CN115252231A - Preparation method of support for bone defect repair - Google Patents
Preparation method of support for bone defect repair Download PDFInfo
- Publication number
- CN115252231A CN115252231A CN202211057358.9A CN202211057358A CN115252231A CN 115252231 A CN115252231 A CN 115252231A CN 202211057358 A CN202211057358 A CN 202211057358A CN 115252231 A CN115252231 A CN 115252231A
- Authority
- CN
- China
- Prior art keywords
- scaffold
- bisphosphonate
- glycolic acid
- preparation
- bone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 47
- 230000007547 defect Effects 0.000 title claims abstract description 33
- 230000008439 repair process Effects 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 150000004663 bisphosphonates Chemical group 0.000 claims abstract description 52
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims abstract description 20
- 210000004623 platelet-rich plasma Anatomy 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000010146 3D printing Methods 0.000 claims abstract description 6
- 229940122361 Bisphosphonate Drugs 0.000 claims description 48
- 229920001577 copolymer Polymers 0.000 claims description 20
- 108090000190 Thrombin Proteins 0.000 claims description 7
- 229960004072 thrombin Drugs 0.000 claims description 7
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 claims description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical group OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 3
- 229960004343 alendronic acid Drugs 0.000 claims description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical group CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 3
- IIDJRNMFWXDHID-UHFFFAOYSA-N Risedronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CC1=CC=CN=C1 IIDJRNMFWXDHID-UHFFFAOYSA-N 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229960000759 risedronic acid Drugs 0.000 claims description 2
- 238000010883 osseointegration Methods 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 3
- 238000002513 implantation Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000002051 biphasic effect Effects 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 abstract 1
- 239000002861 polymer material Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 230000011164 ossification Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 210000000963 osteoblast Anatomy 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 238000002791 soaking Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 3
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 1
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 208000008924 Femoral Fractures Diseases 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 208000003076 Osteolysis Diseases 0.000 description 1
- 206010031264 Osteonecrosis Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 bisphosphonate sodium alendronate Chemical class 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000004821 effect on bone Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 208000029791 lytic metastatic bone lesion Diseases 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2846—Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3604—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
- A61L27/3616—Blood, e.g. platelet-rich plasma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/3641—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
- A61L27/3645—Connective tissue
- A61L27/365—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2835—Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30985—Designing or manufacturing processes using three dimensional printing [3DP]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
- A61F2240/002—Designing or making customized prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/216—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明属于医药技术领域,具体涉及一种用于骨缺损修复的支架的制备方法。本发明结合影像成像和3D打印技术,采用FDA批准用于植入治疗的高分子材料PLGA,根据骨缺损形态构建个性化的双相负载富血小板血浆和双磷酸盐支架,共同促进骨缺损处骨修复及骨整合。利用本发明的方法制备得到的支架在骨缺损的临床治疗中具有很好的应用前景。
The invention belongs to the technical field of medicine, and in particular relates to a preparation method of a scaffold for repairing bone defects. The invention combines image imaging and 3D printing technology, adopts the FDA-approved polymer material PLGA for implantation treatment, and constructs a personalized biphasic-loaded platelet-rich plasma and bisphosphonate scaffold according to the shape of the bone defect, so as to jointly promote the bone defect in the bone defect. Repair and osseointegration. The scaffold prepared by the method of the invention has a good application prospect in the clinical treatment of bone defects.
Description
技术领域technical field
本发明属于医药技术领域,具体涉及一种用于骨缺损修复的支架的制备方法。The invention belongs to the technical field of medicine, and in particular relates to a preparation method of a bracket used for bone defect repair.
背景技术Background technique
如今,临床骨缺损患者越来越多。骨缺损形成因素众多,包括应力遮挡、骨溶解、骨坏死和感染等。骨缺损的临床治疗困难,目前手段有限,已成为严重影响手术预后的关键因素之一。骨缺损的病理机制异常复杂,其中非创伤性骨缺损多存在成骨困难,局部骨质疏松的特点。Nowadays, there are more and more patients with clinical bone defects. There are many factors for the formation of bone defects, including stress shielding, osteolysis, osteonecrosis, and infection. The clinical treatment of bone defects is difficult, and the current methods are limited, which has become one of the key factors that seriously affect the prognosis of surgery. The pathological mechanism of bone defects is extremely complex, and most of the non-traumatic bone defects have the characteristics of osteogenesis difficulty and localized osteoporosis.
既往研究已证实富血小板血浆(Platelet-rich plasma,PRP)在体内可释放多种高浓度的生长因子,并且各生长因子的比例与体内正常比例相符,由此具有最佳的协同作用,可弥补单一生长因子刺激成骨不佳的缺点。PRP还可经凝血酶凝固成胶状,粘附至缺损处颗粒状移植骨,防止血小板流失,使血小板在局部长时间分泌生长因子,保持较高的生长因子浓度。Previous studies have confirmed that platelet-rich plasma (Platelet-rich plasma, PRP) can release a variety of high-concentration growth factors in the body, and the ratio of each growth factor is consistent with the normal ratio in the body. Disadvantages of poor osteogenesis stimulated by a single growth factor. PRP can also be coagulated into a gel by thrombin, adhere to the granular bone graft at the defect, prevent the loss of platelets, make the platelets secrete growth factors locally for a long time, and maintain a high concentration of growth factors.
临床广泛应用的双磷酸盐(Bisphosphonates,BPs)能与骨质中的羟磷灰石特异结合,抑制破骨细胞活性,促进成骨细胞增殖分化,发挥促成骨效应。然而,口服双膦酸盐类药物不能在局部达到较高的浓度,常需应用较大剂量,存在发生非典型股骨骨折、骨石症等风险。Bisphosphonates (BPs), which are widely used clinically, can specifically combine with hydroxyapatite in bone, inhibit the activity of osteoclasts, promote the proliferation and differentiation of osteoblasts, and exert an osteogenic effect. However, oral bisphosphonate drugs cannot achieve high local concentrations, and often need to be applied in large doses, and there are risks of atypical femoral fractures and osteolithiasis.
中国发明专利申请“CN105854074A用于牵引成骨术的组合物和方法”该文献公开的组合物包括包含含有血小板衍生生长因子(PDGF)和双磷酸盐(BPs)的溶液以及生物相容性基质,其中所述溶液配置在该生物相容性基质中。该文献提供的组合物具有促进和加速骨牵引位点上的骨生成的作用。然而,实际应用中发现,这类材料的使用仍然存在较多的问题,其活性成分(PDGF、BPs等)与生物相容性基质的种类和配比非常重要,如果不能选择合适的活性成分与生物相容性基质的种类和配比,容易出现活性成分释放过快或过慢、生物毒性过强等问题。严重影响这类复合材料在骨修复中的应用。Chinese Invention Patent Application "CN105854074A Composition and Method for Distraction Osteogenesis" The composition disclosed in this document includes a solution containing platelet-derived growth factor (PDGF) and bisphosphonates (BPs) and a biocompatible matrix, Wherein said solution is configured in the biocompatible matrix. The composition provided by this document has the effect of promoting and accelerating osteogenesis at the site of bone distraction. However, it has been found in practical applications that there are still many problems in the use of such materials. The type and ratio of the active ingredients (PDGF, BPs, etc.) The types and proportions of biocompatible substrates are prone to problems such as too fast or too slow release of active ingredients, and excessive biotoxicity. Seriously affect the application of such composite materials in bone repair.
因而,仍然有必要进一步开发新的具有更好促进骨修复和骨整合效果的药物或支架材料。Therefore, it is still necessary to further develop new drugs or scaffold materials with better effects of promoting bone repair and osseointegration.
发明内容Contents of the invention
针对现有技术的缺陷,本发明提供一种用于骨缺损修复的支架的制备方法,目的在于制备一种对骨修复和骨整合具有更好促进作用的生物支架。Aiming at the defects of the prior art, the present invention provides a method for preparing a scaffold for repairing bone defects, with the purpose of preparing a biological scaffold that can better promote bone repair and osseointegration.
一种用于骨缺损修复的支架的制备方法,包括如下步骤:A method for preparing a scaffold for bone defect repair, comprising the steps of:
步骤1,基于骨缺损部位的影像数据对拟制作的支架进行三维建模;
步骤2,根据步骤1的建模结果制作双磷酸盐/聚乳酸-羟基乙酸共聚物支架;
步骤3,将富血小板血浆附着在步骤2得到的双磷酸盐/聚乳酸-羟基乙酸共聚物支架上,即得用于骨缺损修复的支架;Step 3, attaching the platelet-rich plasma to the bisphosphonate/polylactic acid-glycolic acid copolymer scaffold obtained in
其中,步骤2中,所述双磷酸盐/聚乳酸-羟基乙酸共聚物支架由如下重量份的组分制成:Wherein, in
双磷酸盐0.01-2份;0.01-2 parts of bisphosphonates;
聚乳酸-羟基乙酸共聚物98-99.99份。Polylactic acid-glycolic acid copolymer 98-99.99 parts.
步骤3中,所述富血小板血浆与所述双磷酸盐/聚乳酸-羟基乙酸共聚物支架的重量比为5-10:90-95。In step 3, the weight ratio of the platelet-rich plasma to the bisphosphonate/polylactic-co-glycolic acid scaffold is 5-10:90-95.
优选的,步骤2中,制作双磷酸盐/聚乳酸-羟基乙酸共聚物支架的方法为3D打印。Preferably, in
优选的,所述双磷酸盐选自阿仑膦酸钠和利塞膦酸钠中的至少一种。Preferably, the bisphosphonate is selected from at least one of alendronate sodium and risedronate sodium.
优选的,所述聚乳酸-羟基乙酸共聚物的分子量为5500-6500。Preferably, the molecular weight of the polylactic acid-glycolic acid copolymer is 5500-6500.
优选的,所述聚乳酸-羟基乙酸共聚物中,乳酸单元和羟基乙酸单元的摩尔比例为(70-80):(20-30)。Preferably, in the polylactic acid-glycolic acid copolymer, the molar ratio of lactic acid units to glycolic acid units is (70-80):(20-30).
优选的,步骤3中,将所述富血小板血浆附着在所述双磷酸盐/聚乳酸-羟基乙酸共聚物支架上的方法为使用凝血酶将富血小板血浆凝固在所述双磷酸盐/聚乳酸-羟基乙酸共聚物支架上。Preferably, in step 3, the method of attaching the platelet-rich plasma to the bisphosphonate/polylactic acid-glycolic acid copolymer scaffold is to use thrombin to coagulate the platelet-rich plasma on the bisphosphonate/polylactic acid -glycolic acid copolymer scaffold.
优选的,所述富血小板血浆和凝血酶的用量比例为85-90:10-15。Preferably, the ratio of platelet-rich plasma to thrombin is 85-90:10-15.
本发明提供了一种用于促进骨缺损修复和整合的生物支架的制备方法,本发明制成的支架以双磷酸盐和聚乳酸-羟基乙酸共聚物的组合物作为基本材料,附着富血小板血浆。通过对各原料及其配比的优选,使得本发明的支架具有良好的理化特性和细胞生物相容性,达到最佳的促成骨及骨整合作用。The invention provides a method for preparing a biological scaffold for promoting the repair and integration of bone defects. The scaffold made by the invention uses the composition of bisphosphonate and polylactic acid-glycolic acid copolymer as the basic material, and adheres to platelet-rich plasma . By optimizing the raw materials and their proportions, the scaffold of the present invention has good physical and chemical properties and cell biocompatibility, and achieves the best effect of promoting osteogenesis and osseointegration.
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。Apparently, according to the above content of the present invention, according to common technical knowledge and conventional means in this field, without departing from the above basic technical idea of the present invention, other various forms of modification, replacement or change can also be made.
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。The above-mentioned content of the present invention will be further described in detail below through specific implementation in the form of examples. However, this should not be construed as limiting the scope of the above-mentioned subject matter of the present invention to the following examples. All technologies realized based on the above contents of the present invention belong to the scope of the present invention.
附图说明Description of drawings
图1为3D打印制备的BPs/PLGA骨缺省修复支架及SEM照片(通过3D打印制备的样品,样品厚度2mm,直径8mm)。Figure 1 is the BPs/PLGA bone default repair scaffold prepared by 3D printing and the SEM photo (sample prepared by 3D printing, the thickness of the sample is 2mm, and the diameter is 8mm).
图2为实验例1中的降解速率的测试结果。Fig. 2 is the test result of the degradation rate in Experimental Example 1.
图3为实验例1中的BPs的释放动力学曲线。Figure 3 is the release kinetics curve of BPs in Experimental Example 1.
图4为实验例1中PRP/BPs/PLGA支架与成骨细胞共培养1(A)、3(B)、5(C)天的光镜图片。Fig. 4 is the light microscope pictures of PRP/BPs/PLGA scaffold and osteoblasts co-cultured in Experimental Example 1 for 1 (A), 3 (B) and 5 (C) days.
图5为实验例1中PRP/BPs/PLGA支架与成骨细胞共培养1、3、5天的细胞活力图。Fig. 5 is a graph of cell viability of PRP/BPs/PLGA scaffold and osteoblasts co-cultured for 1, 3, and 5 days in Experimental Example 1.
图6为实验例2中PRP/BPs/PLGA支架植入股骨髁(A)的图片和植入后4周(B)、8周(C)、12周(D)的组织切片染色结果。Figure 6 is a picture of the PRP/BPs/PLGA scaffold implanted in the femoral condyle (A) and the staining results of tissue sections at 4 weeks (B), 8 weeks (C) and 12 weeks (D) after implantation in Experimental Example 2.
具体实施方式Detailed ways
以下实施例和实验例中所用的试剂和材料,未特别说明的均为市售品。The reagents and materials used in the following examples and experimental examples are commercially available unless otherwise specified.
实施例1一种用于骨缺损修复的支架的制备方法Example 1 A preparation method for a scaffold for bone defect repair
本实施例提供一种用于骨缺损修复的支架,其制备方法如下:This embodiment provides a scaffold for bone defect repair, the preparation method of which is as follows:
(1)将粉末状的双磷酸盐阿仑膦酸钠0.2份和聚乳酸-羟基乙酸共聚物(PLGA,分子量5500,济南岱罡生物工程有限公司)99.8份混合,得到BPs/PLGA混合粉末,BPs/PLGA混合粉末用于作为后续3D打印的原料;其中,双磷酸盐选择的种类为阿仑膦酸钠,聚乳酸-羟基乙酸共聚物的分子量为6500,乳酸单元和羟基乙酸单元的摩尔比例为75:25;(1) 0.2 part of powdered bisphosphonate sodium alendronate is mixed with 99.8 parts of polylactic acid-glycolic acid copolymer (PLGA, molecular weight 5500, Jinan Daigang Biological Engineering Co., Ltd.) to obtain BPs/PLGA mixed powder, BPs/PLGA mixed powder is used as the raw material for subsequent 3D printing; among them, the type of bisphosphonate selected is alendronate sodium, the molecular weight of polylactic acid-glycolic acid copolymer is 6500, and the molar ratio of lactic acid unit and glycolic acid unit for 75:25;
(2)通过建模,获得多孔结构模型;(2) Obtain a porous structure model by modeling;
(3)使用生物高分子打印机打印BPs/PLGA混合粉末制成BPs/PLGA支架;本实施例制备的支架如图1所示。测定支架的孔径、孔隙率,支架的孔径为250微米,200孔隙率为65%。(3) Use a biopolymer printer to print BPs/PLGA mixed powder to make a BPs/PLGA scaffold; the scaffold prepared in this example is shown in Figure 1 . The pore diameter and porosity of the support were measured, and the pore diameter of the support was 250 microns, and the 200 porosity was 65%.
(4)将富血小板血浆通过凝血酶凝固在BPs/PLGA支架上,得到最终用于植入骨缺损部位的生物支架(PRP/BPs/PLGA支架)。其中富血小板血浆和凝血酶比例为90:10,富血小板血浆和BPs/PLGA支架的用量比例为5:95。(4) The platelet-rich plasma is coagulated on the BPs/PLGA scaffold by thrombin to obtain a bio-scaffold (PRP/BPs/PLGA scaffold) for implantation into the bone defect site. The ratio of platelet-rich plasma to thrombin is 90:10, and the ratio of platelet-rich plasma to BPs/PLGA scaffold is 5:95.
下面通过实验例对本发明的技术效果作进一步的说明。The technical effects of the present invention will be further described below through experimental examples.
实验例1BPs/PLGA用量比例筛选Experimental example 1 BPs/PLGA dosage ratio screening
一、实验方法1. Experimental method
调整BPs用量,按照实施例1的方法制备用于骨缺损修复的支架。The amount of BPs was adjusted, and the scaffold for bone defect repair was prepared according to the method in Example 1.
三个实验组的BPs、PLGA用量重量比为:The weight ratios of BPs and PLGA in the three experimental groups are:
实验组1:BPs/PLGA=0.02:99.98,Experimental group 1: BPs/PLGA=0.02:99.98,
实验组2:BPs/PLGA=0.2:99.80,Experimental group 2: BPs/PLGA=0.2:99.80,
实验组3:BPs/PLGA=2:98。Experimental group 3: BPs/PLGA=2:98.
实验的对照组为纯PLGA材料按照实施例1的方法制成的支架。The control group of the experiment was a scaffold made of pure PLGA material according to the method of Example 1.
进行如下测试:Run the following test:
1、降解速率1. Degradation rate
精确测量每个样品的重量记为初重Mi(i=1,2,3,4;分别表示PLGA、PLGA-0.02%AS、PLGA-0.2%AS、PLGA-2%AS样品)。按去离子水:样品=30:1的质量比将测重后的样品放入去离子水中,装入离心管内密封(每天更换管内的浸泡液),将离心管置于恒温水浴振荡箱内(37℃、72rpm)。更换溶液时取出样品,用无水乙醇浸泡5分钟后室温风干,再测量每个样品的重量Mni。计算每个时间点(浸泡时间点:1,2,4,8,12周)每个实验样品的降解速率:降解速率Pni=(Mi-Mni)/Mi×100%。Accurately measure the weight of each sample and record it as initial weight Mi (i=1, 2, 3, 4; respectively represent PLGA, PLGA-0.02% AS, PLGA-0.2% AS, PLGA-2% AS samples). Put the weighed sample into deionized water according to the mass ratio of deionized water: sample = 30:1, put it into a centrifuge tube and seal it (change the soaking solution in the tube every day), and place the centrifuge tube in a constant temperature water bath oscillation box ( 37°C, 72rpm). When replacing the solution, take out the sample, soak it in absolute ethanol for 5 minutes, then air-dry it at room temperature, and then measure the weight Mni of each sample. Calculate the degradation rate of each experimental sample at each time point (soaking time points: 1, 2, 4, 8, 12 weeks): degradation rate Pni=(Mi-Mni)/Mi×100%.
2、BPs的释放动力学曲线2. The release kinetic curve of BPs
将测试降解速率换出的液体收集起来,混合。在1,2,4,8周用电感耦合等离子体发射光谱仪(ICP-OES)测定每份浸泡液中的磷元素浓度。The liquid exchanged for the degradation rate test was collected and mixed. At 1, 2, 4, and 8 weeks, the concentration of phosphorus in each soaking solution was measured by inductively coupled plasma optical emission spectrometer (ICP-OES).
3、体外细胞试验评估3. In vitro cell test evaluation
将成骨细胞与PRP/BPs/PLGA复合生物支架体外联合培养,光镜观察细胞与支架复合情况;CCK8法检测细胞活力。Osteoblasts were co-cultured with PRP/BPs/PLGA composite bio-scaffold in vitro, and the combination of cells and scaffolds was observed by light microscope; cell viability was detected by CCK8 method.
二、实验结果2. Experimental results
样品的降解速度如图1所示,样品在浸泡一周后出现轻微的膨胀,支架表面显得较为光滑。分析其原因可能是由于第一周,样品大量吸水,水分子进入分子链之间,材料出现溶胀现象所致。浸泡2周后,观察到样品明显变软,这可能是样品吸水后分子链断裂所导致的结果。随着浸泡时间增加,到第四周时,个别样品已经凝胶化,到第六周时,部分样品已经破裂为小块。到第八周时,样品组的样品已经全部破裂为小块,说明材料降解较快。而对照组样品,软化现象相对于样品组,至第十二周时,样品方才破裂。这表明本发明提供的支架相比于纯PLGA材料制成的支架具有更快的降解速度。The degradation rate of the sample is shown in Figure 1. The sample swelled slightly after soaking for a week, and the surface of the stent appeared relatively smooth. The reason may be due to the fact that in the first week, the sample absorbed a lot of water, water molecules entered between the molecular chains, and the material swelled. After soaking for 2 weeks, it was observed that the sample became significantly softer, which may be the result of molecular chain breakage after the sample absorbs water. With the increase of immersion time, individual samples had gelled by the fourth week, and some samples had broken into small pieces by the sixth week. By the eighth week, the samples of the sample group had all broken into small pieces, indicating that the material degraded faster. In contrast to the samples of the control group, the softening phenomenon was not broken until the twelfth week. This indicates that the scaffold provided by the present invention has a faster degradation rate than the scaffold made of pure PLGA material.
BPs的释放曲线如图3所示,样品在第一周释放的双磷酸盐的浓度较高,表现出较高的磷浓度。随着浸泡时间增加,含有实验组1和实验组2的变化不明显,而实验组3在第2周后,略有上升。分析其原因可能是由于材料降解过程中,由于存在材料吸水和材料溶出平衡,所以在降解率下降的条件下仍然有磷酸盐释放出来。而对于实验组3的样品,样品中的双磷酸盐的含量较高,影响了支架高分子的结晶,表现出更快的材料溶出,从而释放出更多的双磷酸盐。这一结果与降解实验结果相符合。The release curves of BPs are shown in Fig. 3, and the samples released higher concentrations of bisphosphonates in the first week, showing higher phosphorus concentrations. With the increase of immersion time, the changes of
体外细胞试验评估结果如图4、5所示,图4中实验组2与成骨细胞共培养1,3,5天光镜图片显示,随着时间增加成骨细胞逐渐增加,成骨细胞形貌正常。表明本发明的支架具有促进骨修复的功效。图5中细胞活力图显示,实验组1、实验组2和实验组3的支架均能够提高细胞活力,但是对于BPs用量较高的实验组3,随着培养时间的增加,细胞活力有所降低。The evaluation results of in vitro cell tests are shown in Figures 4 and 5. In Figure 4, the
通过上述实验证明,BPs、PLGA用量比例在0.02-0.2:99.8-99.98为较优选择,更优的为0.02:99.98。The above experiments prove that the dosage ratio of BPs and PLGA is 0.02-0.2:99.8-99.98, and the more optimal one is 0.02:99.98.
实施例2 PRP/BPs/PLGA支架用于骨缺损修复的动物实验Example 2 Animal Experiments of PRP/BPs/PLGA Scaffold Used in Bone Defect Repair
一、实验方法1. Experimental method
1.兔骨缺损模型的建立:选用新西兰大白兔,2.5-3.5Kg,独立饲养,自由进食,饲养一周后用于实验。手术过程:全麻,剃毛,固定于手术台,碘伏消毒。自双后肢膝关节外侧距前缘1.0~1.5cm处,平行前缘作一长约5cm弧形切口;逐层分离暴露股骨外侧髁解剖标志,用环形中空取骨钻制备直径6mm、深8mm的圆柱形骨缺损。于距离骨缺损中央6mm处,左右对称各旋入1枚直径2mm的钛钉定位。过程中,冲洗液冲洗降温,注意保护血管和神经束。1. Establishment of rabbit bone defect model: New Zealand white rabbits, 2.5-3.5Kg, were selected, fed independently, fed freely, and used for experiments after one week of feeding. Surgical procedure: general anesthesia, shaved hair, fixed on the operating table, iodophor disinfection. Make an arc-shaped incision about 5 cm in length parallel to the front edge from the lateral side of the knee joints of both hind limbs at 1.0-1.5 cm from the front edge; separate and expose the anatomical landmarks of the lateral femoral condyle layer by layer, and prepare a 6 mm diameter and 8 mm deep bone with a circular hollow bone drill Cylindrical bone defect. At a distance of 6 mm from the center of the bone defect, a titanium nail with a diameter of 2 mm was screwed into each side symmetrically for positioning. During the process, the flushing solution was used to cool down, and the blood vessels and nerve bundles should be protected.
2.体内研究PRP/BPs/PLGA促成骨的骨修复作用:成功建立兔股骨髁骨缺损模型,缺损尺寸直径6mm、深8mm。随机分为5组:A组,植入多孔PLGA支架;B组,植入BPs/PLGA支架;C组,植入PRP/PLGA支架;D组,植入PRP/BPs/PLGA 支架;E组,空白对照组。术后动物肌肉内注射庆大霉素4万U/天,连续3天。术后1,2,3月组织学观察新骨生成及与周围骨组织和材料的整合与长入。2. In vivo study of the bone repair effect of PRP/BPs/PLGA on osteogenesis: the rabbit femoral condyle bone defect model was successfully established, with a defect size of 6 mm in diameter and 8 mm in depth. They were randomly divided into 5 groups: group A, implanted with porous PLGA scaffolds; group B, implanted with BPs/PLGA scaffolds; group C, implanted with PRP/PLGA scaffolds; group D, implanted with PRP/BPs/PLGA scaffolds; Blank control group. After the operation, the animals were intramuscularly injected with 40,000 U/day of gentamicin for 3 consecutive days. At 1, 2, and 3 months after operation, new bone formation and integration and ingrowth with surrounding bone tissue and materials were observed histologically.
二、实验结果2. Experimental results
如图6所示,第4周,材料出现明显的降解,观察到少量新生骨,第8周,支架降解更多,新生骨量增加,第12周,支架几乎完全降解,新生骨变为成熟骨组织,表明本发明的PRP/BPs/PLGA支架对骨修复确实有很好的效果。As shown in Figure 6, at the 4th week, the material was significantly degraded, and a small amount of new bone was observed. At the 8th week, the scaffold degraded more, and the amount of new bone increased. At the 12th week, the scaffold was almost completely degraded, and the new bone became mature. Bone tissue shows that the PRP/BPs/PLGA scaffold of the present invention does have a good effect on bone repair.
通过上述实施例和实验例可以看到,本发明通过优选原料组成和配比,提供了一种用于骨缺损修复的支架,其具有良好的理化特性和细胞生物相容性,达到最佳的促成骨及骨整合作用。本发明在骨修复中具有很好的应用前景。It can be seen from the above examples and experimental examples that the present invention provides a scaffold for bone defect repair by optimizing the composition and ratio of raw materials, which has good physical and chemical properties and cell biocompatibility, and achieves the best Promote bone formation and osseointegration. The invention has good application prospect in bone repair.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211057358.9A CN115252231A (en) | 2022-08-30 | 2022-08-30 | Preparation method of support for bone defect repair |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211057358.9A CN115252231A (en) | 2022-08-30 | 2022-08-30 | Preparation method of support for bone defect repair |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115252231A true CN115252231A (en) | 2022-11-01 |
Family
ID=83753952
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211057358.9A Pending CN115252231A (en) | 2022-08-30 | 2022-08-30 | Preparation method of support for bone defect repair |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115252231A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116350851A (en) * | 2023-02-06 | 2023-06-30 | 四川大学华西医院 | A kind of bone defect repair material and its preparation method and application |
| CN119326559A (en) * | 2024-12-24 | 2025-01-21 | 吉林大学 | Tantalum metal porous cone pile loaded with bisphosphonate and preparation method thereof |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20010055742A (en) * | 1999-12-13 | 2001-07-04 | 김정근 | Platelet concentrate plasma gel for regeneration of bone defects in mammals and process for preparation thereof |
| US20110040388A1 (en) * | 2008-04-21 | 2011-02-17 | Ao Technology Ag | Biocompatible implant |
| CN109568671A (en) * | 2018-12-24 | 2019-04-05 | 四川大学华西医院 | 3D bone repair scaffold with hydrogel loaded with cells and preparation method thereof |
| CN112295014A (en) * | 2018-06-15 | 2021-02-02 | 南京冬尚生物科技有限公司 | 3D-printed Ti-PDA-PLGA microsphere bone defect repair stent and preparation method thereof |
| CN113289066A (en) * | 2021-05-26 | 2021-08-24 | 四川大学 | Composite material for repairing bone defect and preparation method thereof |
| CN114129774A (en) * | 2021-11-16 | 2022-03-04 | 武汉大学中南医院 | Bone repair material compounded with platelet-rich plasma and decalcified bone matrix and preparation method thereof |
| CN114246989A (en) * | 2021-12-21 | 2022-03-29 | 上海交通大学医学院附属第九人民医院 | 3D bio-printed active bone repair material and preparation method and application thereof |
| CN216963121U (en) * | 2022-02-11 | 2022-07-15 | 德阳市人民医院 | Two-phase PRP and BPs loaded PLGA composite stent |
| WO2022166408A1 (en) * | 2021-02-04 | 2022-08-11 | 深圳先进技术研究院 | Bioactive composite material for bone and preparation method therefor and use thereof |
-
2022
- 2022-08-30 CN CN202211057358.9A patent/CN115252231A/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20010055742A (en) * | 1999-12-13 | 2001-07-04 | 김정근 | Platelet concentrate plasma gel for regeneration of bone defects in mammals and process for preparation thereof |
| US20110040388A1 (en) * | 2008-04-21 | 2011-02-17 | Ao Technology Ag | Biocompatible implant |
| CN112295014A (en) * | 2018-06-15 | 2021-02-02 | 南京冬尚生物科技有限公司 | 3D-printed Ti-PDA-PLGA microsphere bone defect repair stent and preparation method thereof |
| CN109568671A (en) * | 2018-12-24 | 2019-04-05 | 四川大学华西医院 | 3D bone repair scaffold with hydrogel loaded with cells and preparation method thereof |
| WO2022166408A1 (en) * | 2021-02-04 | 2022-08-11 | 深圳先进技术研究院 | Bioactive composite material for bone and preparation method therefor and use thereof |
| CN113289066A (en) * | 2021-05-26 | 2021-08-24 | 四川大学 | Composite material for repairing bone defect and preparation method thereof |
| CN114129774A (en) * | 2021-11-16 | 2022-03-04 | 武汉大学中南医院 | Bone repair material compounded with platelet-rich plasma and decalcified bone matrix and preparation method thereof |
| CN114246989A (en) * | 2021-12-21 | 2022-03-29 | 上海交通大学医学院附属第九人民医院 | 3D bio-printed active bone repair material and preparation method and application thereof |
| CN216963121U (en) * | 2022-02-11 | 2022-07-15 | 德阳市人民医院 | Two-phase PRP and BPs loaded PLGA composite stent |
Non-Patent Citations (6)
| Title |
|---|
| Y. SUN;Y. FENG;C. Q. ZHANG;S. B. CHENX. G. CHENG: "The regenerative effect of platelet-rich plasma on healing in large osteochondral defects", 《INTERNATIONAL ORTHOPAEDICS》, vol. 34, no. 4, 31 December 2010 (2010-12-31) * |
| 徐小龙 等: "局部应用唑来膦酸预防股骨头坏死塌陷", 《中国矫形外科杂志》, 31 December 2015 (2015-12-31) * |
| 徐小龙;苟文龙;王程;袁雪凌;王玉;彭江;卢世璧;郭全义;汪爱媛;许文静;孟昊业;刘舒云;: "局部应用唑来膦酸预防股骨头坏死塌陷", 中国矫形外科杂志, no. 09, 5 May 2015 (2015-05-05) * |
| 杨祖坤 等: "3D打印PLGA支架修复大鼠上颚骨缺损的实验研究", 《南京医科大学学报(自然科学版》, 31 December 2020 (2020-12-31) * |
| 杨祖坤;贾璐;韩利萍;孙柳絮;郭宇;夏阳;: "3D打印PLGA支架修复大鼠上颚骨缺损的实验研究", 南京医科大学学报(自然科学版), no. 08, 31 December 2020 (2020-12-31) * |
| 郭灵雨;刘凯;刘树发;: "浓缩红骨髓/富血小板纤维蛋白复合载自体骨膜碎片修复下颌骨缺损", 中国组织工程研究, no. 21, 21 May 2013 (2013-05-21) * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116350851A (en) * | 2023-02-06 | 2023-06-30 | 四川大学华西医院 | A kind of bone defect repair material and its preparation method and application |
| CN119326559A (en) * | 2024-12-24 | 2025-01-21 | 吉林大学 | Tantalum metal porous cone pile loaded with bisphosphonate and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2517738B1 (en) | A collagen/hydroxyapatite composite scaffold | |
| EP2358356B1 (en) | Sustained release systems of ascorbic acid phosphate | |
| Zong et al. | Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly (lactic acid) scaffolds | |
| CN105688274B (en) | A kind of preparation process of polycaprolactone/gelatin electrospinning compound rest | |
| Rowe et al. | Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study | |
| CN112972773B (en) | Bioactive bone composite material and preparation method and application thereof | |
| Cheng et al. | The osteogenic potential of mesoporous bioglasses/silk and non-mesoporous bioglasses/silk scaffolds in ovariectomized rats: in vitro and in vivo evaluation | |
| CN115252231A (en) | Preparation method of support for bone defect repair | |
| Tong et al. | Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering | |
| Chen et al. | Injectable calcium sulfate/mineralized collagen‐based bone repair materials with regulable self‐setting properties | |
| Struillou et al. | Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate | |
| Ciocca et al. | Mesenchymal stem cells and platelet gel improve bone deposition within CAD‐CAM custom‐made ceramic HA scaffolds for condyle substitution | |
| Wang et al. | Incorporation of bone morphogenetic protein-2 and osteoprotegerin in 3D-printed Ti6Al4V scaffolds enhances osseointegration under osteoporotic conditions | |
| Celikkin et al. | In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications | |
| CN108939164A (en) | 3D printing PCL-Mg bone tissue engineering scaffold and preparation method thereof | |
| CN108926742A (en) | 3D printing PCL- Li bone tissue engineering scaffold and preparation method thereof | |
| Liao et al. | Size matters: Effects of PLGA‐microsphere size in injectable CPC/PLGA on bone formation | |
| Wang et al. | Study of a new nano-hydroxyapatite/basic fibroblast growth factor composite promoting periodontal tissue regeneration | |
| CN111067881A (en) | Bone growth promoter, biocomposite material and preparation method thereof and bioscaffold | |
| Cohrs et al. | Modification of silicone elastomers with Bioglass 45S5® increases in ovo tissue biointegration | |
| Ma et al. | Optimization of a concentrated growth factor/mesoporous bioactive glass composite scaffold and its application in rabbit mandible defect regeneration | |
| Tsuchiya et al. | An Experimental Study on Guided Bone Regeneration Using a Polylactide-co-glycolide Membrane-Immobilized Conditioned Medium. | |
| CN115414371A (en) | Composition and support for bone defect repair | |
| Dong et al. | Incorporating Hydrogel (with Low Polymeric Content) into 3D‐Printed PLGA Scaffolds for Local and Sustained Release of BMP2 in Repairing Large Segmental Bone Defects | |
| EP4178634A1 (en) | Integrated core-shell bioactive structure for the regeneration of bone and osteochondral tissues |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |