CN115250129A - wireless communication chip - Google Patents
wireless communication chip Download PDFInfo
- Publication number
- CN115250129A CN115250129A CN202110464430.9A CN202110464430A CN115250129A CN 115250129 A CN115250129 A CN 115250129A CN 202110464430 A CN202110464430 A CN 202110464430A CN 115250129 A CN115250129 A CN 115250129A
- Authority
- CN
- China
- Prior art keywords
- transceiver circuit
- frequency band
- circuit
- frequency
- wireless communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims abstract description 108
- 230000005540 biological transmission Effects 0.000 claims abstract description 86
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 20
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 20
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 19
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 19
- 230000009977 dual effect Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/401—Circuits for selecting or indicating operating mode
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
Description
技术领域technical field
本发明有关于无线通信芯片。The present invention relates to a wireless communication chip.
现有技术current technology
针对同时支持三频(Tri-band)的双天线传送接收(two transmit and tworeceive paths,2T2R)的接入点(access point)或路由器(router),常见的可行方案是采用四颗芯片的系统架构,亦即此系统架构包含了一个核心运算芯片(例如中央处理器(Central Processing Unit,CPU))、一个2.4千兆赫(GigaHertz,GHz)频带的无线通信芯片、一个5GHz频带的无线通信芯片以及一个6GHz频带的无线通信芯片,且每一个无线通信芯片都包含了两个天线,并可以独立地进行数据传送与接收。For an access point (access point) or a router (router) that supports two transmit and two receive paths (2T2R) simultaneously with tri-band (Tri-band), a common feasible solution is to use a four-chip system architecture , that is, the system architecture includes a core computing chip (such as a central processing unit (CPU)), a wireless communication chip in the 2.4 GHz (GigaHertz, GHz) frequency band, a wireless communication chip in the 5 GHz frequency band, and a Wireless communication chips in the 6GHz band, and each wireless communication chip includes two antennas, and can independently transmit and receive data.
然而,由于四颗芯片在设计与制作上的成本太高,因此若是可以对部分芯片进行整合便可以有效地降低成本。然而,随着第六代Wi-Fi技术以及Wi-Fi 6e技术的普及,越来越多个工作站(station)拥有2*2的天线架构以收发两个空间串流(spatial stream)的数据,以增加传送与接收的数据量并减短数据传输时间。因此,如何设计出可以同时运作于两个不同的频带的单一芯片,且该芯片又能够做到双天线传送接收,是一个重要的课题。However, since the cost of designing and manufacturing four chips is too high, the cost can be effectively reduced if some chips can be integrated. However, with the popularization of the sixth-generation Wi-Fi technology and Wi-Fi 6e technology, more and more workstations have a 2*2 antenna structure to send and receive data from two spatial streams. In order to increase the amount of data transmitted and received and reduce the data transmission time. Therefore, how to design a single chip that can operate in two different frequency bands at the same time, and the chip can achieve dual-antenna transmission and reception, is an important issue.
发明内容SUMMARY OF THE INVENTION
因此,本发明的目的之一在于提出一种无线通信芯片,其可以让5GHz频带与6GHz都支持双天线传送接收功能,以解决先前技术中的问题。Therefore, one of the objectives of the present invention is to provide a wireless communication chip, which can support dual-antenna transmission and reception functions in both the 5GHz frequency band and the 6GHz frequency band, so as to solve the problems in the prior art.
在本发明的一个实施例中,揭露了一种无线通信芯片,其包含有模拟前端电路以及基频电路,其中该模拟前端电路包含有第一收发电路以及第二收发电路,该第一收发电路用以透过第一天线传送或接收信号,且该第二收发电路用以透过第二天线传送或接收信号。该基频电路用以控制该第一收发电路使用第一频带或第二频带来进行通信,及/或控制该第二收发电路使用该第一频带或该第二频带来进行通信;其中该基频电路控制该第一收发电路以及该第二收发电路,以使得该模拟前端电路交错地进行该第一频带的双天线传送接收与该第二频带的双天线传送接收。In one embodiment of the present invention, a wireless communication chip is disclosed, which includes an analog front-end circuit and a baseband circuit, wherein the analog front-end circuit includes a first transceiver circuit and a second transceiver circuit, the first transceiver circuit It is used for transmitting or receiving signals through the first antenna, and the second transceiver circuit is used for transmitting or receiving signals through the second antenna. The baseband circuit is used to control the first transceiver circuit to use the first frequency band or the second frequency band to communicate, and/or to control the second transceiver circuit to use the first frequency band or the second frequency band to communicate; wherein the baseband circuit The frequency circuit controls the first transceiver circuit and the second transceiver circuit, so that the analog front end circuit alternately performs dual-antenna transmission and reception of the first frequency band and dual-antenna transmission and reception of the second frequency band.
在本发明的另一个实施例中,揭露了一种无线通信芯片,其包含有模拟前端电路以及基频电路,其中该模拟前端电路包含有第一收发电路以及第二收发电路,该第一收发电路用以透过第一天线传送或接收信号,且该第二收发电路用以透过第二天线传送或接收信号。该基频电路用以控制该第一收发电路使用第一频带或第二频带来进行通信,及/或控制该第二收发电路使用该第一频带或该第二频带来进行通信;其中该基频电路控制该第一收发电路以及该第二收发电路,以使得该第一收发电路在该第一频带使用单天线传送接收,且使得该第二收发电路在该第二频带使用单天线传送接收;以及当该模拟前端电路与该基频电路接收到指示有双天线传送接收需求的特定封包时,该基频电路控制该第一收发电路以及该第二收发电路,以使得该第一收发电路与该第二收发电路在该第一频带或该第二频带使用双天线传送接收。In another embodiment of the present invention, a wireless communication chip is disclosed, which includes an analog front-end circuit and a baseband circuit, wherein the analog front-end circuit includes a first transceiver circuit and a second transceiver circuit, the first transceiver circuit The circuit is used for transmitting or receiving signals through the first antenna, and the second transceiver circuit is used for transmitting or receiving signals through the second antenna. The baseband circuit is used to control the first transceiver circuit to use the first frequency band or the second frequency band to communicate, and/or to control the second transceiver circuit to use the first frequency band or the second frequency band to communicate; wherein the baseband circuit The frequency circuit controls the first transceiver circuit and the second transceiver circuit, so that the first transceiver circuit uses a single antenna to transmit and receive in the first frequency band, and the second transceiver circuit uses a single antenna to transmit and receive in the second frequency band ; and when the analog front-end circuit and the baseband circuit receive a specific packet indicating that there is a need for dual-antenna transmission and reception, the baseband circuit controls the first transceiver circuit and the second transceiver circuit, so that the first transceiver circuit Using dual antennas to transmit and receive with the second transceiver circuit in the first frequency band or the second frequency band.
附图说明Description of drawings
图1为根据本发明一个实施例的芯片组的示意图。FIG. 1 is a schematic diagram of a chipset according to one embodiment of the present invention.
图2所示为根据本发明一个实施例的无线通信芯片的示意图。FIG. 2 is a schematic diagram of a wireless communication chip according to an embodiment of the present invention.
图3为根据本发明一个实施例的无线通信芯片的操作示意图。FIG. 3 is a schematic diagram of the operation of a wireless communication chip according to an embodiment of the present invention.
图4为根据本发明另一实施例的无线通信芯片的操作示意图。FIG. 4 is a schematic diagram of the operation of a wireless communication chip according to another embodiment of the present invention.
图5为根据本发明一个实施例的无线通信芯片的操作流程图。FIG. 5 is an operation flowchart of a wireless communication chip according to an embodiment of the present invention.
图6为封包所包含的多个字段的示意图。FIG. 6 is a schematic diagram of a plurality of fields included in a packet.
图7为根据本发明另一实施例的无线通信芯片的操作示意图。FIG. 7 is a schematic diagram of the operation of a wireless communication chip according to another embodiment of the present invention.
图8为根据本发明一个实施例的无线通信芯片的操作流程图。FIG. 8 is a flowchart of an operation of a wireless communication chip according to an embodiment of the present invention.
图9为接入点在频带切换时工作站的操作时序图。FIG. 9 is an operation sequence diagram of the station when the access point switches the frequency band.
具体实施方式Detailed ways
图1为根据本发明一个实施例的芯片组100的示意图,其中芯片组100可以设置于同时支持三频(Tri-band)的双天线传送接收(2T2R)的接入点或路由器中。如图1所示,芯片组100包含了一个处理器110以及两个无线通信芯片120、130,其中无线通信芯片120为2.4GHz频带的无线通信芯片,亦即无线通信芯片120可以使用频率范围介于2.412GHz~2.484GHz内的信道进行信号的传送与接收;而无线通信芯片120是同时支持5GHz频带及6GHz频带的无线通信芯片,亦即无线通信芯片120可以使用频率范围介于4.915GHz~5.825GHz与5.925GHz~7.125GHz内的信道进行信号的传送与接收。此外,无线通信芯片120、130中的每一者均连接到至少两个天线以进行信号的传送与接收。FIG. 1 is a schematic diagram of a
图2所示为根据本发明一个实施例的无线通信芯片130的示意图。如图2所示,无线通信芯片130包含了模拟前端电路210、基频电路220、媒体接入控制(Media AccessControl,MAC)电路230以及接口电路240,其中模拟前端电路210包含了两个收发电路212、214以及两个频率合成器(frequency synthesizer)216、218。在图2的实施例中,收发电路212连接至一天线,且可透过该天线传送与接收信号,而收发电路214则连接至另一天线以透过该另一天线进行信号的传送与接收。收发电路212、214中的每一者可以包含滤波器、混频器(mixer)、放大器、…等等电路,而由于收发电路212、214所包含的元件及其操作已为本领域具有通常知识者所熟知,且本实施例的重点在于频率合成器216、218及收发电路212、214所传送或接收的信号的频率,故收发电路212、214的相关电路细节不再赘述。频率合成器216用来产生时钟脉冲信号CLK1至收发电路212中的混波器,且时钟脉冲信号CLK1可以根据目前所使用的信道而具有不同的频率,例如5GHz频带及6GHz频带内之一信道的频率;频率合成器218用来产生时钟脉冲信号CLK2至收发电路214中的混波器,且时钟脉冲信号CLK2可以根据目前所使用的信道而具有不同的频率,例如5GHz频带及6GHz频带内之一信道的频率。在另一实施例中,频率合成器216所产生的时钟脉冲信号CLK1亦可供收发电路214中的混波器使用,及/或频率合成器218所产生的时钟脉冲信号CLK2亦可供收发电路212中的混波器使用。FIG. 2 is a schematic diagram of a
另外,基频电路220及媒体接入控制电路230分别用来进行基频信号的处理及媒体接入控制的相关处理,而接口电路240连接至处理器110以作为彼此数据传输的接口。此外,由于本实施例的频率合成器216、218可以操作在5GHz频带及6GHz频带以进行同时双频(Dual-Band Concurrent,DBCC),故基频电路220及媒体接入控制电路230包含了相关电路以配合启动或关闭DBCC的功能。另一方面,由于基频电路220、媒体接入控制电路230及接口电路240的其它操作已为本领域具有通常知识者所熟知,故相关细节不再赘述。In addition, the
另一方面,无线通信芯片120内的电路架构与图2所示的无线通信芯片130的架构类似,差异仅在于可以只包含一个频率合成器,以产生2.4GHz频带内之一信道的频率供两个收发电路使用。On the other hand, the circuit architecture of the
在芯片组100的操作中,为了可以使用三个频带来与工作站(station)沟通,在一个实施例中,无线通信芯片130使用时分多址(Time Division Multiple Access,TDMA)技术以使用不同的时隙(time slot)来对5GHz频带及6GHz频带的信号进行数据传输,以使得单个无线通信芯片130可以同时支持5GHz频带及6GHz频带的双天线传送接收。具体来说,参考图3所示的无线通信芯片120、130的操作示意图,其中图3假设芯片组100每隔100毫秒(millisecond,ms)需要发送一个信标(beacon)以告知相关信道的存在,亦即,若是芯片组100要同时支持三个频带,则需要每隔100毫秒便发送一个2.4GHz频带信标、5GHz频带信标及6GHz频带信标。在图3的时间t1,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t1~t3)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送5GHz频带信标,并在接下来的时隙(t1~t2)内可以使用双天线传送接收来与一个或多个工作站进行通信。在时间t2,无线通信芯片130发送6GHz频带信标,并在接下来的时隙(t2~t3)内可以使用双天线传送接收来与一个或多个工作站进行通信,而此时无线通信芯片120不需要发送2.4GHz频带信标。在时间t3,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t3~t5)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送5GHz频带信标,并在接下来的时隙(t3~t4)内可以使用双天线传送接收来与一个或多个工作站进行通信。在时间t4,无线通信芯片130发送6GHz频带信标,并在接下来的时隙(t4~t5)内可以使用双天线传送接收来与一个或多个工作站进行通信,而此时无线通信芯片120不需要发送2.4GHz频带信标。在时间t5,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送5GHz频带信标,并在接下来的时隙(t5~t6)内可以使用双天线传送接收来与一个或多个工作站进行通信。In the operation of the
在图3所示的实施例中,透过缩短无线通信芯片130的时隙,例如无线通信芯片130中每一个时隙的时间长度为50毫秒,为无线通信芯片130中每一个时隙的时间长度的一半,可以让无线通信芯片130每隔50毫秒便进行频带的切换,且5GHz频带信标与6GHz频带信标的发送间隔也可以符合规范的内容。因此,使用5GHz频带的工作站与使用6GHz频带的工作站便可以在对应的时隙进行双天线传送接收,而这样便可以在使用单个无线通信芯片130的情形下同时支持5GHz频带与6GHz频带的双天线传送接收。In the embodiment shown in FIG. 3 , by shortening the time slot of the
此外,在图3的时间t1、t3、t5中,频率合成器216可以产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212,且频率合成器218可以产生对应到5GHz频带的时钟脉冲信号CLK2至收发电路214;或是频率合成器216可以产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212、214;或是频率合成器218可以产生对应到5GHz频带的时钟脉冲信号CLK2至收发电路212、214。此外,在图3的时间t2、t4中,频率合成器216可以产生对应到6GHz频带的时钟脉冲信号CLK1至收发电路212,且频率合成器218可以产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路214;或是频率合成器216可以产生对应到6GHz频带的时钟脉冲信号CLK1至收发电路212、214;或是频率合成器218可以产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路212、214。这些设计上的变化应隶属于本发明的范畴。In addition, at times t1, t3, and t5 in FIG. 3, the
在本发明的另一个实施例中,无线通信芯片130中的基频电路220及媒体接入控制电路230可以预先将DBCC功能启动,并针对5GHz频带与6GHz频带进行单天线传送接收(1T1R),此时频率合成器216可以产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212,且频率合成器218可以产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路214。若是无线通信芯片130与需要进行双天线传送接收的工作站连线,且该工作站需要使用双天线来进行上链路(uplink)数据传输时,则基频电路220及媒体接入控制电路230会关闭DBCC功能,并进行快速频带切换(fast band switching),以使得频率合成器216、218都产生对应到5GHz频带的时钟脉冲信号CLK1、CLK2至收发电路212、214,或是频率合成器216、218都产生对应到6GHz频带的时钟脉冲信号CLK1、CLK2至收发电路212、214。具体来说,参考图4所示的无线通信芯片120、130的操作示意图,其中图4假设芯片组100每隔100毫秒内需要发送一个信标以告知相关信道的存在。在图4的时间t1,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t1~t2)内使用可以双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130启动DBCC功能,并发送5GHz频带信标以及6GHz频带信标,并在接下来的时隙(t1~t2)内可以使用单天线传送接收来与一个或多个工作站进行通信。在时间t2,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t2~t3)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送5GHz频带信标以及6GHz频带信标,并在接下来的时隙(t2~t3)内可以使用单天线传送接收来与一个或多个工作站进行通信。在时间t3,无线通信芯片130接收到来自工作站的特定封包,以告知该工作站需要在6GHz频带使用双天线来进行上链路数据传输时,则基频电路220及媒体接入控制电路230会关闭DBCC功能,并进行快速频带切换(fast band switching),并控制使得频率合成器216、218都产生对应到6GHz频带的时钟脉冲信号CLK1、CLK2至收发电路212、214。亦即,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t3~t4)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送6GHz频带信标,并在接下来的时隙(t3~t4)内可以使用双天线传送接收来与一个或多个工作站进行通信,此时无线通信芯片130无法使用5GHz频带来与其它工作站进行通信。在时间t4,若是在6GHz频使用双天线传送接收的数据已经传输完成,则基频电路220及媒体接入控制电路230会再次会启动DBCC功能,亦即控制频率合成器216产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212,且频率合成器218产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路214。此时,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130发送5GHz频带信标以及6GHz频带信标,并在接下来的时隙内可以使用单天线传送接收来与一个或多个工作站进行通信。In another embodiment of the present invention, the
在图4所示的实施例中,5GHz频带与6GHz频带的数据在默认状态都是透过单天线传送接收,以达到同时操作于三个频带的目的,而在有工作站需要使用5GHz频带或是6GHz频带进行双天线传送接收时,再进行快速频带切换以进行双天线传送接收。因此,使用5GHz频带的工作站与使用6GHz频带的工作站便可以视需求进行单天线传送接收或是双天线传送接收,而这样便可以在使用单个无线通信芯片130的情形下同时支持5GHz频带与6GHz频带的双天线传送接收。In the embodiment shown in FIG. 4 , the data of the 5GHz band and the 6GHz band are transmitted and received through a single antenna in the default state, so as to achieve the purpose of operating in the three frequency bands at the same time, and when a workstation needs to use the 5GHz band or When dual-antenna transmission and reception is performed in the 6GHz band, fast frequency band switching is performed to perform dual-antenna transmission and reception. Therefore, the workstations using the 5GHz frequency band and the workstations using the 6GHz frequency band can perform single-antenna transmission and reception or dual-antenna transmission and reception as required, and in this way, the 5GHz frequency band and the 6GHz frequency band can be simultaneously supported under the condition of using a single
在图4的实施例中,于时间t3所述的快速频带切换需要考虑到在5GHz频带是否处于闲置状态(亦即,没有其它工作站正在使用5GHz频带与芯片组100进行通信),而若是5GHz频带正处于忙碌状态,则此时快速频带切换便无法执行,而使得无线通信芯片130无法在6GHz频带使用双天线传送接收。In the embodiment of FIG. 4, the fast band switching described at time t3 needs to take into account whether the 5GHz band is idle (ie, no other workstations are using the 5GHz band to communicate with the chipset 100), and if the 5GHz band is In a busy state, fast frequency band switching cannot be performed at this time, so that the
图5为根据本发明一个实施例的无线通信芯片130的操作流程图。参考以上图1、图2和图4实施例所揭露的内容,操作流程如下所述。FIG. 5 is an operation flowchart of the
步骤500:流程开始。Step 500: The process starts.
步骤502:无线通信芯片在5GHz频带与6GHz频带分别进行单天线传送接收。Step 502: The wireless communication chip performs single-antenna transmission and reception in the 5GHz frequency band and the 6GHz frequency band, respectively.
步骤504:判断是否接收到特定封包,其中该特定封包表示需要使用5GHz频带或是6GHz频带进行双天线传送接收。若是,流程进入步骤506;若否,流程回到步骤502。Step 504: Determine whether a specific packet is received, wherein the specific packet indicates that the 5GHz frequency band or the 6GHz frequency band needs to be used for dual-antenna transmission and reception. If yes, the flow goes to step 506 ; if no, the flow returns to step 502 .
步骤506:判断不需要进行双天线传送接收的另一个频带是否处于闲置状态,若是,流程进入步骤508;若否,流程回到步骤502。Step 506 : Determine whether another frequency band that does not require dual-antenna transmission and reception is in an idle state, if yes, the process goes to Step 508 ; if not, the process returns to Step 502 .
步骤508:执行快速频带切换。Step 508: Perform fast band switching.
步骤510:使用5GHz频带或是6GHz频带进行双天线传送接收。Step 510: Use the 5GHz frequency band or the 6GHz frequency band for dual-antenna transmission and reception.
步骤512:判断进行双天线传送接收的数据传输是否完成,若是,流程进入步骤514;若否,流程回到步骤510。Step 512 : Determine whether the data transmission for dual-antenna transmission and reception is completed, if yes, the process goes to Step 514 ; if not, the process returns to Step 510 .
步骤514:无线通信芯片切换回在5GHz频带与6GHz频带分别进行单天线传送接收。Step 514 : the wireless communication chip switches back to performing single-antenna transmission and reception in the 5GHz frequency band and the 6GHz frequency band, respectively.
在图4和图5所示的实施例中,无线通信芯片130可以透过所接收的封包的内容来判断是否有工作站需要使用双天线来进行上链路数据传输。以图6为例的封包600的部分内容来进行说明,其中封包600为高效率单一用户协议数据单元(High-Efficiency Single-user Physical Protocol Data Unit,HE SU PPDU),且封包600包含了多个字段,依序为时间长度8微秒(microsecond,us)的L-STF字段、时间长度8微秒的L-LTF字段、时间长度4微秒的L-SIG字段、时间长度4微秒的RL-SIG字段、时间长度8微秒的HE-SIG-A字段、时间长度4微秒的HE-STF字段、HE-LTF字段…等等。封包600的各个字段的内容可以参考相关的规格,故细节在此不赘述。在本实施例中,无线通信芯片130中的基频电路220可以透过解析HE-SIG-A字段中的内容来判断传送封包600的工作站是否需要使用5GHz频带或是6GHz频带来进行双天线传送接收,且可以在HE-STF字段的时间范围内完成快速频道切换。在快速频道切换的过程中,首先基频电路220会通知模拟前端电路210以切换频率合成器的频率,以图4的实施例来说,基频电路220会通知频率合成器216以将时钟脉冲信号CLK1的频率切换至6GHz的频带;接着,基频电路220对收发电路212行增益与频率的量测,并执行自动增益控制(automatic gain control)、粗/细频率调整、时间同步…等等操作;最后,基频电路220根据上述操作以更新相关的参数,并开始进行双天线传送接收。In the embodiments shown in FIG. 4 and FIG. 5 , the
在图3的实施例中,无线通信芯片130利用时分多址的方式来达到同时支持5GHz频带与6GHz频带的双天线传送接收的目的,而在图4和图5的实施例中,无线通信芯片130利用快速频带切换以在需要时提供5GHz频带或是6GHz频带的双天线传送接收。然而,在本发明的另一实施例中,上述时分多址及快速频带切换亦可结合使用。具体来说,参考图7所示的无线通信芯片120、130的操作示意图,其中图7假设芯片组100每隔100毫秒需要发送一个信标以告知相关信道的存在,亦即,若是芯片组100要同时支持三个频带,则需要每隔100毫秒便发送一个2.4GHz频带信标、5GHz频带信标及6GHz频带信标。在图7的时间t1,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t1~t3)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130启动DBCC功能,并发送5GHz频带信标以及6GHz频带信标,并在接下来的时隙(t1~t2)内可以使用单天线传送接收来与一个或多个工作站进行通信。在时间t2,无线通信芯片120可以持续进行双天线传送接收,而无线通信芯片130关闭DBCC功能,并控制频率合成器216、218产生5GHz频带的时钟脉冲信号CLK1、CLK2,以在接下来的时隙(t2~t3)内可以使用双天线传送接收来与一个或多个工作站进行通信,此时无线通信芯片130无法使用6GHz频带来与其它工作站进行通信。在时间t3,无线通信芯片120发送2.4GHz频带信标,并在接下来的时隙(t3~t5)内可以使用双天线传送接收来与一个或多个工作站进行通信;同时,无线通信芯片130启动DBCC功能,并发送5GHz频带信标以及6GHz频带信标,并在接下来的时隙(t3~t4)内可以使用单天线传送接收来与一个或多个工作站进行通信。在时间t4,无线通信芯片120可以持续进行双天线传送接收,而无线通信芯片130关闭DBCC功能,并控制频率合成器216、218产生6GHz频带的时钟脉冲信号CLK1、CLK2,以在接下来的时隙(t4~t5)内可以使用双天线传送接收来与一个或多个工作站进行通信,此时无线通信芯片130无法使用5GHz频带来与其它工作站进行通信。In the embodiment of FIG. 3 , the
在图7所示的实施例中,于时间t1、t3,频率合成器216可以产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212,且频率合成器218可以产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路214;在时间t2,频率合成器216可以持续产生对应到5GHz频带的时钟脉冲信号CLK1至收发电路212,而频率合成器218需要切换以产生对应到5GHz频带的时钟脉冲信号CLK2至收发电路214;以及在时间t4,频率合成器216需要切换以产生对应到6GHz频带的时钟脉冲信号CLK1至收发电路212,而频率合成器218则持续产生对应到6GHz频带的时钟脉冲信号CLK2至收发电路214。In the embodiment shown in FIG. 7, at times t1 and t3, the
需注意的是,在时间t1、t3中,若是无线通信芯片130接收到来自工作站的特定封包,以告知该工作站需要在5GHz频带或是6GHz频带使用双天线来进行上链路数据传输时,且另一频道也刚好处于闲置状态时,则基频电路220及媒体接入控制电路230可以关闭DBCC功能,并进行快速频带切换,并控制频率合成器216、218都产生对应到5GHz频带或是6GHz频带的时钟脉冲信号CLK1、CLK2至收发电路212、214。如上所述,针对需要使用5GHz频带且需要进行双天线传送接收的工作站,可以在时隙(t1~t2)、(t3~t4)有机会做到双天线传送接收,且又可以保证在时隙(t2~t3)内做双天线传送接收;同理,针对需要使用6GHz频带且需要进行双天线传送接收的工作站,可以在时隙(t1~t2)、(t3~t4)有机会做到双天线传送接收,且又可以保证在时隙(t4~t5)内做双天线传送接收。It should be noted that, at times t1 and t3, if the
另外,在图7的实施例中,假设无线通信芯片130正在使用5GHz频带与第一工作站进行通信,并使用6GHz频带与第二工作站进行通信,则在时隙(t1~t2)、(t3~t4)中无线通信芯片130可以使用单天线分别传送数据给第一工作站与第二工作站,而在时隙(t2~t3)可以使用双天线传送大量数据给第一工作站,并在时隙(t4~t5)使用双天线传送大量数据给第二工作站。因此,可以大幅缩短数据传送时间。In addition, in the embodiment of FIG. 7 , it is assumed that the
在另一实施例中,若是无线通信芯片130发现在时间t2不需要使用5GHz频带来进行通信,则可以在时间t2重新开启DBCC功能,并在接下来的时隙(t2~t3)内使用单天线传送接收来与其它工作站进行通信。In another embodiment, if the
图8为根据本发明一个实施例的无线通信芯片130的操作流程图。参考以上图1、图7和图8实施例所揭露的内容,操作流程如下所述。FIG. 8 is an operation flowchart of the
步骤800:流程开始。Step 800: The process starts.
步骤802:无线通信芯片在5GHz频带与6GHz频带分别进行单天线传送接收。Step 802: The wireless communication chip performs single-antenna transmission and reception in the 5GHz frequency band and the 6GHz frequency band, respectively.
步骤804:判断是否接收到特定封包,其中该特定封包表示需要使用5GHz频带或是6GHz频带进行双天线传送接收。若是,流程进入步骤806;若否,流程回到步骤802。Step 804: Determine whether a specific packet is received, wherein the specific packet indicates that the 5GHz frequency band or the 6GHz frequency band needs to be used for dual-antenna transmission and reception. If yes, the flow goes to step 806 ; if no, the flow returns to step 802 .
步骤806:判断不需要进行双天线传送接收的另一个频带是否处于闲置状态,若是,流程进入步骤808;若否,流程回到步骤802。Step 806 : Determine whether another frequency band that does not require dual-antenna transmission and reception is in an idle state, if yes, the flow goes to Step 808 ;
步骤808:执行快速频带切换。Step 808: Perform fast band switching.
步骤810:使用5GHz频带或是6GHz频带进行双天线传送接收。Step 810: Use the 5GHz frequency band or the 6GHz frequency band for dual-antenna transmission and reception.
步骤812:判断进行双天线传送接收的数据传输是否完成,若是,流程回到步骤802;若否,流程回到步骤810。Step 812 : Determine whether the data transmission for dual-antenna transmission and reception is completed. If yes, the process returns to step 802 ; if not, the process returns to step 810 .
步骤814:判断是否已经到达需要进行双天线传送接收的时隙,若是,流程进入步骤816;若否,流程回到步骤802。Step 814 : Determine whether the time slot for dual-antenna transmission and reception has been reached. If yes, the flow goes to Step 816 ; if not, the flow returns to Step 802 .
步骤816:使用5GHz频带或是6GHz频带进行双天线传送接收。Step 816: Use the 5GHz frequency band or the 6GHz frequency band for dual-antenna transmission and reception.
步骤818:判断是否已经到达需要进行单天线传送接收的时隙,若是,流程回到步骤802;若否,流程进入步骤820。Step 818 : Determine whether the time slot required for single-antenna transmission and reception has arrived. If yes, the flow returns to Step 802 ; if not, the flow goes to Step 820 .
步骤820:判断是否已经没有双天线传送接收的需求,若是,流程回到步骤802;若否,流程回到步骤816。Step 820 : Determine whether there is no need for dual-antenna transmission and reception. If yes, the process returns to step 802 ; if not, the process returns to step 816 .
在以上的实施例中,由于涉及到频带的切换,故有些工作站会遭遇到连线中断的情形,以图7的时间t4为例,由于无线通信芯片130切换至使用6GHz频带来进行双天线传送接收,故原本在时隙(t3~t4)所连结的使用5GHz频带的工作站会需要中断连结,因此,无线通信芯片130需要通知使用5GHz频带的工作站进行相关的操作。具体来说,请参考图9,其为使用芯片组100的接入点与使用5GHz频带的工作站的时序图,其中为了方便说明,图9的时序图以图7时间t4、t5的附近时间点来进行描述。首先,假设原本无线通信芯片130正在使用单天线传送接收或是双天线传送接收来与工作站(5GHz频带的工作站)进行通信,若是无线通信芯片130判断即将要切换至6GHz频带来与其它工作站进行双天线传送接收,则无线通信芯片130可以先发送连结中断(disassociation)通知至工作站,以告知在一段时间后(例如,1毫秒)便会中断连线;接着,于一段时间后无线通信芯片130便主动中断与工作站的连线,且切换至6GHz频带来与其它工作站进行双天线传送接收。在接收到来自接入点的连结中断通知后,工作站便会将原本的连结重试(association retry)操作延迟50毫秒,亦即在接下来的50毫秒内都不会执行连结重试操作以尝试与接入点进行连结,而此时工作站可进入省电模式。接着,在50毫秒后,工作站发送连结重试请求至接入点,而接入点中的无线通信芯片130会对发送连结重试响应至工作站,而此时工作站便可以再次使用单天线传送接收或是双天线传送接收来与无线通信芯片130进行通信,进行数据交换。需注意的是,图9的实施例以5GHz频带的工作站为例来进行说明,而本发明具有通常知识者应能了解如何将上述内容应用至6GHz频带的工作站。In the above embodiment, due to the switching of frequency bands, some workstations may experience connection interruption. Taking time t4 in FIG. 7 as an example, since the
简要归纳本发明,在本发明的无线通信芯片中,透过使用时分多址来达到支持5GHz频带或是6GHz频带的双天线传送接收、或是利用快速频带切换以在需要时才提供5GHz频带或是6GHz频带的双天线传送接收,可以有效地在使用单颗无线通信芯片的情形下达到多频带的双天线传送接收功能,以有效地降低芯片组的制造与设计成本。Briefly summarizing the present invention, in the wireless communication chip of the present invention, the use of time division multiple access is used to achieve dual-antenna transmission and reception supporting the 5GHz frequency band or the 6GHz frequency band, or use fast frequency band switching to provide the 5GHz frequency band when needed, or It is a dual-antenna transmission and reception of 6GHz frequency band, which can effectively achieve multi-band dual-antenna transmission and reception function under the condition of using a single wireless communication chip, so as to effectively reduce the manufacturing and design costs of the chipset.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做之均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
【符号说明】【Symbol Description】
100:芯片组100: Chipset
110:处理器110: Processor
120、130:无线通信芯片120, 130: wireless communication chip
210:模拟前端电路210: Analog Front End Circuits
212、214:收发电路212, 214: transceiver circuit
216、218:频率合成器216, 218: Frequency Synthesizer
220:基频电路220: Fundamental frequency circuit
230:媒体接入控制电路230: Media Access Control Circuit
240:接口电路240: Interface circuit
500~514:步骤500 to 514: Steps
600:封包600: Packet
800~820:步骤800~820: Steps
CLK1、CLK2:时钟脉冲信号CLK1, CLK2: clock pulse signal
t1~t5:时间t1~t5: time
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110464430.9A CN115250129A (en) | 2021-04-28 | 2021-04-28 | wireless communication chip |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110464430.9A CN115250129A (en) | 2021-04-28 | 2021-04-28 | wireless communication chip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115250129A true CN115250129A (en) | 2022-10-28 |
Family
ID=83695797
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110464430.9A Pending CN115250129A (en) | 2021-04-28 | 2021-04-28 | wireless communication chip |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115250129A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120108185A1 (en) * | 2010-05-04 | 2012-05-03 | Realtek Semiconductor Corp. | Multi-mode wireless transceiver and multi-mode switching method thereof |
| US20130077540A1 (en) * | 2011-09-27 | 2013-03-28 | Motorola Mobility, Inc. | Communication device for simultaneous transmission by multiple transceivers |
| CN103166667A (en) * | 2011-12-12 | 2013-06-19 | 苹果公司 | Wireless electronic device with antenna switching circuitry |
-
2021
- 2021-04-28 CN CN202110464430.9A patent/CN115250129A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120108185A1 (en) * | 2010-05-04 | 2012-05-03 | Realtek Semiconductor Corp. | Multi-mode wireless transceiver and multi-mode switching method thereof |
| US20130077540A1 (en) * | 2011-09-27 | 2013-03-28 | Motorola Mobility, Inc. | Communication device for simultaneous transmission by multiple transceivers |
| CN103166667A (en) * | 2011-12-12 | 2013-06-19 | 苹果公司 | Wireless electronic device with antenna switching circuitry |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7407182B2 (en) | Non-access point multiband devices and communication methods | |
| JP6608039B2 (en) | Terminal and communication method thereof | |
| TWI468034B (en) | Communications apparatus and method for managing radio resources in a communications apparatus | |
| CN103856226B (en) | A kind of WLAN antenna system and data transmission method | |
| CN108923790A (en) | Multi-way selector switch, radio frequency system and wireless communication equipment | |
| CN110022597B (en) | Dynamic reduction of current consumption of antenna tuner of communication device | |
| US9801226B2 (en) | Methods and arrangements to improve link with out-of-band information | |
| CN108880602A (en) | Multi-way selector switch and related products | |
| TWI774328B (en) | Wireless communication chip | |
| WO2017107644A1 (en) | Wireless communication method and apparatus | |
| CN103124426B (en) | Reduce the method for energy consumption and the communication terminal for realizing this method in wireless communication terminal | |
| WO2022228400A1 (en) | Beacon frame transmission method in emlsr mode, and related apparatus | |
| CN113950098B (en) | AP device networking method, AP device and system | |
| CN115250129A (en) | wireless communication chip | |
| WO2012159517A1 (en) | Method and system for optimizing antenna performance | |
| WO2012100579A1 (en) | Method, device and apparatus for processing radio frequency signal | |
| US11864089B2 (en) | Peer-assisted, out-of-band discovery of a single-band wireless access point | |
| WO2017016490A1 (en) | Terminal and communication method thereof | |
| US20230120024A1 (en) | Wireless communication method with dynamic radio chain switching mechanism | |
| US20240064808A1 (en) | Method and apparatus for assisting wireless communication device with switch back operation for early switching back to listening operation on enhanced multi-link single radio links | |
| CN101400115B (en) | Base station and method for reducing power consumption of base station |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |