CN115290337A - Engine endurance test load calibration method - Google Patents
Engine endurance test load calibration method Download PDFInfo
- Publication number
- CN115290337A CN115290337A CN202210904188.7A CN202210904188A CN115290337A CN 115290337 A CN115290337 A CN 115290337A CN 202210904188 A CN202210904188 A CN 202210904188A CN 115290337 A CN115290337 A CN 115290337A
- Authority
- CN
- China
- Prior art keywords
- load
- test
- engine
- target
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 131
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000013461 design Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 28
- 238000012795 verification Methods 0.000 claims description 27
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 230000003203 everyday effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Engines (AREA)
Abstract
Description
技术领域technical field
本发明属于发动机试验技术领域,具体涉及一种发动机耐久试验载荷校验方法。The invention belongs to the technical field of engine testing, and in particular relates to a load checking method for an engine durability test.
背景技术Background technique
发动机稳态疲劳耐久试验是一项与用户车辆发动机30万公里载荷相等效的加速试验验证方法,其目的是在满足试验载荷验证的情况下缩短试验验证时间。通过用户车辆发动机30万公里载荷转化可以得到发动机在目标转速N、目标扭矩T0下运行的时间t。The engine steady-state fatigue endurance test is an accelerated test verification method equivalent to the 300,000-kilometer load of the user's vehicle engine. Its purpose is to shorten the test verification time under the condition of meeting the test load verification. The time t for the engine to run at the target speed N and target torque T0 can be obtained by converting the load of the user's vehicle engine to 300,000 kilometers.
在试验过程实际中,目标转速N可以由测功机实现准确控制,但是由于发动机燃烧不稳定性,使得实际扭矩会在目标扭矩附近波动。最终使得实际载荷与目标载荷存在一定偏差。若实际载荷高于目标载荷,会导致试验过考核;但是若实际载荷低于目标载荷,会使试验验证不充分,无法达到试验验证的目的。可能因为试验过考核对合格产品下达不合格结论,也会因为试验验证不充分遗漏不合格产品,严重影响工程师对产品的设计、定型。In the actual test process, the target speed N can be accurately controlled by the dynamometer, but due to the instability of engine combustion, the actual torque will fluctuate around the target torque. Finally, there is a certain deviation between the actual load and the target load. If the actual load is higher than the target load, the test will be over-assessed; but if the actual load is lower than the target load, the test verification will be insufficient and the purpose of test verification will not be achieved. It may be because of the test and assessment that a qualified product is unqualified, or because the test verification is insufficient, the unqualified product is missed, which seriously affects the design and finalization of the product by the engineer.
现有专利CN201210353293.2—车用发动机载荷谱编制方法、CN202010630354.X一种基于载荷信息矩阵的多维综合应力寿命试验载荷谱设计方法对载荷谱的转换、设计方法进行了说明;CN201910441354.2—一种载荷谱的获取方法及系统、CN200910092143.9—一种载荷谱实测试验数据读取系统及其方法中对载荷谱的采集、获取方法进行了说明。但均未对转化的目标载荷与加速试验中完成的实际载荷进行比对、校核,不能充分说明加速试验实际载荷与目标载荷等效。Existing patents CN201210353293.2 - method for preparing vehicle engine load spectrum, CN202010630354.X, a multi-dimensional comprehensive stress life test load spectrum design method based on load information matrix, explain the conversion and design method of load spectrum; CN201910441354.2 - A load spectrum acquisition method and system, CN200910092143.9—a load spectrum actual measurement test data reading system and its method describe the load spectrum acquisition and acquisition methods. However, none of them compared and checked the converted target load and the actual load completed in the accelerated test, which cannot fully explain that the actual load of the accelerated test is equivalent to the target load.
因此,有必要开发一种新的发动机耐久试验载荷校验方法。Therefore, it is necessary to develop a new load verification method for engine endurance test.
发明内容Contents of the invention
本发明的目的在于提供一种发动机耐久试验载荷校验方法,在实际发动机耐久试验过程中,能保证试验载荷与目标载荷一致。The object of the present invention is to provide a method for verifying the load of an engine endurance test, which can ensure that the test load is consistent with the target load during the actual engine endurance test.
本发明所述的一种发动机耐久试验载荷校验方法,包括以下步骤:A kind of engine durability test load checking method described in the present invention, comprises the following steps:
步骤1、确定设计载荷Q0:试验开始前,根据发动机目标转速N、发动机目标扭矩T0和试验工况目标时间t计算出发动机设计载荷Q0;Step 1. Determine the design load Q 0 : Before the test starts, calculate the engine design load Q 0 according to the engine target speed N, the engine target torque T 0 and the test working condition target time t;
步骤2、试验运行:开始试验,并运行工况至目标转速和目标扭矩;Step 2, test operation: start the test, and run the working condition to the target speed and target torque;
步骤3、数据记录:确定数据记录地址,并按照预设频率进行数据记录;Step 3. Data recording: determine the data recording address, and perform data recording according to the preset frequency;
步骤4、载荷计算Qi:对记录的数据进行处理,根据发动机的平均转速N发动机和平均有效压力S计算每一秒的载荷Q;对每一秒的载荷Q进行累计求和,得到全速全负荷下试验i小时的试验载荷Qi;Step 4, load calculation Q i : process the recorded data, calculate the load Q per second according to the average engine speed N engine and the average effective pressure S; accumulate and sum the load Q per second to obtain the full speed and full load Q i Test load Q i under load for i hour test;
步骤5、载荷校验:将发动机设计载荷Q0与试验载荷Qi进行比对,若Qi<Q0,则表示试验载荷并未达到目标载荷,则继续进行试验,同时以发动机目标扭矩T0作为剩余载荷时间计算的扭矩,输出剩余试验时间t1;若Qi≥Q0,则试验结束。Step 5. Load verification: compare the engine design load Q 0 with the test load Q i , if Q i <Q 0 , it means that the test load has not reached the target load, then continue the test, and at the same time use the engine target torque T 0 is the torque calculated as the remaining load time, and the remaining test time t1 is output; if Q i ≥ Q 0 , the test ends.
可选地,所述步骤4中,对记录的数据进行处理,具体为:Optionally, in step 4, the recorded data is processed, specifically:
将数据放入指定路径中,读取放入指定路径中的数据,并进行数据拼接,筛选出非试验工况数据,得到仅含有试验规定工况的数据,并按照时间顺序对筛选出的数据进行排序。Put the data into the specified path, read the data put into the specified path, and perform data splicing, filter out the data of non-test working conditions, obtain the data containing only the specified working conditions of the test, and sort the filtered data in chronological order put in order.
可选地,所述步骤4中,根据发动机的平均扭矩T平均和发动机的排量L计算平均有效压力S,具体为:Optionally, in the step 4, the average effective pressure S is calculated according to the average torque T of the engine and the displacement L of the engine, specifically:
S=T平均*12.57/L。S = T average * 12.57/L.
可选地,所述步骤4中,所述每一秒的载荷Q的计算方法为:Optionally, in the step 4, the calculation method of the load Q per second is:
可选地,所述步骤1中,全速全负荷下试验i小时的试验载荷Qi的计算方法为:Optionally, in step 1, the calculation method of the test load Q i of the test i hour under full speed and full load is:
其中,nb为第b秒的发动机转速,Tb为第b秒的发动机扭矩。Wherein, n b is the engine speed at the bth second, and T b is the engine torque at the bth second.
可选地,所述步骤4中,发动机设计载荷Q0的计算方法为:Optionally, in the step 4, the calculation method of the engine design load Q0 is :
可选地,所述步骤5中,剩余试验时间t1的计算方法如下:Optionally, in the step 5, the calculation method of the remaining test time t1 is as follows:
可选地,试验前期,每一天开展一次载荷计算、校验,并修正试验时间;在试验后期,每一小时进行一次载荷计算、校验,并修正试验时间。Optionally, in the early stage of the test, the load calculation and verification are performed every day, and the test time is corrected; in the later stage of the test, the load calculation and verification are performed every hour, and the test time is corrected.
本发明具有以下优点:在实际发动机耐久试验过程中,解决了由于实测扭矩在目标扭矩附近波动导致实际载荷与目标载荷差异的问题。通过对实际试验载荷进行统计,修正理论加速试验时间,保证了试验载荷与目标载荷一致。The invention has the following advantages: in the actual engine endurance test process, the problem of the difference between the actual load and the target load caused by the fluctuation of the measured torque near the target torque is solved. By making statistics on the actual test load and correcting the theoretical accelerated test time, it is ensured that the test load is consistent with the target load.
附图说明Description of drawings
图1为试验过程载荷校正流程图;Figure 1 is a flow chart of load correction during the test;
图2为试验中实际扭矩与目标扭矩图;Figure 2 is a graph of actual torque and target torque in the test;
图3为自动载荷计算流程图;Figure 3 is a flow chart of automatic load calculation;
图4为载荷校正与时间校正图。Figure 4 is a graph of load correction and time correction.
具体实施方式Detailed ways
以下将结合附图对本发明进行详细的说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,本实施例中,一种发动机耐久试验载荷校验方法,包括以下步骤:As shown in Figure 1, in this embodiment, a method for verifying the load of an engine endurance test includes the following steps:
步骤1、确定设计载荷Q0:试验开始前,根据发动机目标转速N、发动机目标扭矩T0和试验工况目标时间t计算出发动机设计载荷Q0;Step 1. Determine the design load Q 0 : Before the test starts, calculate the engine design load Q 0 according to the engine target speed N, the engine target torque T 0 and the test working condition target time t;
步骤2、试验运行:开始试验,并运行工况至目标转速和目标扭矩;Step 2, test operation: start the test, and run the working condition to the target speed and target torque;
步骤3、数据记录:确定数据记录地址,并按照预设频率(1HZ)进行数据记录;Step 3. Data recording: determine the data recording address, and perform data recording according to the preset frequency (1HZ);
步骤4、载荷计算Qi:对记录的数据进行处理,根据发动机的平均转速N发动机和平均有效压力S计算每一秒的载荷Q;对每一秒的载荷Q进行累计求和,得到全速全负荷下试验i小时的试验载荷Qi;Step 4, load calculation Q i : process the recorded data, calculate the load Q per second according to the average engine speed N engine and the average effective pressure S; accumulate and sum the load Q per second to obtain the full speed and full load Q i Test load Q i under load for i hour test;
步骤5、载荷校验:将发动机设计载荷Q0与试验载荷Qi进行比对,若Qi<Q0,则表示试验载荷并未达到目标载荷,则继续进行试验,同时以发动机目标扭矩T0作为剩余载荷时间计算的扭矩,输出剩余试验时间t1;若Qi≥Q0,则试验结束。Step 5. Load verification: compare the engine design load Q 0 with the test load Q i , if Q i <Q 0 , it means that the test load has not reached the target load, then continue the test, and at the same time use the engine target torque T 0 is the torque calculated as the remaining load time, and the remaining test time t1 is output; if Q i ≥ Q 0 , the test ends.
参见图2,为了在实际发动机耐久试验过程中,解决由于实测扭矩在目标扭矩附近波动导致实际载荷与目标载荷差异的问题。通过对实际试验载荷进行统计,修正理论加速试验时间,保证了试验载荷与目标载荷一致。Referring to Fig. 2, in order to solve the problem of the difference between the actual load and the target load due to the fluctuation of the measured torque near the target torque during the actual engine endurance test. By making statistics on the actual test load and correcting the theoretical accelerated test time, it is ensured that the test load is consistent with the target load.
本方法利用python数据分析功能,编制数据处理相关程序。在试验开展过程中,通过试验过程记录的数据,通过程序自动读取、计算,自动快速计算出实际载荷,并与目标载荷进行比较、判定。This method uses the data analysis function of python to compile data processing related programs. During the test, the data recorded in the test process is automatically read and calculated through the program, and the actual load is automatically and quickly calculated, and compared with the target load to judge.
如图3所示,本实施例中,所述步骤4中,对记录的数据进行处理,具体为:As shown in Figure 3, in this embodiment, in the step 4, the recorded data is processed, specifically:
将数据放入指定路径中,读取放入指定路径中的数据,并进行数据拼接,筛选出非试验工况数据,得到仅含有试验规定工况的数据,并统计数据的长度,同时按照时间顺序对筛选出的数据进行排序。然后再对数据进行拟合,用于载荷校验。Put the data into the specified path, read the data put into the specified path, and perform data splicing, filter out the data of non-test working conditions, obtain the data containing only the specified working conditions of the test, and count the length of the data, and at the same time, according to the time Order sorts the filtered data. The data is then fitted for loading verification.
本实施例中,根据S-N理论,可以将作用在发动机曲轴上的平均有效压力作为S,发动机的转速作为应力的频率N。以此推理,可以得出作用在曲轴上的载荷可以通过转速和平均有效压力S获得:In this embodiment, according to the S-N theory, the average effective pressure acting on the crankshaft of the engine can be taken as S, and the rotational speed of the engine can be taken as the stress frequency N. From this reasoning, it can be concluded that the load acting on the crankshaft can be obtained by the speed and the mean effective pressure S:
对于四冲程发动机来说,发动机每转2圈完成一个工作循环,将发动机完成一个工作循环输出的扭矩作为平均扭矩,发动机平均扭矩、转速由测功机实测得到。For a four-stroke engine, the engine completes a working cycle every 2 revolutions, and the torque output by the engine after completing a working cycle is taken as the average torque. The average torque and speed of the engine are measured by the dynamometer.
根据发动机的平均扭矩T平均和发动机的排量L计算平均有效压力S,具体为:Calculate the average effective pressure S according to the average torque T average of the engine and the displacement L of the engine, specifically:
S=T平均*12.57/L。S = T average * 12.57/L.
本实施例中,所述步骤4中,所述每一秒的载荷Q的计算方法为:In this embodiment, in the step 4, the calculation method of the load Q per second is:
本实施例中,所述步骤4中,全速全负荷下试验i小时的试验载荷Qi的计算方法为:In the present embodiment, in the step 4, the calculation method of the test load Q i of the test i hour under full speed and full load is:
其中,nb为第b秒的发动机转速,Tb为第b秒的发动机扭矩。Wherein, n b is the engine speed at the bth second, and T b is the engine torque at the bth second.
本实施例中,所述步骤1中,发动机设计载荷Q0的计算方法为:In the present embodiment, in the step 1 , the calculation method of the engine design load Q is:
其中,L为发动机的排量。Among them, L is the displacement of the engine.
本实施例中,所述步骤5中,剩余试验时间t1的计算方法如下:In the present embodiment, in the step 5, the calculation method of the remaining test time t1 is as follows:
以下以某2.0L排量发动机为例:The following takes a 2.0L displacement engine as an example:
(1)发动机目标转速N为5500r/min,目标扭矩T0为280N·m,通过用户30万公里车辆发动机载荷转化后,试验工况目标时间t为300h。(1) The target engine speed N is 5500r/min, and the target torque T0 is 280N·m. After converting the engine load of the user's 300,000-kilometer vehicle, the target time t of the test condition is 300h.
(2)试验前按照发动机目标载荷计算公式计算Q0:(2) Before the test, calculate Q 0 according to the engine target load calculation formula:
(3)试验开始,并按照1HZ频率开始记录发动机转速、扭矩、油门位置等参数;(3) The test starts, and starts to record parameters such as engine speed, torque, and throttle position according to the frequency of 1HZ;
(3.1)试验前期由于实际载荷与目标载荷差值很大,可以考虑每一天(24h)开展一次载荷计算、校验,并修正试验时间;在试验后期(10h)以内,可以1h进行一次载荷计算、校验,这样就可以保证实际载荷与目标载荷验证差异只在最后一个小时内产生。(3.1) In the early stage of the test, due to the large difference between the actual load and the target load, it can be considered to carry out load calculation and verification every day (24h), and to correct the test time; in the later stage of the test (10h), the load calculation can be carried out once in 1h , verification, so that it can be guaranteed that the verification difference between the actual load and the target load is only generated within the last hour.
(3.2)试验过程可能会产生多个数据记录文件,在进行载荷计算时需要将多个数据文件放到一起进行计算。(3.2) The test process may generate multiple data record files, and it is necessary to put multiple data files together for calculation when performing load calculations.
(4)参见图4,试验进行一段时间后,开始进行载荷计算,以某一试验进行到试验时间107h的数据进行载荷计算,根据实测扭矩数据由程序自动统计每一秒载荷:(4) See Figure 4. After the test has been carried out for a period of time, the load calculation is started, and the load calculation is carried out based on the data from a certain test to the test time of 107h. According to the measured torque data, the program automatically counts the load per second:
计算得到107小时实际载荷为Qi=26538198317,而目标载荷按照Q0计算公式进行计算得到目标载荷为Q107=31069269000,可以看出实际载荷是低于目标载荷的,因此需要修正剩余试验时间。The calculated actual load for 107 hours is Q i =26538198317, and the target load is calculated according to the Q 0 calculation formula to obtain the target load is Q 107 =31069269000. It can be seen that the actual load is lower than the target load, so the remaining test time needs to be corrected.
剩余试验时间:Remaining test time:
计算得到t1=208.6h,可以看出,虽然试验实际运行了107h,理论剩余193h。但是由于试验过程目标载荷与实际载荷存在差异,故修正后的实际试验时间剩余208.6h。Calculated to get t1 = 208.6h, it can be seen that although the test actually runs for 107h, the theoretical remaining 193h. However, due to the difference between the target load and the actual load in the test process, the actual test time after correction is 208.6 hours.
(5)在后续试验运行过程中,可按照第(4)步的方法对实际完成的时间进行修正,得到剩余试验时间t1。(5) During the subsequent test run, the actual completion time can be corrected according to the method in step (4) to obtain the remaining test time t1.
(6)通过在发动机稳态耐久加速试验过程中,运用以上试验过程载荷校正,可以实时对实际载荷进行校验,修正试验时间。通过数据统计,以真实数据为依托,保证了试验验证既充分又不会出现过考核现象。(6) By using the above test process load correction during the steady-state durability acceleration test of the engine, the actual load can be verified in real time and the test time can be corrected. Through data statistics and relying on real data, it is guaranteed that the test verification is sufficient and there will be no over-examination phenomenon.
上述实施例为本发明方法较佳的实施方式,但本发明方法的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the method of the present invention, but the embodiment of the method of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, Combination and simplification should all be equivalent replacement methods, and are all included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210904188.7A CN115290337B (en) | 2022-07-28 | 2022-07-28 | Load verification method for engine endurance test |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210904188.7A CN115290337B (en) | 2022-07-28 | 2022-07-28 | Load verification method for engine endurance test |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115290337A true CN115290337A (en) | 2022-11-04 |
| CN115290337B CN115290337B (en) | 2024-10-29 |
Family
ID=83825546
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210904188.7A Active CN115290337B (en) | 2022-07-28 | 2022-07-28 | Load verification method for engine endurance test |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115290337B (en) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6334085B1 (en) * | 1999-04-26 | 2001-12-25 | Komatsu Ltd | Data processing unit for construction machine |
| JP2002082020A (en) * | 2000-09-07 | 2002-03-22 | Meidensha Corp | Engine torque estimating device of engine bench system |
| CN101092912A (en) * | 2007-07-26 | 2007-12-26 | 东风汽车有限公司 | On-vehicle Real-time Statistical Method of Engine Load Rate |
| CN105841967A (en) * | 2016-05-19 | 2016-08-10 | 重庆长安汽车股份有限公司 | Torque monitoring method in engine reliability test |
| RU2665780C1 (en) * | 2017-06-26 | 2018-09-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет" | Method and device of determining the working time of the internal combustion engine |
| CN109211572A (en) * | 2018-08-17 | 2019-01-15 | 重庆世凯汽车科技有限公司 | The on-line measuring device and method of the real-time torque of engine under a kind of whole vehicle state |
| CN112326251A (en) * | 2020-10-28 | 2021-02-05 | 中国第一汽车股份有限公司 | Engine pre-ignition durability test method and device |
| CN113340601A (en) * | 2021-06-28 | 2021-09-03 | 上海三一重机股份有限公司 | Engine stall detection method and device |
| CN114611228A (en) * | 2022-02-25 | 2022-06-10 | 陕西法士特齿轮有限责任公司 | Method, system, storage medium and device for determining transmission load spectrum |
| CN114705442A (en) * | 2022-06-06 | 2022-07-05 | 江铃汽车股份有限公司 | Comprehensive fatigue endurance test method for automobile engine |
| US20230287840A1 (en) * | 2020-06-10 | 2023-09-14 | BorgWarner Luxembourg Automotive Systems S.A. | Method of determining engine torque |
-
2022
- 2022-07-28 CN CN202210904188.7A patent/CN115290337B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6334085B1 (en) * | 1999-04-26 | 2001-12-25 | Komatsu Ltd | Data processing unit for construction machine |
| JP2002082020A (en) * | 2000-09-07 | 2002-03-22 | Meidensha Corp | Engine torque estimating device of engine bench system |
| CN101092912A (en) * | 2007-07-26 | 2007-12-26 | 东风汽车有限公司 | On-vehicle Real-time Statistical Method of Engine Load Rate |
| CN105841967A (en) * | 2016-05-19 | 2016-08-10 | 重庆长安汽车股份有限公司 | Torque monitoring method in engine reliability test |
| RU2665780C1 (en) * | 2017-06-26 | 2018-09-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Новосибирский государственный аграрный университет" | Method and device of determining the working time of the internal combustion engine |
| CN109211572A (en) * | 2018-08-17 | 2019-01-15 | 重庆世凯汽车科技有限公司 | The on-line measuring device and method of the real-time torque of engine under a kind of whole vehicle state |
| US20230287840A1 (en) * | 2020-06-10 | 2023-09-14 | BorgWarner Luxembourg Automotive Systems S.A. | Method of determining engine torque |
| CN112326251A (en) * | 2020-10-28 | 2021-02-05 | 中国第一汽车股份有限公司 | Engine pre-ignition durability test method and device |
| CN113340601A (en) * | 2021-06-28 | 2021-09-03 | 上海三一重机股份有限公司 | Engine stall detection method and device |
| CN114611228A (en) * | 2022-02-25 | 2022-06-10 | 陕西法士特齿轮有限责任公司 | Method, system, storage medium and device for determining transmission load spectrum |
| CN114705442A (en) * | 2022-06-06 | 2022-07-05 | 江铃汽车股份有限公司 | Comprehensive fatigue endurance test method for automobile engine |
Non-Patent Citations (5)
| Title |
|---|
| 刘寅童: "基于整车NEDC循环工况的发动机能量流分布特性", 2016中国汽车工程学会年会论文集, 26 October 2016 (2016-10-26) * |
| 刘斌;井清;李通;: "基于实测载荷的发动机散热器支架频域加速试验方法", 农业装备与车辆工程, no. 04, 10 April 2018 (2018-04-10) * |
| 徐可君;王永旗;夏毅锐;秦海勤;: "某型发动机150h持久试车涡轮部件寿命消耗研究", 航空发动机, no. 02, 15 April 2015 (2015-04-15) * |
| 李曼丽: "匹配涡轮增压发动机的机械式变速器可靠性分析与验证", 汽车科技, 31 January 2017 (2017-01-31) * |
| 王雨蒙: "PHEV动力系统载荷谱研究及台架试验工况制定", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, 15 April 2018 (2018-04-15) * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115290337B (en) | 2024-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109779894B (en) | Reciprocating compressor fault diagnosis system and method based on neural network algorithm | |
| CN101532915B (en) | Calibration method of vehicle exhaust emission and vehicle-mounted self-diagnosis system | |
| US10287998B2 (en) | Methods for checking the plausibility of a cylinder pressure sensor | |
| CN104180994B (en) | A kind of engine valve actuating mechanism kinetic characteristic method of testing and system | |
| CN108363850B (en) | Method for analyzing vibration environment of sensed part of engine and determining test load | |
| CN114544181A (en) | Calibration system and control method for electronic control aviation two-stroke kerosene engine | |
| JPH07119536A (en) | Combustion state detection device for internal combustion engine | |
| CN112393907B (en) | Wind turbine generator bearing typical fault automatic diagnosis method based on sweep frequency analysis technology | |
| US4398259A (en) | Snap acceleration method of diagnosing faults in internal combustion engines | |
| US20100063674A1 (en) | Engine test method using structured test protocol | |
| CN115014781B (en) | Engine performance test method and system for simulating user first insurance | |
| CN119939230A (en) | Generator bearing degradation assessment method and system based on metal self-repair technology | |
| EP2530287A1 (en) | Apparatus and method for estimating a combustion torque of an internal combustion engine | |
| CN115290337A (en) | Engine endurance test load calibration method | |
| CN113916524A (en) | Endurance test method for critical rotating speed of range extender assembly for range-extended electric vehicle | |
| CN114139271A (en) | Method and device for determining reliability of gearbox shell | |
| CN111428396B (en) | A method for evaluating the wear degree of the hinge pin shaft of an online loader | |
| RU135801U1 (en) | DEVICE FOR CONTROL OF EQUIVALENT CYCLIC DAMAGE TO AIRCRAFT ENGINES | |
| CN112729849B (en) | Method and system for testing at least one drive train component | |
| JP2003295937A (en) | Plant monitoring device and plant monitoring method | |
| CN106609708A (en) | Pre-chamber fuel admission valve diagnostics | |
| JP2001090554A (en) | Gas turbine abnormality diagnosis method | |
| CN110552873A (en) | hydraulic pump tolerance research method | |
| CN120355401B (en) | A method for collecting and analyzing assessment data of military equipment maintenance and support equipment | |
| Lee et al. | New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |