector fitting flow direction module can constitute a purifier turbulence fitting system based on an adversarial neural network, which is used to obtain the neighborhood turbulence vector diagram of the purifier.
上述云端净化器湍流向量预训练模型、净化器多点位流速传感器、神经网络湍流向量修正模块、湍流向量预处理模型、生成神经网络湍流向量单时间片生成模块、判别神经网络湍流向量单时间片评估模块、生成神经网络湍流向量单时间片生成模块实时训练模块、生成神经网络湍流向量多时间片生成模块、判别神经网络湍流向量多时间片评估模块、生成神经网络湍流向量多时间片生成模块实时训练模块、神经网络净化器运行状况评估模块可以构成基于对抗神经网络的净化器智能状态评估系统,用于获取净化器运行状况评估值。The above cloud purifier turbulence vector pre-training model, purifier multi-point flow velocity sensor, neural network turbulence vector correction module, turbulence vector preprocessing model, generating neural network turbulence vector single time slice generation module, discriminant neural network turbulence vector single time slice Evaluation Module, Generative Neural Network Turbulence Vector Single Time Slice Generation Module Real-time Training Module, Generative Neural Network Turbulence Vector Multi-Time Slice Generation Module, Discriminant Neural Network Turbulence Vector Multi-Time Slice Evaluation Module, Generative Neural Network Turbulence Vector Multi-Time Slice Generation Module Real-time The training module and the neural network purifier operating condition evaluation module can constitute a purifier intelligent state evaluation system based on the confrontation neural network, which is used to obtain the purifier operating state evaluation value.
以上所述,仅是本发明实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only the embodiments of the present invention and do not limit the technical scope of the present invention. Therefore, any minor modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the present invention. within the scope of the technical solution.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210625814.9A CN115221646B (en) | 2022-06-02 | 2022-06-02 | Purifier turbulence fitting system, evaluation system and control system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210625814.9A CN115221646B (en) | 2022-06-02 | 2022-06-02 | Purifier turbulence fitting system, evaluation system and control system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115221646A true CN115221646A (en) | 2022-10-21 |
| CN115221646B CN115221646B (en) | 2025-09-16 |
Family
ID=83608884
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210625814.9A Active CN115221646B (en) | 2022-06-02 | 2022-06-02 | Purifier turbulence fitting system, evaluation system and control system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115221646B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018178231A1 (en) * | 2017-03-30 | 2018-10-04 | Airlabs Bv | Personalized air cleaning device |
| CN110223242A (en) * | 2019-05-07 | 2019-09-10 | 北京航空航天大学 | A kind of video turbulent flow removing method based on time-space domain Residual Generation confrontation network |
| US20200073258A1 (en) * | 2018-08-30 | 2020-03-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Equipment module with enhanced protection from airborne contaminants, and method of operation |
| CN113515882A (en) * | 2021-03-29 | 2021-10-19 | 浙江大学 | A PINN-based Coefficient Correction Method for Turbulence Models |
-
2022
- 2022-06-02 CN CN202210625814.9A patent/CN115221646B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018178231A1 (en) * | 2017-03-30 | 2018-10-04 | Airlabs Bv | Personalized air cleaning device |
| US20200073258A1 (en) * | 2018-08-30 | 2020-03-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Equipment module with enhanced protection from airborne contaminants, and method of operation |
| CN110223242A (en) * | 2019-05-07 | 2019-09-10 | 北京航空航天大学 | A kind of video turbulent flow removing method based on time-space domain Residual Generation confrontation network |
| CN113515882A (en) * | 2021-03-29 | 2021-10-19 | 浙江大学 | A PINN-based Coefficient Correction Method for Turbulence Models |
Non-Patent Citations (1)
| Title |
|---|
| 朱春鸯;郭其一;: "基于动态测点选择的温度状态识别", 计算机应用, no. 02, 1 February 2011 (2011-02-01), pages 473 - 477 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115221646B (en) | 2025-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101718634B (en) | Equipment state comprehensive dynamic alarming method based on multivariate probability model | |
| JP4876057B2 (en) | Plant control device and thermal power plant control device | |
| CN106406101B (en) | An Intelligent Calculation Predictive Control Method for Coordinated Control System of Thermal Power Units | |
| CN117211973A (en) | Ship liquid ammonia fuel supply control system and method | |
| CN118131631B (en) | Dynamic optimization scheduling system and method based on sewage treatment | |
| CN109492768A (en) | Air Quality Forecast model training method and device | |
| CN107918396A (en) | A kind of underwater cleaning robot paths planning method and system based on hull model | |
| CN104239597A (en) | Cooling tower modeling method based on RBF neural network | |
| CN114492727B (en) | Intelligent prediction and control method for inlet smoke concentration of dust removal system | |
| Bin-Karim et al. | Spatiotemporal optimization through gaussian process-based model predictive control: A case study in airborne wind energy | |
| CN112052551A (en) | Method and system for identifying surge operation fault of fan | |
| KR20240011360A (en) | Method and device for estimating fine dust concentration and inferencing source using local public data | |
| CN114357867A (en) | Primary frequency modulation control method and device based on hydraulic turbine simulation intelligent solution | |
| CN115616153A (en) | Method and system for on-line monitoring of unorganized carbon emission of cement industry plant area | |
| CN114139602A (en) | Equipment parameter degradation real-time early warning method based on GMM and EM algorithm | |
| CN115221646A (en) | Purifier Turbulence Fitting System, Evaluation System and Control System | |
| CN114266286B (en) | A method and device for online detection of welding process information | |
| CN102354376B (en) | Method for supplementing and correcting wind measurement data | |
| CN114297908B (en) | Wind turbine energy efficiency state abnormality detection method and system | |
| CN119762453A (en) | Slag slurry pump pipeline flow self-adaptive monitoring system and method based on machine learning | |
| CN108304654B (en) | Optimal discharge method of sewage in deep sea based on tidal change | |
| CN115562169A (en) | A Method for Optimizing Process Parameters of Welding Heat Treatment | |
| CN119444247A (en) | A method for predicting CO2 emissions from ships | |
| CN118214153A (en) | A wind farm intelligent operation and maintenance management system | |
| CN2641472Y (en) | On-line optimization control device for boiler combustion based on computation intelligence |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |