CN115378441A - A Design Method of Polar Code Distributed Source Codec System Based on FPGA - Google Patents
A Design Method of Polar Code Distributed Source Codec System Based on FPGA Download PDFInfo
- Publication number
- CN115378441A CN115378441A CN202110548262.1A CN202110548262A CN115378441A CN 115378441 A CN115378441 A CN 115378441A CN 202110548262 A CN202110548262 A CN 202110548262A CN 115378441 A CN115378441 A CN 115378441A
- Authority
- CN
- China
- Prior art keywords
- sequence
- decoding
- polar code
- bit
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
技术领域technical field
本发明属于信源编码技术领域,具体涉及一种基于FPGA的极化码分布式信源编解码系统的设计方法。The invention belongs to the technical field of information source encoding, and in particular relates to a design method of a polar code distributed information source encoding and decoding system based on FPGA.
背景技术Background technique
随着无线传感器网络、监控技术、卫星通信等技术的发展,资源受限的终端得到了越来越广泛的应用。由于这类终端因特定场景对其低功耗、小型化的要求而面临资源限制,所以在对数据压缩编码的过程中必须要考虑计算的复杂性。传统的信源编码方案采用联合编码的方式对传输数据进行压缩,由于这种方案要求编码端进行大量的计算,所以不再适用于这些领域的终端设备。而分布式信源编码(Distributed Source Coding,DSC)方案在编码端独立编码,在解码端利用信源之间的相关性联合解码,从而将大量的计算过程从对资源敏感的编码端转移到了对资源不敏感的解码端,因此分布式信源编码更适合编码端资源受限的场合。With the development of technologies such as wireless sensor networks, monitoring technologies, and satellite communications, resource-constrained terminals have been more and more widely used. Since this type of terminal faces resource constraints due to its low power consumption and miniaturization requirements in specific scenarios, the complexity of calculation must be considered in the process of data compression and encoding. The traditional source coding scheme uses joint coding to compress the transmitted data. Since this scheme requires a large amount of calculation at the coding end, it is no longer suitable for terminal equipment in these fields. The Distributed Source Coding (DSC) scheme encodes independently at the encoding end, and uses the correlation between sources to jointly decode at the decoding end, thereby transferring a large number of calculation processes from the resource-sensitive encoding end to the resource-sensitive end. The resource-insensitive decoding end, so distributed source coding is more suitable for occasions where the resources of the encoding end are limited.
目前学术界关于如何在FPGA上实现分布式信源编码已展开大量工作。Tharini C等提出采用基于空间相关性的聚类算法来提升分布式信源编码的性能,并在FPGA上进行了基于低能耗技术的实现。北京邮电大学的许迪佳采用LDPC码作为信道码,在FPGA上实现了基于校验子的联合分布式信源信道编译码器。四川大学的吕顺研究了LDPC码校验位的分布式信源编解码系统,设计了基于FPGA的硬件实现方案,并取得了不错的效果。而极化码作为第一个被严格证明可以达到香农极限的信道编码方法,其具有更优良的检错性能、更低的编译码复杂度和更好的码率兼容性,所以设计基于FPGA的极化码分布式信源编解码系统具有很高的研究价值,且目前还没有在FPGA上实现基于极化码的分布式信源编解码系统的先例。At present, a lot of work has been done in the academic circle on how to implement distributed source coding on FPGA. Tharini C et al. proposed to use a clustering algorithm based on spatial correlation to improve the performance of distributed source coding, and implemented it on FPGA based on low energy consumption technology. Xu Dijia from Beijing University of Posts and Telecommunications used LDPC codes as channel codes to implement a syndrome-based joint distributed source channel codec on FPGA. Lu Shun of Sichuan University studied the distributed source codec system of LDPC code check digit, designed a hardware implementation scheme based on FPGA, and achieved good results. As the first channel coding method that has been strictly proven to reach the Shannon limit, the polar code has better error detection performance, lower coding and decoding complexity, and better code rate compatibility, so the FPGA-based The polar code distributed source codec system has high research value, and there is no precedent for implementing a polar code-based distributed source codec system on FPGA.
发明内容Contents of the invention
本发明的目的是减小编码端复杂度的同时尽可能提高信源的压缩率。本发明利用CRC校验码与系统极化码组合的方式,设计了一种码率自适应方案,相比传统按固定码率进行传输的方式,此方案能更大幅度地提高信源压缩率。The purpose of the present invention is to reduce the complexity of the coding end and at the same time improve the compression rate of the information source as much as possible. The present invention uses the combination of CRC check code and system polar code to design a code rate self-adaptive scheme. Compared with the traditional method of transmitting with fixed code rate, this scheme can greatly improve the source compression rate .
本发明的基本思想是利用信源之间地相关性,将边信息处理模块根据二进制输入序列和交叉概率产生的一个边信息序列作为信息比特序列,将经过系统极化码编码后的校验位序列缓存至删余模块中,根据解码模块的反馈信号逐比特将校验位序列送至解码模块中,未被发送的比特位则相当于被删余,进而达到提高信源压缩率的目的。The basic idea of the present invention is to use the correlation between information sources, use a side information sequence generated by the side information processing module according to the binary input sequence and the crossover probability as the information bit sequence, and use the check bit encoded by the system polar code The sequence is cached in the puncturing module, and the check bit sequence is sent to the decoding module bit by bit according to the feedback signal of the decoding module, and the unsent bits are equivalent to being punctured, thereby achieving the purpose of improving the source compression rate.
其中,数据编码,对128比特的数据先进行CRC校验编码得到16比特的CRC校验序列,将这144比特数据作为输入进行系统极化码编码,得到112比特的极化码校验位序列,再将此序列与16比特的CRC校验序列进行拼接得到的128比特序列作为编码模块的输出。在编码模块中所需的校验位索引,G矩阵等数据先通过matlab生成后再导入至vivado中生成相应的ROM,以实现对数据的调用。Among them, for data encoding, CRC check encoding is first performed on 128-bit data to obtain a 16-bit CRC check sequence, and the 144-bit data is used as input for system polar code encoding to obtain a 112-bit polar code check bit sequence , and then the 128-bit sequence obtained by splicing this sequence with the 16-bit CRC check sequence is used as the output of the encoding module. The data such as check digit index and G matrix required in the encoding module are first generated by matlab and then imported into vivado to generate the corresponding ROM to realize the call of the data.
在码率自适应方案的设计中,提高信源压缩率的关键步骤是删余模块逐个传输校验序列的过程,因此如何在保证译码结果正确的前提下传输最少的码字是码率自适应方案的关键问题。删余模块在第一次向解码模块传送数据时,根据交叉概率对应的信息熵的大小先一次性传送一定位数的数据。因为当传送数据过小导致码率小于信息熵时理论上解码模块无法正确解码。解码模块根据删余模块第一次传送的数据和边信息序列,开始尝试使用极化码SC译码算法进行解码,得到一个解码序列,再将此解码序列进行CRC校验,若校验失败则说明解码序列有误,则反馈一个信号给删余模块请求更多的校验比特。删余模块收到反馈信号后根据顺序再传送一位的校验比特信息给解码模块使其重新进行解码和校验,重复这个过程,直至解码和校验成功得到正确的解码序列并输出。In the design of the code rate adaptive scheme, the key step to improve the source compression rate is the process of the puncturing module transmitting the check sequence one by one, so how to transmit the least code words under the premise of ensuring the correct decoding result Key issues for adaptation programmes. When the puncturing module transmits data to the decoding module for the first time, it first transmits a certain number of bits of data at one time according to the size of the information entropy corresponding to the crossover probability. Because when the transmitted data is too small and the code rate is lower than the information entropy, theoretically the decoding module cannot decode correctly. According to the data and side information sequence transmitted by the puncturing module for the first time, the decoding module starts to try to use the polar code SC decoding algorithm to decode, obtain a decoding sequence, and then perform CRC verification on the decoding sequence, if the verification fails, then If the decoding sequence is wrong, a signal is fed back to the puncturing module to request more parity bits. After receiving the feedback signal, the puncturing module transmits one bit of check bit information to the decoding module in order to make it decode and check again, and repeat this process until the decoding and check succeed to obtain the correct decoding sequence and output it.
边信息处理模块,模拟了一个虚拟信道,它将信源序列以一定的交叉概率生成一个边信息给解码模块。交叉概率越大,边信息和信源序列的差异越大,解码所需要的校验位也越多。交叉概率与信源序列长度的乘积即为边信息序列与信源序列实际差异的比特数,而具体差异的比特位置,则通过一个随机序列索引在相应比特位取反实现。The side information processing module simulates a virtual channel, which generates a side information to the decoding module with a certain cross probability of the source sequence. The greater the crossover probability, the greater the difference between the side information and the source sequence, and the more check bits are required for decoding. The product of the crossover probability and the length of the source sequence is the actual number of bits that differ between the side information sequence and the source sequence, and the bit position of the specific difference is achieved by inverting the corresponding bit through a random sequence index.
解码模块,包括极化码译码与CRC校验两个过程。其中极化码译码算法采用系统极化码SC(Successive Cancellation)连续消除译码算法,该算法是最经典的极化码译码算法,而且考虑到在FPGA这种资源受限的平台上实现时,SC译码算法相比于SCL译码算法、CA-SCL译码算法,具有计算复杂度低,资源占用少,译码时延低等优点。The decoding module includes two processes of polar code decoding and CRC checking. Among them, the polar code decoding algorithm adopts the system polar code SC (Successive Cancellation) continuous elimination decoding algorithm, which is the most classic polar code decoding algorithm, and it is considered to be implemented on a resource-constrained platform such as FPGA. Compared with the SCL decoding algorithm and the CA-SCL decoding algorithm, the SC decoding algorithm has the advantages of low computational complexity, less resource occupation, and low decoding delay.
具体地,在极化码译码过程中,由于SC译码算法中的f运算较为复杂不适于在硬件上实现,故采用最小和译码算法进行优化设计。由于对数似然比在运算过程中始终是以浮点数的形式参与的计算,而在FPGA中直接对浮点数进行操作较为复杂,因为FPGA直接操作的是一定位数的reg类型数据。所以要将浮点数形式的对数似然比定点量化为一定比特数的定点数。若量化比特数越多,则译码过程需要占用越多的资源;若量化比特数过小,则会降低译码性能。最终本文采用4比特定点量化的方案,即所有的对数似然比用4比特表示,又由于对数似然比有正有负,且最小和译码算法需要对数似然比的正负符号值直接参与运算,所以采用补码的形式,即1000~0111对应于-8~7。Specifically, in the polar code decoding process, since the f operation in the SC decoding algorithm is too complicated to be implemented on hardware, the minimum sum decoding algorithm is used for optimal design. Since the logarithmic likelihood ratio is always involved in the calculation in the form of floating-point numbers during the operation process, it is more complicated to directly operate on floating-point numbers in FPGA, because FPGA directly operates on reg type data with a certain number of digits. Therefore, the log-likelihood ratio in the form of a floating-point number should be fixed-point quantized into a fixed-point number with a certain number of bits. If the number of quantization bits is larger, the decoding process needs to occupy more resources; if the number of quantization bits is too small, the decoding performance will be reduced. Finally, this paper adopts a 4-bit specific point quantization scheme, that is, all log likelihood ratios are represented by 4 bits, and because the log likelihood ratios are positive and negative, and the minimum sum decoding algorithm requires the log likelihood ratios to be positive and negative The symbol value is directly involved in the operation, so the form of complement code is used, that is, 1000~0111 corresponds to -8~7.
附图说明Description of drawings
图1是本发明的设计流程图。Fig. 1 is the design flowchart of the present invention.
图2是本发明总体RTL设计图。Fig. 2 is an overall RTL design diagram of the present invention.
图3是本发明中的仿真波形图。Fig. 3 is a simulation waveform diagram in the present invention.
图4是本发明中的资源占用结果图。Fig. 4 is a diagram of resource occupation results in the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用于限定本发明,所属领域技术熟悉人员根据上述发明内容,对本发明做出一些非本质的改进和调整进行具体实施,应仍属于本发明的保护范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, and are not intended to limit the present invention. Those skilled in the art may make some non-essential improvements and adjustments to implement the present invention based on the content of the above invention. Still belong to the protection scope of the present invention.
图1中,一种基于FPGA的极化码分布式信源编解码系统的设计方法,包括以下步骤:In Fig. 1, a kind of design method of the polar code distributed source codec system based on FPGA, comprises the following steps:
(1)数据编码,将128比特的信源序列输入进编码模块,先生成CRC校验序列,再进行系统极化码编码,将128比特的编码序列输出给删余模块;(1) Data encoding, inputting the source sequence of 128 bits into the encoding module, first generating the CRC check sequence, and then encoding the system polar code, outputting the encoding sequence of 128 bits to the puncturing module;
(2)边信息生成,将128比特的信源序列输入进边信息处理模块,根据提前设定好的交叉概率大小对信源序列加入虚拟噪声,生成一个等长的边信息序列,输出给解码模块;(2) Side information generation, input the 128-bit source sequence into the side information processing module, add virtual noise to the source sequence according to the pre-set crossover probability, generate a side information sequence of equal length, and output it to the decoder module;
(3)数据传输,删余模块先缓存输入进来的编码序列,第一次传输数据时,根据交叉概率对应的信息熵按顺序传递一定位数的码字。后续根据是否收到解码模块输出的反馈信号再逐比特按顺序发送码字;(3) For data transmission, the puncturing module first caches the input code sequence, and when transmitting data for the first time, transmits a certain number of codewords in order according to the information entropy corresponding to the crossover probability. Subsequent codewords are sent bit by bit in order according to whether the feedback signal output by the decoding module is received;
(4)数据解码与校验,接收到足够多的校验码字后译码得到正确的译码结果并输出。(4) Data decoding and verification, after receiving enough verification code words, decode to get the correct decoding result and output it.
其中,步骤1又分为以下几个步骤:Among them,
①生成16比特的CRC校验序列,并与128比特的信源序列拼接成144比特的序列;① Generate a 16-bit CRC check sequence and splice it with a 128-bit source sequence to form a 144-bit sequence;
②将144比特长的序列进行系统极化码编码,根据校验位索引得到112比特的编码序列;② Encode the 144-bit long sequence with a systematic polar code, and obtain a 112-bit coded sequence according to the parity index;
③将112比特的编码序列与16比特的CRC校验序列拼接后输出。③The 112-bit coding sequence and the 16-bit CRC check sequence are spliced and output.
具体地,在所述步骤2中,输入的序列长度为128比特,设置的交叉概率为0.03,因此边信息与信源序列有round(128×0.03)=4位的不同。将一个随机序列的前四位作为索引将信源序列的相应位比特取反后输出作为边信息序列。Specifically, in the step 2, the length of the input sequence is 128 bits, and the set crossover probability is 0.03, so the side information is different from the source sequence by round(128×0.03)=4 bits. The first four bits of a random sequence are used as an index to invert the corresponding bits of the source sequence and output as a side information sequence.
在所述步骤3中,交叉概率的信息熵根据以下公式计算得出:In the
H=-plog2(p)-(1-p)log2(1-p)H= -plog2 (p)-(1-p) log2 (1-p)
在实际设计中,设置交叉概率p=0.03,则信息熵H=0.1944。信息熵与校验序列长度的乘积为0.1944×128=24.8832,故删余模块在接收到编码序列后,第一次一次性传送前25比特的校验序列至解码模块。根据码率自适应方案,在后续的传输过程中,每接收到一次解码模块的反馈信号,按顺序传送下一位校验比特至解码模块。In the actual design, set the crossover probability p=0.03, then the information entropy H=0.1944. The product of the information entropy and the length of the check sequence is 0.1944×128=24.8832, so the puncturing module transmits the check sequence of the first 25 bits to the decoding module for the first time after receiving the coded sequence. According to the code rate adaptive scheme, in the subsequent transmission process, each time a feedback signal from the decoding module is received, the next parity bit is sent to the decoding module in sequence.
具体地,在所述步骤4中,为方便在FPGA中部署极化码SC译码算法,本发明采用最小和译码算法,可将复杂的f运算和g运算进行如下简化:Specifically, in the step 4, in order to facilitate the deployment of the polar code SC decoding algorithm in the FPGA, the present invention adopts the minimum sum decoding algorithm, which can simplify the complex f operation and g operation as follows:
f(L1,L2)=sgn(L1)sgn(L2)min(|L1|,|L2|)f(L 1 ,L 2 )=sgn(L 1 )sgn(L 2 )min(|L 1 |,|L 2 |)
g(L1,L2,u)=(-1)uL1+L2 g(L 1 ,L 2 ,u)=(-1) u L 1 +L 2
在对数似然比的量化方案上,采用4比特定点量化的方案,将原本为浮点数形式的对数似然比量化为4比特的定点数,量化公式如下:In the quantization scheme of the logarithmic likelihood ratio, a 4-bit fixed-point quantization scheme is adopted to quantize the loglikelihood ratio originally in the form of a floating-point number into a 4-bit fixed-point number. The quantization formula is as follows:
具体地,在所述步骤4中的CRC校验过程中,将144比特的极化码译码序列与一个16×144大小的CRC校验矩阵的每一行相与再按位异或,得到一个16位的数组,若此数组为0则表示通过CRC校验即解码成功,最后将此144比特的极化码译码序列中的CRC校验序列剔除后,将剩余的128比特的解码结果输出,并使输出有效信号拉高。Specifically, in the CRC check process in step 4, the 144-bit polar code decoding sequence is ANDed with each row of a 16×144 CRC check matrix, and then bitwise XORed to obtain a 16-bit array, if the array is 0, it means that the decoding is successful through the CRC check, and finally the CRC check sequence in the 144-bit polar code decoding sequence is removed, and the remaining 128-bit decoding result is output , and pull the output valid signal high.
参照图2,基于FPGA的极化码分布式信源编解码系统一共由四个模块组成。encode为编码模块,复杂数据编码;bsc为边信息生成模块,完成对边信息的处理;del为删余模块,为码率自适应方案的核心模块,负责传输校验位数据;decode为解码模块,负责极化码解码和CRC校验。系统输入时钟clk频率设置为200MHz。信源序列source采用串行的方式输入到系统中。复位信号rst由开发板IO引脚控制,有效方式为低电平有效。Referring to Figure 2, the FPGA-based polar code distributed source codec system consists of four modules. encode is the encoding module, which encodes complex data; bsc is the side information generation module, which completes the processing of side information; del is the puncturing module, which is the core module of the code rate adaptive scheme, responsible for transmitting check digit data; decode is the decoding module , responsible for polar code decoding and CRC check. The system input clock clk frequency is set to 200MHz. The source sequence source is input into the system in a serial manner. The reset signal rst is controlled by the IO pin of the development board, and the effective mode is active low.
参照图3,基于FPGA的极化码分布式信源编解码系统设计完成后,为验证系统功能正确性,使用Vivado自带的仿真工具,通过编写testbench进行仿真验证。仿真参数进行如下配置:码长N=256,信息比特数K=128,码率R=0.5,交叉概率p=0.03。从仿真波形图中可以看见,删余模块第一次传送了25比特的校验序列至解码模块,第一次解码失败后,删余模块继续逐比特传送,当一共传送了30比特的校验序列后,解码模块得到了正确的译码结果,输出128比特的解码序列decode_data,并使输出有效信号out_en拉高。Referring to Figure 3, after the design of the FPGA-based polar code distributed source encoding and decoding system is completed, in order to verify the correctness of the system function, use the simulation tool that comes with Vivado to perform simulation verification by writing testbench. The simulation parameters are configured as follows: code length N=256, number of information bits K=128, code rate R=0.5, crossover probability p=0.03. It can be seen from the simulation waveform diagram that the puncturing module transmits a 25-bit check sequence to the decoding module for the first time. After the first decoding fails, the puncturing module continues to transmit bit by bit. After the sequence, the decoding module obtains the correct decoding result, outputs the 128-bit decoding sequence decode_data, and pulls the output valid signal out_en high.
参照图4,基于FPGA的极化码分布式信源编解码系统综合完成后,资源占用情况符合开发板资源限制。Referring to Figure 4, after the integration of the FPGA-based polar code distributed source codec system is completed, the resource occupation is in line with the resource limit of the development board.
本发明提出的一种基于FPGA的极化码分布式信源编解码系统的设计方法,在Xilinx公司的以Virtex-7系列芯片xc7vx485tffg1761-2为主控芯片的VC707评估板上进行了设计实现,并使用128比特的随机二进制序列进行了性能测试,实验数据表明该系统的吞吐量能达到497Kbps。The design method of a kind of FPGA-based polar code distributed source encoding and decoding system proposed by the present invention is designed and implemented on the VC707 evaluation board of Xilinx Company with the Virtex-7 series chip xc7vx485tffg1761-2 as the main control chip, And use 128-bit random binary sequence to carry out the performance test, the experimental data shows that the throughput of the system can reach 497Kbps.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110548262.1A CN115378441A (en) | 2021-05-19 | 2021-05-19 | A Design Method of Polar Code Distributed Source Codec System Based on FPGA |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110548262.1A CN115378441A (en) | 2021-05-19 | 2021-05-19 | A Design Method of Polar Code Distributed Source Codec System Based on FPGA |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115378441A true CN115378441A (en) | 2022-11-22 |
Family
ID=84059046
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110548262.1A Pending CN115378441A (en) | 2021-05-19 | 2021-05-19 | A Design Method of Polar Code Distributed Source Codec System Based on FPGA |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115378441A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105227189A (en) * | 2015-09-24 | 2016-01-06 | 电子科技大学 | The polarization code coding and decoding method that segmentation CRC is auxiliary |
| CN108429599A (en) * | 2017-02-13 | 2018-08-21 | 上海诺基亚贝尔股份有限公司 | Method and device for data processing in a communication system |
| CN109075799A (en) * | 2016-04-29 | 2018-12-21 | 华为技术有限公司 | The coding and decoding method and device of polarization Polar code |
| US20190372711A1 (en) * | 2017-02-17 | 2019-12-05 | Huawei Technologies Co., Ltd. | Polar code transmission method and apparatus |
-
2021
- 2021-05-19 CN CN202110548262.1A patent/CN115378441A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105227189A (en) * | 2015-09-24 | 2016-01-06 | 电子科技大学 | The polarization code coding and decoding method that segmentation CRC is auxiliary |
| CN109075799A (en) * | 2016-04-29 | 2018-12-21 | 华为技术有限公司 | The coding and decoding method and device of polarization Polar code |
| CN108429599A (en) * | 2017-02-13 | 2018-08-21 | 上海诺基亚贝尔股份有限公司 | Method and device for data processing in a communication system |
| US20190372711A1 (en) * | 2017-02-17 | 2019-12-05 | Huawei Technologies Co., Ltd. | Polar code transmission method and apparatus |
Non-Patent Citations (1)
| Title |
|---|
| 李国瑞等: ""基于语义信息跨层特征融合的细粒度鸟类识别"", 《计算机应用于软件》, vol. 37, no. 4, 12 April 2020 (2020-04-12), pages 132 - 191 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107517095B (en) | Polarization code coding and decoding method for non-uniform sectional check | |
| CN106788456B (en) | A Polar Code Coding and Decoding Method | |
| CN105227189A (en) | The polarization code coding and decoding method that segmentation CRC is auxiliary | |
| CN102164026B (en) | Fountain code compiling method based on deep space communication environment | |
| US7831884B2 (en) | Method of correcting message errors using cyclic redundancy checks | |
| CN107154836B (en) | Parallel Cyclic Redundancy Check (CRC) method based on Field Programmable Gate Array (FPGA) | |
| CN101379712A (en) | Decodage de codes raptor | |
| WO2017121334A1 (en) | Data-processing method and device | |
| CN106888026A (en) | Segmentation polarization code coding/decoding method and system based on LSC CRC decodings | |
| CN111416628B (en) | BCH soft decision channel code decoding device based on random characterization | |
| CN108111256A (en) | Cascade Compilation Method, device, storage medium and its computer equipment | |
| CN114073024B (en) | Convolutional Precoding and Decoding of Polar Codes | |
| CN108462560A (en) | One kind being used for the cascade coding and decoding method of polarization code | |
| US20230208554A1 (en) | Encoding and Decoding Method and Apparatus | |
| CN108055108B (en) | Encoding method of LT code | |
| CN103312458A (en) | Hybrid coding method | |
| CN107332570B (en) | A Polar Code Coding Method for Segmented Concatenated Hash Sequences | |
| CN112688780A (en) | QKD key agreement method based on discrete variable | |
| CN107347000A (en) | A kind of Encoding Realization method of the digital fountain code based on ARM | |
| CN109245853B (en) | Polarization code-based synchronization-free communication method | |
| CN108259138A (en) | A kind of safe transmission method repeatedly fed back using fountain codes | |
| CN115378441A (en) | A Design Method of Polar Code Distributed Source Codec System Based on FPGA | |
| CN118041490A (en) | Based on GF (2)m) Finite field large-scale multiple access method | |
| CN111600613A (en) | A verification method, device, decoder, receiver and computer storage medium | |
| CN114696969B (en) | Structure and Method of Serial UART Codec Based on Interleaved XOR Algorithm |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |