[go: up one dir, main page]

CN115378420A - Level conversion circuit, voltage measuring device and voltage measuring method - Google Patents

Level conversion circuit, voltage measuring device and voltage measuring method Download PDF

Info

Publication number
CN115378420A
CN115378420A CN202210813345.3A CN202210813345A CN115378420A CN 115378420 A CN115378420 A CN 115378420A CN 202210813345 A CN202210813345 A CN 202210813345A CN 115378420 A CN115378420 A CN 115378420A
Authority
CN
China
Prior art keywords
voltage
transistor
unit
level conversion
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210813345.3A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Biren Intelligent Technology Co Ltd
Original Assignee
Shanghai Biren Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biren Intelligent Technology Co Ltd filed Critical Shanghai Biren Intelligent Technology Co Ltd
Priority to CN202210813345.3A priority Critical patent/CN115378420A/en
Publication of CN115378420A publication Critical patent/CN115378420A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is DC
    • G05F3/10Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

A level conversion circuit, a voltage measurement device and a voltage measurement method are provided. The level shift circuit includes: the voltage-controlled power supply comprises a current mirror circuit unit, an output circuit unit, a voltage dividing circuit unit, an output end and an input end, wherein the input end is used for receiving input voltage, the output end is used for providing output voltage, the current mirror circuit unit comprises a first end connected with first power supply voltage, a second end connected with the output end and a third end connected with the voltage dividing circuit unit, the current mirror circuit unit is configured to provide mirror current at the second end and the third end, the output circuit unit is connected between the second power supply voltage and the output end and receives the input voltage from the input end, the output circuit unit is configured to provide the output voltage at the output end based on control of the second power supply voltage under control of the input voltage, and the voltage dividing circuit unit is connected between the second power supply voltage and the third end of the current mirror circuit unit. The method can improve the accuracy of level conversion.

Description

电平转换电路、电压测量装置和电压测量方法Level conversion circuit, voltage measuring device and voltage measuring method

技术领域technical field

本公开的实施例涉及一种电平转换电路、电压测量装置和电压测量方法。Embodiments of the present disclosure relate to a level conversion circuit, a voltage measurement device and a voltage measurement method.

背景技术Background technique

随着半导体工艺不断发展下,芯片内部集成了多个电路模块,这些电路模块有多个电压域。为了满足多个电路模块的电平需求,往往需要进行电平转换,并且为了保证芯片处于正常工作环境下,需要监测芯片中各个重要节点电压,以保证芯片处于正常工作状态。With the continuous development of semiconductor technology, multiple circuit modules are integrated inside the chip, and these circuit modules have multiple voltage domains. In order to meet the level requirements of multiple circuit modules, level conversion is often required, and in order to ensure that the chip is in a normal working environment, it is necessary to monitor the voltage of each important node in the chip to ensure that the chip is in a normal working state.

发明内容Contents of the invention

本公开至少一个实施例提供一种电平转换电路,包括:电流镜电路单元、输出电路单元、分压电路单元、输出端和输入端,输入端用于接收输入电压,输出端用于提供输出电压,电流镜电路单元包括连接第一电源电压的第一端、连接输出端的第二端和连接分压电路单元的第三端,电流镜电路单元配置为在第二端和第三端提供镜像电流,输出电路单元连接在第二电源电压和输出端之间,且从输入端接收输入电压,输出电路单元配置为在输入电压的控制下基于第二电源电压的控制在输出端提供输出电压,分压电路电压连接在第二电源电压和电流镜电路单元的第三端之间。At least one embodiment of the present disclosure provides a level conversion circuit, including: a current mirror circuit unit, an output circuit unit, a voltage divider circuit unit, an output terminal and an input terminal, the input terminal is used to receive an input voltage, and the output terminal is used to provide an output Voltage, the current mirror circuit unit includes a first end connected to the first power supply voltage, a second end connected to the output end and a third end connected to the voltage dividing circuit unit, the current mirror circuit unit is configured to provide a mirror image at the second end and the third end current, the output circuit unit is connected between the second supply voltage and the output terminal, and receives the input voltage from the input terminal, the output circuit unit is configured to provide an output voltage at the output terminal based on the control of the second supply voltage under the control of the input voltage, The voltage dividing circuit is connected between the second power supply voltage and the third terminal of the current mirror circuit unit.

例如,在本公开一实施例提供的电平转换电路中,电流镜电路单元包括第一晶体管和第二晶体管,所述第一晶体管的栅极与所述第二晶体管的栅极连接,所述第一晶体管的栅极和所述第一晶体管的第一极连接,且共同连接至所述分压电路单元,所述第一晶体管的第二极和所述第一端连接,所述第二晶体管的第二极和所述第一端连接,所述第二晶体管的第一极和所述第二端连接,第一晶体管和所述第二晶体管的规格相同。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the current mirror circuit unit includes a first transistor and a second transistor, the gate of the first transistor is connected to the gate of the second transistor, and the The gate of the first transistor is connected to the first pole of the first transistor, and is commonly connected to the voltage dividing circuit unit, the second pole of the first transistor is connected to the first terminal, and the second The second pole of the transistor is connected to the first terminal, the first pole of the second transistor is connected to the second terminal, and the specifications of the first transistor and the second transistor are the same.

例如,在本公开一实施例提供的电平转换电路中,输出电路单元包括第三晶体管,所述第三晶体管的栅极连接所述输入端以接收所述输入电压,所述第三晶体管的第二极连接所述输出端,所述第三晶体管的第一极连接所述第二电源电压。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the output circuit unit includes a third transistor, the gate of the third transistor is connected to the input terminal to receive the input voltage, and the third transistor The second pole is connected to the output terminal, and the first pole of the third transistor is connected to the second power supply voltage.

例如,在本公开一实施例提供的电平转换电路中,分压电路单元包括第四晶体管,第四晶体管的栅极与所述第四晶体管的第一极共同连接到所述第二电源电压,所述第四晶体管的第二极与所述电流镜电路单元的第三端连接。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the voltage dividing circuit unit includes a fourth transistor, and the gate of the fourth transistor and the first pole of the fourth transistor are commonly connected to the second power supply voltage , the second pole of the fourth transistor is connected to the third terminal of the current mirror circuit unit.

例如,在本公开一实施例提供的电平转换电路中,第一晶体管和所述第四晶体管规格相同。For example, in the level conversion circuit provided by an embodiment of the present disclosure, the specifications of the first transistor and the fourth transistor are the same.

例如,在本公开一实施例提供的电平转换电路中,还包括:参考电压产生单元,配置为提供参考电压,第一电源电压和所述第二电源电压之一为所述参考电压。For example, the level conversion circuit provided in an embodiment of the present disclosure further includes: a reference voltage generating unit configured to provide a reference voltage, one of the first power supply voltage and the second power supply voltage being the reference voltage.

例如,在本公开一实施例提供的电平转换电路中,参考电压产生单元包括能隙电压基准电路,其中,所述能隙电压基准电路提供所述参考电压。For example, in the level conversion circuit provided by an embodiment of the present disclosure, the reference voltage generation unit includes a bandgap voltage reference circuit, wherein the bandgap voltage reference circuit provides the reference voltage.

例如,在本公开一实施例提供的电平转换电路中,所述参考电压产生单元还包括单位增益缓冲器,其中,所述单元增益缓冲器的第一端与所述能隙电压基准电路连接,所述单元增益缓冲器的第二端与所述电流镜电路单元的第一端连接。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the reference voltage generating unit further includes a unity gain buffer, wherein the first end of the unit gain buffer is connected to the bandgap voltage reference circuit , the second end of the unit gain buffer is connected to the first end of the current mirror circuit unit.

例如,在本公开一实施例提供的电平转换电路中,第一电源电压为所述参考电压,所述电流镜电路单元、所述输出电路单元和所述分压电路单元各自包括至少一个晶体管,所述至少一个晶体管每个为P型金属氧化物半导体场效应管。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the first power supply voltage is the reference voltage, and each of the current mirror circuit unit, the output circuit unit and the voltage divider circuit unit includes at least one transistor , each of the at least one transistor is a P-type metal oxide semiconductor field effect transistor.

例如,在本公开一实施例提供的电平转换电路中,第二电源电压为所述参考电压,所述电流镜电路单元、所述输出电路单元和所述分压电路单元各自包括至少一个晶体管,所述至少一个晶体管每个为N型金属氧化物半导体场效应管。For example, in the level conversion circuit provided in an embodiment of the present disclosure, the second power supply voltage is the reference voltage, and each of the current mirror circuit unit, the output circuit unit and the voltage divider circuit unit includes at least one transistor , each of the at least one transistor is an N-type metal oxide semiconductor field effect transistor.

本公开至少一个实施例提供一种电压测量装置,包括:测量电压生成单元和信号处理单元,测量电压生成单元包括上述任一实施例所述的电平转换电路、输入电压接收端和测量电压输出端,所述输入电压接收端用于接收来自输入电压信号端的输入电压,所述测量电压输出端与所述信号处理单元连接,所述电平转换电路与所述输入电压接收端连接,且配置为接收所述输入电压,并且向所述测量电压输出端提供输出电压,所述信号处理单元包括第一信号接收端和第二信号接收端,所述第一信号接收端与所述测量电压输出端连接以接收所述输出电压,所述第二信号接收端用于接收参考电压,所述信号处理单元配置为基于所述参考电压,输出所述输出电压的测量结果。At least one embodiment of the present disclosure provides a voltage measurement device, including: a measurement voltage generation unit and a signal processing unit, and the measurement voltage generation unit includes the level conversion circuit described in any of the above embodiments, an input voltage receiving terminal and a measurement voltage output Terminal, the input voltage receiving terminal is used to receive the input voltage from the input voltage signal terminal, the measured voltage output terminal is connected to the signal processing unit, the level conversion circuit is connected to the input voltage receiving terminal, and configured To receive the input voltage and provide an output voltage to the measurement voltage output terminal, the signal processing unit includes a first signal receiving terminal and a second signal receiving terminal, the first signal receiving terminal is connected to the measurement voltage output terminal The terminal is connected to receive the output voltage, the second signal receiving terminal is used to receive a reference voltage, and the signal processing unit is configured to output a measurement result of the output voltage based on the reference voltage.

例如,在本公开一实施例提供的电压测量装置中,所述测量电压生成单元包括第一电平转换电路和第二电平转换电路,所述测量电压生成单元还包括第一开关单元、第二开关单元和第三开关单元,所述第一电平转换电路通过所述第一开关单元与所述测量电压输出端连接,所述第二电平转换电路通过所述第二开关单元与所述测量电压输出端连接,所述测量电压输出端还通过所述第三开关单元连接所述输入电压信号端,第一电平转换电路和所述第二电平转换电路还接收所述参考电压,所述第一电平转换电路连接的所述第一电源电压为所述参考电压,所述第二电平转换电路连接的所述第二电源电压为所述参考电压。For example, in the voltage measurement device provided in an embodiment of the present disclosure, the measurement voltage generating unit includes a first level conversion circuit and a second level conversion circuit, and the measurement voltage generation unit further includes a first switch unit, a second Two switch units and a third switch unit, the first level conversion circuit is connected to the measurement voltage output terminal through the first switch unit, and the second level conversion circuit is connected to the measured voltage output terminal through the second switch unit The measurement voltage output terminal is connected, the measurement voltage output terminal is also connected to the input voltage signal terminal through the third switch unit, and the first level conversion circuit and the second level conversion circuit also receive the reference voltage The first power supply voltage connected to the first level conversion circuit is the reference voltage, and the second power supply voltage connected to the second level conversion circuit is the reference voltage.

例如,在本公开一实施例提供的电压测量装置中,第一开关单元、所述第二开关单元和所述第三开关单元配置为响应控制信号,在所述输入电压在所述信号处理单元的电压测量范围内的情形中,所述控制信号用于控制所述第一开关单元断开所述测量电压输出端与所述第一电平转换电路的连接、所述第二开关单元断开所述第二电平转换电路与所述测量电压输出端的连接以及所述第三开关单元导通所述输入电压信号端与所述测量电压输出端;在所述输入电压小于所述信号处理单元的电压测量范围的最小值的情形中,所述控制信号用于控制所述第一开关单元导通所述测量电压输出端与所述第一电平转换电路、所述第二开关单元断开所述第二电平转换电路与所述测量电压输出端的连接以及所述第三开关单元断开所述输入电压信号端与所述测量电压输出端的连接;在所述输入电压大于所述信号处理单元的电压测量范围的最大值的情形中,所述控制信号用于控制所述第一开关单元断开所述测量电压输出端与所述第一电平转换电路的连接、所述第二开关单元导通所述第二电平转换电路与所述测量电压输出端以及所述第三开关单元断开所述输入电压信号端与所述测量电压输出端的连接。For example, in the voltage measuring device provided in an embodiment of the present disclosure, the first switch unit, the second switch unit and the third switch unit are configured to respond to a control signal, and when the input voltage is in the signal processing unit In the case of the voltage measurement range, the control signal is used to control the first switch unit to disconnect the measured voltage output terminal from the first level conversion circuit, and the second switch unit to disconnect The second level conversion circuit is connected to the measurement voltage output terminal and the third switch unit conducts the input voltage signal terminal and the measurement voltage output terminal; when the input voltage is lower than the signal processing unit In the case of the minimum value of the voltage measurement range, the control signal is used to control the first switch unit to turn on the measurement voltage output terminal and disconnect the first level conversion circuit and the second switch unit The second level conversion circuit is connected to the measurement voltage output terminal and the third switch unit is disconnected from the input voltage signal terminal to the measurement voltage output terminal; when the input voltage is greater than the signal processing In the case of the maximum value of the voltage measurement range of the unit, the control signal is used to control the first switch unit to disconnect the connection between the measured voltage output terminal and the first level conversion circuit, and the second switch The unit turns on the second level conversion circuit and the measurement voltage output terminal, and the third switch unit disconnects the connection between the input voltage signal terminal and the measurement voltage output terminal.

例如,在本公开一实施例提供的电压测量装置中,信号处理单元包括数模转换单元。For example, in the voltage measurement device provided by an embodiment of the present disclosure, the signal processing unit includes a digital-to-analog conversion unit.

本公开至少一个实施例提供一种电压测量方法,应用于上述实施例提供的电压测量装置,所述电压测量方法包括:响应于所述输入电压接收端接收所述输入电压,比较所述输入电压和所述信号处理单元的电压测量范围,获得比较结果;基于所述比较结果,生成所述控制信号;根据所述控制信号,控制所述第一开关单元、所述第二开关单元和所述第三开关单元的断开或者闭合;以及由所述信号处理单元对所述测量电压输出端提供的输出电压进行测量,并且输出测量结果。At least one embodiment of the present disclosure provides a voltage measurement method, which is applied to the voltage measurement device provided in the above embodiment, and the voltage measurement method includes: responding to the input voltage receiving end receiving the input voltage, comparing the input voltage and the voltage measurement range of the signal processing unit to obtain a comparison result; based on the comparison result, generate the control signal; according to the control signal, control the first switch unit, the second switch unit and the Opening or closing of the third switch unit; and measuring the output voltage provided by the measurement voltage output terminal by the signal processing unit, and outputting a measurement result.

附图说明Description of drawings

为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。In order to illustrate the technical solutions of the embodiments of the present disclosure more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present disclosure, rather than limiting the present disclosure .

图1示出了本公开至少一实施例提供的一种电平转换电路的框图;FIG. 1 shows a block diagram of a level conversion circuit provided by at least one embodiment of the present disclosure;

图2示出了本公开至少一实施例提供的一种电平转换电路的电路结构;FIG. 2 shows a circuit structure of a level conversion circuit provided by at least one embodiment of the present disclosure;

图3示出了本公开至少一实施例提供的一种电平转换电路的电路结构;FIG. 3 shows a circuit structure of a level conversion circuit provided by at least one embodiment of the present disclosure;

图4示出了本公开至少一个实施例提供的电压测量装置的示意性框图;Fig. 4 shows a schematic block diagram of a voltage measuring device provided by at least one embodiment of the present disclosure;

图5示出了本公开至少一个实施例提供的电压测量装置的电路结构的示意图;以及Fig. 5 shows a schematic diagram of a circuit structure of a voltage measurement device provided by at least one embodiment of the present disclosure; and

图6示出了本公开至少一个实施例提供的一种电压测量方法的流程图。Fig. 6 shows a flowchart of a voltage measurement method provided by at least one embodiment of the present disclosure.

具体实施方式Detailed ways

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings of the embodiments of the present disclosure. Apparently, the described embodiments are some of the embodiments of the present disclosure, not all of them. Based on the described embodiments of the present disclosure, all other embodiments obtained by persons of ordinary skill in the art without creative effort fall within the protection scope of the present disclosure.

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by those skilled in the art to which the present disclosure belongs. "First", "second" and similar words used in the present disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components. Likewise, words like "a", "an" or "the" do not denote a limitation of quantity, but mean that there is at least one. "Comprising" or "comprising" and similar words mean that the elements or items appearing before the word include the elements or items listed after the word and their equivalents, without excluding other elements or items. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up", "Down", "Left", "Right" and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.

芯片中的多个电路模块之间经常出现电压域不一样的情况。例如,各个电路模块在通过总线进行通讯时,接在总线上的电路模块有使用3V电压域的,也有使用5V电压域的。电平转换电路在不同电压域的电路模块之间能够实现高电平与低电平之间的转换,这样,电压域不同的模块电路之间便能更好地进行通讯了。不仅如此,电平转换电路还能实现阻抗的转换;甚至电平转换电路还有一定的隔离和滤波的作用。因此,电平转换单元在芯片中起着非常重要的作用。但是,由于温度,电源电压,工艺等误差等因素的影响,电平转换单元的转换精度较低。Different voltage domains often appear between multiple circuit modules in a chip. For example, when each circuit module communicates through the bus, some of the circuit modules connected to the bus use a 3V voltage domain, and some use a 5V voltage domain. The level conversion circuit can realize the conversion between high level and low level between circuit modules in different voltage domains, so that the module circuits in different voltage domains can communicate better. Not only that, the level conversion circuit can also realize the conversion of impedance; even the level conversion circuit has certain isolation and filtering functions. Therefore, the level conversion unit plays a very important role in the chip. However, due to the influence of factors such as temperature, power supply voltage, and process errors, the conversion accuracy of the level conversion unit is relatively low.

本公开至少一个实施例提供一种电平转换电路、电压测量装置和电压测量方法。该电平转换电路方法包括:电流镜电路单元、输出电路单元、分压电路单元、输出端和输入端,输入端用于接收输入电压,输出端用于提供输出电压,电流镜电路单元包括连接第一电源电压的第一端、连接输出端的第二端和连接分压电路单元的第三端,电流镜电路单元配置为在第二端和第三端提供镜像电流,输出电路单元连接在第二电源电压和输出端之间,且从输入端接收输入电压,输出电路单元配置为在输入电压的控制下基于第二电源电压的控制在输出端提供输出电压,分压电路电压连接在第二电源电压和电流镜电路单元的第三端之间。该方法可以提高电平转换的精度。At least one embodiment of the present disclosure provides a level conversion circuit, a voltage measurement device and a voltage measurement method. The level conversion circuit method includes: a current mirror circuit unit, an output circuit unit, a voltage dividing circuit unit, an output terminal and an input terminal, the input terminal is used to receive the input voltage, the output terminal is used to provide the output voltage, and the current mirror circuit unit includes a connection The first terminal of the first supply voltage, the second terminal connected to the output terminal and the third terminal connected to the voltage dividing circuit unit, the current mirror circuit unit is configured to provide mirror current at the second terminal and the third terminal, and the output circuit unit is connected to the second terminal. Between the two power supply voltages and the output terminal, and receiving the input voltage from the input terminal, the output circuit unit is configured to provide an output voltage at the output terminal based on the control of the second power supply voltage under the control of the input voltage, and the voltage divider circuit is connected to the second Between the supply voltage and the third terminal of the current mirror circuit unit. This method can improve the precision of level conversion.

本公开至少一个实施例提供一种电压测量装置,包括:测量电压生成单元和信号处理单元,测量电压生成单元包括上述任一实施例的电平转换电路、输入电压接收端和测量电压输出端,输入电压接收端用于接收来自输入电压信号端的输入电压,测量电压输出端与信号处理单元连接,电平转换电路与输入电压接收端连接,且配置为接收输入电压,并且向测量电压输出端提供输出电压,信号处理单元包括第一信号接收端和第二信号接收端,第一信号接收端与测量电压输出端连接以接收输出电压,第二信号接收端用于接收参考电压,信号处理单元配置为基于参考电压,输出该输出电压的测量结果。该电压测量装置能够提高信号处理单元的电压测量范围。At least one embodiment of the present disclosure provides a voltage measurement device, including: a measurement voltage generation unit and a signal processing unit, the measurement voltage generation unit includes the level conversion circuit of any of the above embodiments, an input voltage receiving terminal and a measurement voltage output terminal, The input voltage receiving end is used to receive the input voltage from the input voltage signal end, the measuring voltage output end is connected to the signal processing unit, the level conversion circuit is connected to the input voltage receiving end, and is configured to receive the input voltage, and provide the measuring voltage output end Output voltage, the signal processing unit includes a first signal receiving end and a second signal receiving end, the first signal receiving end is connected to the measurement voltage output end to receive the output voltage, the second signal receiving end is used to receive the reference voltage, the signal processing unit is configured Based on the reference voltage, the measurement result of the output voltage is output. The voltage measurement device can increase the voltage measurement range of the signal processing unit.

图1示出了本公开至少一实施例提供的一种电平转换电路100的框图。Fig. 1 shows a block diagram of a level conversion circuit 100 provided by at least one embodiment of the present disclosure.

如图1所示,电平转换电路100包括电流镜电路单元101、分压电路单元102、输出电路单元103、输出端Pout和输入端Pin。As shown in FIG. 1 , the level conversion circuit 100 includes a current mirror circuit unit 101 , a voltage dividing circuit unit 102 , an output circuit unit 103 , an output terminal Pout and an input terminal Pin.

输入端Pin用于接收输入电压Vin,输出端Pout用于提供输出电压Vout。The input terminal Pin is used to receive the input voltage Vin, and the output terminal Pout is used to provide the output voltage Vout.

电流镜电路单元101包括连接第一电源电压V1的第一端P1、连接输出端Pout的第二端P2和连接分压电路单元102的第三端P3。电流镜电路单元101配置为在第二端P2和第三端P3提供镜像电流。The current mirror circuit unit 101 includes a first terminal P1 connected to the first power supply voltage V1 , a second terminal P2 connected to the output terminal Pout and a third terminal P3 connected to the voltage divider circuit unit 102 . The current mirror circuit unit 101 is configured to provide a mirror current at the second terminal P2 and the third terminal P3.

分压电路电压102连接在第二电源电压V2和电流镜电路单元101的第三端P3之间。The voltage divider circuit 102 is connected between the second power supply voltage V2 and the third terminal P3 of the current mirror circuit unit 101 .

输出电路单元103连接在第二电源电压V2和输出端Pout之间,且从输入端Pin接收输入电压Vin。输出电路单元103配置为在输入电压Vin的控制下基于第二电源电压V2的控制在输出端Pout提供输出电压Vout。The output circuit unit 103 is connected between the second power supply voltage V2 and the output terminal Pout, and receives the input voltage Vin from the input terminal Pin. The output circuit unit 103 is configured to provide the output voltage Vout at the output terminal Pout based on the control of the second power supply voltage V2 under the control of the input voltage Vin.

该电平转换电路通过电流镜电路单元来镜像电流,使得流过分压电路单元102和输出电路单元103的电流相同,从而减小了温度、工艺等的误差影响,有效的提高电平转换精度。The level conversion circuit mirrors the current through the current mirror circuit unit, so that the current flowing through the voltage divider circuit unit 102 and the output circuit unit 103 are the same, thereby reducing the influence of errors such as temperature and process, and effectively improving the level conversion accuracy.

图2示出了本公开至少一实施例提供的一种电平转换电路100的电路结构200。FIG. 2 shows a circuit structure 200 of a level conversion circuit 100 provided by at least one embodiment of the present disclosure.

如图2所示,在电路结构200中,电流镜电路单元101包括第一晶体管M1和第二晶体管M2。第一晶体管M1和第二晶体管M2的规格相同。As shown in FIG. 2 , in the circuit structure 200 , the current mirror circuit unit 101 includes a first transistor M1 and a second transistor M2 . The specifications of the first transistor M1 and the second transistor M2 are the same.

在本公开的实施例中,规格相同例如是指两个晶体管的沟道长宽比、阈值电压等物理参数均相同。例如,两个晶体管可以是同一型号的金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。例如,第一晶体管M1和第二晶体管M2的沟道长宽比、阈值电压等物理参数均相同。例如,第一晶体管M1和第二晶体管M2可以均为P型金属氧化物半导体场效应管(以下简称P型管)或者N型金属氧化物半导体场效应管(以下简称N型管)。In the embodiments of the present disclosure, the same specification means, for example, that the two transistors have the same physical parameters such as channel aspect ratio and threshold voltage. For example, the two transistors may be Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) of the same type. For example, physical parameters such as channel aspect ratio and threshold voltage of the first transistor M1 and the second transistor M2 are the same. For example, the first transistor M1 and the second transistor M2 may both be P-type MOSFETs (hereinafter referred to as P-type transistors) or N-type metal-oxide-semiconductor field-effect transistors (hereinafter referred to as N-type transistors).

如图2所示,在电路结构200中,第一晶体管M1的栅极Gate与第二晶体管M2的栅极Gate连接,第一晶体管的栅极M1和第一晶体管M1的第一极连接,且共同连接至分压电路单元102,第一晶体管M1的第二极和第一端P1连接。第二晶体管M2的第二极和第一端P1连接,第二晶体管M2的第一极和第二端P2连接。第一端P1连接第一电源电压V1。As shown in FIG. 2, in the circuit structure 200, the gate Gate of the first transistor M1 is connected to the gate Gate of the second transistor M2, the gate M1 of the first transistor is connected to the first pole of the first transistor M1, and Commonly connected to the voltage dividing circuit unit 102, the second pole of the first transistor M1 is connected to the first terminal P1. The second pole of the second transistor M2 is connected to the first terminal P1, and the first pole of the second transistor M2 is connected to the second terminal P2. The first end P1 is connected to the first power supply voltage V1.

例如,第一晶体管M1为P型管,第一晶体管M1的第一极为P型管的漏极,第一晶体管M1的第二极为P型管的源极。如图2所示,P型管的栅极和漏极连接在一起构成二极管的形式,并且P型管的栅极和漏极连接在一起后通过第三端共同连接至分压电路单元102,P型管的源极和第一端P1连接。For example, the first transistor M1 is a P-type transistor, a first pole of the first transistor M1 is a drain of the P-type transistor, and a second pole of the first transistor M1 is a source of the P-type transistor. As shown in Figure 2, the gate and drain of the P-type tube are connected together to form a diode, and the gate and drain of the P-type tube are connected together and then connected to the voltage divider circuit unit 102 through the third terminal. The source of the P-type tube is connected to the first terminal P1.

第一晶体管M1的栅极和漏极连接在一起,并且第一晶体管M1的栅极与第二晶体管M2的栅极连接在一起,构成电流镜结构。The gate and drain of the first transistor M1 are connected together, and the gate of the first transistor M1 and the gate of the second transistor M2 are connected together to form a current mirror structure.

在本公开的一些实施例中,第二晶体管M2与第一晶体管M1具有相同的规格,因此若第一晶体管为P型管,则第二晶体管M2也为P型管。若第二晶体管M2为P型管,则第二晶体管M2的第一极为P型管的漏极,第二晶体管M2的第二极为P型管的源极。如图2所示,第二晶体管M2的源极与第一端P1连接,第二晶体管M2的漏极通过第二端P2连接到输出端Pout。In some embodiments of the present disclosure, the second transistor M2 has the same specifications as the first transistor M1, so if the first transistor is a P-type transistor, the second transistor M2 is also a P-type transistor. If the second transistor M2 is a P-type transistor, the first pole of the second transistor M2 is the drain of the P-type transistor, and the second pole of the second transistor M2 is the source of the P-type transistor. As shown in FIG. 2 , the source of the second transistor M2 is connected to the first terminal P1 , and the drain of the second transistor M2 is connected to the output terminal Pout through the second terminal P2 .

在本公开的一些实施例中,输出电路单元103可以包括第三晶体管M3。第三晶体管M3的栅极Gate连接输入端Pin以接收输入电压Vin,第三晶体管M3的第二极连接输出端Pout,第三晶体管M3的第一极连接第二电源电压V2。In some embodiments of the present disclosure, the output circuit unit 103 may include a third transistor M3. The gate Gate of the third transistor M3 is connected to the input terminal Pin to receive the input voltage Vin, the second pole of the third transistor M3 is connected to the output terminal Pout, and the first pole of the third transistor M3 is connected to the second power supply voltage V2.

在本公开的一些实施例中,第三晶体管M3可以是P型管也可以是N型管。In some embodiments of the present disclosure, the third transistor M3 may be a P-type transistor or an N-type transistor.

在本公开的一些实施例中,如图2所示,分压电路单元102包括第四晶体管M4。第四晶体管M4的栅极Gate与第四晶体管M4的第一极共同连接到所第二电源电压V2,第四晶体管M4的第二极与电流镜电路单元101的第三端P3连接。In some embodiments of the present disclosure, as shown in FIG. 2 , the voltage dividing circuit unit 102 includes a fourth transistor M4. The gate Gate of the fourth transistor M4 and the first pole of the fourth transistor M4 are commonly connected to the second power supply voltage V2 , and the second pole of the fourth transistor M4 is connected to the third terminal P3 of the current mirror circuit unit 101 .

第四晶体管M4的栅极Gate与第四晶体管M4的第一极连接在一起,使得第四晶体管M4也形成二极管形式,与第一晶体管M1相同,从而能够减小第一晶体管M1和第四晶体管M4的分压受温度、工艺等影响,以提供电平转换精度。The gate Gate of the fourth transistor M4 is connected with the first pole of the fourth transistor M4, so that the fourth transistor M4 also forms a diode form, which is the same as the first transistor M1, thereby reducing the size of the first transistor M1 and the fourth transistor M1. The voltage division of M4 is affected by temperature, process, etc. to provide level conversion accuracy.

在本公开的一些实施例中,第一晶体管M1和第四晶体管M4规格相同。关于“规格相同”请参考上文的描述。第一晶体管M1和第四晶体管M4规格相同能够保证第一晶体管M1和第四晶体管M4上的压降相同,从而减小温度、工艺等的影响,提高电平转换的精度。In some embodiments of the present disclosure, the specifications of the first transistor M1 and the fourth transistor M4 are the same. For "same specifications", please refer to the description above. The same specifications of the first transistor M1 and the fourth transistor M4 can ensure the same voltage drop across the first transistor M1 and the fourth transistor M4, thereby reducing the influence of temperature, process, etc., and improving the precision of level shifting.

在图2所示的示例中,例如若第一晶体管M1、第二晶体管M2、第三晶体管M3和第四晶体管M3均为P型晶体管,则第二电源电压V2小于第一电源电压V1,使得电流方向为第一端P1到节点P4的方向。In the example shown in FIG. 2, for example, if the first transistor M1, the second transistor M2, the third transistor M3, and the fourth transistor M3 are all P-type transistors, the second power supply voltage V2 is smaller than the first power supply voltage V1, so that The current direction is from the first terminal P1 to the node P4.

例如,第二电源电压可以接地。For example, the second supply voltage may be grounded.

在本公开的一些实施例中,如图1所示,电平转换电路100还可以包括参考电压产生单元104。参考电压产生单元104配置为提供参考电压Vref,第一电源电压V1和第二电源电压V2之一是参考电压。In some embodiments of the present disclosure, as shown in FIG. 1 , the level conversion circuit 100 may further include a reference voltage generation unit 104 . The reference voltage generating unit 104 is configured to provide a reference voltage Vref, and one of the first power supply voltage V1 and the second power supply voltage V2 is the reference voltage.

在图1和图2的示例中,第一电源电压V1为参考电压Vref。在本公开的另一些实施例中,第二电源电压作为参考电压Vref,请参考图3的示例。In the examples of FIGS. 1 and 2 , the first power supply voltage V1 is the reference voltage Vref. In other embodiments of the present disclosure, the second power supply voltage is used as the reference voltage Vref, please refer to the example in FIG. 3 .

例如,在图2所示的电路结构200中,除包括电流镜电路单元101、输出电路单元103和分压电路单元102之外,还可以包括参考电压产生单元104。参考电压产生单元104提供参考电压Vref,也即,第一端P1接收来自参考电压产生单元-104的参考电压Vref。For example, in the circuit structure 200 shown in FIG. 2 , besides the current mirror circuit unit 101 , the output circuit unit 103 and the voltage dividing circuit unit 102 , a reference voltage generation unit 104 may also be included. The reference voltage generation unit 104 provides the reference voltage Vref, that is, the first terminal P1 receives the reference voltage Vref from the reference voltage generation unit- 104 .

如图2所示,参考电压产生单元104包括能隙电压基准电路BG_vref。能隙电压基准电路BG_vref提供参考电压Vref。能隙电压基准电路BG_vref产生的参考电压不随着后续电路(即,电流镜电路单元101、输出电路单元103、分压电路单元102)发生变化而改变,从而能够提供高稳定、高精度的参考电压Vref。As shown in FIG. 2 , the reference voltage generation unit 104 includes a bandgap voltage reference circuit BG_vref. The bandgap voltage reference circuit BG_vref provides a reference voltage Vref. The reference voltage generated by the bandgap voltage reference circuit BG_vref does not change with subsequent circuits (ie, the current mirror circuit unit 101, the output circuit unit 103, and the voltage divider circuit unit 102), thereby providing a highly stable and high-precision reference voltage Vref.

如图2所示,能隙电压基准电路BG_vref与电源电压Vdd连接,以接收电源电压Vdd,并且提供参考电压Vref。通过能隙电压基准电路BG_vref提供参考电压Vref能够减小电源电压带来的误差,因为能隙电压基准电路BG_vref提供的参考电压Vref是一个不随温度、工艺、电源电压变化的参数。As shown in FIG. 2 , the bandgap voltage reference circuit BG_vref is connected to the power supply voltage Vdd to receive the power supply voltage Vdd and provide a reference voltage Vref. The reference voltage Vref provided by the bandgap voltage reference circuit BG_vref can reduce the error caused by the power supply voltage, because the reference voltage Vref provided by the bandgap voltage reference circuit BG_vref is a parameter that does not vary with temperature, process and power supply voltage.

如图2所示,参考电压产生单元104还包括单位增益缓冲器114。单元增益缓冲器114的第一端与能隙电压基准电路BG_vref连接,单元增益缓冲器114的第二端与电流镜电路单元101的第一端P1连接。As shown in FIG. 2 , the reference voltage generation unit 104 further includes a unity gain buffer 114 . A first terminal of the unit gain buffer 114 is connected to the bandgap voltage reference circuit BG_vref, and a second terminal of the unit gain buffer 114 is connected to the first terminal P1 of the current mirror circuit unit 101 .

单位增益缓冲器114接收能隙电压基准电路BG_vref提供的参考电压Vref,并且向电流镜电路单元101提供参考电压Vref。The unity gain buffer 114 receives the reference voltage Vref provided by the bandgap voltage reference circuit BG_vref, and provides the reference voltage Vref to the current mirror circuit unit 101 .

单位增益缓冲器114能够将能隙电压基准电路BG_vref与后续电路隔离,从而进一步保证了能隙电压基准电路BG_vref提供高稳定、高精度的参考电压Vref。The unity gain buffer 114 can isolate the bandgap voltage reference circuit BG_vref from subsequent circuits, thereby further ensuring that the bandgap voltage reference circuit BG_vref provides a highly stable and high-precision reference voltage Vref.

如图2所示,例如第一晶体管M1、第二晶体管M2、第三晶体管M3和第四晶体管M4都是相同的P型晶体管。第一晶体管M1和第四晶体管M4接成二极管的形式。第一晶体管M1和第四晶体管M4分压,因此Vref=Vgs1+Vgs4。Vgs1和Vgs4分别表示第一晶体管M1和第四晶体管M4的栅源极电压。As shown in FIG. 2 , for example, the first transistor M1 , the second transistor M2 , the third transistor M3 and the fourth transistor M4 are all the same P-type transistors. The first transistor M1 and the fourth transistor M4 are connected in a diode form. The first transistor M1 and the fourth transistor M4 divide the voltage, so Vref=Vgs1+Vgs4. Vgs1 and Vgs4 represent gate-source voltages of the first transistor M1 and the fourth transistor M4, respectively.

因第一晶体管M1和第四晶体管M4规格相同,因此Vgs1=Vgs4=Vref/2。Since the specifications of the first transistor M1 and the fourth transistor M4 are the same, Vgs1=Vgs4=Vref/2.

第一晶体管M1和第二晶体管M2通过电流镜来镜像电流,因此Id1=Id2,Vgs2=Vgs1,Vgs2=Vgs3。Id1和Id2分别表示流经第一晶体管M1和第二晶体管M2的电流,Vgs2表示第二晶体管M2的栅源极电压,Vgs3表示第三晶体管M3的栅源极电压。从而保证Vin与Vout相差一个第三晶体管M3的栅源极电压,因此Vout=Vin+Vgs3=Vin+Vref/2。The first transistor M1 and the second transistor M2 mirror the current through a current mirror, so Id1=Id2, Vgs2=Vgs1, Vgs2=Vgs3. Id1 and Id2 respectively represent the current flowing through the first transistor M1 and the second transistor M2, Vgs2 represents the gate-source voltage of the second transistor M2, and Vgs3 represents the gate-source voltage of the third transistor M3. Therefore, it is ensured that the difference between Vin and Vout is the gate-source voltage of the third transistor M3, so Vout=Vin+Vgs3=Vin+Vref/2.

因此,Vout只与参考电压Vref和输入Vin有关,消除了温度、工艺等的误差影响,有效的提高了电平转换精度。并且,在图2的电路结构200中,输出电压Vout大于输入电压Vin,因此,电路结构200起到了升压的作用。Therefore, Vout is only related to the reference voltage Vref and the input Vin, which eliminates the influence of errors such as temperature and process, and effectively improves the level conversion accuracy. Moreover, in the circuit structure 200 of FIG. 2 , the output voltage Vout is greater than the input voltage Vin, therefore, the circuit structure 200 plays a role of boosting voltage.

在本公开的一些实施例中,第二电源电压V2为参考电压Vref,电流镜电路单元101、输出电路单元103和分压电路单102各自包括至少一个晶体管,该至少一个晶体管中每个晶体管均可以为N型金属氧化物半导体场效应管。In some embodiments of the present disclosure, the second power supply voltage V2 is the reference voltage Vref, the current mirror circuit unit 101, the output circuit unit 103 and the voltage divider circuit unit 102 each include at least one transistor, each of the at least one transistor is It may be an N-type metal oxide semiconductor field effect transistor.

图3示出了本公开至少一实施例提供的一种电平转换电路100的电路结构300。FIG. 3 shows a circuit structure 300 of a level conversion circuit 100 provided by at least one embodiment of the present disclosure.

如图3所示,在电路结构300中,电流镜电路单元101包括第一晶体管M’1和第二晶体管M’2。第一晶体管M’1和第二晶体管M’2的规格相同。As shown in FIG. 3 , in the circuit structure 300, the current mirror circuit unit 101 includes a first transistor M'1 and a second transistor M'2. The specifications of the first transistor M'1 and the second transistor M'2 are the same.

第一晶体管M’1的栅极Gate与第二晶体管M’2的栅极Gate连接,第一晶体管的栅极M’1和第一晶体管M’1的第一极连接,且共同连接至分压电路单元102,第一晶体管M’1的第二极和第一端P1连接。第二晶体管M’2的第二极和第一端P1连接,第二晶体管M’2的第一极和第二端P2连接。第一端P1连接第一电源电压V’1。The gate Gate of the first transistor M'1 is connected to the gate Gate of the second transistor M'2, the gate M'1 of the first transistor is connected to the first pole of the first transistor M'1, and is connected to the branch In the voltage circuit unit 102, the second pole of the first transistor M'1 is connected to the first terminal P1. The second pole of the second transistor M'2 is connected to the first terminal P1, and the first pole of the second transistor M'2 is connected to the second terminal P2. The first terminal P1 is connected to the first power supply voltage V'1.

例如,第一晶体管M’1为N型管,第一晶体管M’1的第一极为N型管的漏极,第一晶体管M’1的第二极为N型管的源极。如图3所示,N型管的栅极和漏极连接在一起构成二极管的形式,并且N型管的栅极和漏极连接在一起后通过第三端共同连接至分压电路单元102,N型管的源极和第一端P1连接。For example, the first transistor M'1 is an N-type transistor, the first pole of the first transistor M'1 is the drain of the N-type transistor, and the second pole of the first transistor M'1 is the source of the N-type transistor. As shown in Figure 3, the gate and drain of the N-type tube are connected together to form a diode, and the gate and drain of the N-type tube are connected together and then connected to the voltage divider circuit unit 102 through the third terminal. The source of the N-type tube is connected to the first terminal P1.

第一晶体管M’1的栅极和漏极连接在一起,并且第一晶体管M’1的栅极与第二晶体管M’2的栅极连接在一起,构成电流镜结构。The gate and drain of the first transistor M'1 are connected together, and the gate of the first transistor M'1 and the gate of the second transistor M'2 are connected together to form a current mirror structure.

在本公开的一些实施例中,第二晶体管M’2与第一晶体管M’1具有相同的规格,因此若第一晶体管M’1为N型管,则第二晶体管M’2也为N型管。如图2所示,第二晶体管M’2的源极与第一端P1连接,第二晶体管M’2的漏极通过第二端P2连接到输出端P’out。In some embodiments of the present disclosure, the second transistor M'2 has the same specifications as the first transistor M'1, so if the first transistor M'1 is an N-type transistor, the second transistor M'2 is also an N-type transistor. type tube. As shown in Figure 2, the source of the second transistor M'2 is connected to the first terminal P1, and the drain of the second transistor M'2 is connected to the output terminal P'out through the second terminal P2.

在本公开的一些实施例中,输出电路单元103可以包括第三晶体管M’3。第三晶体管M’3的栅极Gate连接输入端P’in以接收输入电压Vin,第三晶体管M’3的第二极连接输出端P’out,第三晶体管M’3的第一极连接第二电源电压V’2。In some embodiments of the present disclosure, the output circuit unit 103 may include a third transistor M'3. The gate Gate of the third transistor M'3 is connected to the input terminal P'in to receive the input voltage Vin, the second pole of the third transistor M'3 is connected to the output terminal P'out, and the first pole of the third transistor M'3 is connected to The second supply voltage V'2.

在图3的示例中,第三晶体管M’3是N型晶体管。In the example of Fig. 3, the third transistor M'3 is an N-type transistor.

在本公开的一些实施例中,如图3所示,分压电路单元102包括第四晶体管M’4。第四晶体管M’4的栅极Gate与第四晶体管M’4的第一极共同连接到所第二电源电压V’2,第四晶体管M’4的第二极与电流镜电路单元101的第三端P3连接。In some embodiments of the present disclosure, as shown in FIG. 3 , the voltage dividing circuit unit 102 includes a fourth transistor M'4. The gate Gate of the fourth transistor M'4 and the first pole of the fourth transistor M'4 are commonly connected to the second power supply voltage V'2, and the second pole of the fourth transistor M'4 is connected to the current mirror circuit unit 101 The third terminal P3 is connected.

第四晶体管M’4的栅极Gate与第四晶体管M’4的第一极连接在一起,使得第四晶体管M’4也形成二极管形式,与第一晶体管M’1相同,从而能够减小第一晶体管M’1和第四晶体管M’4的分压受温度、工艺等影响,以提供电平转换精度。The gate Gate of the fourth transistor M'4 is connected to the first pole of the fourth transistor M'4, so that the fourth transistor M'4 also forms a diode, which is the same as the first transistor M'1, thereby reducing the The voltage division of the first transistor M'1 and the fourth transistor M'4 is affected by temperature, process, etc., so as to provide level conversion precision.

在本公开的一些实施例中,第一晶体管M’1和第四晶体管M’4规格相同。第一晶体管M’1和第四晶体管M’4规格相同能够保证第一晶体管M’1和第四晶体管M’4上的压降相同,从而减小温度、工艺等的影响,提高电平转换的精度。In some embodiments of the present disclosure, the specifications of the first transistor M'1 and the fourth transistor M'4 are the same. The same specifications of the first transistor M'1 and the fourth transistor M'4 can ensure the same voltage drop on the first transistor M'1 and the fourth transistor M'4, thereby reducing the influence of temperature, process, etc., and improving level conversion accuracy.

在图3所示的示例中,例如若第一晶体管M’1、第二晶体管M’2、第三晶体管M’3和第四晶体管M’3均为N型晶体管,则第二电源电压V’2大于第一电源电压V’1,使得电流方向为节点P’4到第一端P1的方向。In the example shown in FIG. 3, for example, if the first transistor M'1, the second transistor M'2, the third transistor M'3 and the fourth transistor M'3 are all N-type transistors, the second power supply voltage V '2 is greater than the first power supply voltage V'1, so that the current direction is from the node P'4 to the first terminal P1.

例如,第一电源电压V’1可以接地。For example, the first supply voltage V'1 may be grounded.

如图3所示,电路结构300除包括电流镜电路单元101、输出电路单元103和分压电路单元102之外,还可以包括参考电压产生单元104。参考电压产生单元104配置为提供参考电压Vref,第二电源电压V’2为参考电压Vref。As shown in FIG. 3 , the circuit structure 300 may include a reference voltage generating unit 104 in addition to the current mirror circuit unit 101 , the output circuit unit 103 and the voltage dividing circuit unit 102 . The reference voltage generation unit 104 is configured to provide a reference voltage Vref, and the second power supply voltage V'2 is the reference voltage Vref.

例如,在图3所示的,参考电压产生单元104提供参考电压Vref,也即,节点P’4接收来自参考电压产生单元104的参考电压Vref。For example, as shown in FIG. 3 , the reference voltage generation unit 104 provides the reference voltage Vref, that is, the node P'4 receives the reference voltage Vref from the reference voltage generation unit 104.

在图3的示例中,除参考电压产生单元104向节点P4提供参考电压Vref之外,其余特征与图2的电路结构中的参考电压产生单元104相同,请参考上文图2电路结构200的相关描述。In the example of FIG. 3, except that the reference voltage generation unit 104 provides the reference voltage Vref to the node P4, other features are the same as the reference voltage generation unit 104 in the circuit structure of FIG. related description.

如图2所示,例如第一晶体管M’1、第二晶体管M’2、第三晶体管M’3和第四晶体管M’4都是相同的N型晶体管。第一晶体管M’1和第四晶体管M’4接成二极管的形式。第一晶体管M’1和第四晶体管M’4分压,因此Vref=Vgs’1+Vgs’4。Vgs’1和Vgs’4分别表示第一晶体管M’1和第四晶体管M’4的栅源极电压。As shown in FIG. 2, for example, the first transistor M'1, the second transistor M'2, the third transistor M'3 and the fourth transistor M'4 are all the same N-type transistors. The first transistor M'1 and the fourth transistor M'4 are connected in the form of a diode. The first transistor M'1 and the fourth transistor M'4 divide the voltage, so Vref=Vgs'1+Vgs'4. Vgs'1 and Vgs'4 represent gate-source voltages of the first transistor M'1 and the fourth transistor M'4, respectively.

因第一晶体管M’1和第四晶体管M’4规格相同,因此Vgs’1=Vgs’4=Vref/2。Since the specifications of the first transistor M'1 and the fourth transistor M'4 are the same, Vgs'1=Vgs'4=Vref/2.

第一晶体管M’1和第二晶体管M’2通过电流镜来镜像电流,因此Id’1=Id’2,Vgs’2=Vgs’1,Vgs’2=Vgs’3。Id’1和Id’2分别表示流经第一晶体管M’1和第二晶体管M’2的电流,Vgs’2表示第二晶体管M’2的栅源极电压,Vgs’3表示第二晶体管M’3的栅源极电压。从而保证Vin与Vout相差一个第三晶体管M’3的栅源极电压,因此Vout=Vin-Vgs’3=Vin-Vref/2。The first transistor M'1 and the second transistor M'2 mirror the current through a current mirror, so Id'1=Id'2, Vgs'2=Vgs'1, Vgs'2=Vgs'3. Id'1 and Id'2 respectively represent the current flowing through the first transistor M'1 and the second transistor M'2, Vgs'2 represents the gate-source voltage of the second transistor M'2, Vgs'3 represents the second transistor Gate-to-source voltage of M'3. Therefore, it is ensured that the difference between Vin and Vout is the gate-source voltage of the third transistor M'3, so Vout=Vin-Vgs'3=Vin-Vref/2.

因此,Vout只与参考电压Vref和输入Vin有关,消除了温度、工艺等的误差影响,有效的提高了电平转换精度。并且,在图3的电路结构300中,输出电压Vout小于输入电压Vin,因此,电路结构300起到了降压的作用。Therefore, Vout is only related to the reference voltage Vref and the input Vin, which eliminates the influence of errors such as temperature and process, and effectively improves the level conversion accuracy. Moreover, in the circuit structure 300 of FIG. 3 , the output voltage Vout is lower than the input voltage Vin, therefore, the circuit structure 300 functions as a step-down voltage.

图2和图3的电路结构分别为升压电平转换电路和降压电平转换电路的示例。需要理解的是,本公开并不限定升压电平转换电路为图2所示的电路结构以及降压电平转换电路为图3所示的电路结构。例如,升压电平转换电路中的多个晶体管可以是N型管和P型管,或者多个晶体管全部为N型管,而并不一定必须是图2所示的第一晶体管M1、第二晶体管M2、第三晶体管M3和第四晶体管M4都是P型管。第一晶体管M1、第二晶体管M2、第三晶体管M3和第四晶体管M4采用规格相同的晶体管能够消除温度、工艺等的误差影响,有效提高电平转换精度。The circuit structures of FIG. 2 and FIG. 3 are examples of a boost level conversion circuit and a buck level conversion circuit, respectively. It should be understood that the present disclosure does not limit the boost level conversion circuit to the circuit structure shown in FIG. 2 and the buck level conversion circuit to the circuit structure shown in FIG. 3 . For example, multiple transistors in the step-up level conversion circuit may be N-type transistors and P-type transistors, or all of the multiple transistors are N-type transistors, but not necessarily the first transistor M1 and the second transistor M1 shown in FIG. The second transistor M2, the third transistor M3 and the fourth transistor M4 are all P-type transistors. The first transistor M1 , the second transistor M2 , the third transistor M3 and the fourth transistor M4 use transistors with the same specifications to eliminate the influence of errors such as temperature and process, and effectively improve the precision of level shifting.

本公开的另一方面提供了一种电压测量装置。图4示出了本公开至少一个实施例提供的电压测量装置400的示意性框图。Another aspect of the present disclosure provides a voltage measuring device. Fig. 4 shows a schematic block diagram of a voltage measuring device 400 provided by at least one embodiment of the present disclosure.

如图4所示,电压测量装置400包括测量电压生成单元401和信号处理单元402。As shown in FIG. 4 , the voltage measurement device 400 includes a measurement voltage generation unit 401 and a signal processing unit 402 .

测量电压生成单元401包括前述任一实施例提供的电平转换电路411、输入电压接收端In1和测量电压输出端Out1。例如,电平转换电路411可以是图2所示的电平转换电路和/或图3所示的电平转换电路。The measurement voltage generating unit 401 includes the level conversion circuit 411 provided in any one of the foregoing embodiments, an input voltage receiving terminal In1 and a measurement voltage output terminal Out1. For example, the level conversion circuit 411 may be the level conversion circuit shown in FIG. 2 and/or the level conversion circuit shown in FIG. 3 .

输入电压接收端In1用于接收来自输入电压信号端In2的输入电压Vin,测量电压输出端Out1与信号处理单元402连接。The input voltage receiving terminal In1 is used to receive the input voltage Vin from the input voltage signal terminal In2 , and the measuring voltage output terminal Out1 is connected to the signal processing unit 402 .

电平转换电路411与输入电压接收端In1连接,配置为接收输入电压Vin,并且电平转换电路411与测量电压输出端Out1连接,以向测量电压输出端Out1提供输出电压Vout。The level conversion circuit 411 is connected to the input voltage receiving terminal In1 and configured to receive the input voltage Vin, and the level conversion circuit 411 is connected to the measurement voltage output terminal Out1 to provide the output voltage Vout to the measurement voltage output terminal Out1.

信号处理单元402包括第一信号接收端412和第二信号接收端422。第一信号接收端412与测量电压输出端Out1连接以接收输出电压Vout。第二信号接收端422用于接收参考电压Vref。信号处理单元402配置为基于参考电压Vref,输出该输出电压Vout的测量结果。The signal processing unit 402 includes a first signal receiving end 412 and a second signal receiving end 422 . The first signal receiving terminal 412 is connected to the measuring voltage output terminal Out1 to receive the output voltage Vout. The second signal receiving end 422 is used for receiving the reference voltage Vref. The signal processing unit 402 is configured to output a measurement result of the output voltage Vout based on the reference voltage Vref.

例如,由能隙电压基准电路BG_vref向信号处理单元402提供参考电压Vref。For example, the reference voltage Vref is provided to the signal processing unit 402 by the bandgap voltage reference circuit BG_vref.

该电压测量装置包括电平转换电路411,因此当输入电压Vin不在信号处理单元的电压测量范围时,可以利用电平转换电路411将输入电压Vin转换为在电压测量范围内的输出电压Vout,从而利用信号处理单元对输出电压Vout进行测量得到测量结果,进而得到对输入电压Vin的测量结果。因此,该电压测量装置能够提高信号处理单元的电压测量范围。The voltage measurement device includes a level conversion circuit 411, so when the input voltage Vin is not within the voltage measurement range of the signal processing unit, the level conversion circuit 411 can be used to convert the input voltage Vin into an output voltage Vout within the voltage measurement range, thereby The signal processing unit is used to measure the output voltage Vout to obtain a measurement result, and then to obtain a measurement result of the input voltage Vin. Therefore, the voltage measurement device can increase the voltage measurement range of the signal processing unit.

例如,信号处理单元402的电压测量范围为[a,b],当电平转换电路411是图2所示的电平转换电路时,电平转换电路411可以对输入电压进行升压处理,从而电压测量装置400可以利用信号处理单元402对小于电压测量范围中的最小值a的输入电压进行测量。a和b例如均大于0。For example, the voltage measurement range of the signal processing unit 402 is [a, b]. When the level conversion circuit 411 is the level conversion circuit shown in FIG. 2, the level conversion circuit 411 can boost the input voltage, thereby The voltage measurement device 400 can use the signal processing unit 402 to measure an input voltage smaller than the minimum value a in the voltage measurement range. Both a and b are greater than 0, for example.

又例如,当电平转换电路411是图3所示的电平转换电路时,电平转换电路411可以对输入电压进行降压处理,从而电压测量装置400可以利用信号处理单元402对大于电压测量范围中的最大值b的输入电压进行测量。For another example, when the level shifting circuit 411 is the level shifting circuit shown in FIG. The input voltage is measured at the maximum value b in the range.

如图4所示,能隙电压基准电路BG_vref不仅向信号处理单元402提供参考电压Vref,还向电平转换电路411提供参考电压。例如,电路图为图2的示例,参考电压Vref作为第一电源电压。又例如,电路图为图3的示例,参考电压Vref作为第二电源电压。As shown in FIG. 4 , the bandgap voltage reference circuit BG_vref not only provides the reference voltage Vref to the signal processing unit 402 , but also provides the reference voltage to the level conversion circuit 411 . For example, the circuit diagram is an example of FIG. 2 , and the reference voltage Vref is used as the first power supply voltage. For another example, the circuit diagram is an example of FIG. 3 , and the reference voltage Vref is used as the second power supply voltage.

图5示出了本公开至少一个实施例提供的电压测量装置400的电路结构500的示意图。Fig. 5 shows a schematic diagram of a circuit structure 500 of a voltage measuring device 400 provided by at least one embodiment of the present disclosure.

如图5所示,在电路结构500中,测量电压生成单元401包括第一电平转换电路501和第二电平转换电路502。As shown in FIG. 5 , in a circuit structure 500 , the measurement voltage generation unit 401 includes a first level conversion circuit 501 and a second level conversion circuit 502 .

测量电压生成单元401还包括第一开关单元s1、第二开关单元s2和第三开关单元s3。第一开关单元s1、第二开关单元s2和第三开关单元s3例如可以是单刀单掷开关、三极管、MOSFET管等。The measurement voltage generating unit 401 further includes a first switching unit s1 , a second switching unit s2 and a third switching unit s3 . The first switch unit s1 , the second switch unit s2 and the third switch unit s3 may be, for example, single pole single throw switches, triodes, MOSFETs and the like.

第一电平转换电路501通过第一开关单元s1与测量电压输出端Out1连接。第二电平转换电路502通过第二开关单元s2与测量电压输出端Out1连接。测量电压输出端Out1还通过第三开关单元s3连接输入电压信号端In2。The first level conversion circuit 501 is connected to the measurement voltage output terminal Out1 through the first switch unit s1 . The second level conversion circuit 502 is connected to the measurement voltage output terminal Out1 through the second switch unit s2. The measurement voltage output terminal Out1 is also connected to the input voltage signal terminal In2 through the third switch unit s3.

第一电平转换电路501和第二电平转换电路502还接收参考电压Vref,第一电平转换电路501连接的第一电源电压V1为参考电压Vref,第二电平转换电路502连接的第二电源电压V2为参考电压Vref。The first level shifting circuit 501 and the second level shifting circuit 502 also receive the reference voltage Vref, the first power supply voltage V1 connected to the first level shifting circuit 501 is the reference voltage Vref, and the second level shifting circuit 502 is connected to the first power supply voltage Vref. The second power supply voltage V2 is the reference voltage Vref.

在该实施例中,第一电平转换电路501可以是图2所示的电路结构。如图2所示,第一电源电压V1为参考电压Vref,第一电平转换电路501用于对输入电压Vin升压。第二电平转换电路502可以是图3所示的电路结构。如图3所示,第二电源电压V’2为参考电压Vref,第二电平转换电路502用于对输入电压Vin降压。In this embodiment, the first level conversion circuit 501 may have the circuit structure shown in FIG. 2 . As shown in FIG. 2 , the first power supply voltage V1 is the reference voltage Vref, and the first level conversion circuit 501 is used to boost the input voltage Vin. The second level conversion circuit 502 may have the circuit structure shown in FIG. 3 . As shown in FIG. 3 , the second power supply voltage V'2 is the reference voltage Vref, and the second level conversion circuit 502 is used to step down the input voltage Vin.

在电路结构500中,第一开关单元s1、第二开关单元s2和第三开关单元s3配置为响应控制信号。控制信号例如来自于处理器等控制设备。In the circuit structure 500, the first switching unit s1, the second switching unit s2 and the third switching unit s3 are configured to respond to a control signal. The control signal is, for example, from a control device such as a processor.

在输入电压Vin在信号处理单元402的电压测量范围[a,b]内的情形中,控制信号用于控制第一开关单元s1断开测量电压输出端Out1与第一电平转换电路501的连接、第二开关单元s2断开第二电平转换电路502与测量电压输出端Out1的连接以及第三开关单元s3导通输入电压信号端In2与测量电压输出端Out1。In the case that the input voltage Vin is within the voltage measurement range [a, b] of the signal processing unit 402, the control signal is used to control the first switch unit s1 to disconnect the measured voltage output terminal Out1 from the first level conversion circuit 501 , The second switch unit s2 disconnects the connection between the second level conversion circuit 502 and the measurement voltage output terminal Out1, and the third switch unit s3 conducts the input voltage signal terminal In2 and the measurement voltage output terminal Out1.

例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为单刀单掷开关,若a<Vin<b,则第一开关单元s1断开、第二开关单元s2断开以及第三开关单元s3闭合。For example, the first switch unit s1, the second switch unit s2 and the third switch unit s3 are SPST switches. If a<Vin<b, the first switch unit s1 is turned off, the second switch unit s2 is turned off, and the second switch unit s2 is turned off. The three-switch unit s3 is closed.

又例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为MOSFET管,若a<Vin<b,则第一开关单元s1截止、第二开关单元s2截止以及第三开关单元s3导通。For another example, the first switch unit s1, the second switch unit s2 and the third switch unit s3 are MOSFET tubes. If a<Vin<b, the first switch unit s1 is turned off, the second switch unit s2 is turned off, and the third switch unit s3 is turned on.

在输入电压Vin小于信号处理单元402的电压测量范围的最小值a的情形中,控制信号用于控制第一开关单元s1导通测量电压输出端Out1与第一电平转换电路501、第二开关单元s2断开第二电平转换电路502与测量电压输出端Out1的连接以及第三开关单元s3断开输入电压信号端In2与测量电压输出端Out1的连接。In the case where the input voltage Vin is less than the minimum value a of the voltage measurement range of the signal processing unit 402, the control signal is used to control the first switch unit s1 to turn on the measurement voltage output terminal Out1 and the first level conversion circuit 501, the second switch The unit s2 disconnects the second level conversion circuit 502 from the measurement voltage output terminal Out1 and the third switch unit s3 disconnects the input voltage signal terminal In2 from the measurement voltage output terminal Out1.

例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为单刀单掷开关,若Vin<a,则第一开关单元s1闭合、第二开关单元s2断开以及第三开关单元s3断开。For example, the first switch unit s1, the second switch unit s2 and the third switch unit s3 are SPST switches. If Vin<a, the first switch unit s1 is closed, the second switch unit s2 is opened, and the third switch unit s3 is disconnected.

又例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为MOSFET管,若Vin<a,则第一开关单元s1导通、第二开关单元s2截止以及第三开关单元s3截止。For another example, the first switch unit s1, the second switch unit s2 and the third switch unit s3 are MOSFET tubes. If Vin<a, the first switch unit s1 is turned on, the second switch unit s2 is turned off, and the third switch unit s3 due.

在输入电压Vin大于信号处理单元402的电压测量范围b的最大值的情形中,控制信号用于控制第一开关单元s1断开测量电压输出端Out1与第一电平转换电路501的连接、第二开关单元s2导通第二电平转换电路502与测量电压输出端Out1以及第三开关单元s3断开输入电压信号端In2与测量电压输出端Out1的连接。When the input voltage Vin is greater than the maximum value of the voltage measurement range b of the signal processing unit 402, the control signal is used to control the first switch unit s1 to disconnect the measurement voltage output terminal Out1 from the first level conversion circuit 501, the second The second switch unit s2 connects the second level conversion circuit 502 to the measurement voltage output terminal Out1 and the third switch unit s3 disconnects the input voltage signal terminal In2 from the measurement voltage output terminal Out1.

例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为单刀单掷开关,若Vin>b,则第一开关单元s1断开、第二开关单元s2闭合以及第三开关单元s3断开。For example, the first switch unit s1, the second switch unit s2 and the third switch unit s3 are single-pole single-throw switches. If Vin>b, the first switch unit s1 is turned off, the second switch unit s2 is closed, and the third switch unit s3 is disconnected.

又例如,第一开关单元s1、第二开关单元s2和第三开关单元s3为MOSFET管,若Vin>b,则第一开关单元s1截止、第二开关单元s2导通以及第三开关单元s3截止。For another example, the first switch unit s1, the second switch unit s2, and the third switch unit s3 are MOSFET tubes. If Vin>b, the first switch unit s1 is turned off, the second switch unit s2 is turned on, and the third switch unit s3 due.

图5所示的实施例包括用于升压的第一电平转换电路501和用于降压的第二电平转换电压502,从而通过控制第一开关单元s1、第二开关单元s2和第三开关单元s3便可以对输入电压Vin进行升压处理或者降压处理,又或者不对输入电压Vin处理,从而可以灵活地将输入电压Vin转换到信号处理单元402的电压测量范围内,提高了电压测量装置的电压测量范围。该电压测量装置既提高了电压可测范围,同时又解决了由温度,工艺和电源电压额外引入的误差影响,有效的保证测量的精度,实现了更广的应用范围。The embodiment shown in FIG. 5 includes a first level shifting circuit 501 for boosting and a second level shifting circuit 502 for stepping down, so that by controlling the first switch unit s1, the second switch unit s2 and the second The three-switch unit s3 can boost or step down the input voltage Vin, or not process the input voltage Vin, so that the input voltage Vin can be flexibly converted to the voltage measurement range of the signal processing unit 402, and the voltage can be improved. The voltage measurement range of the measuring device. The voltage measurement device not only improves the measurable range of voltage, but also solves the influence of errors additionally introduced by temperature, process and power supply voltage, effectively guarantees the accuracy of measurement, and realizes a wider application range.

在本公开的一些实施例中,信号处理单元402可以是模式转换单元(Analog-to-digital converter,ADC)。In some embodiments of the present disclosure, the signal processing unit 402 may be an analog-to-digital converter (ADC).

如图5所示,电压测量装置500还可以包括参考电压产生单元403,参考电压产生单元403向第二信号接收端422提供参考电压Vref。参考电压产生单元403与图2和图3中的参考电压产生单元104类似,请参考上文的描述。As shown in FIG. 5 , the voltage measuring device 500 may further include a reference voltage generation unit 403 , and the reference voltage generation unit 403 provides a reference voltage Vref to the second signal receiving terminal 422 . The reference voltage generation unit 403 is similar to the reference voltage generation unit 104 in FIG. 2 and FIG. 3 , please refer to the above description.

在图5的示例中,参考电压产生单元403不仅向第二信号接收端422提供参考电压Vref,还向第一电平转换电路501和第二电平转换电路502提供参考电压Vref。也即,在图5的示例中,使用同一个参考电压产生单元403向第二信号接收端422、第一电平转换电路501和第二电平转换电路502提供参考电压Vref。使用同一个参考电压生单元403向第二信号接收端422、第一电平转换电路501和第二电平转换电路502提供参考电压Vref能够简化电路,降低电压测量装置的成本。In the example of FIG. 5 , the reference voltage generation unit 403 not only provides the reference voltage Vref to the second signal receiving terminal 422 , but also provides the reference voltage Vref to the first level conversion circuit 501 and the second level conversion circuit 502 . That is, in the example of FIG. 5 , the same reference voltage generation unit 403 is used to provide the reference voltage Vref to the second signal receiving terminal 422 , the first level conversion circuit 501 and the second level conversion circuit 502 . Using the same reference voltage generating unit 403 to provide the reference voltage Vref to the second signal receiving terminal 422 , the first level conversion circuit 501 and the second level conversion circuit 502 can simplify the circuit and reduce the cost of the voltage measurement device.

在本公开的另一些实施例中,向第二信号接收端422提供参考电压的参考电压产生单元可以与向第一电平转换电路501和第二电平转换电路502提供参考电压的参考电压产生单元不同。In some other embodiments of the present disclosure, the reference voltage generation unit that provides the reference voltage to the second signal receiving terminal 422 may be the same as the reference voltage generation unit that provides the reference voltage to the first level conversion circuit 501 and the second level conversion circuit 502 Units are different.

例如,输出电压Vout通过ADC与参考电压信号与Vref做比较得到一个数字化系数k,k=Vout/Vref,从而根据ADC的输出端Out2输出的k和参考电压Vref,可以计算得到输出电压Vout=k×Vref。再得到输出电压Vout之后,根据Vout=Vin-Vref/2或者Vout=Vin+Vref/2可以进一步地得到Vin=Vout+Vref/2或者Vin=Vout-Vref/2,从而实现了对输入电压Vin的测量。For example, the output voltage Vout is compared with the reference voltage signal and Vref by the ADC to obtain a digitized coefficient k, k=Vout/Vref, so that the output voltage Vout=k can be calculated according to the k output from the output terminal Out2 of the ADC and the reference voltage Vref ×Vref. After the output voltage Vout is obtained, Vin=Vout+Vref/2 or Vin=Vout-Vref/2 can be further obtained according to Vout=Vin-Vref/2 or Vout=Vin+Vref/2, thereby realizing the control of the input voltage Vin Measurement.

图6示出了本公开至少一个实施例提供的一种电压测量方法的流程图。Fig. 6 shows a flowchart of a voltage measurement method provided by at least one embodiment of the present disclosure.

该电压测量方法应用于上述任一实施例提供的电压测量装置。The voltage measurement method is applied to the voltage measurement device provided in any one of the above embodiments.

如图6所示,该电压测量方法可以包括步骤S10~步骤S40。As shown in FIG. 6, the voltage measurement method may include steps S10 to S40.

步骤S10:响应于输入电压接收端接收输入电压,比较输入电压与信号处理单元的电压测量范围,获得比较结果。Step S10: In response to receiving the input voltage at the input voltage receiving end, compare the input voltage with the voltage measurement range of the signal processing unit, and obtain a comparison result.

步骤S20:基于比较结果,生成控制信号。Step S20: Generate a control signal based on the comparison result.

步骤S30:根据控制信号,控制第一开关单元、第二开关单元和第三开关单元的断开或者闭合。Step S30: Control the opening or closing of the first switch unit, the second switch unit and the third switch unit according to the control signal.

步骤S40:由信号处理单元对输出电压进行测量,并且输出测量结果。Step S40: Measure the output voltage by the signal processing unit, and output the measurement result.

该电压测量方法能够根据输入电压与电压测量范围的比较结果生成控制信号,从而由控制信号控制根据输入电压生成在电压测量范围内的输出电压,从而实现对输入电压的测量。该方法既提高了电压可测范围,同时又解决了由温度,工艺和电源电压额外引入的误差影响,有效的保证测量的精度,实现了更广的应用范围。The voltage measurement method can generate a control signal according to the comparison result of the input voltage and the voltage measurement range, so that the control signal can generate an output voltage within the voltage measurement range according to the input voltage, thereby realizing the measurement of the input voltage. This method not only improves the measurable range of the voltage, but also solves the influence of errors additionally introduced by temperature, process and power supply voltage, effectively guarantees the accuracy of measurement, and realizes a wider application range.

对于步骤S10,例如在图5的示例中,输入电压接收端In1接收输入电压Vin。For step S10 , for example, in the example of FIG. 5 , the input voltage receiving terminal In1 receives the input voltage Vin.

例如,输入电压Vin同时发送给比较器或者处理器,以利用比较器或者处理器比较输入电压Vin与信号处理单元的电压测量范围的大小。For example, the input voltage Vin is sent to the comparator or the processor at the same time, so that the input voltage Vin and the voltage measurement range of the signal processing unit are compared by the comparator or the processor.

对于步骤S20,例如处理器根据比较结果生成用于控制第一开关单元s1、第二开关单元s2和第三开关单元s3的控制信号。For step S20 , for example, the processor generates control signals for controlling the first switch unit s1 , the second switch unit s2 and the third switch unit s3 according to the comparison result.

对于步骤S30,例如,电压测量范围为[a,b],若a<Vin<b,则第一开关单元s1断开、第二开关单元s2断开以及第三开关单元s3闭合。若Vin<a,则第一开关单元s1闭合、第二开关单元s2断开以及第三开关单元s3断开。若Vin>b,则第一开关单元s1断开、第二开关单元s2闭合以及第三开关单元s3断开。For step S30, for example, the voltage measurement range is [a, b], if a<Vin<b, then the first switch unit s1 is turned off, the second switch unit s2 is turned off, and the third switch unit s3 is turned on. If Vin<a, the first switch unit s1 is turned on, the second switch unit s2 is turned off, and the third switch unit s3 is turned off. If Vin>b, the first switch unit s1 is turned off, the second switch unit s2 is turned on, and the third switch unit s3 is turned off.

对于步骤S40,例如ADC对输出电压Vout进行测量,并且由ADC的输出端Out2输出测量结果。For step S40, for example, the ADC measures the output voltage Vout, and the output terminal Out2 of the ADC outputs the measurement result.

测量结果例如为数字化系数k,k=Vout/Vref。根据数字化系数k和参考电压Vref,可以计算得到输出电压Vout=k×Vref。再得到输出电压Vout之后,根据Vout=Vin-Vref/2或者Vout=Vin+Vref/2可以进一步地得到Vin=Vout+Vref/2或者Vin=Vout-Vref/2,从而实现了对输入电压Vin的测量。The measurement result is, for example, a digitized coefficient k, k=Vout/Vref. According to the digitization coefficient k and the reference voltage Vref, the output voltage Vout=k×Vref can be calculated. After the output voltage Vout is obtained, Vin=Vout+Vref/2 or Vin=Vout-Vref/2 can be further obtained according to Vout=Vin-Vref/2 or Vout=Vin+Vref/2, thereby realizing the control of the input voltage Vin Measurement.

需要说明的是,本公开的实施例中,电压测量方法的各个步骤与前述的电压测量装置对应,关于电压测量方法可以参考关于电压测量装置的相关描述,此处不再赘述。It should be noted that, in the embodiments of the present disclosure, each step of the voltage measurement method corresponds to the aforementioned voltage measurement device. For the voltage measurement method, reference may be made to relevant descriptions of the voltage measurement device, and details will not be repeated here.

有以下几点需要说明:The following points need to be explained:

(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。(1) Embodiments of the present disclosure The drawings only relate to the structures involved in the embodiments of the present disclosure, and other structures may refer to common designs.

(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。(2) In the case of no conflict, the embodiments of the present disclosure and the features in the embodiments can be combined with each other to obtain new embodiments.

以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。The above description is only a specific implementation manner of the present disclosure, but the protection scope of the present disclosure is not limited thereto, and the protection scope of the present disclosure should be based on the protection scope of the claims.

Claims (15)

1.一种电平转换电路,包括:电流镜电路单元、输出电路单元、分压电路单元、输出端和输入端,1. A level conversion circuit, comprising: a current mirror circuit unit, an output circuit unit, a voltage divider circuit unit, an output terminal and an input terminal, 其中,所述输入端用于接收输入电压,所述输出端用于提供输出电压,Wherein, the input terminal is used to receive an input voltage, and the output terminal is used to provide an output voltage, 所述电流镜电路单元包括连接第一电源电压的第一端、连接所述输出端的第二端和连接所述分压电路单元的第三端,所述电流镜电路单元配置为在所述第二端和所述第三端提供镜像电流,The current mirror circuit unit includes a first end connected to the first power supply voltage, a second end connected to the output end, and a third end connected to the voltage dividing circuit unit, and the current mirror circuit unit is configured to Two terminals and the third terminal provide mirror current, 所述输出电路单元连接在第二电源电压和所述输出端之间,且从所述输入端接收所述输入电压,所述输出电路单元配置为在所述输入电压的控制下基于所述第二电源电压的控制在所述输出端提供输出电压,The output circuit unit is connected between the second power supply voltage and the output terminal, and receives the input voltage from the input terminal, the output circuit unit is configured to be based on the first voltage under the control of the input voltage Two supply voltage controls provide an output voltage at the output, 所述分压电路电压连接在所述第二电源电压和所述电流镜电路单元的第三端之间。The voltage divider circuit is connected between the second power supply voltage and the third terminal of the current mirror circuit unit. 2.根据权利要求1所述的电平转换电路,其中,所述电流镜电路单元包括第一晶体管和第二晶体管,2. The level conversion circuit according to claim 1, wherein the current mirror circuit unit comprises a first transistor and a second transistor, 所述第一晶体管的栅极与所述第二晶体管的栅极连接,所述第一晶体管的栅极和所述第一晶体管的第一极连接,且共同连接至所述分压电路单元,所述第一晶体管的第二极和所述第一端连接,The gate of the first transistor is connected to the gate of the second transistor, the gate of the first transistor is connected to the first pole of the first transistor, and is commonly connected to the voltage dividing circuit unit, The second pole of the first transistor is connected to the first terminal, 所述第二晶体管的第二极和所述第一端连接,所述第二晶体管的第一极和所述第二端连接,The second pole of the second transistor is connected to the first terminal, the first pole of the second transistor is connected to the second terminal, 其中,所述第一晶体管和所述第二晶体管的规格相同。Wherein, the specifications of the first transistor and the second transistor are the same. 3.根据权利要求1或2所述的电平转换电路,其中,所述输出电路单元包括第三晶体管,3. The level conversion circuit according to claim 1 or 2, wherein the output circuit unit comprises a third transistor, 所述第三晶体管的栅极连接所述输入端以接收所述输入电压,所述第三晶体管的第二极连接所述输出端,所述第三晶体管的第一极连接所述第二电源电压。The gate of the third transistor is connected to the input terminal to receive the input voltage, the second pole of the third transistor is connected to the output terminal, and the first pole of the third transistor is connected to the second power supply Voltage. 4.根据权利要求2所述的电平转换电路,其中,所述分压电路单元包括第四晶体管,4. The level conversion circuit according to claim 2, wherein the voltage dividing circuit unit comprises a fourth transistor, 其中,所述第四晶体管的栅极与所述第四晶体管的第一极共同连接到所述第二电源电压,所述第四晶体管的第二极与所述电流镜电路单元的第三端连接。Wherein, the gate of the fourth transistor and the first pole of the fourth transistor are commonly connected to the second power supply voltage, and the second pole of the fourth transistor is connected to the third terminal of the current mirror circuit unit connect. 5.根据权利要求4所述的电平转换电路,其中,所述第一晶体管和所述第四晶体管规格相同。5. The level conversion circuit according to claim 4, wherein the specifications of the first transistor and the fourth transistor are the same. 6.根据权利要求1所述的电平转换电路,还包括:6. The level conversion circuit according to claim 1, further comprising: 参考电压产生单元,配置为提供参考电压,a reference voltage generating unit configured to provide a reference voltage, 其中,所述第一电源电压和所述第二电源电压之一为所述参考电压。Wherein, one of the first power supply voltage and the second power supply voltage is the reference voltage. 7.根据权利要求6所述的电平转换电路,其中,所述参考电压产生单元包括能隙电压基准电路,其中,所述能隙电压基准电路提供所述参考电压。7. The level conversion circuit according to claim 6, wherein the reference voltage generation unit comprises a bandgap voltage reference circuit, wherein the bandgap voltage reference circuit provides the reference voltage. 8.根据权利要求7所述的电平转换电路,其中,所述参考电压产生单元还包括单位增益缓冲器,其中,所述单元增益缓冲器的第一端与所述能隙电压基准电路连接,所述单元增益缓冲器的第二端与所述电流镜电路单元的第一端连接。8. The level conversion circuit according to claim 7, wherein the reference voltage generating unit further comprises a unity gain buffer, wherein a first end of the unit gain buffer is connected to the bandgap voltage reference circuit , the second end of the unit gain buffer is connected to the first end of the current mirror circuit unit. 9.根据权利要求6所述的电平转换电路,其中,所述第一电源电压为所述参考电压,9. The level conversion circuit according to claim 6, wherein the first power supply voltage is the reference voltage, 所述电流镜电路单元、所述输出电路单元和所述分压电路单元各自包括至少一个晶体管,所述至少一个晶体管每个为P型金属氧化物半导体场效应管。Each of the current mirror circuit unit, the output circuit unit and the voltage divider circuit unit includes at least one transistor, and each of the at least one transistor is a P-type metal oxide semiconductor field effect transistor. 10.根据权利要求6所述的电平转换电路,其中,所述第二电源电压为所述参考电压,10. The level conversion circuit according to claim 6, wherein the second power supply voltage is the reference voltage, 所述电流镜电路单元、所述输出电路单元和所述分压电路单元各自包括至少一个晶体管,所述至少一个晶体管每个为N型金属氧化物半导体场效应管。Each of the current mirror circuit unit, the output circuit unit and the voltage divider circuit unit includes at least one transistor, and each of the at least one transistor is an N-type metal oxide semiconductor field effect transistor. 11.一种电压测量装置,包括:测量电压生成单元和信号处理单元,11. A voltage measurement device, comprising: a measurement voltage generation unit and a signal processing unit, 其中,所述测量电压生成单元包括根据权利要求1~10任一项所述的电平转换电路、输入电压接收端和测量电压输出端,Wherein, the measurement voltage generation unit comprises the level conversion circuit according to any one of claims 1-10, an input voltage receiving terminal and a measurement voltage output terminal, 所述输入电压接收端用于接收来自输入电压信号端的输入电压,所述测量电压输出端与所述信号处理单元连接,The input voltage receiving end is used to receive the input voltage from the input voltage signal end, the measurement voltage output end is connected to the signal processing unit, 所述电平转换电路与所述输入电压接收端连接,且配置为接收所述输入电压,并且向所述测量电压输出端提供输出电压,The level conversion circuit is connected to the input voltage receiving end and is configured to receive the input voltage and provide an output voltage to the measurement voltage output end, 所述信号处理单元包括第一信号接收端和第二信号接收端,所述第一信号接收端与所述测量电压输出端连接以接收所述输出电压,The signal processing unit includes a first signal receiving end and a second signal receiving end, the first signal receiving end is connected to the measurement voltage output end to receive the output voltage, 所述第二信号接收端用于接收参考电压,所述信号处理单元配置为基于所述参考电压,输出所述输出电压的测量结果。The second signal receiving end is used for receiving a reference voltage, and the signal processing unit is configured to output a measurement result of the output voltage based on the reference voltage. 12.根据权利要求11所述的电压测量装置,其中,所述测量电压生成单元包括第一电平转换电路和第二电平转换电路,12. The voltage measuring device according to claim 11 , wherein the measurement voltage generation unit comprises a first level conversion circuit and a second level conversion circuit, 所述测量电压生成单元还包括第一开关单元、第二开关单元和第三开关单元,The measurement voltage generation unit further includes a first switch unit, a second switch unit, and a third switch unit, 所述第一电平转换电路通过所述第一开关单元与所述测量电压输出端连接,The first level conversion circuit is connected to the measurement voltage output terminal through the first switch unit, 所述第二电平转换电路通过所述第二开关单元与所述测量电压输出端连接,The second level conversion circuit is connected to the measurement voltage output terminal through the second switch unit, 所述测量电压输出端还通过所述第三开关单元连接所述输入电压信号端,The measurement voltage output terminal is also connected to the input voltage signal terminal through the third switch unit, 其中,所述第一电平转换电路和所述第二电平转换电路还接收所述参考电压,所述第一电平转换电路连接的所述第一电源电压为所述参考电压,所述第二电平转换电路连接的所述第二电源电压为所述参考电压。Wherein, the first level conversion circuit and the second level conversion circuit also receive the reference voltage, the first power supply voltage connected to the first level conversion circuit is the reference voltage, and the The second power supply voltage connected to the second level conversion circuit is the reference voltage. 13.根据权利要求12所述的电压测量装置,其中,所述第一开关单元、所述第二开关单元和所述第三开关单元配置为响应控制信号,13. The voltage measuring device according to claim 12, wherein the first switching unit, the second switching unit and the third switching unit are configured to respond to a control signal, 其中,在所述输入电压在所述信号处理单元的电压测量范围内的情形中,所述控制信号用于控制所述第一开关单元断开所述测量电压输出端与所述第一电平转换电路的连接、所述第二开关单元断开所述第二电平转换电路与所述测量电压输出端的连接以及所述第三开关单元导通所述输入电压信号端与所述测量电压输出端;Wherein, in the case that the input voltage is within the voltage measurement range of the signal processing unit, the control signal is used to control the first switch unit to disconnect the measured voltage output terminal from the first level The connection of the conversion circuit, the second switch unit disconnects the connection between the second level conversion circuit and the measurement voltage output terminal, and the third switch unit conducts the input voltage signal terminal and the measurement voltage output end; 在所述输入电压小于所述信号处理单元的电压测量范围的最小值的情形中,所述控制信号用于控制所述第一开关单元导通所述测量电压输出端与所述第一电平转换电路、所述第二开关单元断开所述第二电平转换电路与所述测量电压输出端的连接以及所述第三开关单元断开所述输入电压信号端与所述测量电压输出端的连接;In the case that the input voltage is less than the minimum value of the voltage measurement range of the signal processing unit, the control signal is used to control the first switch unit to conduct the measurement voltage output terminal and the first level The conversion circuit, the second switch unit disconnects the connection between the second level conversion circuit and the measurement voltage output terminal, and the third switch unit disconnects the connection between the input voltage signal terminal and the measurement voltage output terminal ; 在所述输入电压大于所述信号处理单元的电压测量范围的最大值的情形中,所述控制信号用于控制所述第一开关单元断开所述测量电压输出端与所述第一电平转换电路的连接、所述第二开关单元导通所述第二电平转换电路与所述测量电压输出端以及所述第三开关单元断开所述输入电压信号端与所述测量电压输出端的连接。In the case where the input voltage is greater than the maximum value of the voltage measurement range of the signal processing unit, the control signal is used to control the first switch unit to disconnect the measured voltage output terminal from the first level The connection of the conversion circuit, the second switch unit turns on the second level conversion circuit and the measurement voltage output terminal, and the third switch unit disconnects the input voltage signal terminal and the measurement voltage output terminal connect. 14.根据权利要求11所述的电压测量装置,其中,所述信号处理单元包括数模转换单元。14. The voltage measurement device according to claim 11, wherein the signal processing unit comprises a digital-to-analog conversion unit. 15.一种电压测量方法,应用于权利要求12所述的电压测量装置,所述电压测量方法包括:15. A voltage measurement method, applied to the voltage measurement device according to claim 12, said voltage measurement method comprising: 响应于所述输入电压接收端接收所述输入电压,比较所述输入电压和所述信号处理单元的电压测量范围,获得比较结果;In response to the input voltage receiving end receiving the input voltage, comparing the input voltage with the voltage measurement range of the signal processing unit to obtain a comparison result; 基于所述比较结果,生成所述控制信号;generating the control signal based on the comparison result; 根据所述控制信号,控制所述第一开关单元、所述第二开关单元和所述第三开关单元的断开或者闭合;以及controlling opening or closing of the first switch unit, the second switch unit and the third switch unit according to the control signal; and 由所述信号处理单元对所述测量电压输出端提供的输出电压进行测量,并且输出测量结果。The signal processing unit measures the output voltage provided by the measurement voltage output terminal and outputs a measurement result.
CN202210813345.3A 2022-07-11 2022-07-11 Level conversion circuit, voltage measuring device and voltage measuring method Pending CN115378420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210813345.3A CN115378420A (en) 2022-07-11 2022-07-11 Level conversion circuit, voltage measuring device and voltage measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210813345.3A CN115378420A (en) 2022-07-11 2022-07-11 Level conversion circuit, voltage measuring device and voltage measuring method

Publications (1)

Publication Number Publication Date
CN115378420A true CN115378420A (en) 2022-11-22

Family

ID=84061052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210813345.3A Pending CN115378420A (en) 2022-07-11 2022-07-11 Level conversion circuit, voltage measuring device and voltage measuring method

Country Status (1)

Country Link
CN (1) CN115378420A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207380A1 (en) * 2003-04-11 2004-10-21 Renesas Technology Corp. Reference voltage generating circuit capable of controlling temperature dependency of reference voltage
TWI259903B (en) * 2005-05-10 2006-08-11 Etron Technology Inc Low power consumed and small circuit area occupied temperature sensor
US20060197578A1 (en) * 2004-12-14 2006-09-07 Marcus Nuebling Level converter
CN103888126A (en) * 2014-03-04 2014-06-25 东莞博用电子科技有限公司 Practical level switching circuit
CN112438021A (en) * 2018-07-20 2021-03-02 高通股份有限公司 High-speed low-power level shift clock buffer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207380A1 (en) * 2003-04-11 2004-10-21 Renesas Technology Corp. Reference voltage generating circuit capable of controlling temperature dependency of reference voltage
US20060197578A1 (en) * 2004-12-14 2006-09-07 Marcus Nuebling Level converter
TWI259903B (en) * 2005-05-10 2006-08-11 Etron Technology Inc Low power consumed and small circuit area occupied temperature sensor
CN103888126A (en) * 2014-03-04 2014-06-25 东莞博用电子科技有限公司 Practical level switching circuit
CN112438021A (en) * 2018-07-20 2021-03-02 高通股份有限公司 High-speed low-power level shift clock buffer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. K. KUSHWAHA AND M. K. SINGH: "A Wide-Range Low Voltage Wilson Current Mirror based Reflected-Output for Swift and Cost-effective Level Shifter", 2021 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, POWER AND SIGNAL PROCESSING (CAPS), 16 March 2022 (2022-03-16), pages 1 - 4 *
宋鑫宇;虞致国;刘彦航;赵琳娜;王恬;顾晓峰;: "用于高速串行收发器的低功耗静噪检测器", 微电子学, no. 03, 11 December 2019 (2019-12-11), pages 339 - 343 *

Similar Documents

Publication Publication Date Title
KR100590464B1 (en) Sampling switch
CN106774595A (en) A kind of current foldback circuit for low pressure difference linear voltage regulator
US10488875B1 (en) Dual loop low dropout regulator system
CN111555590B (en) Step-down DC/DC valley current sampling circuit
US8922932B2 (en) Power supply circuit
TWI672883B (en) Short circuit protection circuit, semiconductor device and electronic machine
CN105183059B (en) A kind of circuit for eliminating the ringing in digital low-dropout regulator
JP2019004556A (en) Current control circuit, and power supply management circuit employing the same
CN114825878A (en) Voltage comparator and current limit control circuit thereof
KR920013881A (en) CMOS Transconductance Amplifier with Floating Operating Point
CN108227808B (en) Digital low dropout regulator and control method thereof
US4587447A (en) Input signal level converter for an MOS digital circuit
US20210297077A1 (en) Sampling Circuit and Sampling Method
CN101556481A (en) Precisely matched image current source circuit
CN111026222B (en) A voltage reference source circuit based on switched capacitor
CN115378420A (en) Level conversion circuit, voltage measuring device and voltage measuring method
CN109725671A (en) Circuit and method for enhancing load transient response compensation
KR101939147B1 (en) Variable Voltage Reference Generator and Analog-to-Digital Converter using thereof
CN115296522A (en) Soft start circuit
US20030112169A1 (en) A/D converter with reduced power consumption
TW202017290A (en) Digital linear regulator and a power mos array thereof
KR20200077383A (en) Comparator curcuit, adc citcuit, semiconductor device and mobile device
US20250125704A1 (en) Current Sensing Apparatus and Control Method
US11996850B2 (en) Comparator with reduced offset
US11557917B2 (en) Switched mode power supplies with configurable communication addresses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: 201100 room 1302, 13 / F, building 16, No. 2388, Chenhang highway, Minhang District, Shanghai

Applicant after: Shanghai Bi Ren Technology Co.,Ltd.

Address before: 201100 room 1302, 13 / F, building 16, No. 2388, Chenhang highway, Minhang District, Shanghai

Applicant before: Shanghai Bilin Intelligent Technology Co.,Ltd.

Country or region before: China

CB02 Change of applicant information