CN115285932A - Preparation method of detector chip - Google Patents
Preparation method of detector chip Download PDFInfo
- Publication number
- CN115285932A CN115285932A CN202210947364.5A CN202210947364A CN115285932A CN 115285932 A CN115285932 A CN 115285932A CN 202210947364 A CN202210947364 A CN 202210947364A CN 115285932 A CN115285932 A CN 115285932A
- Authority
- CN
- China
- Prior art keywords
- getter
- window
- laser
- device wafer
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 57
- 229910000679 solder Inorganic materials 0.000 claims abstract description 50
- 238000001514 detection method Methods 0.000 claims abstract description 41
- 230000004913 activation Effects 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000011056 performance test Methods 0.000 claims description 3
- 230000007420 reactivation Effects 0.000 claims 1
- 238000001994 activation Methods 0.000 abstract description 24
- 230000008569 process Effects 0.000 abstract description 21
- 230000003213 activating effect Effects 0.000 abstract description 8
- 235000012431 wafers Nutrition 0.000 description 94
- 238000010586 diagram Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000012858 packaging process Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000005247 gettering Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000033999 Device damage Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00261—Processes for packaging MEMS devices
- B81C1/00277—Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
- B81C1/00285—Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体技术领域,尤其涉及一种探测器芯片的制备方法。The present application relates to the field of semiconductor technology, in particular to a method for preparing a detector chip.
背景技术Background technique
微机电系统(MEMS,Micro-Electro-Mechanical System)技术作为一项新兴的微细加工技术,已开始在各领域应用。它可将信息获取、处理和执行等功能集成,具有微小、智能、可执行、可集成、工艺兼容性好、成本低等优点。因此,MEMS技术在红外探测技术领域也有非常广泛的应用前景,将为该领域的研究提供一条更新的途径。将MEMS技术用于非制冷红外探测器的研制能够使器件向高可靠性、微型化、智能化、高密度阵列集成和低成本、可批量生产等方向发展,并有可能利用该技术制造出具有全新机理的非制冷红外探测器。Micro-Electro-Mechanical System (MEMS, Micro-Electro-Mechanical System) technology, as a new microfabrication technology, has begun to be applied in various fields. It can integrate functions such as information acquisition, processing, and execution, and has the advantages of being small, intelligent, executable, integrable, good process compatibility, and low cost. Therefore, MEMS technology also has a very broad application prospect in the field of infrared detection technology, which will provide a new way for research in this field. The use of MEMS technology in the development of uncooled infrared detectors can make devices develop in the direction of high reliability, miniaturization, intelligence, high-density array integration, low cost, and mass production, and it is possible to use this technology to manufacture devices with An uncooled infrared detector with a new mechanism.
MEMS红外探测器的晶圆级封装是以晶圆为加工对象,在圆片上同时对众多探测器单元进行封装形成探测器芯片,并进一步在晶圆上进行老化和测试后再划分成各个探测器芯片的封装方式。相比于传统封装形式,晶圆级封装具有效率高、周期短和成本低的优势。晶圆级封装过程中形成的红外探测器真空腔体内部的真空度会对其性能产生较大的影响,因此要保证探测器的优良性能,需对探测器内部真空度进行严格控制。由于探测器内部材料存在放气现象,长期使用过程中会导致内部真空度下降,因此为保证探测器性能不受影响,需要在真空腔体内部设置吸气剂维持其真空度。The wafer-level packaging of MEMS infrared detectors is based on the wafer as the processing object. Many detector units are packaged on the wafer at the same time to form a detector chip, which is further aged and tested on the wafer before being divided into individual detectors. Chip packaging. Compared with traditional packaging forms, wafer-level packaging has the advantages of high efficiency, short cycle time and low cost. The vacuum degree inside the vacuum chamber of the infrared detector formed during the wafer-level packaging process will have a greater impact on its performance. Therefore, to ensure the excellent performance of the detector, it is necessary to strictly control the vacuum degree inside the detector. Due to the outgassing phenomenon of the internal materials of the detector, the internal vacuum degree will drop during long-term use. Therefore, in order to ensure that the performance of the detector is not affected, it is necessary to set a getter inside the vacuum chamber to maintain its vacuum degree.
在红外探测器的晶圆级封装过程,由于暴露于大气的吸气剂表面吸附着H2O、CO2以及碳氢化合物等气体,因此为了保证探测器真空腔体内部真空度,需要对真空腔体内的吸气剂进行激活,从而恢复其吸气性能。In the wafer-level packaging process of the infrared detector, since the surface of the getter exposed to the atmosphere adsorbs gases such as H 2 O, CO 2 and hydrocarbons, in order to ensure the vacuum inside the detector vacuum chamber, it is necessary to The getter in the cavity is activated, thereby restoring its getter properties.
目前对探测器的吸气剂的激活方式主要由高温加热激活、高频感应电流激活或热辐射激活。其中,采用高温加热的方式激活吸气剂时,高温易对MEMS结构(探测器的像元区域)造成热失效,且高温易造成封装失效,真空度降低等问题,除此之外,焊料受高温影响,易产生溢球,从而对探测器产生一定的影响。采用高频感应电流激活吸气剂易造成微电路损失,造成MEMS结构的电失效或磁失效。显然,目前的吸气剂激活方式容易受材料性质、工艺窗口的影响,而出现吸气剂激活不充分的问题,造成探测器真空腔体的真空度不足从而引发探测器失效。此外,加热激活效率低,难以精确控制,易损伤探测器。At present, the getter of the detector is mainly activated by high-temperature heating, high-frequency induced current activation or thermal radiation activation. Among them, when the getter is activated by high-temperature heating, the high temperature will easily cause thermal failure to the MEMS structure (the pixel area of the detector), and the high temperature will easily cause problems such as package failure and vacuum degree reduction. In addition, the solder is affected by Under the influence of high temperature, it is easy to produce a spill ball, which will have a certain impact on the detector. The use of high-frequency induced current to activate the getter can easily cause the loss of microcircuits, resulting in electrical failure or magnetic failure of the MEMS structure. Obviously, the current getter activation method is easily affected by the material properties and process window, and there is a problem of insufficient getter activation, resulting in insufficient vacuum in the detector's vacuum cavity, which leads to detector failure. In addition, the activation efficiency of heating is low, it is difficult to control precisely, and it is easy to damage the detector.
发明内容Contents of the invention
为解决存在的技术问题,本申请提供一种能够在吸气剂激活过程中避免电路及器件损伤的探测器芯片的制备方法。In order to solve the existing technical problems, the present application provides a method for preparing a detector chip that can avoid circuit and device damage during the activation process of the getter.
一种探测器芯片的制备方法,包括:A method for preparing a detector chip, comprising:
将制作有探测器阵列的器件晶圆与对应的窗口片进行键合连接,所述器件晶圆和所述窗口片之间形成与所述探测器阵列中的各个探测器分别对应的各个真空腔体,每一个所述真空腔体中设置有对应的吸气剂;The device wafer fabricated with the detector array is bonded to the corresponding window, and vacuum chambers corresponding to the detectors in the detector array are formed between the device wafer and the window body, each of the vacuum chambers is provided with a corresponding getter;
采用激光透过所述窗口片照射至各个所述真空腔体中所述吸气剂的区域,并被所述真空腔体中的所述吸气剂吸收,以激活各个所述真空腔体中的所述吸气剂。Laser light is used to irradiate the region of the getter in each of the vacuum chambers through the window, and is absorbed by the getter in the vacuum chamber, so as to activate the region of the getter in each of the vacuum chambers. of the getters.
在一些实施例中,所述激光为连续激光。In some embodiments, the laser is a continuous laser.
在一些实施例中,所述制备方法还包括:In some embodiments, the preparation method also includes:
根据各个所述真空腔体中的所述吸气剂的吸气速率和吸气量,设置照射至所述窗口片上的所述激光对应的输出功率和照射时间。The corresponding output power and irradiation time of the laser light irradiated on the window plate are set according to the getter rate and the getter volume in each of the vacuum chambers.
在一些实施例中,所述窗口片上设置有与各个所述真空腔体对应的标记,所述制备方法还包括:In some embodiments, the window is provided with marks corresponding to each of the vacuum chambers, and the preparation method further includes:
根据对所述标记的识别结果,确定与各个所述探测器对应的所述真空腔体中的所述吸气剂的位置信息;determining the position information of the getter in the vacuum cavity corresponding to each of the detectors according to the recognition result of the mark;
根据各个所述真空腔体中的所述吸气剂的位置信息,控制所述激光对准各个所述真空腔体中所述吸气剂的区域。According to the position information of the getter in each of the vacuum cavities, the laser is controlled to be aimed at the area of the getter in each of the vacuum cavities.
在一些实施例中,所述将制作有探测器的器件晶圆与对应的窗口片进行键合连接,包括:In some embodiments, the bonding connection of the device wafer with the detector and the corresponding window includes:
将所述器件晶圆与所述窗口片进行对准后,放置于键合机内;After aligning the device wafer with the window, place it in a bonding machine;
将对准后的所述器件晶圆与所述窗口片之间形成的待键合腔进行抽真空处理;vacuumizing the cavity to be bonded formed between the aligned device wafer and the window;
在所述待键合腔内的真空度满足设定条件后,对所述待键合腔进行预加热排气处理,预加热温度小于用于将所述器件晶圆和窗口片进行键合连接的焊料环的熔点;After the vacuum degree in the chamber to be bonded meets the set conditions, the chamber to be bonded is preheated and exhausted, and the preheating temperature is lower than that used for bonding and connecting the device wafer and the window The melting point of the solder ring;
在所述预加热排气处理的持续时间达到第一设定时间后,控制所述待键合腔的温度由所述预加热温度上升至键合温度,以融化所述用于将所述器件晶圆和窗口片进行键合连接的焊料环,并通过加压方式使得所述窗口片通过所述用于将所述器件晶圆和窗口片进行键合连接的焊料环与所述器件晶圆焊料连接;After the duration of the preheating exhaust treatment reaches the first set time, control the temperature of the chamber to be bonded from the preheating temperature to the bonding temperature to melt the The solder ring for bonding and connecting the wafer and the window, and pressurizing the window to pass through the solder ring for bonding the device wafer and the window to the device wafer solder connection;
在所述键合温度持续时间达到第二设定时间后,进行冷却和撤压处理,以形成由所述焊料环、所述窗口片以及所述器件晶圆构成的所述真空腔体。After the duration of the bonding temperature reaches a second set time, cooling and depressurization are performed to form the vacuum chamber composed of the solder ring, the window and the device wafer.
在一些实施例中,所述将制作有探测器的器件晶圆与对应的窗口片进行键合连接之前,所述制备方法还包括:In some embodiments, before the device wafer fabricated with the detector is bonded to the corresponding window, the preparation method further includes:
在所述器件晶圆制作有所述探测器一侧的非器件制作区域或所述探测器的盲元区域上制作吸气剂。A getter is fabricated on the non-device fabrication area on the side of the device wafer where the detector is fabricated or on the blind cell area of the detector.
在一些实施例中,根据所述激光对应的输出功率和照射在所述吸气剂上的时间,确定每一个所述探测器的探测单元与对应的所述吸气剂之间的距离。In some embodiments, the distance between the detection unit of each detector and the corresponding getter is determined according to the corresponding output power of the laser and the irradiation time on the getter.
在一些实施例中,所述激光为红外激光或X射线激光。In some embodiments, the laser is an infrared laser or an X-ray laser.
在一些实施例中,所述将制作有探测器的器件晶圆与对应的窗口片进行键合连接之前,所述制备方法还包括:In some embodiments, before the device wafer fabricated with the detector is bonded to the corresponding window, the preparation method further includes:
在所述窗口片与所述器件晶圆相对一侧的非光学窗口区域制作吸气剂;making a getter in the non-optical window area on the opposite side of the window sheet to the device wafer;
所述激光为红外激光。The laser is an infrared laser.
在一些实施例中,所述的制备方法还包括:In some embodiments, the preparation method also includes:
在对各个所述真空腔体中的所述吸气剂进行激活后,对所述探测器阵列进行性能测试,并基于测试结果,确定需要再次进行吸气剂激活处理的目标探测器;After activating the getters in each of the vacuum chambers, performing a performance test on the detector array, and based on the test results, determining the target detectors that need to be activated again with getters;
采用所述激光透过所述窗口片照射至所述目标探测器的所述真空腔体中所述吸气剂的区域,以对所述目标探测器的所述真空腔体中的所述吸气剂进行再次激活处理。Use the laser to irradiate the region of the getter in the vacuum cavity of the target detector through the window, so as to irradiate the getter in the vacuum cavity of the target detector The aerosol is reactivated.
由上可见,在本申请提供的探测器芯片的制备方法中,通过在将窗口片与器件晶圆进行键合形成与探测器阵列中的各个探测单元对应的真空腔体后,再利用激光透过窗口片照射至真空腔体中的吸气剂上,利用激光给吸气剂提供的能量激活吸气剂,使得吸气剂可以重新具备吸气能力。在对吸气剂进行激活的过程中,由于激光仅对准吸气剂所在的区域进行照射,激光产生的能量不会对探测单元的结构造成损伤,同时也可以有效的避免激活过程中产生焊料溢球的现象,有利于提高探测器芯片的可靠性能。It can be seen from the above that in the preparation method of the detector chip provided by the present application, after the window plate is bonded to the device wafer to form a vacuum chamber corresponding to each detection unit in the detector array, and then the laser is used to transmit The getter is irradiated through the window to the getter in the vacuum cavity, and the energy provided by the laser to the getter is used to activate the getter, so that the getter can regain its ability to getter. In the process of activating the getter, since the laser is only irradiated on the area where the getter is located, the energy generated by the laser will not cause damage to the structure of the detection unit, and it can also effectively avoid the generation of solder during the activation process The overflow ball phenomenon is beneficial to improve the reliability performance of the detector chip.
附图说明Description of drawings
附图仅用于示出实施方式,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:The drawings are only for illustrating the embodiments and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same components. In the attached picture:
图1为依据本申请一些实施例提供的探测器芯片的制备方法流程示意图;Fig. 1 is a schematic flow chart of a method for preparing a detector chip provided according to some embodiments of the present application;
图2为依据本申请一些实施例提供的探测器芯片的制备方法过程中进行激光激活时对应形成器件的结构示意图;Fig. 2 is a schematic structural diagram of corresponding devices formed when laser activation is performed during the preparation method of the detector chip according to some embodiments of the present application;
图3为依据本申请一些实施例提供的探测器芯片的制备方法过程中进行激光激活时对应形成器件俯视图;Fig. 3 is a top view of corresponding devices formed when laser activation is performed during the preparation method of the detector chip according to some embodiments of the present application;
图4为依据本申请一些实施例提供的探测器芯片的制备方法过程中用激光激活吸气剂的原理示意图;Fig. 4 is a schematic diagram of the principle of using a laser to activate a getter during the preparation method of a detector chip according to some embodiments of the present application;
图5为依据本申请一些实施例提供的探测器芯片的制备方法过程将窗口片与器件晶圆进行键合过程的流程示意图;Fig. 5 is a schematic flow diagram of the process of bonding the window and the device wafer according to the method for preparing the detector chip provided by some embodiments of the present application;
图6为依据本申请一些实施例提供的探测器芯片的制备方法过程中在窗口片与器件晶圆进行对准后且键合之前对应的器件结构示意图;6 is a schematic diagram of the corresponding device structure after the window and the device wafer are aligned and before bonding during the method for preparing the detector chip according to some embodiments of the present application;
图7为依据本申请另一些实施例提供的探测器芯片的制备方法过程中在窗口片与器件晶圆进行对准后且键合之前对应的器件结构示意图;7 is a schematic diagram of the corresponding device structure after the window is aligned with the device wafer and before bonding during the method for preparing the detector chip according to other embodiments of the present application;
图8为依据本申请另一些实施例提供的探测器芯片的制备方法过程中进行激光激活时对应形成器件的结构示意图。FIG. 8 is a schematic structural diagram of a corresponding device formed when laser activation is performed during a method for preparing a detector chip according to other embodiments of the present application.
元件符号说明:窗口片1、焊料环2、器件晶圆3、吸气剂4、真空腔体5、探测单元6、待键合腔7Description of component symbols:
具体实施方式Detailed ways
以下结合说明书附图及具体实施例对本申请技术方案做进一步的详细阐述。The technical solution of the present application will be further elaborated below in combination with the accompanying drawings and specific embodiments.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请的实现方式。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terms used herein in the description of the application are only for the purpose of describing specific embodiments, and are not intended to limit the implementation of the application. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“行”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of this application, it is to be understood that the terms "center", "upper", "lower", "front", "rear", "left", "right", "vertical", "row", The orientations or positional relationships indicated by "top", "bottom", "inner", "outer", etc. are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying References to devices or elements must have a particular orientation, be constructed, and operate in a particular orientation and therefore should not be construed as limiting the application. In the description of the present application, unless otherwise specified, "plurality" means two or more.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that unless otherwise specified and limited, the terms "installation", "connection", and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
本申请为了克服了现有的吸气剂激活方式对探测器的性能带来的不利影响,提供了一种应用激光激活方式激活吸气剂的探测器芯片的制备方法。在探测器芯片的制备过程中,在形成真空腔体后,对吸气剂位置进行激光激活,避免了对探测器造成结构损伤,同时也可以有效防止高温过度融化焊料产生溢球。本申请实施例中的探测器芯片可以为非制冷红外探测器芯片。下面将结合图1至8对本申请各实施例提供的探测器芯片的制备方法做进一步说明。In order to overcome the adverse effect of the existing getter activation method on the performance of the detector, the present application provides a method for preparing a detector chip using a laser activation method to activate the getter. During the preparation of the detector chip, after the vacuum cavity is formed, laser activation is performed on the position of the getter to avoid structural damage to the detector, and at the same time, it can effectively prevent excessive melting of solder at high temperature to produce overflow balls. The detector chip in the embodiment of the present application may be an uncooled infrared detector chip. The method for preparing the detector chip provided by each embodiment of the present application will be further described below with reference to FIGS. 1 to 8 .
请参考图1所示,其为依据本申请实施例提供的探测器芯片的制备方法流程示意图。在依据本实施例提供的探测器芯片的制备方法中,将窗口片与器件晶圆进行键合之前对应的器件结构示意图如图6或图7所示,进行激光激活吸气剂时对应形成的器件结构示意图如图2或图8所示。在本实施例中,探测器芯片的制备方法包括S02和S04,具体描述如下。Please refer to FIG. 1 , which is a schematic flowchart of a method for preparing a detector chip according to an embodiment of the present application. In the preparation method of the detector chip provided according to this embodiment, the corresponding device structure schematic diagram before bonding the window plate and the device wafer is shown in Fig. A schematic diagram of the device structure is shown in FIG. 2 or FIG. 8 . In this embodiment, the method for preparing the detector chip includes S02 and S04, which are described in detail as follows.
S02:将制作有探测器阵列的器件晶圆与对应的窗口片进行键合连接,器件晶圆和窗口片之间形成与探测器阵列中的各个探测器分别对应的各个真空腔体,每一个真空腔体中设置有对应的吸气剂。S02: Connect the device wafer with the detector array to the corresponding window by bonding, and form vacuum cavities corresponding to the detectors in the detector array between the device wafer and the window, each Corresponding getters are arranged in the vacuum cavity.
参考图2、6、7和/或图8所示,探测器阵列是由多个MEMS结构组成的阵列,每一个MEMS结构为一个由MEMS工艺构成的可探测红外辐射的探测单元6(也可以称为红外敏感像元单元)。器件晶圆3可以为制作有探测器读出电路的硅晶圆,器件晶圆3中的读出电路和器件晶圆3上制作的对应探测单元6连接,用于读取红外探测信号。窗口片1为与器件晶圆3上设置的探测器阵列对应的光学窗口片。该窗口片1可以为与器件晶圆3相对应的窗口晶圆,窗口晶圆上设置有分别与探测器阵列中各个探测单元6对应的各个光学窗口单元,每一个光学窗口单元与对应的探测单元6构成一个真空腔体5。因此,器件晶圆3上设置的探测器阵列由多少个探测单元6构成,则窗口晶圆上就有多少个光学窗口单元,将器件晶圆3和窗口晶圆键合后就会形成多少个真空腔体5,每一个真空腔体5中均设置有对应的吸气剂4和探测单元6。窗口片1也可以为多块分别与探测器阵列中的各个探测单元6对应的独立窗口片,即窗口片1包括数量为与探测阵列中的探测单元6数量对应的独立窗口片构成,各独立窗口片分别键合在器件晶圆3对应的位置上,以作为器件晶圆3上的探测器阵列中的对应探测单元6的光学窗口。With reference to Fig. 2, 6, 7 and/or shown in Fig. 8, detector array is the array that is made up of a plurality of MEMS structures, and each MEMS structure is a detecting
真空腔体5中设置有吸气剂4,吸气剂4在被激活后可以用于吸收真空腔体5中的气体。这里需要说明的是,真空腔体5并非只是指绝对意义上真空,而是真空度满足设定真空条件的真空腔体。吸气剂4可以位于窗口片1的非光学窗口区域,或位于器件晶圆3上的非器件制作区域或探测器的盲元区域。非光窗口区域是指窗口片1不用于透过红外光以供对应的探测单元6探测的区域,即吸气剂4不能阻挡探测单元6的探测光照射至探测单元6上。盲元,又称无效像元,是探测器阵列在生产过程中产生的死像元和过热像元。死像元是指响应率小于平均响应率1/10的像元,过热像元是指噪声电压大于平均噪声电压10倍的像元。A
在一些实施例中,窗口片1上可以设置有焊料环2,窗口片1与器件晶圆3通过焊料环2键合后,窗口片1、焊料环2与器件晶圆3构成一个真空腔体5。图2所示的器件结构的俯视图附图3所示。需要说明的是,图2仅示意了器件晶圆3的一个探测器对应的结构,图3中未示意出探测单元6。在图2中,吸气剂4制作在器件晶圆3的制作有探测器阵列一侧的非器件制作区域,即吸气剂4位于探测单元6(MEMS结构)的周围且与探测单元6之间具有一定的距离。窗口片1上设置有焊料环2,焊料环2设置在窗口片1与吸气剂4、探测单元6相对的区域的边缘。窗口片1通过焊料环2器件晶圆3键合后,形成一个真空腔体5。In some embodiments, a
S04:采用激光透过所述窗口片照射至各个真空腔体中吸气剂的区域,并被真空腔体中的吸气剂吸收,以激活各个真空腔体中的吸气剂。S04: Using laser light to irradiate the region of the getter in each vacuum cavity through the window, and being absorbed by the getter in the vacuum cavity, so as to activate the getter in each vacuum cavity.
如图2和图3所示,在一些实施例中,采用激光由窗口片1的与吸气剂4对应的区域照射至真空腔体5中,并到达吸气剂4,以被吸气剂4吸收。激光到达吸气剂4后,使得吸气剂4不断获得能量,吸气剂4表面的钝化膜逐渐被去除而使得吸气剂4重新显露活性,从而完成吸气剂4的激活。吸气剂4被激活后可以重新具备吸气能力。在本申请实施例提供的探测器芯片的制备过程中,在窗口片1与器件晶圆3键合形成真空腔体5后,利用激光激活真空腔体5中的吸气剂4的原理示意图如图4所示。S04中的激光是指能够透过窗口片1,且透过窗口片1后到达吸气剂4时能被吸气剂4吸收的激光。吸气剂4吸收激光后,吸气剂4获得能量,使得吸气剂4内的H2O(水分子)、CO2(二氧化碳分子)及碳氢化合物等逐渐脱附出吸气剂4表面,构成吸气剂4的金属氧化物中的氧元素主要以向内部扩散的方式而离开吸气剂4表面,吸气剂4的表面由氧化态向近金属态或金属态的进行转变,从而使吸气剂4表面重新具备吸气能力。As shown in FIGS. 2 and 3 , in some embodiments, the laser is irradiated from the region of the
由上可见,在本申请实施例提供的探测器芯片的制备方法中,通过在将窗口片1与器件晶圆3进行键合形成与探测器阵列中的各个探测单元6对应的真空腔体5后,再利用激光透过窗口片1照射至真空腔体5中的吸气剂4上,利用激光给吸气剂4提供的能量激活吸气剂,使得吸气剂4可以重新具备吸气能力。在对吸气剂4进行激活的过程中,由于激光仅对准吸气剂4所在的区域进行照射,激光产生的能量不会对探测单元6的结构造成损伤,同时也可以有效的避免焊料溢球的现象,有利于提高探测器芯片的可靠性能。It can be seen from the above that in the method for preparing the detector chip provided in the embodiment of the present application, the
在一些实施例中,窗口片1为镀有红外增透膜的半导体窗口片。半导体窗口片如由锗材料形成的锗窗口片,或如硅材料构成的硅窗口片等。镀有红外增透膜的半导体窗口片可以透过探测器芯片的待探测光。在S04中,为了提高对吸气剂4的激活效率,需要使S04中的激光对应的输出功率满足设定输出功率条件。一般需要产生S04中的激光的激光器的输出功率达到设定输出功率,设定输出功率如200-500W。为了避免较高输出功率的激光照射至吸气剂4上时,对吸气剂4产生的破坏,S04中进一步采用输出方式为连续输出的连续激光来照射吸气剂4,以实现对吸气剂4进行激活的同时不会造成吸气剂4的损伤。In some embodiments, the
在一些实施例中,探测器芯片的制备方法还包括:根据S02中形成的各个真空腔体5中的吸气剂4的吸气速率和吸气量,设置照射至窗口片1上的激光对应的输出功率和照射时间。吸气剂4的吸气速率由吸气剂4的构成材料而定,吸气剂4的吸气量为吸气剂4能够吸收的气体总量。在吸气剂4的材料确定后,吸气总量需要得越大,则需要对吸气剂4进行激活的能量需求越多,则需要对吸气剂4进行照射的输出功率和照射时间需要满足吸气剂4对激活能量的需求。In some embodiments, the method for preparing the detector chip further includes: according to the gettering rate and the gettering amount of the
在依据本申请实施例提供的探测器芯片的制备方法中,需要利用激光对准吸气剂4所在的区域对吸气剂4进行激活。因此,在依据本申请实施例提供的探测器芯片的制备方法还包括将激光与吸气剂4进行对准的步骤。在一些实施例中,为了便于将窗口片1与器件晶圆3进行精准的对准,窗口片1上设置有与器件晶圆3上设置的探测器阵列中的各个探测单元6对应的标记(图2、6、7及8中均未画出该标记),即根据获取每一个标记的位置,可以确定每一个器件晶圆3上每一个探测器所在区域的范围。这里需要说明的是,器件晶圆3上的探测器阵列中的每一个探测单元6、对应的真空腔体5以及对应的吸气剂4构成一个探测器。因此,器件晶圆3上实际上布置有多个探测器,每一个探测器所在的位置区域,在窗口片1上均有对应的标记。因此,在一些实施例中,将S04中的激光与吸气剂4对准的具体步骤可以为:根据对窗口片1上的标记的识别结果,确定与各个探测器对应的真空腔体5中的吸气剂4的位置信息,然后再根据各个真空腔体5中的吸气剂4的位置信息,控制激光对准各个真空腔体5中吸气剂4的区域。具体的,用于产生S04中的激光的激光装置具备识别系统,该识别系统可以对窗口片1上的标记进行识别,以确定各个探测器的位置区域,由于吸气剂4和探测单元6在对应的探测器中的位置是确定的,因此根据对标记进行识别所获得的识别结果,可以确定各个探测器的位置信息,然后根据对应的探测器的位置信息,可以确定对应真空腔体5中的吸气剂4的位置信息。激光装置对窗口片1上的标记进行识别后,可以获取到吸气剂4的位置信息,然后再根据吸气剂4的位置信息,控制激光装置的激光探头向水平方向(x轴方向)和/或垂直方向(y轴方向)移动至当前需要被激活的吸气剂4所在的位置,然后发出能透过窗口片1对准吸气剂4所在的区域并被吸气剂4吸收的激光。并进一步根据吸气剂4的性能(包括吸气剂4的吸气速率和吸气量)确定照射到吸气剂4所在区域的激光的输出功率和对吸气剂4进行激光照射的持续时间。In the method for fabricating the detector chip according to the embodiment of the present application, it is necessary to activate the
请参考图5所示,其为依据本申请实施例提供的将器件晶圆3和窗口片1进行键合的过程示意图。在本实施例中,S02进一步包括S021、S022、S023、S024以及S025。Please refer to FIG. 5 , which is a schematic diagram of a process of bonding a
S021:将器件晶圆与窗口片进行对准后,放置于键合机内。S021: After aligning the device wafer and the window, place it in the bonding machine.
在本实施例中,窗口片1可以为窗口晶圆,窗口晶圆上设置有与器件晶圆3上制作的各个探测器对应的标记,基于对应的标记的位置,可以将窗口晶圆的各个窗口区域与器件晶圆3中的对应的探测器所在区域进行对准。在本实施例中,窗口晶圆与器件晶圆3对应的窗口区域边缘设置由焊料环2,即焊料环2为在进行S021之前,预先制作在窗口片1上的。在其它实施例中,焊料环2也可以在执行S021之前,预先制作在器件晶圆3对应的位置。焊料环2的形状在本申请中不做限定,在后续完成键合后能与窗口片1、器件晶圆3形成封闭的真空腔体5的任何形状的焊料环皆可。In this embodiment, the
S022:将对准后的器件晶圆与窗口片之间形成的待键合腔进行抽真空处理。S022: Vacuumize the cavity to be bonded formed between the aligned device wafer and the window.
由于吸气剂4的吸气量是有限的,为了能确保探测器的真空腔体5的真空度能满足器件性能的要求,需要在S021后,对准后的器件晶圆3与窗口片1之间形成的待键合腔7进行抽真空处理。在将器件晶圆3与窗口片1对准后但未完成键合之前,依据本申请实施例提供的探测芯片的制备方法的形成的器件结构的结构示意图分别如图6和图7所示。图6与图7不同的是,吸气剂4所处的位置不同,在图6中吸气剂4设置在晶圆器件3上,在图7中吸气剂4设置在窗口片1上。在将窗口片1与器件晶圆3对准后,二者之间形成了待键合腔7,待键合腔7在后续的键合步骤完成后便形成了前述的真空腔体5。Since the amount of
S023:在待键合腔内的真空度满足设定条件后,对待键合腔进行预加热排气处理,预加热温度小于用于将器件晶圆和窗口片进行键合连接的焊料环的熔点。S023: After the vacuum degree in the chamber to be bonded meets the set conditions, preheat and exhaust the chamber to be bonded. The preheating temperature is lower than the melting point of the solder ring used to bond the device wafer and the window. .
对待键合腔7进行抽真空,需要根据吸气剂4的最大吸收量确定,即在进行S022的抽真空步骤后,待键合腔7内的真空度满足设定的条件。该设定条件可以是指某一真空度或某一范围的真空度,其具体取值,可以根据吸气剂4的最大吸气量设定。在一些实施例中,可以在S022中的抽空真空处理将待键合腔7内的真空度控制到10-1至10-6mbar后再进行S023的预加热排气处理。通过预加热排气处理,对待键合腔7内的剩余气体,进一步利用预加热烘烤除气。如图6和图7所示,在进行预加热排气处理期间,器件晶圆3表面材料大量放气并随气流逐渐排出待键合腔7,确保后续探测器的真空腔5内具有较高的真空度。由于在预加热排气过程中,将加热温度设置成低于焊料环2的熔点温度,因此,在预加热排气处理过程中,焊料环2并未融化。在一些实施例中,预加热排气过程中对应的预加热温度为150℃至300℃,预加热排气处理的持续时间一般要达到设定时间(第一设定时间),如该设定时间可以为40min至100min。The vacuuming of the
S024:在预加热排气处理的持续时间达到第一设定时间后,控制待键合腔7的温度由预加热温度上升至键合温度,以融化焊料环2,并通过加压方式使得窗口片1通过焊料环2与器件晶圆3焊料连接。S024: After the duration of the preheating exhaust treatment reaches the first set time, control the temperature of the
在预加热排气处理的持续时间达到第一设定时间(40min至100min)后,需要进一步增加加热温度,即使得焊料环2所在的环境温度由预加热温度上升至键合温度,以融化焊料环2。在S023中的加热温度小于焊料环2的熔点,而在S023中的加热温度高于焊料环2的熔点。在一些实施例中,S024中的键合温度一般可以设置为200℃至400℃,以融化焊料环2。在温度稳定为所需要的键合温度后,进一步对位于窗口片1和器件晶圆3之间的焊料环2进行加压处理,从而以加压方式使得窗口片1通过焊料环2与器件晶圆3焊料连接。After the duration of the preheating exhaust treatment reaches the first set time (40min to 100min), it is necessary to further increase the heating temperature, that is, to make the ambient temperature of the
S025:在键合温度持续时间达到第二设定时间后,进行冷却和撤压处理,以形成由焊料环、窗口片以及器件晶圆构成的真空腔体。S025: After the duration of the bonding temperature reaches the second set time, perform cooling and depressurization treatment to form a vacuum chamber composed of a solder ring, a window and a device wafer.
在键合温度达到设定温度后,使该键合温度的持续时间到达第二设定时间,并在键合温度维持为设定温度期间,一直维持施加在窗口片1和器件晶圆3之间的焊料环2上的压力值为500N至5000N。知道键合温度的持续时间达到第二设定时间后,再冷却焊料环2所在环境的温度,并等焊料环2所在环境温度低于设定冷却温度之后,在撤出上述施加的压力。这里的第二设定时间一般可以为3至20min,而设定冷却温度一般为低于60℃或60℃以下的温度。After the bonding temperature reaches the set temperature, the duration of the bonding temperature reaches the second set time, and during the bonding temperature is maintained at the set temperature, it is always maintained between the
在窗口片1与器件晶圆3之间的键合完成后,将键合有窗口片1的器件晶圆3从键合机中取出,置于激光装置中进行吸气剂4的激活处理。激光装置配备有光学识别系统,通过识别窗口片1上的上述标记,划分每器件晶圆3上的个探测器的范围,在激光装置工作程序控制下,激光束按照指定位置(需要进行激活的吸气剂4所在的位置)在x方向和y方向上进行轨迹平移,准确定位吸气剂4所在区域进行持续照射,激光透过窗口片1到达吸气剂4,吸气剂4持续吸收红外光并转化为热能使得温度升高,热量在内部迅速传导至吸气剂4表面,从而导致其表面钝化膜逐渐被去除而重新显露活性,重新具备吸气能力。After the bonding between the
在一些实施例中,在S02之前,依据本申请实施例提供的探测芯片的制备方法还进一步包括吸气剂的制作步骤。在一些实施例中,如图2和图6所示,吸气剂4制作在器件晶圆3上。具体的,在器件晶圆3制作有探测器的探测单元6一侧的非器件制作区域制作吸气剂4。在其它实施例中,还可以在器件晶圆3上的探测器的盲元区域上制作吸气剂4,以作为探测器的遮光材料。制作吸气剂4的具体步骤可以为:首先通过光刻工艺在器件晶圆上进行涂胶以及光刻胶的图形化处理,再以物理气相沉积的方式将吸气剂沉积到相应的位置上,形成吸气剂4。In some embodiments, before S02, the method for manufacturing the detection chip according to the embodiment of the present application further includes a step of manufacturing a getter. In some embodiments, as shown in FIGS. 2 and 6 , the
在吸气剂4制作在器件晶圆3的实施例中(对应图2和图6),S04中采用的激光可以为红外激光也可以为X射线激光。其中,在一些实施例中,红外激光的波长范围为800nm至2000nm,X射线激光的波长范围为1nm至10nm。红外激光以热量的形式对吸气剂4进行激活,而X射线激光则以电磁能的形式对吸气剂4进行激活。采用红外激光对吸气剂4进行激活的过程中,由于红外激光直接对着吸气剂4所在的区域,而不会照射至探测单元6,因此在对吸气剂4进行激活的同时不会对探测单元6造成损伤。而采用X射线激光进行吸气剂4的激活方式,由于X射线激光是以电磁能的形式向吸气剂4传递能量,整个过程,完全不会造成探测器其它区域的温度升高,可以有效避免激活过程中对器件造成的损坏现象。In the embodiment where the
在一些实施例中,在采用红外激光对吸气剂4进行激活的过程中,为了避免红外激光在热传递过程中产生的热量对吸气剂4旁边的探测单元6的损伤,本申请提供的探测器芯片的制备方法还进一步包括:根据激光对应的输出功率和照射在吸气剂4上的时间,确定每一个探测器的吸气剂4与对应的探测单元6之间的距离。此步骤在制作吸气4之前执行,即在根据激光对应的输出功率和照射在吸气剂4上的时间,确定每一个探测器的的探测单元6与对应的吸气剂4之间的距离之后,再根据该距离进行吸气剂4制作中光刻胶的图形化处理。In some embodiments, in the process of activating the
在另一些实施例中,如图7和8所示,吸气剂4也可以制作在窗口片1上。具体的,在进行S02之前,本申请提供的探测芯片的制备方法还包括:在窗口片1与器件晶圆3相对一侧的非光学窗口区域制作吸气剂4。这里的非光学窗口区域在上述已经进行了解释,在此不再进行说明。如图7所示,在进行S02之前,首先通过光刻工艺在窗口片1上完成焊料的镀制,形成焊料环2,然后,采用光刻工艺在窗口片1上进行涂胶以及光刻胶的图形化处理,以通过光刻胶裸露窗口片1的非光学窗口区域,再以物理气相沉积的方式将吸气剂4沉积到非光学窗口区域上,从而完成吸气剂4镀制。其中,非光学窗口区域为窗口片上不遮挡像元的任意区域。In other embodiments, as shown in FIGS. 7 and 8 , the
在窗口片1上完成吸气剂4的制作后,将窗口片1与器件晶圆3在键合机内进行对准,在完成对准后,但未进行键合前形成的器件结构如图7所示。在完成对准后,再根据上述S022至S025执行窗口片1与器件晶圆3的键合步骤,以形成具有由窗口片1、焊料环2和器件晶圆3构成的真空腔体5的器件,具体如图8所示。然后再对图8所示的器件执行S04,以实现对真空腔体5中的吸气剂4的激活。在本实施例中,由于吸气剂4设置在窗口片1面向器件晶圆3的一侧(对应图7和图8),而X射线激光不能以热传递的方式给吸气剂4的表面(面向器件晶圆3一侧的表面)提供能量。因此,在本实施例中,采用红外激光对准吸气剂4进行激活处理,即S04中的激光为红外激光。After the
在一些实施例中,本申请提供的探测器芯片的制备方法,还包括:在对各个真空腔体5中的吸气剂4进行激活后,对探测器阵列中的各个探测器进行性能测试,并基于测试结果,确定需要再次进行吸气剂4激活处理的目标探测器,然后根据目标探测器的位置,确定目标探测器中的吸气剂4的位置,再采用上述的激光透过窗口片1照射至目标探测器的真空腔体5中吸气剂4所在的区域,以对目标探测器的真空腔体5中的吸气剂4进行再次激活处理。现有的对探测器的吸气剂4进行激活方式,在封装之后发现吸气剂4的激活不彻底的情况时,若通过热量进行二次激活会存在产生密封缺陷的风险,且容易造成焊料融化,影响器件的可靠性能。而在本申请实施例,在晶圆级封装过程中,在完成键合后通过激光进行吸气剂4的激活,在吸气剂4完成激活后,对探测器进行性能测试,基于测试结果,直接对激活程度不达标的目标探测器对应的吸气剂4继续返回至激光装置处,利用激光对目标探测器中的吸气剂4进行二次激活。在二次激活的过程中,既可避免对密封焊料产生影响,又可完成吸气剂4吸气性能的提升。In some embodiments, the method for preparing a detector chip provided by the present application further includes: after activating the
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围之内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the application, but the scope of protection of the application is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the application. All should be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210947364.5A CN115285932A (en) | 2022-08-09 | 2022-08-09 | Preparation method of detector chip |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210947364.5A CN115285932A (en) | 2022-08-09 | 2022-08-09 | Preparation method of detector chip |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115285932A true CN115285932A (en) | 2022-11-04 |
Family
ID=83828574
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210947364.5A Pending CN115285932A (en) | 2022-08-09 | 2022-08-09 | Preparation method of detector chip |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115285932A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024146586A1 (en) * | 2023-01-05 | 2024-07-11 | 杭州海康微影传感科技有限公司 | Manufacturing method for mems device |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050085052A1 (en) * | 2003-10-20 | 2005-04-21 | Chien-Hua Chen | Device having a getter |
| CN101898746A (en) * | 2010-04-16 | 2010-12-01 | 东南大学 | MEMS Device Wafer Level Integrated Packaging Method Requiring Different Atmospheric Pressures |
| US20150243799A1 (en) * | 2014-02-27 | 2015-08-27 | Challentech International Corporation | Device Packaging Method and Device Package Structure |
| CN108367910A (en) * | 2015-12-08 | 2018-08-03 | 罗伯特·博世有限公司 | The sensor element of getter material with laser active |
-
2022
- 2022-08-09 CN CN202210947364.5A patent/CN115285932A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050085052A1 (en) * | 2003-10-20 | 2005-04-21 | Chien-Hua Chen | Device having a getter |
| CN101898746A (en) * | 2010-04-16 | 2010-12-01 | 东南大学 | MEMS Device Wafer Level Integrated Packaging Method Requiring Different Atmospheric Pressures |
| US20150243799A1 (en) * | 2014-02-27 | 2015-08-27 | Challentech International Corporation | Device Packaging Method and Device Package Structure |
| CN108367910A (en) * | 2015-12-08 | 2018-08-03 | 罗伯特·博世有限公司 | The sensor element of getter material with laser active |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024146586A1 (en) * | 2023-01-05 | 2024-07-11 | 杭州海康微影传感科技有限公司 | Manufacturing method for mems device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8936998B2 (en) | Manufcaturing method for room-temperature substrate bonding | |
| CN101691200B (en) | Low temperature vacuum encapsulation structure of non-refrigeration infrared detector and manufacturing method thereof | |
| Martins et al. | Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells | |
| CN106441595B (en) | Infrared detector array class encapsulation structure and its manufacturing method | |
| CN115285932A (en) | Preparation method of detector chip | |
| WO2009157304A1 (en) | Solar cell, photoconcentration-type photovoltaic module, and method for manufacturing solar cell | |
| CN102318060A (en) | Vacuum-sealed package, printed circuit board with vacuum-sealed package, electronic instrument, and manufacturing method of vacuum-sealed package | |
| WO2016086716A1 (en) | Packaging method and semiconductor device | |
| WO2011129307A1 (en) | Method for manufacturing infrared sensor | |
| CN102951594B (en) | Tube shell for vacuum package of micro-optical-electronic-mechanic system and manufacture method thereof | |
| CN101863449B (en) | Encapsulation method of MEMS infrared sensor with infrared focusing function | |
| CN1821052A (en) | A low-temperature hermetic packaging method for wafer-level micromechanical devices and optoelectronic devices | |
| US7598125B2 (en) | Method for wafer level packaging and fabricating cap structures | |
| US11427505B2 (en) | Laser-assisted hermetic encapsulation process and product thereof | |
| JP2012058535A (en) | Optical member and optical module | |
| Du et al. | CMOS compatible hermetic packages based on localized fusion bonding of fused silica | |
| CN102807188A (en) | Micro atomic cavity subjected to negative pressure forming, micro atomic clock chip and preparation method for micro atomic cavity and micro atomic clock chip | |
| JP2010243365A (en) | Infrared sensor device manufacturing method | |
| JP4784399B2 (en) | Infrared sensor and manufacturing method thereof | |
| CN212010989U (en) | Hermetic package assembly structure with integrated lens | |
| KR102644849B1 (en) | Sensor package module and manufacturing method thereof | |
| CN105244384A (en) | Vacuum packaging structure of infrared imaging chip | |
| Bedjaoui et al. | Ultrathin glass to ultrathin glass bonding using laser sealing approach | |
| CN116008228A (en) | A chip-integrated NDIR gas sensor and its preparation method | |
| CN102701142B (en) | Wafer-integrated micro-lens optical system manufacturing method and apparatus structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |