CN115329856A - Fault warning method and system applied to integrated test module of integrated bay equipment - Google Patents
Fault warning method and system applied to integrated test module of integrated bay equipment Download PDFInfo
- Publication number
- CN115329856A CN115329856A CN202210933218.7A CN202210933218A CN115329856A CN 115329856 A CN115329856 A CN 115329856A CN 202210933218 A CN202210933218 A CN 202210933218A CN 115329856 A CN115329856 A CN 115329856A
- Authority
- CN
- China
- Prior art keywords
- data
- index
- item
- noise
- trend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电力领域电子设备系统测试技术领域,特别涉及应用于一体式间隔设备综合测试模块的故障预警方法和系统。The invention relates to the technical field of electronic equipment system testing in the electric power field, in particular to a fault early warning method and system applied to an integrated spacer equipment comprehensive testing module.
背景技术Background technique
一套一体式间隔设备综合测试模块中需要对于多个检测项目进行检测,每个检测项目中涵盖多种指标,多种指标的组合可完成对于一个变压器的综合检测。但是由于测试内容过多,对于每项进行的测试都需要进行精细的检测和识别,需要大量的人力,造成测试成本居高不下,使得测试人员的工作强度非常大。A set of integrated interval equipment comprehensive test module needs to test multiple test items, each test item covers a variety of indicators, and the combination of multiple indicators can complete the comprehensive test of a transformer. However, due to the large amount of test content, fine detection and identification are required for each test, which requires a lot of manpower, resulting in high test costs and high work intensity for testers.
同时,电力领域电子设备系统测试过程中,由于涉及到高压特高压,具有安全隐患。在传统的电子设备系统测试过程中,采用人工方式对于该测试过程进行监控,极大依赖经验,具有较大的安全隐患,且效率极低。At the same time, during the testing process of electronic equipment systems in the power field, there are potential safety hazards due to the high voltage and extra high voltage involved. In the traditional electronic equipment system testing process, the testing process is monitored manually, which relies heavily on experience, has great potential safety hazards, and is extremely inefficient.
发明内容Contents of the invention
本发明的目的是提供一种应用于一体式间隔设备综合测试模块的故障预警方法和系统,提升一体式间隔设备多指标监测需求下的可靠故障预警,降低人力成本。本发明采用的技术方案如下。The purpose of the present invention is to provide a fault early warning method and system applied to the integrated test module of the integrated partition equipment, to improve the reliable fault early warning under the multi-index monitoring requirements of the integrated partition equipment, and to reduce labor costs. The technical scheme adopted in the present invention is as follows.
一方面,本发明提供一种应用于一体式间隔设备综合测试模块的故障预警方法,包括:On the one hand, the present invention provides a fault early warning method applied to the comprehensive test module of integrated spacer equipment, including:
按照预设的检测项目与指标参数和变量类型的对应关系,采集对应各检测项目的指标数据;Collect the index data corresponding to each inspection item according to the corresponding relationship between the preset inspection items and the index parameters and variable types;
对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值;For each index data corresponding to each test item, calculate the predicted value of the index except the noise;
根据所述指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围;Determine the index data range corresponding to the index type according to the index prediction value and the predetermined noise value;
将所述指标数据与对应指标类型指标数据范围进行匹配,若超出相应的指标数据范围,则输出对应设备对应检测项目下对应指标类型的故障预警信号;Matching the index data with the index data range of the corresponding index type, if exceeding the corresponding index data range, outputting a failure warning signal of the corresponding index type under the corresponding detection item of the corresponding equipment;
其中,所述噪声值的确定方法包括:Wherein, the determination method of described noise value comprises:
针对同一检测项目的同一指标类型,获取从多个同类设备采集的历史指标数据,得到横向对比数据集;For the same index type of the same inspection item, obtain historical index data collected from multiple similar equipment, and obtain a horizontal comparison data set;
根据所述横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限 According to the horizontal comparison data set, the noise upper limit of the indicator data under this indicator type is obtained by analysis and lower limit
所述根据指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围为其中,为实测指标数据的指标预测值。According to the predicted value of the index and the predetermined noise value, the range of the index data corresponding to the index type is determined as in, is the index prediction value of the measured index data.
可选的,所述根据横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限包括:Optionally, according to the horizontal comparison data set, analyze and obtain the upper limit of noise of the indicator data under this indicator type and lower limit include:
对于横向对比数据集中的各指标数据a(t),分别获取各指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);For each indicator data a(t) in the horizontal comparison data set, the trend item trend(t), cycle item cycle(t) and season item season(t) of each indicator data are respectively obtained;
按照以下公式计算各指标数据的噪声项noise(t):Calculate the noise item noise(t) of each index data according to the following formula:
a(t)=trend(t)+cycle(t)+season(t)+noise(t)a(t)=trend(t)+cycle(t)+season(t)+noise(t)
对于横向对比数据集中所有指标数据的噪声项,确定其概率分布范围内的指定比例概率分布范围,得到该范围的上界和下界,得到相应指标类型的噪声上限和下限 For the noise items of all index data in the horizontal comparison data set, determine the specified proportional probability distribution range within the probability distribution range, obtain the upper bound and lower bound of the range, and obtain the noise upper bound of the corresponding index type and lower limit
可选的,所述对于横向对比数据集中所有指标数据的噪声项,确定其概率分布范围包括:Optionally, the determination of the probability distribution range of the noise items of all index data in the horizontal comparison data set includes:
假设指标数据的噪声分布为正态分布,通过将指标数据进行正态分布拟合,获得概率分布函数p(t),取正态分布的90%比例的概率分布范围,获得指标数据对应的指标类型的噪声项上下界。Assuming that the noise distribution of the index data is a normal distribution, the probability distribution function p(t) is obtained by fitting the index data to a normal distribution, and the probability distribution range of 90% of the normal distribution is taken to obtain the index corresponding to the index data Type upper and lower bounds on the noise term.
可选的,所述对于横向对比数据集中的各指标数据a(t),分别获取各指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t),包括:Optionally, for each index data a(t) in the horizontal comparison data set, the trend item trend(t), cycle item cycle(t) and season item season(t) of each index data are obtained respectively, including:
将指标数据a(t)通过一个低通滤波器,获得趋势项trend(t);Pass the indicator data a(t) through a low-pass filter to obtain the trend item trend(t);
将指标数据a(t)通过一个频率较低的带通滤波器,获得周期项cycle(t);Pass the indicator data a(t) through a band-pass filter with a lower frequency to obtain the cycle item cycle(t);
将指标数据a(t)通过一个频率较高的带通滤波器,获得季节项season(t)。Pass the indicator data a(t) through a band-pass filter with a higher frequency to obtain the seasonal item season(t).
这里所谓的季节性数据是统计和信号处理学科中的专有名词,并非指通常意义上的季节一词所表示的含义。The so-called seasonal data here is a proper term in the discipline of statistics and signal processing, and does not refer to the meaning expressed by the word season in the usual sense.
可选的,所述对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值包括:Optionally, for each index data corresponding to each detection item, calculating the predicted value of the index other than the noise includes:
计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);Calculate the trend item trend(t), cycle item cycle(t) and season item season(t) of the indicator data;
将计算得到的趋势项、周期项和季节项数据进行叠加,得到指标预测值。The calculated trend item, cycle item and season item data are superimposed to obtain the predicted value of the indicator.
第二方面,本发明提供一种应用于一体式间隔设备综合测试模块的故障预警装置,包括:In the second aspect, the present invention provides a fault early warning device applied to the comprehensive test module of integrated spacer equipment, including:
指标数据采集模块,被配置用于按照预设的检测项目与指标参数和变量类型的对应关系,采集对应各检测项目的指标数据;The index data acquisition module is configured to collect index data corresponding to each inspection item according to the preset correspondence between inspection items, index parameters, and variable types;
指标预测值计算模块,被配置用于对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值;The index prediction value calculation module is configured to calculate the index prediction value except noise for each index data corresponding to each detection item;
指标数据范围确定模块,被配置用于根据所述指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围;The index data range determination module is configured to determine the index data range corresponding to the index type according to the index prediction value and the predetermined noise value;
故障预警判断模块,被配置用于将所述指标数据与对应指标类型指标数据范围进行匹配,若超出相应的指标数据范围,则输出对应设备对应检测项目下对应指标类型的故障预警信号;The fault early warning judgment module is configured to match the index data with the index data range of the corresponding index type, and if it exceeds the corresponding index data range, output a fault early warning signal of the corresponding index type under the corresponding detection item of the corresponding equipment;
其中,所述指标数据范围确定模块确定噪声值的方法包括:Wherein, the method for determining the noise value by the index data range determination module includes:
针对同一检测项目的同一指标类型,获取从多个同类设备采集的历史指标数据,得到横向对比数据集;For the same index type of the same inspection item, obtain historical index data collected from multiple similar equipment, and obtain a horizontal comparison data set;
根据所述横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限 According to the horizontal comparison data set, the noise upper limit of the indicator data under this indicator type is obtained by analysis and lower limit
所述根据指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围为其中,为实测指标数据的指标预测值。According to the predicted value of the index and the predetermined noise value, the range of the index data corresponding to the index type is determined as in, is the index prediction value of the measured index data.
可选的,所述根据横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限包括:Optionally, according to the horizontal comparison data set, analyze and obtain the upper limit of noise of the indicator data under this indicator type and lower limit include:
对于横向对比数据集中的各指标数据a(t),分别获取各指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);For each indicator data a(t) in the horizontal comparison data set, the trend item trend(t), cycle item cycle(t) and season item season(t) of each indicator data are respectively obtained;
按照以下公式计算各指标数据的噪声项noise(t):Calculate the noise item noise(t) of each index data according to the following formula:
a(t)=trend(t)+cycle(t)+season(t)+noise(t)a(t)=trend(t)+cycle(t)+season(t)+noise(t)
对于横向对比数据集中所有指标数据的噪声项,确定其概率分布范围内的指定比例概率分布范围,得到该范围的上界和下界,得到相应指标类型的噪声上限和下限 For the noise items of all index data in the horizontal comparison data set, determine the specified proportional probability distribution range within the probability distribution range, obtain the upper bound and lower bound of the range, and obtain the noise upper bound of the corresponding index type and lower limit
可选的,所述指标预测值计算模块对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值包括:Optionally, the index prediction value calculation module, for each index data corresponding to each detection item, calculates the index prediction value except noise includes:
计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);Calculate the trend item trend(t), cycle item cycle(t) and season item season(t) of the indicator data;
将计算得到的趋势项、周期项和季节项数据进行叠加,得到指标预测值;Superimpose the calculated trend item, cycle item and season item data to obtain the predicted value of the indicator;
其中:计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t),包括:Among them: the trend item trend(t), the cycle item cycle(t) and the seasonal item season(t) are calculated for the indicator data, including:
将指标数据a(t)通过一个低通滤波器,获得趋势项trend(t);Pass the indicator data a(t) through a low-pass filter to obtain the trend item trend(t);
将指标数据a(t)通过一个频率较低的带通滤波器,获得周期项cycle(t);Pass the indicator data a(t) through a band-pass filter with a lower frequency to obtain the cycle item cycle(t);
将指标数据a(t)通过一个频率较高的带通滤波器,获得季节项season(t)。Pass the indicator data a(t) through a band-pass filter with a higher frequency to obtain the seasonal item season(t).
第三方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,实现如第一方面所述的应用于一体式间隔设备综合测试模块的故障预警方法。In a third aspect, the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it can realize the failure of the integrated spacer equipment comprehensive test module as described in the first aspect. Early warning method.
第四方面,本发明提供一种应用于一体式间隔设备综合测试模块的故障预警系统,该故障预警系统包括硬件层、数据层、应用层和主控层,其中,所述数据层、应用层和主控层布设于一主控电路板上,所述硬件层配置在每个检测电路板的测试电路中,用于对测试电路对应的指定指标参数以及变量进行采集获取;所述硬件层将所采集的指标参数以及变量的数字数据输出至所述数据层;所述数据层对所述硬件层输入的数据进行保存;所述应用层执行第一方面所述的方法,对所述数据层保存的数据进行处理,计算指标数据对应的指标数据范围,判断指标数据是否超出该指标数据范围,若超出则输出对应设备对应检测项目下对应指标类型的故障预警信号;所述主控层对所述硬件层、数据层、应用层进行管理。In a fourth aspect, the present invention provides a fault early warning system applied to an integrated compartment equipment comprehensive test module. The fault early warning system includes a hardware layer, a data layer, an application layer, and a main control layer, wherein the data layer, the application layer and the main control layer are arranged on a main control circuit board, and the hardware layer is configured in the test circuit of each detection circuit board, and is used to collect and obtain specified index parameters and variables corresponding to the test circuit; the hardware layer will The collected index parameters and digital data of variables are output to the data layer; the data layer saves the data input by the hardware layer; the application layer executes the method described in the first aspect, and the data layer The saved data is processed, the index data range corresponding to the index data is calculated, and whether the index data exceeds the index data range is judged, and if it exceeds, the fault warning signal of the corresponding index type under the corresponding detection item corresponding to the corresponding equipment is output; The above hardware layer, data layer, and application layer are managed.
可选的,所述主控层具有一用户接口,用户通过该用户接口注册相应的用户信息,检测任务信息,设置需要采集的数据内容、初始指标数据范围、所需参与指标数据范围计算的历史事件长度、预测值偏差范围,以及设置内部通信方式,并通过该用户接口获取最终的故障预警信号。Optionally, the main control layer has a user interface through which the user registers corresponding user information, detects task information, sets the data content to be collected, the initial index data range, and the history of required participation in the calculation of the index data range The length of the event, the deviation range of the predicted value, and the internal communication method are set, and the final fault warning signal is obtained through the user interface.
可选的,所述硬件层设置若干数据探针,每一数据探针配置在所述每个检测电路板的测试电路中,用于采集相应的指标参数和变量。所述数据探针在硬件层面上为ADC,将所述一体式间隔设备综合测试模块的每个电路板的测试电路的硬件数据转换为数字数据并获取;在软件层面上,为数据旁路,对所述一体式间隔设备综合测试模块的每个电路板的测试电路运行的软件中的主要指标参数以及变量进行采集。Optionally, the hardware layer is provided with several data probes, and each data probe is configured in the test circuit of each detection circuit board for collecting corresponding index parameters and variables. The data probe is an ADC at the hardware level, and converts the hardware data of the test circuit of each circuit board of the integrated interval device comprehensive test module into digital data and obtains it; at the software level, it is a data bypass, The main index parameters and variables in the software running on the test circuit of each circuit board of the integrated spacer equipment comprehensive test module are collected.
可选的,所述数据层包含数据冗余保护模块、持久型数据库和数据通信模块;所述数据冗余保护模块与所有的数据探针信号连接,接收来自所有数据探针输出的指标参数和变量数据,并对所述指标参数和变量数据进行多次采集并采取交叉检验,以得到准确的指标参数和变量数据;所述数据冗余保护模块与所述持久型数据库通讯连接,所述数据冗余保护模块将交叉检验后的所述指标参数和变量数据存入所述持久型数据库中;所述数据冗余保护模块还与所述应用层通讯连接,将交叉检验后的所述指标参数和变量数据输送至所述应用层;所述数据通信模块用于所述数据层与所述硬件层、应用层、主控层之间的通讯以及数据冗余保护模块与持久型数据库之间的通讯。交叉校验机制可保证所述数据探针所采集的所述主要指标参数以及变量和所述数字数据数据的绝对准确性。Optionally, the data layer includes a data redundancy protection module, a persistent database, and a data communication module; the data redundancy protection module is connected to all data probe signals, and receives indicator parameters and output from all data probes Variable data, and multiple acquisitions and cross-checks are performed on the index parameters and variable data to obtain accurate index parameters and variable data; the data redundancy protection module communicates with the persistent database, and the data The redundancy protection module stores the index parameters and variable data after the cross-check into the persistent database; the data redundancy protection module is also connected to the application layer through communication, and stores the index parameters after the cross-check and variable data are sent to the application layer; the data communication module is used for the communication between the data layer and the hardware layer, the application layer, and the main control layer, as well as the communication between the data redundancy protection module and the persistent database communication. The cross checking mechanism can guarantee the absolute accuracy of the main index parameters and variables collected by the data probe and the digital data.
可选的,所述持久型数据库中以数据快照的形式保存有经过所述数据冗余保护模块交叉检验后的所述指标参数和变量数据。Optionally, the persistent database stores the indicator parameters and variable data cross-checked by the data redundancy protection module in the form of data snapshots.
可选的,所述持久型数据库在固定的时间间隔后,获取所述数据冗余保护模块所输出的经过交叉检验后的所述指标参数和变量数据并保存。Optionally, after a fixed time interval, the persistent database acquires and saves the cross-checked index parameters and variable data output by the data redundancy protection module.
有益效果Beneficial effect
本发明通过传统时域信号处理模型,对于一体式间隔设备综合测试模块的采集指标数据进行建模,以分析实测数据的预测值,以及历史横向对比数据中各指标类型的噪声范围,从而确定各指标数据在实际测试时的目标检测范围,并根据目标检测范围判断实测指标数据是否超标,在数据超标时输出对应的故障预警信号,以提示用户相应指标数据对应的电力设备如变压器等所存在的问题。本发明的故障预警方法可提升多设备多指标监测环境下,对指标数据的可靠分析和预警,提升预警分析的效率,减少人力成本投入。The present invention uses the traditional time-domain signal processing model to model the collection index data of the integrated interval equipment comprehensive test module to analyze the predicted value of the actual measurement data and the noise range of each index type in the historical horizontal comparison data, so as to determine each The target detection range of the index data in the actual test, and judge whether the measured index data exceeds the standard according to the target detection range, and output the corresponding fault warning signal when the data exceeds the standard, to remind the user of the power equipment corresponding to the corresponding index data, such as transformers, etc. question. The fault early warning method of the present invention can improve reliable analysis and early warning of index data in a multi-device multi-indicator monitoring environment, improve the efficiency of early warning analysis, and reduce labor cost input.
附图说明Description of drawings
图1为本发明的应用于一体式间隔设备综合测试模块的故障预警系统的架构示意图;Fig. 1 is the schematic diagram of the structure of the fault warning system applied to the comprehensive test module of the integrated spacer of the present invention;
图2为本发明故障预警方法的实现流程示意图。Fig. 2 is a schematic diagram of the implementation flow of the fault early warning method of the present invention.
具体实施方式Detailed ways
以下结合附图和具体实施例进一步描述。It will be further described below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
本实施例介绍一种应用于一体式间隔设备综合测试模块的故障预警方法,包括:This embodiment introduces a fault early warning method applied to the integrated test module of the integrated compartment equipment, including:
按照预设的检测项目与指标参数和变量类型的对应关系,采集对应各检测项目的指标数据;Collect the index data corresponding to each inspection item according to the corresponding relationship between the preset inspection items and the index parameters and variable types;
对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值;For each index data corresponding to each test item, calculate the predicted value of the index except the noise;
根据所述指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围;Determine the index data range corresponding to the index type according to the index prediction value and the predetermined noise value;
将所述指标数据与对应指标类型指标数据范围进行匹配,若超出相应的指标数据范围,则输出对应设备对应检测项目下对应指标类型的故障预警信号。The index data is matched with the index data range of the corresponding index type, and if it exceeds the corresponding index data range, a fault warning signal of the corresponding index type under the corresponding detection item of the corresponding equipment is output.
参考图2,本实施例故障预警功能的实现需要在实测值指标范围判断前确定相应指标类型历史检测数据的噪声范围,具体的,以变压器指标数据为例,分析过程如下。Referring to Fig. 2, the implementation of the fault warning function in this embodiment needs to determine the noise range of the historical detection data of the corresponding index type before judging the range of the measured value index. Specifically, taking the transformer index data as an example, the analysis process is as follows.
在采集得到指标数据后,首先计算指标数据的指标预测值,根据以下对指标数据的建模公式:After collecting the index data, first calculate the index prediction value of the index data, according to the following modeling formula for the index data:
a(t)=trend(t)+cycle(t)+season(t)+noise(t)a(t)=trend(t)+cycle(t)+season(t)+noise(t)
对于各检测项目对应的各指标数据,计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);将计算得到的趋势项、周期项和季节项数据进行叠加,得到除去噪声项以外的指标预测值 For each indicator data corresponding to each detection item, calculate the trend item trend(t), cycle item cycle(t) and season item season(t) of the indicator data; superimpose the calculated trend item, cycle item and season item data , to get the predicted value of the index except the noise item
上述计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t),包括:将指标数据a(t)通过一个低通滤波器,获得趋势项trend(t);将指标数据a(t)通过一个频率较低的带通滤波器,获得周期项cycle(t);将指标数据a(t)通过一个频率较高的带通滤波器,获得季节项season(t)。The trend item trend(t), the cycle item cycle(t) and the seasonal item season(t) of the above calculation indicator data include: passing the indicator data a(t) through a low-pass filter to obtain the trend item trend(t); Pass the index data a(t) through a band-pass filter with a lower frequency to obtain the cycle item cycle(t); pass the index data a(t) through a band-pass filter with a higher frequency to obtain the seasonal item season(t ).
要确定指标数据范围,还需要确定噪声的范围,噪声值范围的确定方法包括:To determine the range of indicator data, it is also necessary to determine the range of noise. The methods for determining the range of noise values include:
针对同一检测项目的同一指标类型,获取从多个同类设备采集的历史指标数据,得到横向对比数据集;For the same index type of the same inspection item, obtain historical index data collected from multiple similar equipment, and obtain a horizontal comparison data set;
对于横向对比数据集中的各指标数据a(t),分别获取各指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);For each indicator data a(t) in the horizontal comparison data set, the trend item trend(t), cycle item cycle(t) and season item season(t) of each indicator data are respectively obtained;
按照前面的指标数据模型公式计算各指标数据的噪声项noise(t):Calculate the noise item noise(t) of each indicator data according to the previous indicator data model formula:
对于横向对比数据集中所有指标数据的噪声项,确定其概率分布范围内的指定比例概率分布范围,得到该范围的上界和下界,得到相应指标类型的噪声上限和下限 For the noise items of all index data in the horizontal comparison data set, determine the specified proportional probability distribution range within the probability distribution range, obtain the upper bound and lower bound of the range, and obtain the noise upper bound of the corresponding index type and lower limit
假设指标数据的噪声分布为正态分布,通过将指标数据进行正态分布拟合,获得概率分布函数p(t),取正态分布的90%比例的概率分布范围,获得指标数据对应的指标类型的噪声项上下界,至此可确定指标类型对应的指标数据范围为 Assuming that the noise distribution of the index data is a normal distribution, the probability distribution function p(t) is obtained by fitting the index data to a normal distribution, and the probability distribution range of 90% of the normal distribution is taken to obtain the index corresponding to the index data The upper and lower bounds of the noise item of the type, so far the corresponding index data range of the index type can be determined as
当指标数据超出对一个的指标数据范围,则输出相应的故障告警信号。When the index data exceeds the range of an index data, a corresponding fault alarm signal is output.
实施例2Example 2
与实施例1基于相同的发明构思,本实施例介绍一种应用于一体式间隔设备综合测试模块的故障预警装置,包括:Based on the same inventive concept as Embodiment 1, this embodiment introduces a fault early warning device applied to the integrated test module of the integrated spacer, including:
指标数据采集模块,被配置用于按照预设的检测项目与指标参数和变量类型的对应关系,采集对应各检测项目的指标数据;The index data acquisition module is configured to collect index data corresponding to each inspection item according to the preset correspondence between inspection items, index parameters, and variable types;
指标预测值计算模块,被配置用于对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值;The index prediction value calculation module is configured to calculate the index prediction value except noise for each index data corresponding to each detection item;
指标数据范围确定模块,被配置用于根据所述指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围;The index data range determination module is configured to determine the index data range corresponding to the index type according to the index prediction value and the predetermined noise value;
故障预警判断模块,被配置用于将所述指标数据与对应指标类型指标数据范围进行匹配,若超出相应的指标数据范围,则输出对应设备对应检测项目下对应指标类型的故障预警信号;The fault early warning judgment module is configured to match the index data with the index data range of the corresponding index type, and if it exceeds the corresponding index data range, output a fault early warning signal of the corresponding index type under the corresponding detection item of the corresponding equipment;
其中,所述指标数据范围确定模块确定噪声值的方法包括:Wherein, the method for determining the noise value by the index data range determination module includes:
针对同一检测项目的同一指标类型,获取从多个同类设备采集的历史指标数据,得到横向对比数据集;For the same index type of the same inspection item, obtain historical index data collected from multiple similar equipment, and obtain a horizontal comparison data set;
根据所述横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限 According to the horizontal comparison data set, the noise upper limit of the indicator data under this indicator type is obtained by analysis and lower limit
所述根据指标预测值及预先确定的噪声值,确定指标类型对应的指标数据范围为其中,为实测指标数据的指标预测值。According to the predicted value of the index and the predetermined noise value, the range of the index data corresponding to the index type is determined as in, is the index prediction value of the measured index data.
以上各功能模块的具体功能实现参考实施例1中的相应内容,特别指出以下内容。For the implementation of the specific functions of the above functional modules, refer to the corresponding content in Embodiment 1, and particularly point out the following content.
所述指标数据范围确定模块在确定噪声值时,根据横向对比数据集,分析得到该指标类型下指标数据的噪声上限和下限包括:When determining the noise value, the index data range determination module analyzes and obtains the noise upper limit of the index data under the index type according to the horizontal comparison data set and lower limit include:
对于横向对比数据集中的各指标数据a(t),分别获取各指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);For each indicator data a(t) in the horizontal comparison data set, the trend item trend(t), cycle item cycle(t) and season item season(t) of each indicator data are respectively obtained;
按照以下公式计算各指标数据的噪声项noise(t):Calculate the noise item noise(t) of each index data according to the following formula:
a(t)=trend(t)+cycle(t)+season(t)+noise(t)a(t)=trend(t)+cycle(t)+season(t)+noise(t)
对于横向对比数据集中所有指标数据的噪声项,确定其概率分布范围内的指定比例概率分布范围,得到该范围的上界和下界,得到相应指标类型的噪声上限和下限 For the noise items of all index data in the horizontal comparison data set, determine the specified proportional probability distribution range within the probability distribution range, obtain the upper bound and lower bound of the range, and obtain the noise upper bound of the corresponding index type and lower limit
所述指标预测值计算模块对于各检测项目对应的各指标数据,计算除去噪声以外的指标预测值包括:The index prediction value calculation module calculates the index prediction values other than noise for each index data corresponding to each detection item, including:
计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t);Calculate the trend item trend(t), cycle item cycle(t) and season item season(t) of the indicator data;
将计算得到的趋势项、周期项和季节项数据进行叠加,得到指标预测值;Superimpose the calculated trend item, cycle item and season item data to obtain the predicted value of the indicator;
其中:计算指标数据的趋势项trend(t)、周期项cycle(t)和季节项season(t),包括:Among them: the trend item trend(t), the cycle item cycle(t) and the seasonal item season(t) are calculated for the indicator data, including:
将指标数据a(t)通过一个低通滤波器,去除数据中频率较高的分量,从而获取数据的趋势性数据;通过一个频率较高的带通滤波器,去除数据中低频的趋势信息和季节项信息,从而获取数据的周期性数据;通过一个频率较低的带通滤波器,去除数据中心低频的趋势信息和较高频率的周期性信息,从而获取数据的季节性数据。Pass the indicator data a(t) through a low-pass filter to remove the high-frequency components in the data, so as to obtain the trend data of the data; through a high-frequency band-pass filter, remove the low-frequency trend information and Seasonal item information, so as to obtain the periodic data of the data; through a low-frequency band-pass filter, remove the low-frequency trend information and high-frequency periodic information of the data center, thereby obtaining the seasonal data of the data.
实施例3Example 3
本实施例介绍一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,实现如实施例1所述的应用于一体式间隔设备综合测试模块的故障预警方法。This embodiment introduces a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the fault early warning method applied to the integrated test module of the integrated partition device as described in Embodiment 1 is implemented.
实施例4Example 4
本实施例介绍一种应用于一体式间隔设备综合测试模块的故障预警系统,参见图1,该孤航预警系统运行于一体式间隔设备综合测试模块中对应各检测项目的测试电路板中,该测试结果粗检系统的硬件包括一主控电路板。系统架构分为四个层级,包括硬件层、数据层、应用层和主控层,其中,所述数据层、应用层和主控层布设于所述主控电路板上,This embodiment introduces a fault early warning system applied to the integrated spacer equipment comprehensive test module, see Figure 1, the solitary flight early warning system runs in the test circuit board corresponding to each detection item in the integrated spacer equipment comprehensive test module, the The hardware of the test result rough inspection system includes a main control circuit board. The system architecture is divided into four levels, including a hardware layer, a data layer, an application layer and a main control layer, wherein the data layer, the application layer and the main control layer are arranged on the main control circuit board,
硬件层由本系统中的数据探针构成,在硬件层面上主要为ADC,对于电路中的硬件数据转换为数字数据并获取。在软件层面上,主要为数据旁路,对于该测试仪中运行的软件算法中的主要指标参数以及变量进行采集。数据探针所采集的数据输出至数据冗余保护模块中。The hardware layer is composed of the data probes in this system. On the hardware level, it is mainly ADC, which converts the hardware data in the circuit into digital data and obtains it. At the software level, it is mainly data bypass, and the main index parameters and variables in the software algorithm running in the tester are collected. The data collected by the data probe is output to the data redundancy protection module.
数据层主要包含三个模块,数据冗余保护模块,持久型数据库,以及数据通信模块。其主要功能为保证数据的采集工作正常稳定的进行,同时保存过去所运行的测试的历史数据,为本次测试的测试范围提供历史数据的支持。The data layer mainly includes three modules, data redundancy protection module, persistent database, and data communication module. Its main function is to ensure the normal and stable data collection work, and at the same time save the historical data of the tests run in the past, so as to provide historical data support for the test scope of this test.
数据冗余保护模块:在数据采集过程中,由于硬件电路中存在噪声,软件中可能存在还未发现的bug,因此提出数据冗余保护模块。对于所需要采集的进行多次采集并采取交叉检验,从而保证采集的数据的绝对准确性。数据冗余保护模块中所交叉检验后的数据,1)存入至持久型数据库中。2)输出至算法模块中。Data redundancy protection module: During the data acquisition process, due to the noise in the hardware circuit, there may be undiscovered bugs in the software, so a data redundancy protection module is proposed. For the required collection, multiple collections and cross-checks are taken to ensure the absolute accuracy of the collected data. The cross-checked data in the data redundancy protection module is 1) stored in a persistent database. 2) Output to the algorithm module.
持久型数据库:持久型数据库中保存有所有过去所运行的测试的历史数据。该数据以数据快照的形式保存,在固定的时间间隔后,获取数据冗余保护模块所输出的经过交叉检验后的数据并保存。Persistent database: The persistent database holds the historical data of all past run tests. The data is saved in the form of a data snapshot, and after a fixed time interval, the cross-checked data output by the data redundancy protection module is obtained and saved.
数据通信模块:保证系统中的各个模块之间的数据通信平稳正常运行。Data communication module: ensure the smooth and normal operation of the data communication between the various modules in the system.
应用层即实现实施例1所述的算法逻辑,对采集到的指标数据进行分析判断是否超出相应的范围,若超出则输出对应的故障预警信号。The application layer implements the algorithm logic described in Embodiment 1, analyzes and judges whether the collected index data exceeds the corresponding range, and outputs the corresponding fault early warning signal if it exceeds the corresponding range.
主控层还具有一用户接口,用户通过该用户接口注册相应的用户信息,检测任务信息,设置需要采集的数据内容、初始指标数据范围、所需参与指标数据范围计算的历史事件长度、预测值偏差范围,以及设置内部通信方式,并通过该用户接口获取最终的故障预警信号。The main control layer also has a user interface through which the user registers the corresponding user information, detects the task information, sets the data content to be collected, the initial index data range, the length of historical events required to participate in the calculation of the index data range, and the predicted value Deviation range, and set the internal communication method, and obtain the final fault early warning signal through the user interface.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/ 或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/ 或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
以上结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are only illustrative, rather than restrictive, and those of ordinary skill in the art will Under the enlightenment of the present invention, many forms can also be made without departing from the gist of the present invention and the protection scope of the claims, and these all belong to the protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210933218.7A CN115329856A (en) | 2022-08-04 | 2022-08-04 | Fault warning method and system applied to integrated test module of integrated bay equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210933218.7A CN115329856A (en) | 2022-08-04 | 2022-08-04 | Fault warning method and system applied to integrated test module of integrated bay equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115329856A true CN115329856A (en) | 2022-11-11 |
Family
ID=83921759
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210933218.7A Pending CN115329856A (en) | 2022-08-04 | 2022-08-04 | Fault warning method and system applied to integrated test module of integrated bay equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115329856A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106503841A (en) * | 2016-10-17 | 2017-03-15 | 东软集团股份有限公司 | The determination method and apparatus of metrics-thresholds |
| CN112149860A (en) * | 2019-06-28 | 2020-12-29 | 中国电力科学研究院有限公司 | Automatic anomaly detection method and system |
| CN113553234A (en) * | 2021-07-19 | 2021-10-26 | 神策网络科技(北京)有限公司 | Data Anomaly Detection Methods |
-
2022
- 2022-08-04 CN CN202210933218.7A patent/CN115329856A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106503841A (en) * | 2016-10-17 | 2017-03-15 | 东软集团股份有限公司 | The determination method and apparatus of metrics-thresholds |
| CN112149860A (en) * | 2019-06-28 | 2020-12-29 | 中国电力科学研究院有限公司 | Automatic anomaly detection method and system |
| CN113553234A (en) * | 2021-07-19 | 2021-10-26 | 神策网络科技(北京)有限公司 | Data Anomaly Detection Methods |
Non-Patent Citations (2)
| Title |
|---|
| 周轩逸等: "Go语言机器学习实战", 31 March 2020, 机械工业出版社, pages: 74 - 76 * |
| 管永乐: "电力设备状态及故障检测系统设计与实现", 中国优秀硕士学位论文全文数据库 工程科技辑, vol. 1, pages 042 - 1217 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102182671B (en) | State analysis monitoring method of gas compressor | |
| CN101688820B (en) | System and method for bearing fault detection using stator current noise cancellation | |
| CN103884943B (en) | A kind of comprehensive analysis and diagnosis method of deformation of transformer winding | |
| CN112782499B (en) | Multi-information fusion-based converter state evaluation method and device | |
| CN114252749B (en) | Transformer partial discharge detection method and device based on multi-sensor | |
| CN110553789A (en) | state detection method and device of piezoresistive pressure sensor and brake system | |
| CN112782614A (en) | Fault early warning method and device of converter based on multi-information fusion | |
| CN107944721B (en) | Universal machine learning method, device and system based on data mining | |
| CN118897171B (en) | Detection method, device, medium and system for partial discharge capability of switchgear | |
| CN113687154A (en) | Method, device and equipment for monitoring no-load running state of transformer and storage medium | |
| CN113533910A (en) | A method and system suitable for partial discharge early warning of converter transformers | |
| CN114994503A (en) | Circuit board detection device | |
| CN104569814B (en) | A kind of DC traction motor health status real-time analysis method based on approximate entropy | |
| CN107977626A (en) | The group technology of a kind of electronic equipment operational data | |
| CN108009063A (en) | The method of a kind of electronic equipment fault threshold detection | |
| EP2174149A1 (en) | A method and an apparatus for monitoring an activity of partial electrical discharges in an electrical apparatus powered with direct voltage | |
| CN109357751B (en) | A power transformer winding loose defect detection system | |
| CN119884666A (en) | High-low voltage distribution box fault diagnosis method and system based on Internet of things | |
| CN104360178A (en) | Method for measuring low-frequency noise of inverters and diagnosing faults thereof | |
| CN205139349U (en) | Arrester discharge counter and leakage current table check gauge | |
| CN113112123B (en) | A Fault Diagnosis and Evaluation Method for Aircraft Avionics System Based on Incidence Matrix | |
| CN115329856A (en) | Fault warning method and system applied to integrated test module of integrated bay equipment | |
| CN108009582A (en) | The method that a kind of electronic equipment standard working index is set | |
| CN112098066A (en) | Fault diagnosis method and system for high voltage shunt reactor based on gated cycle unit | |
| CN105203915A (en) | A system and method for diagnosing loose winding defects of power transformers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |