CN115241328B - A method for preparing a single carrier detector - Google Patents
A method for preparing a single carrier detector Download PDFInfo
- Publication number
- CN115241328B CN115241328B CN202211049762.1A CN202211049762A CN115241328B CN 115241328 B CN115241328 B CN 115241328B CN 202211049762 A CN202211049762 A CN 202211049762A CN 115241328 B CN115241328 B CN 115241328B
- Authority
- CN
- China
- Prior art keywords
- type
- region
- intrinsic
- layer
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000009792 diffusion process Methods 0.000 claims abstract description 69
- 238000010521 absorption reaction Methods 0.000 claims abstract description 41
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims description 54
- 229920002120 photoresistant polymer Polymers 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 18
- 230000004888 barrier function Effects 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000011161 development Methods 0.000 claims description 7
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000002161 passivation Methods 0.000 claims description 4
- 238000005566 electron beam evaporation Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 230000004044 response Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
- H10F71/1272—The active layers comprising only Group III-V materials, e.g. GaAs or InP comprising at least three elements, e.g. GaAlAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/223—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PIN barrier
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1243—Active materials comprising only Group III-V materials, e.g. GaAs characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光电探测器技术领域,具体来说涉及一种单载流子探测器的制备方法。The invention relates to the technical field of photoelectric detectors, and in particular to a method for preparing a single carrier detector.
背景技术Background technique
随着光电通信技术的不断发展与日益成熟,现有光通信系统的响应速度和带宽等性能将很难满足人们的需求。作为光电通信系统中十分重要的一部分,光电信号探测器也是目前的研究热点。With the continuous development and increasing maturity of optoelectronic communication technology, the performance of existing optical communication systems such as response speed and bandwidth will be difficult to meet people's needs. As a very important part of optoelectronic communication systems, photoelectric signal detectors are also a current research hotspot.
传统的PIN型平衡探测器同时使用电子和空穴作为载流子,探测器的响应速度主要受有效质量更大的空穴影响,因此,亟需一种响应速度相比于传统的PIN型探测器大幅提高的探测器;同时,Zn扩散工艺普遍存在拖尾的现象,这对于传统的平衡探测器带来极大的危害。Traditional PIN-type balanced detectors use both electrons and holes as carriers. The response speed of the detector is mainly affected by the holes with larger effective mass. Therefore, there is an urgent need for a detector with a significantly improved response speed compared to the traditional PIN-type detector. At the same time, the Zn diffusion process generally has a tailing phenomenon, which poses a great threat to traditional balanced detectors.
发明内容Summary of the invention
为了解决上述技术方案的不足,本发明的目的在于提供一种单载流子探测器的制备方法。In order to solve the deficiencies of the above technical solutions, an object of the present invention is to provide a method for preparing a single carrier detector.
本发明的另一目的在于提供一种单载流子探测器。Another object of the present invention is to provide a single carrier detector.
本发明的目的是通过下述技术方案予以实现的。The purpose of the present invention is achieved through the following technical solutions.
一种单载流子探测器的制备方法,包括以下步骤:A method for preparing a single carrier detector comprises the following steps:
步骤一:利用MOCVD或者MBE的沉积方式在半绝缘InP衬底上依次生长N型InP缓冲层、N型DBR反射区、N型InP漂移层、N型InGaAsP过渡层(1层或多层)、本征型In0.53Ga0.47As吸收层、本征型In0.52Al0.48As电子扩散阻挡层和本征型InP盖层;Step 1: Using MOCVD or MBE deposition method, an N-type InP buffer layer, an N-type DBR reflection region, an N-type InP drift layer, an N-type InGaAsP transition layer (one or more layers), an intrinsic In 0.53 Ga 0.47 As absorption layer, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer and an intrinsic InP cap layer are sequentially grown on a semi-insulating InP substrate;
步骤二:利用PECVD在本征型InP盖层的上表面沉积SiN薄膜;Step 2: Depositing a SiN film on the upper surface of the intrinsic InP cap layer by PECVD;
步骤三:利用光刻胶在SiN薄膜的表面形成Zn扩散窗口图形,利用刻蚀的方法去除Zn扩散窗口图形阵列上的SiN薄膜,使下方的所述本征型InP盖层暴露出来,刻蚀完成后去除光刻胶,形成Zn扩散窗口;Step 3: forming a Zn diffusion window pattern on the surface of the SiN film by using a photoresist, removing the SiN film on the Zn diffusion window pattern array by etching to expose the intrinsic InP cap layer below, and removing the photoresist after etching to form a Zn diffusion window;
步骤四:利用MOCVD或者炉管法在所述Zn扩散窗口区域进行Zn扩散,形成P-型扩散区域和围绕P-型扩散区域的非有源区域,被Zn扩散的区域包括本征型InP盖层、本征型In0.52Al0.48As电子扩散阻挡层和本征型In0.53Ga0.47As吸收层,Zn扩散之后,本征型InP盖层、In0.52Al0.48As电子扩散阻挡层和In0.53Ga0.47As吸收层转化为P型,其中,本征型In0.53Ga0.47As吸收层中P型掺杂浓度自上而下逐渐降低,形成具有P型掺杂浓度梯度的P型In0.53Ga0.47As吸收层;Step 4: Diffusing Zn in the Zn diffusion window region by MOCVD or a furnace tube method to form a P-type diffusion region and an inactive region surrounding the P-type diffusion region, wherein the region diffused with Zn includes an intrinsic InP cap layer, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer and an intrinsic In 0.53 Ga 0.47 As absorption layer, and after Zn diffusion, the intrinsic InP cap layer, the In 0.52 Al 0.48 As electron diffusion barrier layer and the In 0.53 Ga 0.47 As absorption layer are converted into P-type, wherein the P-type doping concentration in the intrinsic In 0.53 Ga 0.47 As absorption layer gradually decreases from top to bottom, forming a P-type In 0.53 Ga 0.47 As absorption layer with a P-type doping concentration gradient;
步骤五:利用光刻胶在SiN薄膜和P-型扩散区域的上表面形成台阶图形,通过台阶腐蚀,形成台阶区域和围绕台阶区域的N型接触区域,其中,所述台阶区域包含P-型扩散区域,台阶区域与P-型扩散区域的半径差为5~50μm,所述台阶腐蚀区域包括本征型InP盖层、本征型In0.52Al0.48As电子扩散阻挡层、本征型In0.53Ga0.47As吸收层、N型InGaAsP过渡层(1层或多层)、N型InP漂移层、N型DBR反射区和N型InP缓冲层;Step 5: using photoresist to form a step pattern on the upper surface of the SiN film and the P-type diffusion region, and forming a step region and an N-type contact region surrounding the step region by step etching, wherein the step region includes a P-type diffusion region, and the radius difference between the step region and the P-type diffusion region is 5 to 50 μm, and the step etching region includes an intrinsic InP cap layer, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer, an intrinsic In 0.53 Ga 0.47 As absorption layer, an N-type InGaAsP transition layer (1 layer or multiple layers), an N-type InP drift layer, an N-type DBR reflection region and an N-type InP buffer layer;
步骤六:利用光刻胶在所述Zn扩散窗口的一侧区域内和该区域相邻的SiN薄膜的上表面形成连续的P型金属电极图形,在所述P型金属电极图形外表面蒸镀金属并进行金属剥离,退火,形成P型金属电极,P型金属电极图形和P-型扩散区域的上表面接触为欧姆接触;Step 6: using photoresist to form a continuous P-type metal electrode pattern in a region on one side of the Zn diffusion window and on the upper surface of the SiN film adjacent to the region, evaporating metal on the outer surface of the P-type metal electrode pattern and performing metal stripping, annealing, and forming a P-type metal electrode, wherein the P-type metal electrode pattern and the upper surface of the P-type diffusion region are in ohmic contact;
步骤七:利用光刻胶在台阶区域周围的所述N型接触区域上形成N电极图形,利用电子束蒸发或磁控溅射的方法蒸镀金属,并进行金属剥离和退火,形成N型金属电极,N型金属电极与N型InP缓冲层接触形成欧姆接触,其中,N型金属电极与台阶区域之间存在间隙,所述间隙的距离为5~50μm;Step 7: using photoresist to form an N-electrode pattern on the N-type contact area around the step area, using electron beam evaporation or magnetron sputtering to evaporate metal, and performing metal stripping and annealing to form an N-type metal electrode, the N-type metal electrode contacts the N-type InP buffer layer to form an ohmic contact, wherein there is a gap between the N-type metal electrode and the step area, and the distance of the gap is 5 to 50 μm;
步骤八:利用涂胶的方法在所有裸露在外的上表面涂抹BCB或PBO材料,利用光刻和显影的方法,形成BCB或PBO图形,BCB或PBO图形覆盖所述台阶区域的侧面,光刻和显影之后将所述N型金属电极和P型金属电极裸露在外,烘烤固化以完成台阶区域侧面的钝化,所述涂抹的厚度为1~20μm;Step 8: Apply BCB or PBO material on all exposed upper surfaces by means of glue coating, and form BCB or PBO patterns by means of photolithography and development. The BCB or PBO patterns cover the side of the step area. After photolithography and development, the N-type metal electrode and the P-type metal electrode are exposed, and the passivation of the side of the step area is completed by baking and curing. The thickness of the coating is 1 to 20 μm.
步骤九:利用PECVD的沉积方式在探测器的外表面沉积SiN减反膜;Step nine: Deposit a SiN anti-reflection film on the outer surface of the detector using a PECVD deposition method;
步骤十:利用光刻胶在所述P型金属电极和N型金属电极的正上方形成VIA孔洞图形,利用刻蚀的方法去除VIA孔洞图形中的SiN减反膜,使得P型金属电极和N型金属电极暴露出来,刻蚀完成后去除光刻胶,得到VIA孔洞;Step 10: using photoresist to form a VIA hole pattern directly above the P-type metal electrode and the N-type metal electrode, removing the SiN anti-reflection film in the VIA hole pattern by etching to expose the P-type metal electrode and the N-type metal electrode, and removing the photoresist after etching to obtain a VIA hole;
步骤十一:将所述半绝缘InP衬底的背面减薄、抛光。Step 11: Thinning and polishing the back side of the semi-insulating InP substrate.
在上述技术方案中,N型InP缓冲层的厚度为0.5μm,掺杂浓度为5×1017/cm3。In the above technical solution, the thickness of the N-type InP buffer layer is 0.5 μm, and the doping concentration is 5×10 17 /cm 3 .
在上述技术方案中,在步骤一中,所述N型DBR反射区由多层InP和InAlGaAs组成,每层InP和InAlGaAs的厚度为波长1550nm光线在该材料内光有效波长的1/4,InP和InAlGaAs的层数大于等于10,N型DBR反射区的对于波长为1300~1700nm光线的反射率大于等于70%。In the above technical solution, in step 1, the N-type DBR reflection zone is composed of multiple layers of InP and InAlGaAs, the thickness of each layer of InP and InAlGaAs is 1/4 of the effective wavelength of light with a wavelength of 1550nm in the material, the number of InP and InAlGaAs layers is greater than or equal to 10, and the reflectivity of the N-type DBR reflection zone for light with a wavelength of 1300-1700nm is greater than or equal to 70%.
在上述技术方案中,在步骤一中,本征型In0.53Ga0.47As吸收层的厚度为1~4μm。In the above technical solution, in step 1, the thickness of the intrinsic type In 0.53 Ga 0.47 As absorption layer is 1-4 μm.
在上述技术方案中,在步骤一中,所述N型InP漂移层的厚度为0.1~1μm,掺杂浓度为5×1015~2×1017/cm3。In the above technical solution, in step 1, the thickness of the N-type InP drift layer is 0.1-1 μm, and the doping concentration is 5×10 15 -2×10 17 /cm 3 .
在上述技术方案中,在步骤一中,本征型In0.52Al0.48As电子扩散阻挡层的厚度为10~200nm。In the above technical solution, in step 1, the thickness of the intrinsic type In 0.52 Al 0.48 As electron diffusion barrier layer is 10-200 nm.
在上述技术方案中,在步骤二中,SiN薄膜的厚度为100nm。In the above technical solution, in step 2, the thickness of the SiN film is 100 nm.
在上述技术方案中,在步骤四中,本征型In0.53Ga0.47As吸收层的P型掺杂浓度自上而下从5×1017~5×1018/cm3降至1×1017~5×1017/cm3。In the above technical solution, in step 4, the P-type doping concentration of the intrinsic In 0.53 Ga 0.47 As absorption layer is reduced from 5×10 17 to 5×10 18 /cm 3 to 1×10 17 to 5×10 17 /cm 3 from top to bottom.
在上述技术方案中,在步骤四中,所述P-型扩散区域为圆形,其半径为10~2000μm。In the above technical solution, in step 4, the P-type diffusion region is circular, and its radius is 10 to 2000 μm.
在上述技术方案中,在步骤九中,所述SiN减反膜的厚度为200nm,SiN减反膜对于1310nm~1700nm波长光线的反射率大于等于70%。In the above technical solution, in step nine, the thickness of the SiN anti-reflection film is 200 nm, and the reflectivity of the SiN anti-reflection film for light with a wavelength of 1310 nm to 1700 nm is greater than or equal to 70%.
在上述技术方案中,步骤十一中,减薄、抛光后所述半绝缘InP衬底的厚度为50~200μm。In the above technical solution, in step eleven, the thickness of the semi-insulating InP substrate after thinning and polishing is 50 to 200 μm.
上述制备方法获得的单载流子探测器。The single carrier detector obtained by the above preparation method.
本发明的优点和有益效果为:The advantages and beneficial effects of the present invention are:
本发明公开了一种单载流子探测器的制备方法,主要通过Zn扩散和台阶相结合的方法。其中,Zn扩散用于形成P型金属接触区域,台阶图形比Zn扩散的直径大,用于形成电学隔离,这样做的好处是:The present invention discloses a method for preparing a single carrier detector, which is mainly a method combining Zn diffusion and steps. Among them, Zn diffusion is used to form a P-type metal contact area, and the step pattern is larger than the diameter of the Zn diffusion and is used to form electrical isolation. The advantages of this are:
1、通过优化Zn扩散的时间和浓度,使单载流子探测器有源区域的扩散深度覆盖整个本征型In0.53Ga0.47As吸收层,可以保证本征型In0.53Ga0.47As吸收层在该探测器的中心区域有合适的p-型掺杂,本征型In0.53Ga0.47As吸收层自上而下Zn掺杂的浓度逐渐降低,该掺杂梯度将在本征型In0.53Ga0.47As吸收层中形成弱电场,这将有助于电子在本征型In0.53Ga0.47As吸收层中的输运,提高探测器的速度。1. By optimizing the diffusion time and concentration of Zn, the diffusion depth of the active area of the single-carrier detector covers the entire intrinsic In 0.53 Ga 0.47 As absorption layer, which can ensure that the intrinsic In 0.53 Ga 0.47 As absorption layer has appropriate p-type doping in the central area of the detector. The concentration of Zn doping in the intrinsic In 0.53 Ga 0.47 As absorption layer gradually decreases from top to bottom. The doping gradient will form a weak electric field in the intrinsic In 0.53 Ga 0.47 As absorption layer, which will help the transport of electrons in the intrinsic In 0.53 Ga 0.47 As absorption layer and improve the speed of the detector.
2、Zn扩散工艺普遍存在拖尾的现象,在本发明的单载流子探测器中Zn扩散的拖尾现象得到了合理的利用,拖尾的Zn掺杂将在本征型In0.53Ga0.47As吸收层中产生掺杂梯度,有助于电子在本征型In0.53Ga0.47As吸收层中的输运。2. The tailing phenomenon is common in Zn diffusion process. In the single carrier detector of the present invention, the tailing phenomenon of Zn diffusion is reasonably utilized. The tailing Zn doping will produce a doping gradient in the intrinsic In 0.53 Ga 0.47 As absorption layer, which is helpful for the transport of electrons in the intrinsic In 0.53 Ga 0.47 As absorption layer.
3、本发明采用半绝缘的InP衬底,通过台阶腐蚀将Zn扩散的有源区域限制在台阶区域,既可以实现电学绝缘,又可以最大限度的减小探测器的电容,从而提高探测器的开关速度和带宽。3. The present invention adopts a semi-insulating InP substrate and limits the active area of Zn diffusion to the step area through step corrosion, which can not only achieve electrical insulation but also minimize the capacitance of the detector, thereby improving the switching speed and bandwidth of the detector.
4、台阶区域的直径大于Zn扩散区域的直径,因此,台阶区域的侧面是半绝缘的高阻材料(BCB或PBO材料),通过优化侧面钝化可以进一步降低暗电流。4. The diameter of the step region is larger than the diameter of the Zn diffusion region. Therefore, the side of the step region is a semi-insulating high-resistance material (BCB or PBO material). The dark current can be further reduced by optimizing the side passivation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的单载流子探测器的步骤一的流程示意图。FIG. 1 is a schematic flow chart of step 1 of the single carrier detector of the present invention.
图2为本发明的单载流子探测器的步骤二-步骤四的流程示意图。FIG. 2 is a schematic flow chart of step 2 to step 4 of the single carrier detector of the present invention.
图3为本发明的单载流子探测器的步骤五的流程示意图。FIG. 3 is a schematic flow chart of step 5 of the single carrier detector of the present invention.
图4为本发明的单载流子探测器的步骤六-步骤七的流程示意图。FIG. 4 is a schematic flow chart of step 6 to step 7 of the single carrier detector of the present invention.
图5为本发明的单载流子探测器的步骤八的流程示意图。FIG. 5 is a schematic flow chart of step eight of the single carrier detector of the present invention.
图6为本发明的单载流子探测器的步骤九的流程示意图。FIG. 6 is a schematic flow chart of step nine of the single carrier detector of the present invention.
图7为本发明的单载流子探测器的步骤十的流程示意图。FIG. 7 is a schematic flow chart of step 10 of the single carrier detector of the present invention.
其中,in,
1:半绝缘InP衬底,1: Semi-insulating InP substrate,
2:N型InP缓冲层,2: N-type InP buffer layer,
3:N型DBR反射区,3: N-type DBR reflection area,
4:N型InP漂移层,4: N-type InP drift layer,
5:N型InGaAsP过渡层,5: N-type InGaAsP transition layer,
6:本征型In0.53Ga0.47As吸收层,6: Intrinsic type In 0.53 Ga 0.47 As absorption layer,
7:本征型In0.52Al0.48As电子扩散阻挡层,7: Intrinsic type In 0.52 Al 0.48 As electron diffusion barrier,
8:本征型InP盖层,8: Intrinsic InP cap layer,
9:SiN薄膜,9: SiN film,
10:Zn扩散窗口,10: Zn diffusion window,
11:P-型扩散区域,11: P-type diffusion region,
12:台阶区域,12: Step area,
13:P型金属电极,13: P-type metal electrode,
14:N型金属电极,14: N-type metal electrode,
15:BCB或PBO图形,15: BCB or PBO graphics,
16:SiN减反膜,16: SiN anti-reflection film,
17:VIA孔洞。17: VIA hole.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明的技术方案。The technical solution of the present invention is further described below in conjunction with specific embodiments.
实施例1Example 1
如图1-7所示,本实施例提供了一种单载流子探测器的制备方法,包括以下步骤:As shown in FIGS. 1-7 , this embodiment provides a method for preparing a single carrier detector, comprising the following steps:
步骤一:利用MOCVD或者MBE的沉积方式在半绝缘InP衬底1上依次生长N型InP缓冲层2、N型DBR反射区3、N型InP漂移层4、N型InGaAsP过渡层5(1层或多层)、本征型In0.53Ga0.47As吸收层6、本征型In0.52Al0.48As电子扩散阻挡层7和本征型InP盖层8,其中,N型InP缓冲层2的厚度为0.5μm,掺杂浓度为5×1017/cm3,其作用是为了更好的匹配半绝缘InP衬底1和N型InP缓冲层2上面的外延层材料之间因为生长条件不同所造成的晶格常数的差异,确保外延层的生长质量;所述N型DBR反射区3由多层InP和InAlGaAs组成,每层InP和InAlGaAs的厚度为波长1550nm光线在该材料内光有效波长的1/4,InAlGaAs的发光波长为1190nm,厚度为93nm,InP和InAlGaAs的层数大于等于10,N型DBR反射区3的对于波长为1550nm光线的反射率大80%;所述N型InP漂移层4的厚度为1μm,掺杂浓度为5×1015/cm3;本征型In0.53Ga0.47As吸收层6的厚度为1μm,该层为光生载流子产生层,该层厚度较低,这样降低了光生电子在该层的扩散时间,同时,由于N型DBR反射层可以将未吸收的光线反射回本征型In0.53Ga0.47As吸收层进行二次吸收,这就保证了单载流子探测器的响应速度;本征型In0.52Al0.48As电子扩散阻挡层7的厚度为20nm,用于阻挡光生电子向上方扩散,从而保证探测器的单载流子输运特性。Step 1: Using MOCVD or MBE deposition method, an N-type InP buffer layer 2, an N-type DBR reflection region 3, an N-type InP drift layer 4, an N-type InGaAsP transition layer 5 (one or more layers), an intrinsic In 0.53 Ga 0.47 As absorption layer 6, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer 7 and an intrinsic InP cap layer 8 are sequentially grown on a semi-insulating InP substrate 1, wherein the thickness of the N-type InP buffer layer 2 is 0.5 μm and the doping concentration is 5×10 17 /cm 3 , which is used to better match the difference in lattice constants between the semi-insulating InP substrate 1 and the epitaxial layer material on the N-type InP buffer layer 2 caused by different growth conditions, and ensure the growth quality of the epitaxial layer; the N-type DBR reflection area 3 is composed of multiple layers of InP and InAlGaAs, the thickness of each layer of InP and InAlGaAs is 1/4 of the effective wavelength of the light with a wavelength of 1550nm in the material, the emission wavelength of InAlGaAs is 1190nm, the thickness is 93nm, the number of InP and InAlGaAs layers is greater than or equal to 10, and the reflectivity of the N-type DBR reflection area 3 for the light with a wavelength of 1550nm is greater than 80%; the thickness of the N-type InP drift layer 4 is 1μm, and the doping concentration is 5×10 15 /cm 3 ; the intrinsic type In 0.53 Ga 0.47 The thickness of the As absorption layer 6 is 1 μm, which is a photogenerated carrier generation layer. The thickness of this layer is relatively low, which reduces the diffusion time of photogenerated electrons in this layer. At the same time, since the N-type DBR reflection layer can reflect the unabsorbed light back to the intrinsic In 0.53 Ga 0.47 As absorption layer for secondary absorption, this ensures the response speed of the single-carrier detector; the thickness of the intrinsic In 0.52 Al 0.48 As electron diffusion blocking layer 7 is 20 nm, which is used to block the photogenerated electrons from diffusing upward, thereby ensuring the single-carrier transport characteristics of the detector.
步骤二:利用PECVD(Plasma Enhanced Chemical Vapor Deposition,是指等离子体增强化学的气相沉积法)的沉积方式在本征型InP盖层8的上表面沉积SiN薄膜9,SiN薄膜9的厚度为100nm。Step 2: Deposit a SiN film 9 on the upper surface of the intrinsic InP cap layer 8 by using PECVD (Plasma Enhanced Chemical Vapor Deposition), and the thickness of the SiN film 9 is 100 nm.
步骤三:利用光刻胶在SiN薄膜9的表面形成Zn扩散窗口10图形阵列,利用刻蚀的方法去除Zn扩散窗口10图形阵列上的SiN薄膜9,使下方的所述本征型InP盖层8暴露出来,刻蚀完成后去除光刻胶,形成Zn扩散窗口10。Step three: Use photoresist to form a Zn diffusion window 10 pattern array on the surface of the SiN film 9, and use etching to remove the SiN film 9 on the Zn diffusion window 10 pattern array to expose the intrinsic InP cap layer 8 below. After etching, remove the photoresist to form a Zn diffusion window 10.
步骤四:利用MOCVD或者炉管法在所述Zn扩散窗口10区域进行Zn扩散,形成P-型扩散区域11和围绕P-型扩散区域11的非有源区域,被Zn扩散的区域包括本征型InP盖层8、本征型In0.52Al0.48As电子扩散阻挡层7和本征型In0.53Ga0.47As吸收层6,Zn扩散之后,本征型InP盖层8、In0.52Al0.48As电子扩散阻挡层7和In0.53Ga0.47As吸收层转化为P型,其中,In0.53Ga0.47As吸收层中P型掺杂浓度自上而下逐渐降低,形成具有P型掺杂浓度梯度的P型In0.53Ga0.47As吸收层,其浓度从2×1018/cm3降至1×1017/cm3,其中,所述P-型扩散区域11的上表面为圆形,其半径为25μm。Step 4: Diffusing Zn in the Zn diffusion window 10 region by MOCVD or furnace tube method to form a P-type diffusion region 11 and an inactive region surrounding the P-type diffusion region 11, wherein the region diffused with Zn includes an intrinsic InP cap layer 8, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer 7 and an intrinsic In 0.53 Ga 0.47 As absorption layer 6. After Zn diffusion, the intrinsic InP cap layer 8, the In 0.52 Al 0.48 As electron diffusion barrier layer 7 and the In 0.53 Ga 0.47 As absorption layer are converted into P-type, wherein the P-type doping concentration in the In 0.53 Ga 0.47 As absorption layer gradually decreases from top to bottom, forming a P-type In 0.53 Ga 0.47 As absorption layer with a P-type doping concentration gradient, wherein the concentration decreases from 2×10 18 /cm 3 to 1×10 17 /cm 3 , wherein the upper surface of the P-type diffusion region 11 is circular, and its radius is 25 μm.
步骤五:利用光刻胶在SiN薄膜9和P-型扩散区域11的上表面形成台阶图形,通过台阶腐蚀,形成台阶区域12和围绕台阶区域12的N型接触区域,其中,所述台阶区域12包含P-型扩散区域11,台阶区域12与P-型扩散区域11的半径差为10μm,所述台阶腐蚀的区域包括本征型InP盖层8、本征型In0.52Al0.48As电子扩散阻挡层7、本征型In0.53Ga0.47As吸收层6、N型InGaAsP过渡层5(1层或多层)、N型InP漂移层4、N型DBR反射区3和N型InP缓冲层2。Step 5: Use photoresist to form a step pattern on the upper surface of the SiN film 9 and the P-type diffusion region 11, and form a step region 12 and an N-type contact region surrounding the step region 12 by step etching, wherein the step region 12 includes the P-type diffusion region 11, and the radius difference between the step region 12 and the P-type diffusion region 11 is 10 μm, and the step etching area includes an intrinsic InP cap layer 8, an intrinsic In 0.52 Al 0.48 As electron diffusion barrier layer 7, an intrinsic In 0.53 Ga 0.47 As absorption layer 6, an N-type InGaAsP transition layer 5 (1 layer or multiple layers), an N-type InP drift layer 4, an N-type DBR reflection region 3 and an N-type InP buffer layer 2.
步骤六:利用光刻胶在所述Zn扩散窗口10的一侧区域内和该区域相邻的SiN薄膜9的上表面形成连续的P型金属电极13图形,在所述P型金属电极图形外表面蒸镀金属并进行金属剥离,退火,形成P型金属电极13,P型金属电极图形和SiN薄膜9接触为欧姆接触。Step six: Use photoresist to form a continuous P-type metal electrode 13 pattern in the area on one side of the Zn diffusion window 10 and on the upper surface of the SiN film 9 adjacent to the area, evaporate metal on the outer surface of the P-type metal electrode pattern and perform metal stripping and annealing to form a P-type metal electrode 13. The P-type metal electrode pattern and the SiN film 9 are in ohmic contact.
步骤七:利用光刻胶台阶区域12一侧的在所述N型接触区域上形成N电极图形,利用电子束蒸发或磁控溅射的方法蒸镀金属,并进行金属剥离和退火,形成N型金属电极14,N型金属电极14与N型InP缓冲层2接触形成欧姆接触,其中,N型金属电极14与台阶区域12之间存在间隙,所述间隙的距离为5~50μm。Step seven: Using the photoresist step region 12 on one side to form an N-electrode pattern on the N-type contact region, using electron beam evaporation or magnetron sputtering to evaporate metal, and performing metal stripping and annealing to form an N-type metal electrode 14, the N-type metal electrode 14 contacts the N-type InP buffer layer 2 to form an ohmic contact, wherein there is a gap between the N-type metal electrode 14 and the step region 12, and the distance of the gap is 5 to 50 μm.
步骤八:利用涂胶的方法在所有裸露在外的上表面涂抹BCB或PBO材料,利用光刻和显影的方法,形成BCB或PBO图形15,BCB或PBO图形15覆盖所述台阶区域12的侧面,光刻和显影之后将所述N型金属电极14和P型金属电极13裸露在外,烘烤固化以完成台阶区域12侧面的钝化,所述涂抹的厚度为4μm。Step eight: Use a glue coating method to apply BCB or PBO material on all exposed upper surfaces, and use photolithography and development methods to form a BCB or PBO pattern 15. The BCB or PBO pattern 15 covers the side of the step area 12. After photolithography and development, the N-type metal electrode 14 and the P-type metal electrode 13 are exposed, and baked and cured to complete the passivation of the side of the step area 12. The coating thickness is 4μm.
步骤九:利用PECVD的沉积方式在所有裸露的外表面沉积SiN减反膜16,所述SiN减反膜16的厚度为200nm,SiN减反膜16对于1550nm波长光线的反射率大于90%。Step nine: Deposit SiN anti-reflection film 16 on all exposed outer surfaces by PECVD deposition method. The thickness of the SiN anti-reflection film 16 is 200 nm. The reflectivity of the SiN anti-reflection film 16 for light with a wavelength of 1550 nm is greater than 90%.
步骤十:利用光刻胶在所述P型金属电极13和N型金属电极14的正上方形成VIA孔洞17图形,利用刻蚀的方法去除VIA孔洞17图形中的SiN减反膜16,使得P型金属电极13和N型金属电极14暴露出来,刻蚀完成后去除光刻胶,得到VIA孔洞17。Step ten: Use photoresist to form a VIA hole 17 pattern directly above the P-type metal electrode 13 and the N-type metal electrode 14, and use an etching method to remove the SiN anti-reflection film 16 in the VIA hole 17 pattern, so that the P-type metal electrode 13 and the N-type metal electrode 14 are exposed. After the etching is completed, remove the photoresist to obtain the VIA hole 17.
步骤十一:将所述半绝缘InP衬底1的背面减薄、抛光,减薄、抛光后所述半绝缘InP衬底的厚度为150μm。Step 11: Thinning and polishing the back side of the semi-insulating InP substrate 1. After thinning and polishing, the thickness of the semi-insulating InP substrate is 150 μm.
通过本实施例的制备方法获得的单载流子探测器,采用正面入射的方式,光线通过SiN减反膜16入射进入并被本征型In0.53Ga0.47As吸收层6吸收,未完全吸收的光线通过N型DBR反射区3反射回本征型In0.53Ga0.47As吸收层6,从而进行二次吸收。The single carrier detector obtained by the preparation method of this embodiment adopts the front incidence mode, and the light is incident through the SiN anti-reflection film 16 and is absorbed by the intrinsic In 0.53 Ga 0.47 As absorption layer 6. The light that is not completely absorbed is reflected back to the intrinsic In 0.53 Ga 0.47 As absorption layer 6 through the N-type DBR reflection area 3, thereby undergoing secondary absorption.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention is described above by way of example. It should be noted that, without departing from the core of the present invention, any simple deformation, modification or other equivalent replacement that can be made by those skilled in the art without inventive labor falls within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211049762.1A CN115241328B (en) | 2022-08-30 | 2022-08-30 | A method for preparing a single carrier detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211049762.1A CN115241328B (en) | 2022-08-30 | 2022-08-30 | A method for preparing a single carrier detector |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115241328A CN115241328A (en) | 2022-10-25 |
| CN115241328B true CN115241328B (en) | 2024-08-02 |
Family
ID=83681391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211049762.1A Active CN115241328B (en) | 2022-08-30 | 2022-08-30 | A method for preparing a single carrier detector |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115241328B (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103094398A (en) * | 2013-02-05 | 2013-05-08 | 武汉电信器件有限公司 | Diffusion-free avalanche photodiode and preparation method thereof |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2708409B2 (en) * | 1986-06-20 | 1998-02-04 | 株式会社日立製作所 | Semiconductor light receiving element and method of manufacturing the same |
| US8030684B2 (en) * | 2007-07-18 | 2011-10-04 | Jds Uniphase Corporation | Mesa-type photodetectors with lateral diffusion junctions |
| US8598673B2 (en) * | 2010-08-23 | 2013-12-03 | Discovery Semiconductors, Inc. | Low-noise large-area photoreceivers with low capacitance photodiodes |
| CN103022218B (en) * | 2012-12-26 | 2015-10-21 | 华中科技大学 | A kind of InAs avalanche photodide and manufacture method thereof |
-
2022
- 2022-08-30 CN CN202211049762.1A patent/CN115241328B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103094398A (en) * | 2013-02-05 | 2013-05-08 | 武汉电信器件有限公司 | Diffusion-free avalanche photodiode and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115241328A (en) | 2022-10-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106784123B (en) | Uniline carrier photodetector and preparation method thereof | |
| CN106098836B (en) | Communication avalanche photodide and preparation method thereof | |
| CN104009104B (en) | A kind of table top indium gallium arsenic detector and preparation method thereof | |
| CN101552303A (en) | Photodiode and method of fabrication | |
| CN111739975A (en) | A kind of avalanche photodiode with three mesa structure and its manufacturing method | |
| JPH022691A (en) | Semiconductor light receiving device | |
| CN110808312B (en) | A preparation process method for improving the output of photodetector chips | |
| CN115295683B (en) | Single-carrier transport balance detector and preparation method thereof | |
| US11245046B2 (en) | Multi-junction tandem laser photovoltaic cell and manufacturing method thereof | |
| CN115241328B (en) | A method for preparing a single carrier detector | |
| CN105742400B (en) | The preparation method and double-color detector of a kind of double-color detector | |
| CN110364590B (en) | High-gain bandwidth product photodetector and manufacturing method thereof | |
| CN114122191B (en) | A method for preparing an avalanche photodetector | |
| CN113964238B (en) | A kind of preparation method of avalanche photoelectric detector | |
| CN117650190A (en) | Plasmon electrode photoelectric detector suitable for unpolarized light | |
| CN218730973U (en) | Single-carrier current sub-detector structure | |
| CN115249755B (en) | A kind of preparation method of avalanche photodetector | |
| KR100197134B1 (en) | Avalanch photodiode and the manufacturing method thereof | |
| CN115312630B (en) | A preparation method of an avalanche photodetector with a double drift region | |
| CN113964237B (en) | A method for preparing an avalanche photodetector having a secondary epitaxial collector region and an electric field guard ring | |
| CN209418523U (en) | A flip-chip visible light-sensitized silicon-based avalanche photodiode array | |
| CN218299812U (en) | Avalanche photodetector structure | |
| CN115411142B (en) | A method for preparing an InGaAs focal plane infrared detector | |
| CN114093981B (en) | A method for preparing an InAlAs avalanche photodetector based on secondary epitaxy | |
| CN216488097U (en) | Avalanche photoelectric detector |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |