CN115285927A - Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip - Google Patents
Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip Download PDFInfo
- Publication number
- CN115285927A CN115285927A CN202210813856.5A CN202210813856A CN115285927A CN 115285927 A CN115285927 A CN 115285927A CN 202210813856 A CN202210813856 A CN 202210813856A CN 115285927 A CN115285927 A CN 115285927A
- Authority
- CN
- China
- Prior art keywords
- cvd
- layer
- silicon layer
- vacuum
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000007789 sealing Methods 0.000 title claims abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 79
- 239000010703 silicon Substances 0.000 claims abstract description 79
- 238000005530 etching Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000000407 epitaxy Methods 0.000 claims abstract description 9
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims 27
- 230000000903 blocking effect Effects 0.000 claims 6
- 238000001259 photo etching Methods 0.000 claims 4
- 238000005260 corrosion Methods 0.000 claims 2
- 230000007797 corrosion Effects 0.000 claims 2
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 2
- 238000005086 pumping Methods 0.000 claims 1
- 238000000206 photolithography Methods 0.000 abstract description 13
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00261—Processes for packaging MEMS devices
- B81C1/00277—Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00349—Creating layers of material on a substrate
- B81C1/0038—Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00555—Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0174—Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
- B81C2201/0176—Chemical vapour Deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0174—Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
- B81C2201/0176—Chemical vapour Deposition
- B81C2201/0177—Epitaxy, i.e. homo-epitaxy, hetero-epitaxy, GaAs-epitaxy
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Pressure Sensors (AREA)
- Micromachines (AREA)
Abstract
一种MEMS芯片用CVD密封多层真空腔结构,其中:衬底为圆片结构,第一层氧化层上通过CVD或者外延生长出第一层硅层,第二层氧化层上有第二层硅层;第二层硅层上设有通孔,形成低真空度腔室和高真空度腔室,设有多个腔室,在CVD工艺过程中,通入惰性气体,低真空度腔室形成高压或常压状态的腔室。一种MEMS芯片用CVD密封多层真空腔结构的工艺,包括如下步骤:通过光刻、刻蚀工艺在第二层硅层上开通孔,通过气态HF腐蚀工艺,形成低真空度腔室和高真空度腔室;本发明的优点:利用不同真空度的情况下,制备微型腔室,并通过不同的CVD沉积技术,将微腔室密封,从而达到多腔室,不同真空度的状态,而且还能有效减小芯片面积,降低成本。
A multi-layer vacuum cavity structure sealed by CVD for a MEMS chip, wherein: the substrate is a wafer structure, a first layer of silicon is grown on a first oxide layer by CVD or epitaxy, and a second layer is formed on the second oxide layer Silicon layer; through holes are provided on the second silicon layer to form a low vacuum chamber and a high vacuum chamber, and multiple chambers are provided. During the CVD process, inert gas is introduced, and the low vacuum chamber is The chamber is formed in a high pressure or normal pressure state. A process for sealing a multi-layer vacuum cavity structure of a MEMS chip by CVD, comprising the steps of: opening a hole on a second silicon layer through a photolithography and etching process, and forming a low vacuum chamber and a high vacuum chamber through a gaseous HF etching process Vacuum degree chamber; the advantages of the present invention: using different vacuum degrees to prepare micro-chambers, and sealing the micro-chambers through different CVD deposition techniques, so as to achieve multi-chamber, different vacuum degree states, and It can also effectively reduce the chip area and reduce the cost.
Description
技术领域technical field
本发明涉及传感器等领域,特别涉及一种MEMS芯片用CVD密封多层真空腔结构及工艺。The invention relates to the fields of sensors and the like, in particular to a CVD-sealed multilayer vacuum chamber structure and process for MEMS chips.
背景技术Background technique
目前,多腔室的MEMS器件所用技术为通过在盖板晶圆上刻蚀出多个腔室,再利用晶圆键合工艺将盖板晶圆和器件晶圆键合在一起,形成多个不同真空度的腔室。使用晶圆键合工艺的芯片面积会增大,不利于低成本生产。At present, the technology used for multi-chamber MEMS devices is to etch multiple chambers on the cover wafer, and then use the wafer bonding process to bond the cover wafer and the device wafer together to form multiple Chambers with different vacuum levels. The chip area using the wafer bonding process will increase, which is not conducive to low-cost production.
发明内容Contents of the invention
本发明的目的是为了克服上述问题,特提供了一种MEMS芯片用CVD密封多层真空腔结构及工艺。The object of the present invention is to overcome the above-mentioned problems, and provides a CVD-sealed multi-layer vacuum chamber structure and process for MEMS chips.
本发明提供了一种MEMS芯片用CVD密封多层真空腔结构,其特征在于:所述的MEMS芯片用CVD密封多层真空腔结构,包括衬底1,第一层氧化层2,第一层硅层3,第二层氧化层4,第二层硅层5,低真空度腔室6,高真空度腔室7,第一次封堵结构8,第二次封堵结构9;The invention provides a CVD-sealed multi-layer vacuum cavity structure for MEMS chips, which is characterized in that: the CVD-sealed multi-layer vacuum cavity structure for MEMS chips includes a
其中:衬底1为圆片结构,第一层氧化层2在衬底1通过氧化工艺生长出;Wherein: the
第一层氧化层2上通过CVD或者外延生长出第一层硅层3,并利用光刻和刻蚀工艺形成器件需要的结构;The first layer of
第一层硅层3为多晶硅或单晶硅层,第一层硅层3上有第二层氧化层4;第二层氧化层4上通过CVD或者外延工艺生长有第二层硅层5;The first layer of
第二层硅层5上设有通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7,设有多个腔室;The second layer of
在第二硅层5上通过第一次CVD工艺,将尺寸较小的通孔利用CVD生长的氧化层,形成第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室;Through the first CVD process on the
在第二层硅层5上进行第二次CVD工艺,将剩余通孔利用CVD生长的氧化层,形成第二次封堵结构9。A second CVD process is performed on the
一种MEMS芯片用CVD密封多层真空腔结构的工艺,包括如下步骤:A kind of technology that MEMS chip uses CVD sealing multi-layer vacuum chamber structure, comprises the steps:
步骤一:衬底1为圆片结构,第一层氧化层2为牺牲层和绝缘层,第一层氧化层2在衬底1通过氧化工艺生长出;Step 1: The
步骤二:第一层氧化层2上通过CVD或外延生长出第一层硅层3,并通过光刻和刻蚀工艺形成器件需要的结构;Step 2: The
步骤三:第一层硅层3上通过包括但不限于氧化工艺生长出第二层氧化层4;Step 3: growing a
步骤四;通过光刻、刻蚀工艺在第二层氧化层4上刻蚀出器件所需要形状;Step 4: Etch the desired shape of the device on the
步骤五:第二层氧化层4上通过CVD或者外延工艺生长第二层硅层5;Step 5: growing a
步骤六:通过光刻、刻蚀工艺在第二层硅层5上开通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7;每个腔室根据用途不同,腔室开通孔的尺寸也不同;Step 6: Open holes on the
步骤七:在第二硅层5上通过第一次CVD工艺,将尺寸相对较小的通孔利用CVD生长的氧化层即第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室,尺寸较大的通孔并未这个过程被封住;Step 7: Through the first CVD process on the
步骤八:在第二层硅层5上进行第二次CVD工艺,将剩余尺寸相对较大的通孔利用CVD生长的氧化层即形成第二次封堵结构9;Step 8: Carry out a second CVD process on the
在CVD的过程中,抽真空,通入可反应气体,以保证高真空度腔室7内部形成真空或低压状态。During the CVD process, a vacuum is drawn and a reactive gas is introduced to ensure that a vacuum or a low-pressure state is formed inside the high-
所述的衬底1为硅晶圆。The
所述的在第二层硅层5上进行的CVD工艺,利用CVD生长的氧化层为氧化硅、氮化硅和氮氧化硅。In the CVD process performed on the
所述的第一层硅层3和第二层硅层5为多晶硅或单晶硅层。The
分为两次封堵的主要目的是通过不同工艺形成真空度不同的腔室。The main purpose of sealing twice is to form chambers with different vacuum degrees through different processes.
应用于MEMS器件领域中的多腔室结构。这种多腔室结构的腔室真空度可以是不同真空度。这种结构广泛的应用在MEMS惯性传感器、MEMS红外传感器、射频传感器等领域。The multi-chamber structure applied in the field of MEMS devices. The vacuum levels of the chambers of this multi-chamber structure can be different vacuum levels. This structure is widely used in MEMS inertial sensors, MEMS infrared sensors, radio frequency sensors and other fields.
本发明的优点:Advantages of the present invention:
本发明所述的MEMS芯片用CVD密封多层真空腔结构及工艺,采用不同的方式来形成具体结构。利用不同真空度的情况下,制备微型腔室,并通过不同的CVD沉积技术,将微腔室密封。从而达到多腔室,不同真空度的状态,而且还能有效减小芯片面积,降低成本。The MEMS chip of the present invention uses CVD to seal the multi-layer vacuum chamber structure and process, and adopts different methods to form the specific structure. The microchambers are prepared under the conditions of different vacuum degrees, and the microchambers are sealed by different CVD deposition techniques. In this way, the state of multi-chambers and different vacuum degrees can be achieved, and the chip area can be effectively reduced, and the cost can be reduced.
附图说明Description of drawings
下面结合附图及实施方式对本发明作进一步详细的说明:Below in conjunction with accompanying drawing and embodiment the present invention is described in further detail:
图1为MEMS芯片用CVD密封多层真空腔结构示意图;Figure 1 is a schematic diagram of the structure of a CVD-sealed multilayer vacuum chamber for MEMS chips;
图2为步骤一后,结构示意图;Fig. 2 is a schematic diagram of the structure after step one;
图3为步骤二后,结构示意图;Fig. 3 is after
图4为步骤三后,结构示意图;Fig. 4 is a structural schematic diagram after step three;
图5为步骤四后,结构示意图;Fig. 5 is a structural schematic diagram after step four;
图6为步骤五后,结构示意图;Fig. 6 is a structural schematic diagram after step five;
图7为步骤六后,结构示意图;Fig. 7 is a structural schematic diagram after step six;
图8为步骤七后,结构示意图;Fig. 8 is a structural schematic diagram after step seven;
图9为步骤八后,结构示意图。Fig. 9 is a schematic diagram of the structure after step eight.
具体实施方式Detailed ways
实施例1Example 1
本发明提供了一种MEMS芯片用CVD密封多层真空腔结构,其特征在于:所述的MEMS芯片用CVD密封多层真空腔结构,包括衬底1,第一层氧化层2,第一层硅层3,第二层氧化层4,第二层硅层5,低真空度腔室6,高真空度腔室7,第一次封堵结构8,第二次封堵结构9;The invention provides a CVD-sealed multi-layer vacuum cavity structure for MEMS chips, which is characterized in that: the CVD-sealed multi-layer vacuum cavity structure for MEMS chips includes a
其中:衬底1为圆片结构,第一层氧化层2在衬底1通过氧化工艺生长出;Wherein: the
第一层氧化层2上通过CVD或者外延生长出第一层硅层3,并利用光刻和刻蚀工艺形成器件需要的结构;The first layer of
第一层硅层3为多晶硅或单晶硅层,第一层硅层3上有第二层氧化层4;第二层氧化层4上通过CVD或者外延工艺生长有第二层硅层5;The first layer of
第二层硅层5上设有通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7,设有多个腔室;The second layer of
在第二硅层5上通过第一次CVD工艺,将尺寸较小的通孔利用CVD生长的氧化层,形成第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室;Through the first CVD process on the
在第二层硅层5上进行第二次CVD工艺,将剩余通孔利用CVD生长的氧化层,形成第二次封堵结构9。A second CVD process is performed on the
一种MEMS芯片用CVD密封多层真空腔结构的工艺,包括如下步骤:A kind of technology that MEMS chip uses CVD sealing multi-layer vacuum chamber structure, comprises the steps:
步骤一:衬底1为圆片结构,第一层氧化层2为牺牲层和绝缘层,第一层氧化层2在衬底1通过氧化工艺生长出;Step 1: The
步骤二:第一层氧化层2上通过CVD或外延生长出第一层硅层3,并通过光刻和刻蚀工艺形成器件需要的结构;Step 2: The
步骤三:第一层硅层3上通过包括但不限于氧化工艺生长出第二层氧化层4;Step 3: growing a
步骤四;通过光刻、刻蚀工艺在第二层氧化层4上刻蚀出器件所需要形状;Step 4: Etch the desired shape of the device on the
步骤五:第二层氧化层4上通过CVD或者外延工艺生长第二层硅层5;Step 5: growing a
步骤六:通过光刻、刻蚀工艺在第二层硅层5上开通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7;每个腔室根据用途不同,腔室开通孔的尺寸也不同;Step 6: Open holes on the
步骤七:在第二硅层5上通过第一次CVD工艺,将尺寸相对较小的通孔利用CVD生长的氧化层即第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室,尺寸较大的通孔并未这个过程被封住;Step 7: Through the first CVD process on the
步骤八:在第二层硅层5上进行第二次CVD工艺,将剩余尺寸相对较大的通孔利用CVD生长的氧化层即形成第二次封堵结构9;Step 8: Carry out a second CVD process on the
在CVD的过程中,抽真空,通入可反应气体,以保证高真空度腔室7内部形成真空或低压状态。During the CVD process, a vacuum is drawn and a reactive gas is introduced to ensure that a vacuum or a low-pressure state is formed inside the high-
所述的衬底1为硅晶圆。The
所述的在第二层硅层5上进行的CVD工艺,利用CVD生长的氧化层为氧化硅、氮化硅和氮氧化硅。In the CVD process performed on the
所述的第一层硅层3和第二层硅层5为多晶硅或单晶硅层。The
分为两次封堵的主要目的是通过不同工艺形成真空度不同的腔室。The main purpose of sealing twice is to form chambers with different vacuum degrees through different processes.
实施例2Example 2
本发明提供了一种MEMS芯片用CVD密封多层真空腔结构,其特征在于:所述的MEMS芯片用CVD密封多层真空腔结构,包括衬底1,第一层氧化层2,第一层硅层3,第二层氧化层4,第二层硅层5,低真空度腔室6,高真空度腔室7,第一次封堵结构8,第二次封堵结构9;The invention provides a CVD-sealed multi-layer vacuum cavity structure for MEMS chips, which is characterized in that: the CVD-sealed multi-layer vacuum cavity structure for MEMS chips includes a
其中:衬底1为圆片结构,第一层氧化层2在衬底1通过氧化工艺生长出;Wherein: the
第一层氧化层2上通过CVD或者外延生长出第一层硅层3,并利用光刻和刻蚀工艺形成器件需要的结构;The first layer of
第一层硅层3为多晶硅或单晶硅层,第一层硅层3上有第二层氧化层4;第二层氧化层4上通过CVD或者外延工艺生长有第二层硅层5;The first layer of
第二层硅层5上设有通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7,设有多个腔室;The second layer of
在第二硅层5上通过第一次CVD工艺,将尺寸较小的通孔利用CVD生长的氧化层,形成第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室;Through the first CVD process on the
在第二层硅层5上进行第二次CVD工艺,将剩余通孔利用CVD生长的氧化层,形成第二次封堵结构9。A second CVD process is performed on the
一种MEMS芯片用CVD密封多层真空腔结构的工艺,包括如下步骤:A kind of technology that MEMS chip uses CVD sealing multi-layer vacuum chamber structure, comprises the steps:
步骤一:衬底1为圆片结构,第一层氧化层2为牺牲层和绝缘层,第一层氧化层2在衬底1通过氧化工艺生长出;Step 1: The
步骤二:第一层氧化层2上通过CVD或外延生长出第一层硅层3,并通过光刻和刻蚀工艺形成器件需要的结构;Step 2: The
步骤三:第一层硅层3上通过包括但不限于氧化工艺生长出第二层氧化层4;Step 3: growing a
步骤四;通过光刻、刻蚀工艺在第二层氧化层4上刻蚀出器件所需要形状;Step 4: Etch the desired shape of the device on the
步骤五:第二层氧化层4上通过CVD或者外延工艺生长第二层硅层5;Step 5: growing a
步骤六:通过光刻、刻蚀工艺在第二层硅层5上开通孔,通过气态HF腐蚀工艺,形成低真空度腔室6和高真空度腔室7;每个腔室根据用途不同,腔室开通孔的尺寸也不同;Step 6: Open holes on the
步骤七:在第二硅层5上通过第一次CVD工艺,将尺寸相对较小的通孔利用CVD生长的氧化层即第一次封堵结构8,在CVD工艺过程中,通入惰性气体,低真空度腔室6形成高压或常压状态的腔室,尺寸较大的通孔并未这个过程被封住;Step 7: Through the first CVD process on the
步骤八:在第二层硅层5上进行第二次CVD工艺,将剩余尺寸相对较大的通孔利用CVD生长的氧化层即形成第二次封堵结构9;Step 8: Carry out a second CVD process on the
在CVD的过程中,抽真空,通入可反应气体,以保证高真空度腔室7内部形成真空或低压状态。During the CVD process, a vacuum is drawn and a reactive gas is introduced to ensure that a vacuum or a low-pressure state is formed inside the high-
分为两次封堵的主要目的是通过不同工艺形成真空度不同的腔室。The main purpose of sealing twice is to form chambers with different vacuum degrees through different processes.
本发明未尽事宜为公知技术。Matters not covered in the present invention are known technologies.
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210813856.5A CN115285927A (en) | 2022-07-12 | 2022-07-12 | Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210813856.5A CN115285927A (en) | 2022-07-12 | 2022-07-12 | Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115285927A true CN115285927A (en) | 2022-11-04 |
Family
ID=83821818
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210813856.5A Pending CN115285927A (en) | 2022-07-12 | 2022-07-12 | Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115285927A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0287318A2 (en) * | 1987-04-14 | 1988-10-19 | Fairchild Semiconductor Corporation | Integrated transistor and manufacturing process therefor |
| CN101643193A (en) * | 2008-08-04 | 2010-02-10 | 罗伯特.博世有限公司 | Micromechanical device which has cavities having different internal atmospheric pressures |
| CN111430870A (en) * | 2020-04-26 | 2020-07-17 | 罕王微电子(辽宁)有限公司 | A kind of silicon oscillator structure and preparation method based on silicon and silicon oxide stack |
| CN112265956A (en) * | 2020-09-25 | 2021-01-26 | 华东光电集成器件研究所 | MEMS wafer level vacuum packaging method for packaging different vacuum degrees |
-
2022
- 2022-07-12 CN CN202210813856.5A patent/CN115285927A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0287318A2 (en) * | 1987-04-14 | 1988-10-19 | Fairchild Semiconductor Corporation | Integrated transistor and manufacturing process therefor |
| CN101643193A (en) * | 2008-08-04 | 2010-02-10 | 罗伯特.博世有限公司 | Micromechanical device which has cavities having different internal atmospheric pressures |
| CN111430870A (en) * | 2020-04-26 | 2020-07-17 | 罕王微电子(辽宁)有限公司 | A kind of silicon oscillator structure and preparation method based on silicon and silicon oxide stack |
| CN112265956A (en) * | 2020-09-25 | 2021-01-26 | 华东光电集成器件研究所 | MEMS wafer level vacuum packaging method for packaging different vacuum degrees |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108529550B (en) | Wafer-level packaging MEMS chip structure based on wafer bonding process and processing method thereof | |
| JP5021153B2 (en) | Electromechanical system with controlled atmosphere and method of manufacturing the system | |
| JP4009243B2 (en) | Semiconductor process | |
| CN103350983B (en) | A MEMS device with integrated wafer-level vacuum packaging and its manufacturing method | |
| CN103964373B (en) | Mems device and its manufacture method with cracking resistance membrane structure | |
| US7413967B2 (en) | Yield improvement in silicon-germanium epitaxial growth | |
| CN105845562A (en) | Etching method | |
| CN117153671B (en) | Epitaxial growth method of silicon carbide substrate and silicon carbide epitaxial wafer | |
| CN115285927A (en) | Structure and process of sealing multi-layer vacuum cavity by CVD for MEMS chip | |
| CN218371757U (en) | CVD seals multilayer vacuum cavity structure for MEMS chip | |
| CN118545678A (en) | Preparation method of MEMS cavity structure | |
| TW202223136A (en) | Method for forming layer on substrate, and semiconductor processing system | |
| CN110031133B (en) | A resonant pressure sensor and its manufacturing process | |
| CN110783176B (en) | Preparation method of low-stress semiconductor material | |
| CN115117150B (en) | GaN HEMT power device and preparation method thereof | |
| CN217498675U (en) | Metal diffusion adsorption system for wafer-level MEMS vacuum packaging | |
| CN212517471U (en) | Silicon oscillator structure based on silicon and silicon oxide lamination | |
| CN114057156A (en) | Metal diffusion adsorption system and process for wafer-level MEMS vacuum packaging | |
| CN118083906B (en) | A MEMS device and its manufacturing method and electronic device | |
| CN103972146B (en) | The forming method of groove isolation construction | |
| CN114914191A (en) | Method for epitaxial growth in deep trench | |
| CN112382560A (en) | Multilayer epitaxial reduced-pressure growth method | |
| CN109300781A (en) | Manufacturing method of ONO film layer | |
| CN116525418B (en) | Silicon epitaxial wafer preparation method based on 111 crystal orientation, silicon epitaxial wafer and semiconductor device | |
| CN117690789B (en) | Semiconductor structure and method for manufacturing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |