CN115347096B - GaN-based light-emitting diode epitaxial wafer and preparation method thereof - Google Patents
GaN-based light-emitting diode epitaxial wafer and preparation method thereof Download PDFInfo
- Publication number
- CN115347096B CN115347096B CN202211269718.1A CN202211269718A CN115347096B CN 115347096 B CN115347096 B CN 115347096B CN 202211269718 A CN202211269718 A CN 202211269718A CN 115347096 B CN115347096 B CN 115347096B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- epitaxial
- temperature
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 230000007423 decrease Effects 0.000 claims abstract description 21
- 238000000151 deposition Methods 0.000 claims description 77
- 230000008021 deposition Effects 0.000 claims description 40
- 230000000903 blocking effect Effects 0.000 claims description 29
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 238000005477 sputtering target Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000013077 target material Substances 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 14
- 230000007547 defect Effects 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 239000012159 carrier gas Substances 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 28
- 235000012431 wafers Nutrition 0.000 description 21
- 230000004888 barrier function Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 13
- 239000012495 reaction gas Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 239000013256 coordination polymer Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种GaN基发光二极管外延片及其制备方法。The invention relates to the technical field of semiconductors, in particular to a GaN-based light-emitting diode epitaxial wafer and a preparation method thereof.
背景技术Background technique
目前,因自然界缺乏天然的GaN体单晶材料, GaN基材料和器件主要通过在异质衬底上外延生长实现。目前,常用的异质衬底有蓝宝石、SiC和Si。其中,Si衬底具有尺寸大、成本低和导热性好以及可与GaN基材料和器件集成等优点,其作为 GaN基材料和器件外延生长时的衬底材料,可实现6寸、8寸和12寸等大尺寸外延,且衬底剥离相对容易,可降低生产成本,具有极大的市场竞争力。At present, due to the lack of natural GaN bulk single crystal materials in nature, GaN-based materials and devices are mainly realized by epitaxial growth on heterogeneous substrates. Currently, commonly used heterogeneous substrates are sapphire, SiC and Si. Among them, the Si substrate has the advantages of large size, low cost, good thermal conductivity, and can be integrated with GaN-based materials and devices. As a substrate material for GaN-based materials and device epitaxial growth, it can realize 6-inch, 8-inch and 12-inch and other large-scale epitaxy, and the substrate is relatively easy to peel off, which can reduce production costs and has great market competitiveness.
然而,Si衬底与GaN材料存在严重的晶格失配,导致Si衬底发光二极管外延片存在表面平整度差、抗静电能力差等缺陷,现有技术中,为了解决晶格失配和热失配问题,通常先在Si衬底上沉积一层缓冲层,如GaN缓冲层或AlN缓冲层,但是也只能够一定程度上缓解晶格失配与热失配,外延层的表面平整度差、抗静电能力差的问题依然存在。However, there is a serious lattice mismatch between the Si substrate and the GaN material, which leads to defects such as poor surface flatness and poor antistatic ability of the Si substrate light-emitting diode epitaxial wafer. In the prior art, in order to solve the lattice mismatch and thermal Mismatch problem, usually a buffer layer is deposited on the Si substrate first, such as GaN buffer layer or AlN buffer layer, but it can only alleviate the lattice mismatch and thermal mismatch to a certain extent, and the surface flatness of the epitaxial layer is poor , The problem of poor antistatic ability still exists.
发明内容Contents of the invention
本发明的目的在于针对已有的技术现状,提供一种表面平整度佳、抗静电能力强的GaN基发光二极管外延片及其制备方法。The object of the present invention is to provide a GaN-based light-emitting diode epitaxial wafer with good surface flatness and strong antistatic ability and a preparation method thereof in view of the existing technical status.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种GaN基发光二极管外延片,包括依次设置的Si衬底、缓冲层及外延层,所述缓冲层包括沿外延生长方向依次沉积的AlN层、Al1-xScxN层及高温AliGa1-iN层,所述高温AliGa1-iN层的Al组分含量沿外延生长方向渐变降低。A GaN-based light-emitting diode epitaxial wafer, comprising a Si substrate, a buffer layer, and an epitaxial layer arranged in sequence, the buffer layer including an AlN layer, an Al 1-x Sc x N layer, and a high-temperature Al i In the Ga 1-i N layer, the Al composition content of the high-temperature Ali Ga 1-i N layer decreases gradually along the epitaxial growth direction.
在一些实施例中,所述Al1-xScxN层中,x为0.1≤x≤0.3。In some embodiments, in the Al 1-x Sc x N layer, x is 0.1≤x≤0.3.
在一些实施例中,所述高温AliGa1-iN层中,i从0.1~2沿外延生长方向渐变降低为0~0.01。In some embodiments, in the high-temperature Al i Ga 1-i N layer, i gradually decreases from 0.1-2 to 0-0.01 along the epitaxial growth direction.
在一些实施例中,所述高温AliGa1-iN层的生长温度为800~1000℃。In some embodiments, the growth temperature of the high-temperature Al i Ga 1-i N layer is 800-1000°C.
在一些实施例中,所述AlN层的厚度为10~20nm;所述Al1-xScxN层的厚度为5~40nm;所述高温AliGa1-iN层的厚度为5~20nm。In some embodiments, the thickness of the AlN layer is 10-20 nm; the thickness of the Al 1-x Sc x N layer is 5-40 nm; the thickness of the high-temperature Al i Ga 1-i N layer is 5-20 nm. 20nm.
在一些实施例中,所述AlN层及所述Al1-xScxN层均采用磁控溅射法制得,所述高温AliGa1-iN层采用MOCVD法制得。In some embodiments, both the AlN layer and the Al 1-x Sc x N layer are prepared by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer is prepared by MOCVD.
在一些实施例中,所述外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层、N型半导体层、多量子阱层、电子阻挡层及P型半导体层。In some embodiments, the epitaxial layer includes an undoped U-GaN layer, an N-type semiconductor layer, a multi-quantum well layer, an electron blocking layer, and a P-type semiconductor layer deposited sequentially along the epitaxial growth direction.
在一些实施例中,所述电子阻挡层包括周期性依次交替生长的AlyGa1-yN子层及InzGa1-zN子层,y为0.05≤y≤0.2,z为0.1≤z≤0.5,所述电子阻挡层的周期数为3~15,厚度为20~50nm。In some embodiments, the electron blocking layer includes AlyGa 1-y N sub-layers and In z Ga 1-z N sub-layers which are periodically and alternately grown in sequence, y is 0.05≤y≤0.2, z is 0.1≤ z≤0.5, the period number of the electron blocking layer is 3~15, and the thickness is 20~50nm.
本发明还提供一种GaN基发光二极管外延片的制备方法,包括:The present invention also provides a method for preparing GaN-based light-emitting diode epitaxial wafers, including:
提供Si衬底;Provide Si substrate;
在Si衬底上依次生长缓冲层及外延层;On the Si substrate, a buffer layer and an epitaxial layer are sequentially grown;
所述缓冲层的生长步骤包括:The growth step of described buffer layer comprises:
依次沉积AlN层、Al1-xScxN层及高温AliGa1-iN层;Deposit AlN layer, Al 1-x Sc x N layer and high temperature Al i Ga 1-i N layer in sequence;
所述高温AliGa1-iN层的生长过程中,控制Al源的通入流量渐变降低。During the growth process of the high-temperature Al i Ga 1-i N layer, the flow rate of the Al source is controlled to decrease gradually.
在一些实施例中,所述缓冲层的生长步骤包括:在Si衬底上通过磁控溅射法依次沉积AlN层及Al1-xScxN层,沉积压力为5~10mTorr,沉积温度为200~1000℃,沉积电压为150~400V,所述Al1-xScxN层的溅射靶材为ScAl合金靶材。In some embodiments, the step of growing the buffer layer includes: sequentially depositing an AlN layer and an Al 1-x Sc x N layer on a Si substrate by magnetron sputtering, the deposition pressure is 5-10 mTorr, and the deposition temperature is The temperature is 200-1000° C., the deposition voltage is 150-400 V, and the sputtering target of the Al 1-x Sc x N layer is a ScAl alloy target.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明通过缓冲层中AlN层、Al1-xScxN层及高温AliGa1-iN层之间的相互配合,有效减少Si衬底表面形成的Si原子的扩散,并且增加了与外延层之间的晶格匹配,有效解决现有技术中Si衬底与GaN材料之间存在的晶格失配的问题,外延层晶格质量高,缺陷少,表面平整度佳,抗静电能力高。The present invention effectively reduces the diffusion of Si atoms formed on the surface of the Si substrate through the cooperation among the AlN layer, the Al 1-x Sc x N layer and the high-temperature Al i Ga 1-i N layer in the buffer layer, and increases the The lattice matching between the epitaxial layers effectively solves the problem of lattice mismatch between the Si substrate and the GaN material in the prior art. The epitaxial layer has high lattice quality, less defects, good surface flatness, and antistatic ability high.
附图说明Description of drawings
图1为本发明的GaN基发光二极管外延片的结构示意图。FIG. 1 is a schematic structural view of a GaN-based light-emitting diode epitaxial wafer of the present invention.
图2为本发明的GaN基发光二极管外延片的另一结构示意图。FIG. 2 is another structural schematic diagram of the GaN-based light-emitting diode epitaxial wafer of the present invention.
图3为本发明的GaN基发光二极管外延片的制备方法的流程图。Fig. 3 is a flow chart of a method for preparing a GaN-based light-emitting diode epitaxial wafer according to the present invention.
图4为本发明的GaN基发光二极管外延片的制备方法的具体流程图。Fig. 4 is a specific flow chart of the method for preparing a GaN-based light-emitting diode epitaxial wafer according to the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below.
参见图1所示,一种GaN基发光二极管外延片,包括依次设置的Si衬底1、缓冲层2及外延层,其中,外延层为GaN基材料外延层,缓冲层2包括沿外延生长方向依次沉积的AlN层21、Al1-xScxN层22及高温AliGa1-iN层23,高温AliGa1-iN层23的Al组分含量沿外延生长方向渐变降低。Referring to Fig. 1, a GaN-based light-emitting diode epitaxial wafer includes a Si substrate 1, a buffer layer 2 and an epitaxial layer arranged in sequence, wherein the epitaxial layer is an epitaxial layer of a GaN-based material, and the buffer layer 2 includes an epitaxial layer along the epitaxial growth direction. The AlN layer 21, the Al 1-x Sc x N layer 22 and the high temperature Ali Ga 1-i N layer 23 are deposited sequentially, and the Al component content of the high temperature Ali Ga 1-i N layer 23 decreases gradually along the epitaxial growth direction.
本发明中,对Si衬底1与外延层之间的缓冲层2进行改进,具体的,首先,在Si衬底1上沉积AlN层21,AlN层21的致密性好,可以有效减少Si衬底1中Si原子的扩散,从而避免因扩散所导致的缓冲层2漏电、外延层晶格质量下降的问题,由此增强外延层晶格质量,提升抗静电能力,提高外延层的表面平整度;由于AlN与GaN之间存在2.5%的晶格失配,若直接在AlN层21外延GaN基材料外延层,会限制后续GaN晶格质量的继续提升,因此,本发明中,在AlN层21上沉积Al1-xScxN层22,通过在AlN中加入Sc元素,使之发生晶格膨胀,从而有效减少缓冲层2与GaN之间的晶格失配;最后,在Al1-xScxN层22上沉积高温AliGa1-iN层23,一方面,采用高温生长方式,避免低温生长带来的缺陷,另一方面,控制Al组分含量沿外延生长方向渐变降低,由此使得Al1-xScxN层22与后续生长的GaN基材料外延层之间存在渐进过渡,进一步增加晶格匹配性,减少外延层缺陷。In the present invention, the buffer layer 2 between the Si substrate 1 and the epitaxial layer is improved. Specifically, first, the AlN layer 21 is deposited on the Si substrate 1. The AlN layer 21 has good compactness, which can effectively reduce the Si lining Diffusion of Si atoms in the bottom 1, so as to avoid the leakage of the buffer layer 2 caused by the diffusion and the degradation of the lattice quality of the epitaxial layer, thereby enhancing the lattice quality of the epitaxial layer, improving the antistatic ability, and improving the surface flatness of the epitaxial layer ; Since there is a 2.5% lattice mismatch between AlN and GaN, if the GaN-based material epitaxial layer is directly epitaxial in the AlN layer 21, the continuous improvement of the subsequent GaN lattice quality will be limited. Therefore, in the present invention, in the AlN layer 21 Al 1-x Sc x N layer 22 is deposited on Al 1-x Sc x N layer 22, by adding Sc element in AlN, make it lattice expansion, thereby effectively reduce the lattice mismatch between buffer layer 2 and GaN; Finally, in Al 1-x A high-temperature Al i Ga 1-i N layer 23 is deposited on the Sc x N layer 22. On the one hand, a high-temperature growth method is adopted to avoid defects caused by low-temperature growth. On the other hand, the Al component content is controlled to gradually decrease along the epitaxial growth direction. As a result, there is a gradual transition between the Al 1-x Sc x N layer 22 and the subsequently grown GaN-based epitaxial layer, which further increases the lattice matching and reduces defects in the epitaxial layer.
由此,本发明通过缓冲层2中AlN层21、Al1-xScxN层22及高温AliGa1-iN层23之间的相互配合,有效减少Si衬底1表面形成的Si原子的扩散,并且增加了与外延层之间的晶格匹配,有效解决现有技术中Si衬底1与GaN材料之间存在的晶格失配的问题,外延层晶格质量高,缺陷少,表面平整度佳,抗静电能力高。Thus, the present invention can effectively reduce the Si formed on the surface of the Si substrate 1 through the cooperation between the AlN layer 21, the Al 1-x Sc x N layer 22 and the high-temperature Al i Ga 1-i N layer 23 in the buffer layer 2. Diffusion of atoms, and increased lattice matching with the epitaxial layer, effectively solving the problem of lattice mismatch between the Si substrate 1 and the GaN material in the prior art, the epitaxial layer has high lattice quality and few defects , good surface flatness, high antistatic ability.
其中,Al1-xScxN层22中,x为0.1≤x≤0.3,示例性的,x为0.1、0.15、0.20、0.25或0.3,但不限于此,当x<0.1时,晶格膨胀不足,当x>0.3时,晶格膨胀过度,经实验,控制Sc的含量为10~30%时,Al1-xScxN层22与GaN之间的晶格匹配性较好,更优选地,x为0.15≤x≤0.3,当控制控制Sc的含量为15~30%时,Al1-xScxN层22与GaN之间的晶格匹配性更高,进一步减少缓冲层2和GaN基材料外延层之间的晶格失配。Wherein, in the Al 1-x Sc x N layer 22, x is 0.1≤x≤0.3. Exemplarily, x is 0.1, 0.15, 0.20, 0.25 or 0.3, but not limited thereto. When x<0.1, the lattice Insufficient expansion. When x>0.3, the lattice expansion is excessive. According to experiments, when the content of Sc is controlled at 10-30%, the lattice matching between the Al 1-x Sc x N layer 22 and GaN is better, and more Preferably, x is 0.15≤x≤0.3. When the content of Sc is controlled to be 15-30%, the lattice matching between the Al 1-x Sc x N layer 22 and GaN is higher, further reducing the buffer layer 2 and the lattice mismatch between epitaxial layers of GaN-based materials.
其中,高温AliGa1-iN层23中,i(即Al组分的含量)从0.1~2沿外延生长方向渐变降低为0~0.01,在一些实施例中,i(即Al组分的含量)从0.1~2沿外延生长方向渐变降低为0,在一些实施例中,i(即Al组分的含量)从0.1~2沿外延生长方向渐变降低为0.01,在一些实施例中,i(即Al组分的含量)从0.1~2沿外延生长方向渐变降低为0.001,示例性的,Al组分的含量从0.1、0.6、1、1.2、1.8或2沿外延生长方向渐变降低为0、0.001或0.01,但不限于此,通过控制i(即Al组分的含量)从高温AliGa1-iN层23开始生长时的原始值渐变减低至趋于零或零,形成渐变过渡,进一步增加晶格匹配性,减少缺陷。Wherein, in the high-temperature Al i Ga 1-i N layer 23, i (that is, the content of the Al component) gradually decreases from 0.1 to 2 along the epitaxial growth direction to 0 to 0.01, and in some embodiments, i (that is, the content of the Al component content) gradually decreases from 0.1 to 2 along the direction of epitaxial growth to 0, in some embodiments, i (ie, the content of the Al component) gradually decreases from 0.1 to 2 to 0.01 along the direction of epitaxial growth, in some embodiments, i (that is, the content of the Al component) decreases gradually from 0.1 to 2 along the epitaxial growth direction to 0.001. Exemplarily, the content of the Al component decreases gradually from 0.1, 0.6, 1, 1.2, 1.8 or 2 along the epitaxial growth direction to 0, 0.001 or 0.01, but not limited thereto, by controlling i (that is, the content of the Al component) to gradually decrease from the original value when the high-temperature Al i Ga 1-i N layer 23 begins to grow to zero or zero, forming a gradual change transition, further increasing lattice matching and reducing defects.
其中,高温AliGa1-iN层23的生长温度为800~1000℃,进一步的,高温AliGa1-iN层23的生长温度为800~900℃,示例性的,生长温度为800℃、820℃、840℃、860℃、880℃、900℃、950℃或1000℃,但不限于此。Wherein, the growth temperature of the high-temperature Al i Ga 1-i N layer 23 is 800-1000° C., further, the growth temperature of the high-temperature Al i Ga 1-i N layer 23 is 800-900° C. Exemplarily, the growth temperature is 800°C, 820°C, 840°C, 860°C, 880°C, 900°C, 950°C or 1000°C, but not limited thereto.
AlN层21的厚度为10~20nm,示例性的,AlN层21的厚度为10nm、13nm、16nm、18nm或20nm,但不限于此,AlN层21过薄会导致致密性不够,对Si衬底1扩散的Si原子的阻隔效果不佳,AlN层21过厚,难以为GaN基材料的外延层提供较好的成核表面;Al1-xScxN层22的厚度为5~40nm,示例性的,Al1-xScxN层22的厚度5nm、10nm、15nm、20nm、25nm、30nm、35nm或40nm,但不限于此,Al1-xScxN层22过薄或过厚,Al1-xScxN层22对晶格匹配性的影响较弱;高温AliGa1- iN层23的厚度为5~20nm,示例性的,高温AliGa1-iN层23的厚度为、10nm、15nm或20nm,但不限于此,在此范围内,Al组分具有较恰当的渐变减低速率,起到较好的过渡效果,晶格匹配性更佳。The thickness of the AlN layer 21 is 10-20nm. Exemplarily, the thickness of the AlN layer 21 is 10nm, 13nm, 16nm, 18nm or 20nm, but not limited thereto. If the AlN layer 21 is too thin, it will lead to insufficient compactness. 1 The barrier effect of diffused Si atoms is not good, and the AlN layer 21 is too thick to provide a good nucleation surface for the epitaxial layer of GaN-based materials; the thickness of the Al 1-x Sc x N layer 22 is 5-40nm, for example Specifically, the thickness of the Al 1-x Sc x N layer 22 is 5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 35nm or 40nm, but not limited thereto, the Al 1-x Sc x N layer 22 is too thin or too thick, Al 1-x Sc x N layer 22 has a weak influence on lattice matching; the thickness of high-temperature Al i Ga 1- i N layer 23 is 5-20 nm, exemplary, high-temperature Al i Ga 1-i N layer 23 The thickness of Al is 10nm, 15nm or 20nm, but not limited thereto. Within this range, the Al component has a more appropriate gradual reduction rate, which has a better transition effect and better lattice matching.
其中,AlN层21及Al1-xScxN层22均采用磁控溅射法制得,高温AliGa1-iN层23采用MOCVD法制得,通过采用磁控溅射法,能够在较小的厚度即可获得致密性好、厚度均匀的AlN层21,利于Al1-xScxN层22晶格均匀膨胀,从而有效提高AlN层21及Al1-xScxN层22的作用效果,外延层的表面平整度更佳,抗静电能力更好,同时,磁控溅射法能够实现低温沉积,利于抑制Si衬底1的扩散问题,此外,采用磁控溅射法能够在大尺寸的Si衬底1上获得厚度均匀的材料层,更利于大尺寸外延片的制备。Among them, the AlN layer 21 and the Al 1-x Sc x N layer 22 are both made by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer 23 is made by MOCVD. By using the magnetron sputtering method, it can be A small thickness can obtain an AlN layer 21 with good density and uniform thickness, which is conducive to the uniform expansion of the lattice of the Al 1-x Sc x N layer 22, thereby effectively improving the effects of the AlN layer 21 and the Al 1-x Sc x N layer 22 Effect, the surface flatness of the epitaxial layer is better, and the antistatic ability is better. At the same time, the magnetron sputtering method can realize low-temperature deposition, which is beneficial to suppress the diffusion problem of the Si substrate 1. In addition, the magnetron sputtering method can be used in large A material layer with a uniform thickness can be obtained on the Si substrate 1 of the same size, which is more conducive to the preparation of large-sized epitaxial wafers.
其中,参见图2所示,外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层3、N型半导体层4、多量子阱层5、电子阻挡层6及P型半导体层7。Wherein, as shown in FIG. 2, the epitaxial layer includes an undoped U-GaN layer 3, an N-type semiconductor layer 4, a multi-quantum well layer 5, an electron blocking layer 6, and a P-type semiconductor layer 7 deposited sequentially along the epitaxial growth direction. .
具体的,不掺杂的U-GaN层3的厚度为300~800nm,示例性的,厚度为300nm、400nm、500nm、600nm、700nm或800nm,但不限于此;生长温度为1100~1150℃,示例性的,生长温度为1100℃、1120℃、1140℃或1150℃,但不限于此;生长压力为100~500Torr,示例性的,生长压力为100Torr、200Torr、300Torr、400Torr或500Torr。Specifically, the thickness of the undoped U-GaN layer 3 is 300~800nm, exemplarily, the thickness is 300nm, 400nm, 500nm, 600nm, 700nm or 800nm, but not limited thereto; the growth temperature is 1100~1150°C, Exemplarily, the growth temperature is 1100°C, 1120°C, 1140°C or 1150°C, but not limited thereto; the growth pressure is 100-500 Torr, and exemplary, the growth pressure is 100 Torr, 200 Torr, 300 Torr, 400 Torr or 500 Torr.
N型半导体层4主要提供电子,厚度为1~3μm,示例性的,厚度为1μm、1.5μm、2μm或2.8μm,但不限于此;Si掺杂浓度为5×1018~1×1019 cm-3,示例性的,Si掺杂浓度为5×1018cm-3、7×1018 cm-3、8×1018 cm-3或9×1018 cm-3,但不限于此;生长温度为1100~1150℃,生长压力为100~500Torr。The N-type semiconductor layer 4 mainly provides electrons, and has a thickness of 1-3 μm. Exemplarily, the thickness is 1 μm, 1.5 μm, 2 μm or 2.8 μm, but not limited thereto; the Si doping concentration is 5×10 18 ~1×10 19 cm -3 , for example, the Si doping concentration is 5×10 18 cm -3 , 7×10 18 cm -3 , 8×10 18 cm -3 or 9×10 18 cm -3 , but not limited thereto; The growth temperature is 1100~1150°C, and the growth pressure is 100~500Torr.
多量子阱层5是由InGaN量子阱层和GaN量子垒层交替层叠的周期性结构,周期数为3~15,示例性的,周期数为3、8、11、13或15,但不限于此;其中,InGaN量子阱层中的In组分所占摩尔比例为10%~35%,In组分过低,电子迁移率低,In组分过高容易导致InGaN量子阱层与GaN量子垒层之间的晶格失配增大,会增加位错缺陷,同时容易发生In的相分离,导致晶格质量及抗静电能力下降;各周期中,InGaN量子阱层的厚度为2~5nm,示例性的,InGaN量子阱层的厚度为2nm、3nm、4nm或5nm,但不限于此;GaN量子垒层的厚度为3~15nm,示例性的,GaN量子垒层的厚度为3nm、5nm、10nm或15nm,但不限于此,当InGaN量子阱层过薄时,载流子容易泄漏,当InGaN量子阱层过厚时,极化效应会导致发光效率降低,优选GaN量子垒层厚度大于InGaN量子阱层,以抑制载流子泄漏,进一步提高抗静电性能;InGaN量子阱层的生长温度为700~800℃,GaN量子垒层的生长温度为800~1000℃,多量子阱层5的生长压力为100~500Torr。The multi-quantum well layer 5 is a periodic structure in which InGaN quantum well layers and GaN quantum barrier layers are alternately stacked, and the number of periods is 3-15. Exemplarily, the number of periods is 3, 8, 11, 13 or 15, but not limited to Among them, the In composition in the InGaN quantum well layer accounts for a molar ratio of 10% to 35%. If the In composition is too low, the electron mobility is low, and if the In composition is too high, it is easy to cause the InGaN quantum well layer and the GaN quantum barrier The increase of lattice mismatch between layers will increase dislocation defects, and at the same time, phase separation of In is prone to occur, resulting in a decrease in lattice quality and antistatic ability; in each cycle, the thickness of the InGaN quantum well layer is 2~5nm, Exemplary, the thickness of the InGaN quantum well layer is 2nm, 3nm, 4nm or 5nm, but not limited thereto; the thickness of the GaN quantum barrier layer is 3~15nm, exemplary, the thickness of the GaN quantum barrier layer is 3nm, 5nm, 10nm or 15nm, but not limited to this, when the InGaN quantum well layer is too thin, the carriers are easy to leak, when the InGaN quantum well layer is too thick, the polarization effect will lead to a decrease in luminous efficiency, the thickness of the GaN quantum barrier layer is preferably greater than that of InGaN Quantum well layer to suppress carrier leakage and further improve antistatic performance; the growth temperature of InGaN quantum well layer is 700~800°C, the growth temperature of GaN quantum barrier layer is 800~1000°C, and the growth temperature of multi-quantum well layer 5 The pressure is 100~500Torr.
P型半导体层7的厚度为200~300nm,示例性的,厚度为200nm、230nm、260nm或290nm,但不限于此,Mg的掺杂浓度为5×1017~1× 1020cm-3示例性的,Mg的掺杂浓度为5×1017cm-3、5×1018cm-3、9×1018cm-3或6×1019cm-3,但不限于此。The thickness of the P-type semiconductor layer 7 is 200~300nm. Exemplarily, the thickness is 200nm, 230nm, 260nm or 290nm, but not limited thereto. The doping concentration of Mg is 5×10 17 ~1×10 20 cm- 3 Example Specifically, the doping concentration of Mg is 5×10 17 cm- 3 , 5×10 18 cm- 3 , 9×10 18 cm- 3 or 6×10 19 cm- 3 , but not limited thereto.
电子阻挡层6包括周期性依次交替生长的AlyGa1-yN子层及InzGa1-zN子层,y为0.05≤y≤0.2,示例性的,y为0.05、0.08、0.1、0.13、0.18或2,但不限于此;z为0.1≤z≤0.5,示例性的,z为0.1、0.2、0.3、0.4或0.5,但不限于此;电子阻挡层6的周期数为3~15,示例性的,周期数为3、5、8、12或15,但不限于此;厚度为20~50nm,示例性的,厚度为20nm、30nm、40nm、45nm或50nm,但不限于此。The electron blocking layer 6 includes Al y Ga 1-y N sub-layers and In z Ga 1-z N sub-layers which are grown alternately periodically and sequentially, y is 0.05≤y≤0.2, for example, y is 0.05, 0.08, 0.1 , 0.13, 0.18 or 2, but not limited thereto; z is 0.1≤z≤0.5, exemplary, z is 0.1, 0.2, 0.3, 0.4 or 0.5, but not limited thereto; the period number of the electron blocking layer 6 is 3 ~15, exemplary, the number of periods is 3, 5, 8, 12 or 15, but not limited thereto; thickness is 20~50nm, exemplary, the thickness is 20nm, 30nm, 40nm, 45nm or 50nm, but not limited to this.
本发明中,采用AlyGa1-yN/InzGa1-zN超晶格作为电子阻隔层,有效抑制位错传播,提高后续P型半导体层7的晶体质量,有利于降低漏电流,提高抗静电性能。In the present invention, the AlyGa1 -yN / InzGa1 -zN superlattice is used as the electronic barrier layer, which can effectively suppress dislocation propagation, improve the crystal quality of the subsequent P-type semiconductor layer 7, and help reduce leakage current , Improve antistatic performance.
本发明还提供一种GaN基发光二极管外延片的制备方法,包括:The present invention also provides a method for preparing GaN-based light-emitting diode epitaxial wafers, including:
提供Si衬底1;providing a Si substrate 1;
在Si衬底1上沉积缓冲层2及外延层;Depositing a buffer layer 2 and an epitaxial layer on the Si substrate 1;
缓冲层2的生长步骤包括:The growth steps of buffer layer 2 include:
依次沉积AlN层21、Al1-xScxN层22及高温AliGa1-iN层23;sequentially depositing an AlN layer 21, an Al 1-x Sc x N layer 22 and a high-temperature Al i Ga 1-i N layer 23;
高温AliGa1-iN层23的生长过程中,控制Al源的通入流量渐变降低。During the growth process of the high-temperature Al i Ga 1-i N layer 23, the flow rate of the Al source is controlled to decrease gradually.
缓冲层2的生长步骤包括:在Si衬底1上通过磁控溅射法依次沉积AlN层21及Al1- xScxN层22,沉积压力为5~10mTorr,示例性的,沉积压力为5mTorr、7mTorr或9mTorr,但不限于此;沉积温度为200~1000℃,示例性的,沉积温度为200℃、350℃、550℃、800℃或1000℃,但不限于此,采用低温沉积,利于抑制Si衬底1的扩散问题;沉积电压为150~400V,示例性的,沉积电压为150V、250V、300V、330V或400V,但不限于此;Al1-xScxN层22的溅射靶材为ScAl合金靶材。The growth step of the buffer layer 2 includes: sequentially depositing an AlN layer 21 and an Al 1- x Sc x N layer 22 on the Si substrate 1 by magnetron sputtering, with a deposition pressure of 5-10 mTorr. Exemplarily, the deposition pressure is 5mTorr, 7mTorr or 9mTorr, but not limited thereto; the deposition temperature is 200~1000°C, for example, the deposition temperature is 200°C, 350°C, 550°C, 800°C or 1000°C, but not limited thereto, low temperature deposition is used, It is beneficial to suppress the diffusion problem of the Si substrate 1; the deposition voltage is 150-400V, exemplary, the deposition voltage is 150V, 250V, 300V, 330V or 400V, but not limited thereto; the sputtering of the Al 1-x Sc x N layer 22 The shooting target is ScAl alloy target.
下面结合附图及实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
实施例1Example 1
参见图1及图2所示,本实施例提供一种GaN基发光二极管外延片,包括依次设置的Si衬底1、缓冲层2及外延层,其中,外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层3、N型半导体层4、多量子阱层5、电子阻挡层6及P型半导体层7,缓冲层2包括沿外延生长方向依次沉积的AlN层21、Al1-xScxN层22及高温AliGa1-iN层23,高温AliGa1-iN层23中,i从0.15沿外延生长方向渐变降低为0。Referring to Fig. 1 and Fig. 2, the present embodiment provides a GaN-based light-emitting diode epitaxial wafer, including a Si substrate 1, a buffer layer 2, and an epitaxial layer arranged in sequence, wherein the epitaxial layer includes an epitaxial layer deposited sequentially along the epitaxial growth direction. Undoped U-GaN layer 3, N-type semiconductor layer 4, multi-quantum well layer 5, electron blocking layer 6 and P-type semiconductor layer 7, buffer layer 2 includes AlN layer 21, Al 1 deposited in sequence along the epitaxial growth direction -x Sc x N layer 22 and high temperature Al i Ga 1-i N layer 23, in the high temperature Al i Ga 1-i N layer 23, i gradually decreases from 0.15 to 0 along the epitaxial growth direction.
Al1-xScxN层22中,x为0.3。In the Al 1-x Sc x N layer 22, x is 0.3.
高温AliGa1-iN层23的生长温度为850℃。The growth temperature of the high temperature Al i Ga 1-i N layer 23 is 850°C.
AlN层21的厚度为15nm,Al1-xScxN层22的厚度为35nm,高温AliGa1-iN层23的厚度为15nm。The thickness of the AlN layer 21 is 15 nm, the thickness of the Al 1-x Sc x N layer 22 is 35 nm, and the thickness of the high-temperature Al i Ga 1-i N layer 23 is 15 nm.
AlN层21及Al1-xScxN层22均采用磁控溅射法制得,高温AliGa1-iN层23采用MOCVD法制得。Both the AlN layer 21 and the Al 1-x Sc x N layer 22 are produced by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer 23 is produced by MOCVD.
电子阻挡层6包括周期性依次交替生长的Al0.1Ga0.9N子层及In0.3Ga0.7N子层,电子阻挡层6的周期数为8,厚度为40nm。The electron blocking layer 6 includes Al 0.1 Ga 0.9 N sub-layers and In 0.3 Ga 0.7 N sub-layers which are alternately grown periodically and sequentially. The number of periods of the electron blocking layer 6 is 8, and the thickness is 40 nm.
参见图3及图4所示,上述外延片的制备方法,包括:Referring to Fig. 3 and shown in Fig. 4, the preparation method of above-mentioned epitaxial wafer comprises:
S10.提供Si衬底1;S10. providing a Si substrate 1;
S20.在Si衬底1上沉积缓冲层2,具体步骤如下:S20. Depositing a buffer layer 2 on the Si substrate 1, the specific steps are as follows:
S21.在Si衬底1上沉积AlN层21:S21. Depositing an AlN layer 21 on the Si substrate 1:
将Si衬底1放入磁控溅射设备中,沉积压力为5mTorr,沉积温度为300℃,以Ar作为载气,N2作为反应气,沉积电压为200V,溅射沉积15nm厚度的AlN层21。Put the Si substrate 1 into the magnetron sputtering equipment, the deposition pressure is 5mTorr, the deposition temperature is 300°C, Ar is used as the carrier gas, N2 is used as the reaction gas, the deposition voltage is 200V, and an AlN layer with a thickness of 15nm is deposited by sputtering twenty one.
S22.在AlN层21上沉积Al1-xScxN层22:S22. Depositing an Al 1-x Sc x N layer 22 on the AlN layer 21:
沉积压力为8mTorr,沉积温度为400℃,以Ar作为载气,N2作为反应气,沉积电压为300V,溅射靶材为ScAl合金靶材,溅射沉积35nm厚度的Al1-xScxN层22。The deposition pressure is 8mTorr, the deposition temperature is 400°C, Ar is used as the carrier gas, N 2 is used as the reaction gas, the deposition voltage is 300V, the sputtering target is ScAl alloy target, and Al 1-x Sc x with a thickness of 35nm is deposited by sputtering N layer 22.
S23.转入MOCVD设备中,在Al1-xScxN层22上沉积高温AliGa1-iN层23:S23. Transfer to MOCVD equipment, and deposit a high-temperature Al i Ga 1-i N layer 23 on the Al 1-x Sc x N layer 22:
通入N2做载气,通入NH3做N源,设置反应腔压力为400Torr,设置反应腔温度为850℃,通入TMGa作为Ga源,通入TMAl作为Al源,其中Al的流量从第一流量渐变降低至0,沉积15nm厚度的ALGaN层。Introduce N 2 as the carrier gas, NH 3 as the N source, set the pressure of the reaction chamber to 400 Torr, set the temperature of the reaction chamber to 850°C, inject TMGa as the Ga source, and inject TMAl as the Al source, where the flow rate of Al is from The first flow rate was ramped down to 0 and a 15nm thick ALGaN layer was deposited.
S30.在缓冲层2上沉积外延层,具体步骤如下:S30. Depositing an epitaxial layer on the buffer layer 2, the specific steps are as follows:
S31.在缓冲层2上沉积不掺杂的U-GaN层3:S31. Depositing an undoped U-GaN layer 3 on the buffer layer 2:
将生长温度控制在1100℃,生长压力控制在200Torr,通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为400nm的GaN层。The growth temperature is controlled at 1100°C, the growth pressure is controlled at 200Torr, NH 3 is introduced as the N source, N 2 and H 2 are used as the carrier gas, TMGa is used as the Ga source, and a GaN layer with a thickness of 400nm is grown.
S32.在不掺杂的U-GaN层3上沉积N型半导体层4:S32. Depositing an N-type semiconductor layer 4 on the undoped U-GaN layer 3:
将反应室的生长温度控制在1120℃,生长压力控制在200Torr;通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为2μm的GaN层,通入SiH4作为N型掺杂,Si掺杂浓度为5×1018 cm-3。Control the growth temperature of the reaction chamber at 1120°C and the growth pressure at 200 Torr; feed NH 3 as the N source, N 2 and H 2 as the carrier gas, TMGa as the Ga source, grow a GaN layer with a thickness of 2 μm, and feed SiH 4 As N-type doping, the Si doping concentration is 5×10 18 cm -3 .
S33.在N型半导体层4上沉积多量子阱层5:S33. Depositing a multi-quantum well layer 5 on the N-type semiconductor layer 4:
1)生长InGaN量子阱层:控制反应室的生长温度为700℃,载气为N2,通入NH3作为N源,TEGa作为Ga源,TMIn作为In源,生长厚度为3nm的InGaN量子阱层;1) Growth of InGaN quantum well layer: Control the growth temperature of the reaction chamber to 700°C, the carrier gas is N 2 , feed NH 3 as the N source, TEGa as the Ga source, TMIn as the In source, and grow an InGaN quantum well with a thickness of 3nm layer;
2)生长GaN量子垒层:控制反应室的生长温度为800℃,关闭In源,用N2和H2做载气,通入TEGa作为Ga源,生长厚度为10nm的GaN量子垒层;2) Growth of GaN quantum barrier layer: Control the growth temperature of the reaction chamber to 800°C, turn off the In source, use N 2 and H 2 as carrier gas, and feed TEGa as Ga source, and grow a GaN quantum barrier layer with a thickness of 10nm;
InGaN量子阱层和GaN量子垒层重复层叠周期性生长,周期数为10。The InGaN quantum well layer and the GaN quantum barrier layer are repeatedly stacked and grown periodically, and the number of periods is 10.
S34.在多量子阱层5生长电子阻挡层6:S34. Growing an electron blocking layer 6 on the multiple quantum well layer 5:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,TMAl作为Al源,TMIn作为In源,依次交替生长3nm厚度的Al0.1Ga0.9N子层及2nm厚度的In0.3Ga0.7N子层,周期数为8。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200Torr, and NH 3 is introduced as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source, and alternately grow Al 0.1 Ga 0.9 N with a thickness of 3nm. The sublayer and the In 0.3 Ga 0.7 N sublayer with a thickness of 2nm have a period number of 8.
S35.在电子阻挡层6上沉积P型半导体层7:S35. Depositing a P-type semiconductor layer 7 on the electron blocking layer 6:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,CP2Mg作为P型掺杂剂,Mg的掺杂浓度为5×1018,生长厚度为200nm。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200 Torr, NH 3 is introduced as the N source, TMGa is used as the Ga source, CP 2 Mg is used as the P-type dopant, and the doping concentration of Mg is 5×10 18 , The growth thickness is 200nm.
实施例2Example 2
本实施例提供一种GaN基发光二极管外延片,包括依次设置的Si衬底1、缓冲层2及外延层,其中,外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层3、N型半导体层4、多量子阱层5、电子阻挡层6及P型半导体层7,缓冲层2包括沿外延生长方向依次沉积的AlN层21、Al1-xScxN层22及高温AliGa1-iN层23,高温AliGa1-iN层23中,i从0.15沿外延生长方向渐变降低为0。This embodiment provides a GaN-based light-emitting diode epitaxial wafer, including a Si substrate 1, a buffer layer 2, and an epitaxial layer arranged in sequence, wherein the epitaxial layer includes an undoped U-GaN layer 3 sequentially deposited along the epitaxial growth direction , N-type semiconductor layer 4, multiple quantum well layer 5, electron blocking layer 6 and P-type semiconductor layer 7, buffer layer 2 includes AlN layer 21, Al 1-x Sc x N layer 22 and high temperature In the Al i Ga 1-i N layer 23, in the high temperature Ali Ga 1-i N layer 23, i gradually decreases from 0.15 to 0 along the epitaxial growth direction.
Al1-xScxN层22中,x为0.3。In the Al 1-x Sc x N layer 22, x is 0.3.
高温AliGa1-iN层23的生长温度为850℃。The growth temperature of the high temperature Al i Ga 1-i N layer 23 is 850°C.
AlN层21的厚度为20nm,Al1-xScxN层22的厚度为10nm,高温AliGa1-iN层23的厚度为5nm。The thickness of the AlN layer 21 is 20 nm, the thickness of the Al 1-x Sc x N layer 22 is 10 nm, and the thickness of the high-temperature Al i Ga 1-i N layer 23 is 5 nm.
AlN层21及Al1-xScxN层22均采用磁控溅射法制得,高温AliGa1-iN层23采用MOCVD法制得。Both the AlN layer 21 and the Al 1-x Sc x N layer 22 are produced by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer 23 is produced by MOCVD.
电子阻挡层6包括周期性依次交替生长的Al0.1Ga0.9N子层及In0.3Ga0.7N子层,电子阻挡层6的周期数为8,厚度为40nm。The electron blocking layer 6 includes Al 0.1 Ga 0.9 N sub-layers and In 0.3 Ga 0.7 N sub-layers which are alternately grown periodically and sequentially. The number of periods of the electron blocking layer 6 is 8, and the thickness is 40 nm.
上述外延片的制备方法,包括:The preparation method of above-mentioned epitaxial wafer, comprises:
S10.提供Si衬底1;S10. providing a Si substrate 1;
S20.在Si衬底1上沉积缓冲层2,具体步骤如下:S20. Depositing a buffer layer 2 on the Si substrate 1, the specific steps are as follows:
S21.在Si衬底1上沉积AlN层21:S21. Depositing an AlN layer 21 on the Si substrate 1:
将Si衬底1放入磁控溅射设备中,沉积压力为5mTorr,沉积温度为300℃,以Ar作为载气,N2作为反应气,沉积电压为200V,溅射沉积20nm厚度的AlN层21。Put the Si substrate 1 into the magnetron sputtering equipment, the deposition pressure is 5mTorr, the deposition temperature is 300°C, Ar is used as the carrier gas, N2 is used as the reaction gas, the deposition voltage is 200V, and an AlN layer with a thickness of 20nm is deposited by sputtering twenty one.
S22.在AlN层21上沉积Al1-xScxN层22:S22. Depositing an Al 1-x Sc x N layer 22 on the AlN layer 21:
沉积压力为8mTorr,沉积温度为400℃,以Ar作为载气,N2作为反应气,沉积电压为300V,溅射靶材为ScAl合金靶材,溅射沉积10nm厚度的Al1-xScxN层22。The deposition pressure is 8mTorr, the deposition temperature is 400°C, Ar is used as the carrier gas, N 2 is used as the reaction gas, the deposition voltage is 300V, the sputtering target is ScAl alloy target, and Al 1-x Sc x with a thickness of 10nm is sputtered N layer 22.
S23.转入MOCVD设备中,在Al1-xScxN层22上沉积高温AliGa1-iN层23:S23. Transfer to MOCVD equipment, and deposit a high-temperature Al i Ga 1-i N layer 23 on the Al 1-x Sc x N layer 22:
通入N2做载气,通入NH3做N源,设置反应腔压力为400Torr,设置反应腔温度为850℃,通入TMGa作为Ga源,通入TMAl作为Al源,其中Al的流量从第一流量渐变降低至0,沉积5nm厚度的ALGaN层。Introduce N 2 as the carrier gas, NH 3 as the N source, set the pressure of the reaction chamber to 400 Torr, set the temperature of the reaction chamber to 850°C, inject TMGa as the Ga source, and inject TMAl as the Al source, where the flow rate of Al is from The first flow rate is ramped down to 0, and a 5nm thick ALGaN layer is deposited.
S30.在缓冲层2上沉积外延层,具体步骤如下:S30. Depositing an epitaxial layer on the buffer layer 2, the specific steps are as follows:
S31.在缓冲层2上沉积不掺杂的U-GaN层3:S31. Depositing an undoped U-GaN layer 3 on the buffer layer 2:
将生长温度控制在1100℃,生长压力控制在200Torr,通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为400nm的GaN层。The growth temperature is controlled at 1100°C, the growth pressure is controlled at 200Torr, NH 3 is introduced as the N source, N 2 and H 2 are used as the carrier gas, TMGa is used as the Ga source, and a GaN layer with a thickness of 400nm is grown.
S32.在不掺杂的U-GaN层3上沉积N型半导体层4:S32. Depositing an N-type semiconductor layer 4 on the undoped U-GaN layer 3:
将反应室的生长温度控制在1120℃,生长压力控制在200Torr;通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为2μm的GaN层,通入SiH4作为N型掺杂,Si掺杂浓度为5×1018 cm-3。Control the growth temperature of the reaction chamber at 1120°C and the growth pressure at 200 Torr; feed NH 3 as the N source, N 2 and H 2 as the carrier gas, TMGa as the Ga source, grow a GaN layer with a thickness of 2 μm, and feed SiH 4 As N-type doping, the Si doping concentration is 5×10 18 cm -3 .
S33.在N型半导体层4上沉积多量子阱层5:S33. Depositing a multi-quantum well layer 5 on the N-type semiconductor layer 4:
1)生长InGaN量子阱层:控制反应室的生长温度为700℃,载气为N2,通入NH3作为N源,TEGa作为Ga源,TMIn作为In源,生长厚度为3nm的InGaN量子阱层;1) Growth of InGaN quantum well layer: Control the growth temperature of the reaction chamber to 700°C, the carrier gas is N 2 , feed NH 3 as the N source, TEGa as the Ga source, TMIn as the In source, and grow an InGaN quantum well with a thickness of 3nm layer;
2)生长GaN量子垒层:控制反应室的生长温度为800℃,关闭In源,用N2和H2做载气,通入TEGa作为Ga源,生长厚度为10nm的GaN量子垒层;2) Growth of GaN quantum barrier layer: Control the growth temperature of the reaction chamber to 800°C, turn off the In source, use N 2 and H 2 as carrier gas, and feed TEGa as Ga source, and grow a GaN quantum barrier layer with a thickness of 10nm;
InGaN量子阱层和GaN量子垒层重复层叠周期性生长,周期数为10。The InGaN quantum well layer and the GaN quantum barrier layer are repeatedly stacked and grown periodically, and the number of periods is 10.
S34.在多量子阱层5生长电子阻挡层6:S34. Growing an electron blocking layer 6 on the multiple quantum well layer 5:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,TMAl作为Al源,TMIn作为In源,依次交替生长3nm厚度的Al0.1Ga0.9N子层及2nm厚度的In0.3Ga0.7N子层,周期数为8。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200Torr, and NH 3 is introduced as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source, and alternately grow Al 0.1 Ga 0.9 N with a thickness of 3nm. The sublayer and the In 0.3 Ga 0.7 N sublayer with a thickness of 2nm have a period number of 8.
S35.在电子阻挡层6上沉积P型半导体层7:S35. Depositing a P-type semiconductor layer 7 on the electron blocking layer 6:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,CP2Mg作为P型掺杂剂,Mg的掺杂浓度为5×1018,生长厚度为200nm。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200 Torr, NH 3 is introduced as the N source, TMGa is used as the Ga source, CP 2 Mg is used as the P-type dopant, and the doping concentration of Mg is 5×10 18 , The growth thickness is 200nm.
实施例3Example 3
本实施例提供一种GaN基发光二极管外延片,包括依次设置的Si衬底1、缓冲层2及外延层,其中,外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层3、N型半导体层4、多量子阱层5、电子阻挡层6及P型半导体层7,缓冲层2包括沿外延生长方向依次沉积的AlN层21、Al1-xScxN层22及高温AliGa1-iN层23,高温AliGa1-iN层23中,i从0.15沿外延生长方向渐变降低为0。This embodiment provides a GaN-based light-emitting diode epitaxial wafer, including a Si substrate 1, a buffer layer 2, and an epitaxial layer arranged in sequence, wherein the epitaxial layer includes an undoped U-GaN layer 3 sequentially deposited along the epitaxial growth direction , N-type semiconductor layer 4, multiple quantum well layer 5, electron blocking layer 6 and P-type semiconductor layer 7, buffer layer 2 includes AlN layer 21, Al 1-x Sc x N layer 22 and high temperature In the Al i Ga 1-i N layer 23, in the high temperature Ali Ga 1-i N layer 23, i gradually decreases from 0.15 to 0 along the epitaxial growth direction.
Al1-xScxN层22中,x为0.15。In the Al 1-x Sc x N layer 22, x is 0.15.
高温AliGa1-iN层23的生长温度为850℃。The growth temperature of the high temperature Al i Ga 1-i N layer 23 is 850°C.
AlN层21的厚度为15nm,Al1-xScxN层22的厚度为35nm,高温AliGa1-iN层23的厚度为15nm。The thickness of the AlN layer 21 is 15 nm, the thickness of the Al 1-x Sc x N layer 22 is 35 nm, and the thickness of the high-temperature Al i Ga 1-i N layer 23 is 15 nm.
AlN层21及Al1-xScxN层22均采用磁控溅射法制得,高温AliGa1-iN层23采用MOCVD法制得。Both the AlN layer 21 and the Al 1-x Sc x N layer 22 are produced by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer 23 is produced by MOCVD.
电子阻挡层6包括周期性依次交替生长的Al0.1Ga0.9N子层及In0.3Ga0.7N子层,电子阻挡层6的周期数为8,厚度为40nm。The electron blocking layer 6 includes Al 0.1 Ga 0.9 N sub-layers and In 0.3 Ga 0.7 N sub-layers which are alternately grown periodically and sequentially. The number of periods of the electron blocking layer 6 is 8, and the thickness is 40 nm.
上述外延片的制备方法,包括:The preparation method of above-mentioned epitaxial wafer, comprises:
S10.提供Si衬底1;S10. providing a Si substrate 1;
S20.在Si衬底1上沉积缓冲层2,具体步骤如下:S20. Depositing a buffer layer 2 on the Si substrate 1, the specific steps are as follows:
S21.在Si衬底1上沉积AlN层21:S21. Depositing an AlN layer 21 on the Si substrate 1:
将Si衬底1放入磁控溅射设备中,沉积压力为5mTorr,沉积温度为300℃,以Ar作为载气,N2作为反应气,沉积电压为200V,溅射沉积15nm厚度的AlN层21。Put the Si substrate 1 into the magnetron sputtering equipment, the deposition pressure is 5mTorr, the deposition temperature is 300°C, Ar is used as the carrier gas, N2 is used as the reaction gas, the deposition voltage is 200V, and an AlN layer with a thickness of 15nm is deposited by sputtering twenty one.
S22.在AlN层21上沉积Al1-xScxN层22:S22. Depositing an Al 1-x Sc x N layer 22 on the AlN layer 21:
沉积压力为8mTorr,沉积温度为400℃,以Ar作为载气,N2作为反应气,沉积电压为300V,溅射靶材为ScAl合金靶材,溅射沉积35nm厚度的Al1-xScxN层22。The deposition pressure is 8mTorr, the deposition temperature is 400°C, Ar is used as the carrier gas, N 2 is used as the reaction gas, the deposition voltage is 300V, the sputtering target is ScAl alloy target, and Al 1-x Sc x with a thickness of 35nm is deposited by sputtering N layer 22.
S23.转入MOCVD设备中,在Al1-xScxN层22上沉积高温AliGa1-iN层23:S23. Transfer to MOCVD equipment, and deposit a high-temperature Al i Ga 1-i N layer 23 on the Al 1-x Sc x N layer 22:
通入N2做载气,通入NH3做N源,设置反应腔压力为400Torr,设置反应腔温度为850℃,通入TMGa作为Ga源,通入TMAl作为Al源,其中Al的流量从第一流量渐变降低至0,沉积15nm厚度的ALGaN层。Introduce N 2 as the carrier gas, NH 3 as the N source, set the pressure of the reaction chamber to 400 Torr, set the temperature of the reaction chamber to 850°C, inject TMGa as the Ga source, and inject TMAl as the Al source, where the flow rate of Al is from The first flow rate was ramped down to 0 and a 15nm thick ALGaN layer was deposited.
S30.在缓冲层2上沉积外延层,具体步骤如下:S30. Depositing an epitaxial layer on the buffer layer 2, the specific steps are as follows:
S31.在缓冲层2上沉积不掺杂的U-GaN层3:S31. Depositing an undoped U-GaN layer 3 on the buffer layer 2:
将生长温度控制在1100℃,生长压力控制在200Torr,通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为400nm的GaN层。The growth temperature is controlled at 1100°C, the growth pressure is controlled at 200Torr, NH 3 is introduced as the N source, N 2 and H 2 are used as the carrier gas, TMGa is used as the Ga source, and a GaN layer with a thickness of 400nm is grown.
S32.在不掺杂的U-GaN层3上沉积N型半导体层4:S32. Depositing an N-type semiconductor layer 4 on the undoped U-GaN layer 3:
将反应室的生长温度控制在1120℃,生长压力控制在200Torr;通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为2μm的GaN层,通入SiH4作为N型掺杂,Si掺杂浓度为5×1018 cm-3。Control the growth temperature of the reaction chamber at 1120°C and the growth pressure at 200 Torr; feed NH 3 as the N source, N 2 and H 2 as the carrier gas, TMGa as the Ga source, grow a GaN layer with a thickness of 2 μm, and feed SiH 4 As N-type doping, the Si doping concentration is 5×10 18 cm -3 .
S33.在N型半导体层4上沉积多量子阱层5:S33. Depositing a multi-quantum well layer 5 on the N-type semiconductor layer 4:
1)生长InGaN量子阱层:控制反应室的生长温度为700℃,载气为N2,通入NH3作为N源,TEGa作为Ga源,TMIn作为In源,生长厚度为3nm的InGaN量子阱层;1) Growth of InGaN quantum well layer: Control the growth temperature of the reaction chamber to 700°C, the carrier gas is N 2 , feed NH 3 as the N source, TEGa as the Ga source, TMIn as the In source, and grow an InGaN quantum well with a thickness of 3nm layer;
2)生长GaN量子垒层:控制反应室的生长温度为800℃,关闭In源,用N2和H2做载气,通入TEGa作为Ga源,生长厚度为10nm的GaN量子垒层;2) Growth of GaN quantum barrier layer: Control the growth temperature of the reaction chamber to 800°C, turn off the In source, use N 2 and H 2 as carrier gas, and feed TEGa as Ga source, and grow a GaN quantum barrier layer with a thickness of 10nm;
InGaN量子阱层和GaN量子垒层重复层叠周期性生长,周期数为10。The InGaN quantum well layer and the GaN quantum barrier layer are repeatedly stacked and grown periodically, and the number of periods is 10.
S34.在多量子阱层5生长电子阻挡层6:S34. Growing an electron blocking layer 6 on the multiple quantum well layer 5:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,TMAl作为Al源,TMIn作为In源,依次交替生长3nm厚度的Al0.1Ga0.9N子层及2nm厚度的In0.3Ga0.7N子层,周期数为8。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200Torr, and NH 3 is introduced as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source, and alternately grow Al 0.1 Ga 0.9 N with a thickness of 3nm. The sublayer and the In 0.3 Ga 0.7 N sublayer with a thickness of 2nm have a period number of 8.
S35.在电子阻挡层6上沉积P型半导体层7:S35. Depositing a P-type semiconductor layer 7 on the electron blocking layer 6:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,CP2Mg作为P型掺杂剂,Mg的掺杂浓度为5×1018,生长厚度为200nm。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200 Torr, NH 3 is introduced as the N source, TMGa is used as the Ga source, CP 2 Mg is used as the P-type dopant, and the doping concentration of Mg is 5×10 18 , The growth thickness is 200nm.
实施例4Example 4
本实施例提供一种GaN基发光二极管外延片,包括依次设置的Si衬底1、缓冲层2及外延层,其中,外延层包括沿外延生长方向依次沉积的不掺杂的U-GaN层3、N型半导体层4、多量子阱层5、电子阻挡层6及P型半导体层7,缓冲层2包括沿外延生长方向依次沉积的AlN层21、Al1-xScxN层22及高温AliGa1-iN层23,高温AliGa1-iN层23中,i从0.15沿外延生长方向渐变降低为0.01。This embodiment provides a GaN-based light-emitting diode epitaxial wafer, including a Si substrate 1, a buffer layer 2, and an epitaxial layer arranged in sequence, wherein the epitaxial layer includes an undoped U-GaN layer 3 sequentially deposited along the epitaxial growth direction , N-type semiconductor layer 4, multiple quantum well layer 5, electron blocking layer 6 and P-type semiconductor layer 7, buffer layer 2 includes AlN layer 21, Al 1-x Sc x N layer 22 and high temperature In the Al i Ga 1-i N layer 23, in the high-temperature Ali Ga 1-i N layer 23, i gradually decreases from 0.15 to 0.01 along the epitaxial growth direction.
Al1-xScxN层22中,x为0.3。In the Al 1-x Sc x N layer 22, x is 0.3.
高温AliGa1-iN层23的生长温度为900℃。The growth temperature of the high temperature Al i Ga 1-i N layer 23 is 900°C.
AlN层21的厚度为15nm,Al1-xScxN层22的厚度为35nm,高温AliGa1-iN层23的厚度为15nm。The thickness of the AlN layer 21 is 15 nm, the thickness of the Al 1-x Sc x N layer 22 is 35 nm, and the thickness of the high-temperature Al i Ga 1-i N layer 23 is 15 nm.
AlN层21及Al1-xScxN层22均采用磁控溅射法制得,高温AliGa1-iN层23采用MOCVD法制得。Both the AlN layer 21 and the Al 1-x Sc x N layer 22 are produced by magnetron sputtering, and the high-temperature Al i Ga 1-i N layer 23 is produced by MOCVD.
电子阻挡层6包括周期性依次交替生长的Al0.1Ga0.9N子层及In0.3Ga0.7N子层,电子阻挡层6的周期数为8,厚度为40nm。The electron blocking layer 6 includes Al 0.1 Ga 0.9 N sub-layers and In 0.3 Ga 0.7 N sub-layers which are alternately grown periodically and sequentially. The number of periods of the electron blocking layer 6 is 8, and the thickness is 40 nm.
参见图3及图4所示,上述外延片的制备方法,包括:Referring to Fig. 3 and shown in Fig. 4, the preparation method of above-mentioned epitaxial wafer comprises:
S10.提供Si衬底1;S10. providing a Si substrate 1;
S20.在Si衬底1上沉积缓冲层2,具体步骤如下:S20. Depositing a buffer layer 2 on the Si substrate 1, the specific steps are as follows:
S21.在Si衬底1上沉积AlN层21:S21. Depositing an AlN layer 21 on the Si substrate 1:
将Si衬底1放入磁控溅射设备中,沉积压力为5mTorr,沉积温度为300℃,以Ar作为载气,N2作为反应气,沉积电压为200V,溅射沉积15nm厚度的AlN层21。Put the Si substrate 1 into the magnetron sputtering equipment, the deposition pressure is 5mTorr, the deposition temperature is 300°C, Ar is used as the carrier gas, N2 is used as the reaction gas, the deposition voltage is 200V, and an AlN layer with a thickness of 15nm is deposited by sputtering twenty one.
S22.在AlN层21上沉积Al1-xScxN层22:S22. Depositing an Al 1-x Sc x N layer 22 on the AlN layer 21:
沉积压力为8mTorr,沉积温度为400℃,以Ar作为载气,N2作为反应气,沉积电压为300V,溅射靶材为ScAl合金靶材,溅射沉积35nm厚度的Al1-xScxN层22。The deposition pressure is 8mTorr, the deposition temperature is 400°C, Ar is used as the carrier gas, N 2 is used as the reaction gas, the deposition voltage is 300V, the sputtering target is ScAl alloy target, and Al 1-x Sc x with a thickness of 35nm is deposited by sputtering N layer 22.
S23.转入MOCVD设备中,在Al1-xScxN层22上沉积高温AliGa1-iN层23:S23. Transfer to MOCVD equipment, and deposit a high-temperature Al i Ga 1-i N layer 23 on the Al 1-x Sc x N layer 22:
通入N2做载气,通入NH3做N源,设置反应腔压力为400Torr,设置反应腔温度为900℃,通入TMGa作为Ga源,通入TMAl作为Al源,其中Al的流量从第一流量渐变降低至0,沉积15nm厚度的ALGaN层。Introduce N 2 as the carrier gas, NH 3 as the N source, set the reaction chamber pressure to 400 Torr, set the reaction chamber temperature to 900°C, feed TMGa as the Ga source, and TMAl as the Al source, where the flow rate of Al is from The first flow rate was ramped down to 0 and a 15nm thick ALGaN layer was deposited.
S30.在缓冲层2上沉积外延层,具体步骤如下:S30. Depositing an epitaxial layer on the buffer layer 2, the specific steps are as follows:
S31.在缓冲层2上沉积不掺杂的U-GaN层3:S31. Depositing an undoped U-GaN layer 3 on the buffer layer 2:
将生长温度控制在1100℃,生长压力控制在200Torr,通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为400nm的GaN层。The growth temperature is controlled at 1100°C, the growth pressure is controlled at 200Torr, NH 3 is introduced as the N source, N 2 and H 2 are used as the carrier gas, TMGa is used as the Ga source, and a GaN layer with a thickness of 400nm is grown.
S32.在不掺杂的U-GaN层3上沉积N型半导体层4:S32. Depositing an N-type semiconductor layer 4 on the undoped U-GaN layer 3:
将反应室的生长温度控制在1120℃,生长压力控制在200Torr;通入NH3作为N源,N2和H2做载气,TMGa作为Ga源,生长厚度为2μm的GaN层,通入SiH4作为N型掺杂,Si掺杂浓度为5×1018 cm-3。Control the growth temperature of the reaction chamber at 1120°C and the growth pressure at 200 Torr; feed NH 3 as the N source, N 2 and H 2 as the carrier gas, TMGa as the Ga source, grow a GaN layer with a thickness of 2 μm, and feed SiH 4 As N-type doping, the Si doping concentration is 5×10 18 cm -3 .
S33.在N型半导体层4上沉积多量子阱层5:S33. Depositing a multi-quantum well layer 5 on the N-type semiconductor layer 4:
1)生长InGaN量子阱层:控制反应室的生长温度为700℃,载气为N2,通入NH3作为N源,TEGa作为Ga源,TMIn作为In源,生长厚度为3nm的InGaN量子阱层;1) Growth of InGaN quantum well layer: Control the growth temperature of the reaction chamber to 700°C, the carrier gas is N 2 , feed NH 3 as the N source, TEGa as the Ga source, TMIn as the In source, and grow an InGaN quantum well with a thickness of 3nm layer;
2)生长GaN量子垒层:控制反应室的生长温度为800℃,关闭In源,用N2和H2做载气,通入TEGa作为Ga源,生长厚度为10nm的GaN量子垒层;2) Growth of GaN quantum barrier layer: Control the growth temperature of the reaction chamber to 800°C, turn off the In source, use N 2 and H 2 as carrier gas, and feed TEGa as Ga source, and grow a GaN quantum barrier layer with a thickness of 10nm;
InGaN量子阱层和GaN量子垒层重复层叠周期性生长,周期数为10。The InGaN quantum well layer and the GaN quantum barrier layer are repeatedly stacked and grown periodically, and the number of periods is 10.
S34.在多量子阱层5生长电子阻挡层6:S34. Growing an electron blocking layer 6 on the multiple quantum well layer 5:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,TMAl作为Al源,TMIn作为In源,依次交替生长3nm厚度的Al0.1Ga0.9N子层及2nm厚度的In0.3Ga0.7N子层,周期数为8。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200Torr, and NH 3 is introduced as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source, and alternately grow Al 0.1 Ga 0.9 N with a thickness of 3nm. The sublayer and the In 0.3 Ga 0.7 N sublayer with a thickness of 2nm have a period number of 8.
S35.在电子阻挡层6上沉积P型半导体层7:S35. Depositing a P-type semiconductor layer 7 on the electron blocking layer 6:
控制反应室的生长温度为900℃,生长压力控制在200Torr,通入NH3作为N源,TMGa作为Ga源,CP2Mg作为P型掺杂剂,Mg的掺杂浓度为5×1018,生长厚度为200nm。The growth temperature of the reaction chamber is controlled at 900°C, the growth pressure is controlled at 200 Torr, NH 3 is introduced as the N source, TMGa is used as the Ga source, CP 2 Mg is used as the P-type dopant, and the doping concentration of Mg is 5×10 18 , The growth thickness is 200nm.
对比例1Comparative example 1
本对比例与实施例1的不同之处在于:本对比例的高温AliGa1-iN层中,i在外延生长方向上均为从0.15。The difference between this comparative example and Example 1 is that in the high-temperature Al i Ga 1-i N layer of this comparative example, i is from 0.15 in the direction of epitaxial growth.
对比例2Comparative example 2
本对比例与实施例1的不同之处在于:本对比例的Al1-xScxN层中,x为0。The difference between this comparative example and Example 1 is: in the Al 1-x Sc x N layer of this comparative example, x is 0.
对比例3Comparative example 3
本对比例与实施例1的不同之处在于,本对比例中的缓冲层不设置Al1-xScxN层及高温AliGa1-iN层。The difference between this comparative example and Example 1 is that the buffer layer in this comparative example does not have an Al 1-x Sc x N layer and a high-temperature Al i Ga 1-i N layer.
对比例4Comparative example 4
本对比例与实施例1的不同之处在于,本对比例中的缓冲层为GaN缓冲层。The difference between this comparative example and Embodiment 1 is that the buffer layer in this comparative example is a GaN buffer layer.
对实施例1~4及对比例1~4所制得的外延片进行抗静电能力测试及表面粗糙度测试,测试结果如下:Antistatic ability test and surface roughness test are carried out to the epitaxial wafer that embodiment 1~4 and comparative example 1~4 make, test result is as follows:
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the technology of this patent Without departing from the scope of the technical solution of the present invention, personnel can use the technical content of the above prompts to make some changes or modify them into equivalent embodiments with equivalent changes. In essence, any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the solutions of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211269718.1A CN115347096B (en) | 2022-10-18 | 2022-10-18 | GaN-based light-emitting diode epitaxial wafer and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211269718.1A CN115347096B (en) | 2022-10-18 | 2022-10-18 | GaN-based light-emitting diode epitaxial wafer and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115347096A CN115347096A (en) | 2022-11-15 |
| CN115347096B true CN115347096B (en) | 2023-08-22 |
Family
ID=83957142
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211269718.1A Active CN115347096B (en) | 2022-10-18 | 2022-10-18 | GaN-based light-emitting diode epitaxial wafer and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115347096B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115832135B (en) * | 2023-02-14 | 2023-05-02 | 江西兆驰半导体有限公司 | Silicon-based light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
| CN116053375A (en) * | 2023-02-28 | 2023-05-02 | 中国科学院半导体研究所 | Multilayer quantum well deep ultraviolet light-emitting diode and preparation method thereof |
| CN117276336B (en) * | 2023-11-22 | 2024-02-20 | 江西兆驰半导体有限公司 | Epitaxial structure of HEMT and preparation method thereof |
| CN117613167B (en) * | 2024-01-24 | 2024-03-29 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode |
| CN120529710A (en) * | 2025-07-22 | 2025-08-22 | 南昌凯捷半导体科技有限公司 | LED epitaxial wafer for improving light efficiency maintenance rate and preparation method thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103633213A (en) * | 2012-08-22 | 2014-03-12 | 财团法人工业技术研究院 | Nitride semiconductor structure |
| CN107958900A (en) * | 2017-12-08 | 2018-04-24 | 广东工业大学 | A kind of light emitting diode of vertical stratification |
| CN109103312A (en) * | 2018-07-26 | 2018-12-28 | 华灿光电(浙江)有限公司 | A kind of gallium nitride based LED epitaxial slice and preparation method thereof |
| CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
| CN114937721A (en) * | 2022-07-21 | 2022-08-23 | 江西兆驰半导体有限公司 | A kind of silicon substrate GaN-based LED epitaxial wafer and preparation method thereof |
-
2022
- 2022-10-18 CN CN202211269718.1A patent/CN115347096B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103633213A (en) * | 2012-08-22 | 2014-03-12 | 财团法人工业技术研究院 | Nitride semiconductor structure |
| CN107958900A (en) * | 2017-12-08 | 2018-04-24 | 广东工业大学 | A kind of light emitting diode of vertical stratification |
| CN109103312A (en) * | 2018-07-26 | 2018-12-28 | 华灿光电(浙江)有限公司 | A kind of gallium nitride based LED epitaxial slice and preparation method thereof |
| CN114639760A (en) * | 2022-05-19 | 2022-06-17 | 江西兆驰半导体有限公司 | A kind of light-emitting diode epitaxial wafer and preparation method thereof |
| CN114937721A (en) * | 2022-07-21 | 2022-08-23 | 江西兆驰半导体有限公司 | A kind of silicon substrate GaN-based LED epitaxial wafer and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115347096A (en) | 2022-11-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115347096B (en) | GaN-based light-emitting diode epitaxial wafer and preparation method thereof | |
| CN114975704B (en) | LED epitaxial wafer and preparation method thereof | |
| CN116130569B (en) | High-efficiency light-emitting diode and preparation method thereof | |
| CN115472720B (en) | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode | |
| CN116230825B (en) | LED epitaxial wafer with hole injection layer regulated and controlled by hydrogen impurities and preparation method thereof | |
| CN116845153A (en) | High-light-efficiency light-emitting diode epitaxial wafer, preparation method and LED | |
| CN117810324A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
| CN116387426A (en) | Light-emitting diode epitaxial wafer and preparation method thereof | |
| CN116230823A (en) | A high-efficiency light-emitting diode epitaxial wafer and its preparation method | |
| CN117476827A (en) | Epitaxial wafer of light-emitting diode with low contact resistance and preparation method thereof | |
| CN116364825A (en) | Composite buffer layer, preparation method thereof, epitaxial wafer and light-emitting diode | |
| CN116435424A (en) | Light-emitting diode epitaxial wafer with high radiation recombination efficiency and preparation method thereof | |
| CN110364598A (en) | Light-emitting diode epitaxial wafer and manufacturing method thereof | |
| CN116682909B (en) | LED epitaxial wafer, preparation method and LED chip | |
| CN116344684B (en) | A kind of light-emitting diode preparation method and diode | |
| CN116504894B (en) | GaN-based LED epitaxial wafer and its growth process, LED | |
| CN116487497B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
| CN116154072B (en) | LED epitaxial wafer for regulating and controlling quantum well carbon impurities and its preparation method, LED | |
| CN109473521B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
| CN116544327A (en) | Light-emitting diode and preparation method thereof | |
| CN116646437A (en) | Sapphire substrate LED epitaxial wafer and growth method thereof, LED | |
| CN116864587A (en) | Gallium nitride light-emitting diode epitaxial structure, LED and preparation method thereof | |
| CN109192827B (en) | A kind of gallium nitride-based light-emitting diode epitaxial wafer and its growth method | |
| CN116598395B (en) | A kind of light-emitting diode and preparation method thereof | |
| CN117712253B (en) | A deep ultraviolet light emitting diode and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |