CN115458398A - Semiconductor structure and its preparation method - Google Patents
Semiconductor structure and its preparation method Download PDFInfo
- Publication number
- CN115458398A CN115458398A CN202211226211.8A CN202211226211A CN115458398A CN 115458398 A CN115458398 A CN 115458398A CN 202211226211 A CN202211226211 A CN 202211226211A CN 115458398 A CN115458398 A CN 115458398A
- Authority
- CN
- China
- Prior art keywords
- substrate
- layer
- oxide layer
- material layer
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,特别是涉及一种半导体结构及其制备方法。The invention relates to the technical field of semiconductors, in particular to a semiconductor structure and a preparation method thereof.
背景技术Background technique
随着半导体加工技术的不断发展,半导体器件由于其更小的体积、更高的性能、更高的转换效率在电子、通讯等领域得到越来越多的应用。With the continuous development of semiconductor processing technology, semiconductor devices are being used more and more in the fields of electronics and communications due to their smaller size, higher performance, and higher conversion efficiency.
然而,随着半导体器件尺寸的减小,栅氧化层的可靠性一直是各种芯片工艺平台开发的重点和难点。在小尺寸半导体器件的制备工艺中,当去除牺牲氧化层时容易导致浅沟槽隔离结构的拐角处凹陷,从而导致有源区角上生成的栅氧化层偏薄。在半导体器件的可靠性测试过程中,有源区角上的栅氧化层很容易被击穿。However, with the reduction in the size of semiconductor devices, the reliability of the gate oxide layer has always been the focus and difficulty in the development of various chip process platforms. In the manufacturing process of small-sized semiconductor devices, when removing the sacrificial oxide layer, it is easy to cause the corners of the shallow trench isolation structure to be recessed, thus resulting in a thinner gate oxide layer formed on the corners of the active region. During reliability testing of semiconductor devices, the gate oxide layer on the corner of the active region is easily broken down.
因此,如何提高有源区角上的栅氧化层厚度,以解决栅氧化层不均匀问题,进而提高半导体器件的可靠性是亟需解决的问题。Therefore, how to increase the thickness of the gate oxide layer on the corners of the active region to solve the problem of uneven gate oxide layer and improve the reliability of semiconductor devices is an urgent problem to be solved.
发明内容Contents of the invention
基于此,有必要提供一种半导体结构及其制备方法,以有效提高有源区角上的栅氧化层厚度,从而解决栅氧化层不均匀问题,进而提高半导体器件的可靠性。Based on this, it is necessary to provide a semiconductor structure and its preparation method to effectively increase the thickness of the gate oxide layer at the corner of the active region, thereby solving the problem of uneven gate oxide layer, and further improving the reliability of the semiconductor device.
本申请实施例提供了一种半导体结构的制备方法,包括以下步骤:提供衬底,衬底的上表面形成有牺牲氧化层,衬底内形成有浅沟槽隔离结构,浅沟槽隔离结构自衬底内向上延伸,具有凸出于衬底上的凸出部;浅沟槽隔离结构于衬底内隔离出多个间隔排布的有源区;去除牺牲氧化层;于凸出部的侧壁形成介质层;形成栅氧化层,栅氧化层覆盖有源区的上表面;形成栅极材料层,栅极材料层覆盖栅氧化层的上表面、介质层裸露的表面及凸出部的顶面。An embodiment of the present application provides a method for preparing a semiconductor structure, including the following steps: providing a substrate, a sacrificial oxide layer is formed on the upper surface of the substrate, a shallow trench isolation structure is formed in the substrate, and the shallow trench isolation structure is formed from The substrate extends upwards and has a protruding part protruding from the substrate; the shallow trench isolation structure isolates a plurality of active regions arranged at intervals in the substrate; the sacrificial oxide layer is removed; on the side of the protruding part The wall forms a dielectric layer; forms a gate oxide layer, and the gate oxide layer covers the upper surface of the active region; forms a gate material layer, and the gate material layer covers the upper surface of the gate oxide layer, the exposed surface of the dielectric layer and the top of the protrusion noodle.
上述半导体结构的制备方法,在去除牺牲氧化层后,在浅沟槽隔离结构凸出于衬底上的凸出部的侧壁形成介质层,以填充因去除牺牲氧化层工艺导致的凸出部侧壁的凹陷。在凸出部的侧壁形成介质层后,再在有源区的上表面形成栅氧化层,以有效提高有源区角上的栅氧化层厚度,从而解决栅氧化层不均匀问题,进而提高半导体器件的可靠性,降低芯片的失效率。In the method for preparing the above semiconductor structure, after the sacrificial oxide layer is removed, a dielectric layer is formed on the sidewall of the protruding portion of the shallow trench isolation structure protruding from the substrate, so as to fill the protruding portion caused by the process of removing the sacrificial oxide layer Depression in the side wall. After the dielectric layer is formed on the sidewall of the protruding part, a gate oxide layer is formed on the upper surface of the active region to effectively increase the thickness of the gate oxide layer on the corner of the active region, thereby solving the problem of uneven gate oxide layer, and further improving Improve the reliability of semiconductor devices and reduce the failure rate of chips.
可选地,去除牺牲氧化层之后,凸出部的下部侧壁形成有凹槽;介质层覆盖凸出部的侧壁且填满凹槽。Optionally, after removing the sacrificial oxide layer, a groove is formed on the lower sidewall of the protrusion; the dielectric layer covers the sidewall of the protrusion and fills up the groove.
上述半导体结构的制备方法,形成介质层以覆盖且填满凸出部的下部侧壁的凹槽,以避免有源区角上生成的栅氧化层偏薄,从而解决栅氧化层不均匀问题。In the preparation method of the above semiconductor structure, a dielectric layer is formed to cover and fill the groove of the lower side wall of the protruding part, so as to prevent the gate oxide layer formed on the corner of the active region from being too thin, thereby solving the problem of uneven gate oxide layer.
可选地,于凸出部的侧壁形成介质层包括:形成第一介质材料层,第一介质材料层覆盖有源区的上表面、凸出部的侧壁及凸出部的顶面;刻蚀减薄第一介质材料层,以形成第二介质材料层;去除位于有源区上表面及凸出部顶面的第二介质材料层,保留于凸出部侧壁的第二介质材料层即为介质层。Optionally, forming the dielectric layer on the sidewall of the protrusion includes: forming a first dielectric material layer, the first dielectric material layer covering the upper surface of the active region, the sidewall of the protrusion and the top surface of the protrusion; Etching and thinning the first dielectric material layer to form a second dielectric material layer; removing the second dielectric material layer located on the upper surface of the active region and the top surface of the protrusion, and retaining the second dielectric material on the side wall of the protrusion The layer is the medium layer.
可选地,采用干法刻蚀工艺刻蚀减薄第一介质材料层;采用湿法刻蚀工艺去除位于衬底上表面及凸出部顶面的第二介质材料层。Optionally, a dry etching process is used to etch and thin the first dielectric material layer; a wet etching process is used to remove the second dielectric material layer located on the upper surface of the substrate and the top surface of the protrusion.
可选地,刻蚀减薄第一介质材料层的过程中,刻蚀去除的第一介质材料层的厚度大于第二介质材料层的厚度。Optionally, in the process of etching and thinning the first dielectric material layer, the thickness of the first dielectric material layer removed by etching is greater than the thickness of the second dielectric material layer.
可选地,第一介质材料层的厚度范围包括:500埃~550埃;第二介质材料层的厚度范围包括:100埃~120埃。Optionally, the thickness range of the first dielectric material layer includes: 500 angstroms to 550 angstroms; the thickness range of the second dielectric material layer includes: 100 angstroms to 120 angstroms.
可选地,位于凸出部侧壁的第二介质材料层的厚度大于位于衬底上表面及凸出部顶面的第二介质材料层的厚度。Optionally, the thickness of the second dielectric material layer located on the sidewall of the protrusion is greater than the thickness of the second dielectric material layer located on the upper surface of the substrate and the top surface of the protrusion.
可选地,采用湿法刻蚀工艺去除牺牲氧化层。Optionally, a wet etching process is used to remove the sacrificial oxide layer.
可选地,介质层与栅氧化层相接触。Optionally, the dielectric layer is in contact with the gate oxide layer.
基于同样的发明构思,本申请实施例还提供了一种半导体结构,包括:衬底,衬底内具有浅沟槽隔离结构,浅沟槽隔离结构自衬底内向上延伸,具有凸出于衬底上的凸出部;浅沟槽隔离结构于衬底内隔离出多个间隔排布的有源区;介质层,介质层覆盖凸出部的侧壁;栅氧化层,栅氧化层覆盖有源区的上表面;栅极材料层,栅极材料层覆盖栅氧化层的上表面、介质层裸露的表面及凸出部的顶面。Based on the same inventive concept, an embodiment of the present application also provides a semiconductor structure, including: a substrate with a shallow trench isolation structure inside the substrate, the shallow trench isolation structure extends upward from the substrate, and has a The protruding part on the bottom; the shallow trench isolation structure isolates a plurality of active regions arranged at intervals in the substrate; the dielectric layer, the dielectric layer covers the sidewall of the protruding part; the gate oxide layer, the gate oxide layer covers The upper surface of the source region; the gate material layer, the gate material layer covers the upper surface of the gate oxide layer, the exposed surface of the dielectric layer and the top surface of the protrusion.
上述半导体结构,介质层覆盖且填满浅沟槽隔离结构凸出于衬底上的凸出部侧壁的凹槽,如此,可以有效避免覆盖有源区角上的栅氧化层偏薄的问题,以有效提高有源区角上的栅氧化层厚度,从而解决栅氧化层不均匀问题,进而提高半导体器件的可靠性,降低芯片的失效率。In the above-mentioned semiconductor structure, the dielectric layer covers and fills the groove of the sidewall of the protruding part of the shallow trench isolation structure protruding from the substrate, so that the problem of thinner gate oxide layer covering the corner of the active region can be effectively avoided , to effectively increase the thickness of the gate oxide layer on the corner of the active region, thereby solving the problem of uneven gate oxide layer, thereby improving the reliability of semiconductor devices and reducing the failure rate of chips.
可选地,介质层与栅氧化层相接触。Optionally, the dielectric layer is in contact with the gate oxide layer.
可选地,介质层的厚度范围包括:100埃~120埃。Optionally, the thickness range of the dielectric layer includes: 100 angstroms-120 angstroms.
可选地,介质层包括氧化硅层。Optionally, the dielectric layer includes a silicon oxide layer.
附图说明Description of drawings
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present disclosure. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1为现有技术中提供的一种半导体结构的电子显微镜图;Fig. 1 is the electron microscope picture of a kind of semiconductor structure provided in the prior art;
图2为本申请一实施例中提供的半导体结构制备方法的流程图;FIG. 2 is a flowchart of a method for preparing a semiconductor structure provided in an embodiment of the present application;
图3为本申请一实施例中提供的半导体结构制备方法中提供衬底后所得结构的剖面结构示意图;3 is a schematic cross-sectional structure diagram of a structure obtained after providing a substrate in a semiconductor structure preparation method provided in an embodiment of the present application;
图4为本申请一实施例中提供的半导体结构制备方法中去除牺牲氧化层后所得结构的剖面结构示意图;4 is a schematic cross-sectional structure diagram of a structure obtained after removing a sacrificial oxide layer in a method for preparing a semiconductor structure provided in an embodiment of the present application;
图5为本申请一实施例中提供的半导体结构制备方法中于凸出部的侧壁形成介质层的制备方法的流程图;5 is a flow chart of a method for forming a dielectric layer on the sidewall of a protrusion in a method for preparing a semiconductor structure provided in an embodiment of the present application;
图6为本申请一实施例中提供的半导体结构制备方法中形成第一介质材料层后所得结构的剖面结构示意图;6 is a schematic cross-sectional structure diagram of a structure obtained after forming a first dielectric material layer in a method for preparing a semiconductor structure provided in an embodiment of the present application;
图7为本申请一实施例中提供的半导体结构制备方法中形成第二介质材料层后所得结构的剖面结构示意图;7 is a schematic cross-sectional structure diagram of a structure obtained after forming a second dielectric material layer in the semiconductor structure preparation method provided in an embodiment of the present application;
图8为本申请一实施例中提供的半导体器件制备方法中形成第一栅氧化材料层后所得结构的剖面结构示意图;8 is a schematic cross-sectional structure diagram of a structure obtained after forming a first gate oxide material layer in a semiconductor device manufacturing method provided in an embodiment of the present application;
图9为本申请一实施例中提供的半导体器件制备方法中形成介质层后所得结构的剖面结构示意图;9 is a schematic cross-sectional structure diagram of a structure obtained after forming a dielectric layer in a semiconductor device manufacturing method provided in an embodiment of the present application;
图10为本申请一实施例中提供的半导体器件制备方法中形成栅极材料层后所得结构的剖面结构示意图。FIG. 10 is a schematic cross-sectional structure diagram of a structure obtained after forming a gate material layer in a semiconductor device manufacturing method provided in an embodiment of the present application.
附图标记说明:Explanation of reference signs:
1-衬底;10-有源区;11-浅沟槽隔离结构;12-凹槽;牺牲氧化层20;1-substrate; 10-active region; 11-shallow trench isolation structure; 12-groove;
300A-第一介质材料层;300B-第二介质材料层;30-介质层;40-栅氧化层;500-栅极材料层。300A—first dielectric material layer; 300B—second dielectric material layer; 30—dielectric layer; 40—gate oxide layer; 500—gate material layer.
具体实施方式detailed description
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的实施例。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本公开的公开内容更加透彻全面。In order to facilitate understanding of the present disclosure, the present disclosure will be described more fully below with reference to the related drawings. Embodiments of the present disclosure are shown in the drawings. However, the present disclosure can be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that the disclosure of the present disclosure will be thorough and complete.
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms used herein in the description of the present disclosure are for the purpose of describing specific embodiments only, and are not intended to limit the present disclosure.
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。It will be understood that when an element or layer is referred to as being "on," "adjacent," "connected to" or "coupled to" another element or layer, it can be directly on the other element or layer. A layer may be on, adjacent to, connected to, or coupled to other elements or layers, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly adjacent to," "directly connected to," or "directly coupled to" another element or layer, there are no intervening elements or layers present. Floor. It will be understood that, although the terms first, second, third etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。Spatial terms such as "below", "below", "below", "under", "on", "above", etc., in This may be used to describe the relationship of one element or feature to other elements or features shown in the figures. It will be understood that the spatially relative terms encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as "below" or "beneath" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary terms "below" and "beneath" can encompass both an orientation of above and below. In addition, the device may be otherwise oriented (eg, rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应明白,当术语“组成”和/或“包括”在该说明书中使用时,可以确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。同时,在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。When used herein, the singular forms "a", "an" and "the/the" may also include the plural forms unless the context clearly dictates otherwise. It should also be understood that when the terms "consists of" and/or "comprising" are used in this specification, the presence of said features, integers, steps, operations, elements and/or parts can be determined, but does not exclude one or more other The presence or addition of features, integers, steps, operations, elements, parts and/or groups. Also, when used herein, the term "and/or" includes any and all combinations of the associated listed items.
在此使用时,“沉积”工艺包括但不限于物理气相沉积(Physical VaporDeposition,简称PVD)、化学气相沉积(Chemical Vapor Deposition,简称CVD)或原子层沉积(Atomic Layer Deposition,简称ALD)。As used herein, the "deposition" process includes, but is not limited to, physical vapor deposition (Physical Vapor Deposition, referred to as PVD), chemical vapor deposition (Chemical Vapor Deposition, referred to as CVD) or atomic layer deposition (Atomic Layer Deposition, referred to as ALD).
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例,这样可以预期由于例如制造技术和/或容差导致的所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造技术导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不表示器件的区的实际形状,且并不限定本发明的范围。Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention such that variations in the shapes shown as a result, for example, of manufacturing techniques and/or tolerances are contemplated. Thus, embodiments of the invention should not be limited to the particular shapes of regions shown herein but are to include deviations in shapes that result, for example, from manufacturing techniques. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation was performed. Thus, the regions shown in the figures are schematic in nature and their shapes do not indicate the actual shape of a region of a device and are not intended to limit the scope of the invention.
随着半导体加工技术的不断发展,半导体器件由于其更小的体积、更高的性能、更高的转换效率在电子、通讯等领域得到越来越多的应用。With the continuous development of semiconductor processing technology, semiconductor devices are being used more and more in the fields of electronics and communications due to their smaller size, higher performance, and higher conversion efficiency.
然而,随着半导体器件尺寸的减小,栅氧化层的可靠性一直是各种芯片工艺平台开发的重点和难点。在小尺寸半导体器件的制备工艺中,当去除牺牲氧化层时容易导致浅沟槽隔离结构的拐角处凹陷,从而导致有源区角上生成的栅氧化层偏薄。在半导体器件的可靠性测试过程中,有源区角上的栅氧化层很容易被击穿。However, with the reduction in the size of semiconductor devices, the reliability of the gate oxide layer has always been the focus and difficulty in the development of various chip process platforms. In the manufacturing process of small-sized semiconductor devices, when removing the sacrificial oxide layer, it is easy to cause the corners of the shallow trench isolation structure to be recessed, thus resulting in a thinner gate oxide layer formed on the corners of the active region. During reliability testing of semiconductor devices, the gate oxide layer on the corner of the active region is easily broken down.
以栅氧化层的厚度为0.15μm为例,如图1所示,牺牲氧化层之后的湿法刻蚀工艺容易导致浅沟槽隔离结构的拐角处凹陷,从而导致有源区角上生成的栅氧化层偏薄,仅有72.8埃,而有源区中心位置的栅氧化层为133.5埃,也即,有源区角上生成的栅氧化层比中心位置少了60埃,因此可靠性测试过程中有源区角上生成的栅氧化层成为最易击穿点。Taking the thickness of the gate oxide layer as 0.15 μm as an example, as shown in Figure 1, the wet etching process after the sacrificial oxide layer is likely to cause depressions at the corners of the shallow trench isolation structure, resulting in the formation of gates at the corners of the active region. The oxide layer is thinner, only 72.8 angstroms, while the gate oxide layer at the center of the active area is 133.5 angstroms, that is, the gate oxide layer formed on the corner of the active area is 60 angstroms less than the center position, so the reliability test process The gate oxide layer formed on the corner of the active area becomes the easiest point of breakdown.
因此,如何提高有源区角上的栅氧化层厚度,以解决栅氧化层不均匀问题,进而提高半导体器件的可靠性是亟需解决的问题。Therefore, how to increase the thickness of the gate oxide layer on the corners of the active region to solve the problem of uneven gate oxide layer and improve the reliability of semiconductor devices is an urgent problem to be solved.
鉴于上述现有技术的不足,本申请的目的在于提供一种半导体结构及其制备方法,旨在有效提高有源区角上的栅氧化层厚度,从而解决栅氧化层不均匀问题,进而提高半导体器件的可靠性。In view of the above-mentioned deficiencies in the prior art, the purpose of this application is to provide a semiconductor structure and its preparation method, which aims to effectively increase the thickness of the gate oxide layer on the corner of the active region, thereby solving the problem of uneven gate oxide layer, and further improving the semiconductor structure. device reliability.
请参阅图2,本申请实施例提供了一种半导体结构的制备方法,包括以下步骤:Please refer to FIG. 2, the embodiment of the present application provides a method for preparing a semiconductor structure, including the following steps:
S10:提供衬底,衬底的上表面形成有牺牲氧化层,衬底内形成有浅沟槽隔离结构,浅沟槽隔离结构自衬底内向上延伸,具有凸出于衬底上的凸出部;浅沟槽隔离结构于衬底内隔离出多个间隔排布的有源区。S10: Provide a substrate, a sacrificial oxide layer is formed on the upper surface of the substrate, a shallow trench isolation structure is formed in the substrate, the shallow trench isolation structure extends upward from the substrate, and has a protrusion protruding from the substrate part; the shallow trench isolation structure isolates a plurality of active regions arranged at intervals in the substrate.
S20:去除牺牲氧化层。S20: removing the sacrificial oxide layer.
S30:于凸出部的侧壁形成介质层。S30: forming a dielectric layer on the sidewall of the protruding portion.
S40:形成栅氧化层,栅氧化层覆盖有源区的上表面。S40: forming a gate oxide layer, the gate oxide layer covering the upper surface of the active region.
S50:形成栅极材料层,栅极材料层覆盖栅氧化层的上表面、介质层裸露的表面及凸出部的顶面。S50: forming a gate material layer, the gate material layer covering the upper surface of the gate oxide layer, the exposed surface of the dielectric layer and the top surface of the protrusion.
上述半导体结构的制备方法,在去除牺牲氧化层后,在浅沟槽隔离结构凸出于衬底上的凸出部的侧壁形成介质层,以填充因去除牺牲氧化层工艺导致的凸出部侧壁的凹陷。在凸出部的侧壁形成介质层后,再在有源区的上表面形成栅氧化层,以有效提高有源区角上的栅氧化层厚度,从而解决栅氧化层不均匀问题,进而提高半导体器件的可靠性,降低芯片的失效率。In the method for preparing the above semiconductor structure, after the sacrificial oxide layer is removed, a dielectric layer is formed on the sidewall of the protruding portion of the shallow trench isolation structure protruding from the substrate, so as to fill the protruding portion caused by the process of removing the sacrificial oxide layer Depression in the side wall. After the dielectric layer is formed on the sidewall of the protruding part, a gate oxide layer is formed on the upper surface of the active region to effectively increase the thickness of the gate oxide layer on the corner of the active region, thereby solving the problem of uneven gate oxide layer, and further improving Improve the reliability of semiconductor devices and reduce the failure rate of chips.
以下结合图3至图10对本申请实施例提供的半导体结构制备方法进行详细描述。The semiconductor structure manufacturing method provided by the embodiment of the present application will be described in detail below with reference to FIG. 3 to FIG. 10 .
在步骤S10中,请参阅图2中的S10步骤及图3,提供衬底1,衬底1的上表面形成有牺牲氧化层20,衬底1内形成有浅沟槽隔离结构11,浅沟槽隔离结构11自衬底1内向上延伸,具有凸出于衬底1上的凸出部;浅沟槽隔离结构11于衬底10内隔离出多个间隔排布的有源区10。In step S10, referring to step S10 in FIG. 2 and FIG. 3, a
在一些示例中,衬底1可以包括但不仅限于硅衬底。当然,在其他示例中,衬底1的材料也可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底10还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底。In some examples, the
具体地,以衬底1为硅衬底为例,可以采用但不仅限于热氧化工艺于衬底1的上表面形成氧化硅层作为牺牲氧化层20。Specifically, taking the
具体地,牺牲氧化层20的厚度可以根据实际需要进行设置。Specifically, the thickness of the
在可选的实施例中,在衬底1的上表面形成有牺牲氧化层20之前,还可以包括对衬底1进行清洗的步骤,通过清洗,可以去除衬底1表面的杂质,避免对后续工艺造成影响,进而确保器件的性能。In an optional embodiment, before the
具体地,可以采用清洗液对衬底1进行清洗,衬底1可以放入存放有清洗液的清洗槽中进行清洗;当然,也可以采用喷淋的方式对衬底1进行清洗。具体对衬底1进行清洗使用的清洗液及清洗流程为本领域技术人员知晓,此处不再累述。Specifically, the
需要说明的是,对衬底1进行清洗后,还包括对衬底1进行干燥的步骤,对衬底1进行干燥的方法为本领域技术人员熟知,此处不再累述。It should be noted that after the
在步骤S20中,请参阅图2中的S20步骤及图4,去除牺牲氧化层20。In step S20 , referring to step S20 in FIG. 2 and FIG. 4 , the
可选地,采用湿法刻蚀工艺去除牺牲氧化层20。Optionally, the
在一些示例中,去除牺牲氧化层20之后,凸出部的下部侧壁形成有凹槽12。In some examples, after removing the
在步骤S30中,请参阅图2中的S30步骤及图4~图9,于凸出部的侧壁形成介质层30。In step S30 , referring to step S30 in FIG. 2 and FIGS. 4 to 9 , a
在一些示例中,介质层30覆盖凸出部的侧壁且填满凹槽12。In some examples, the
上述半导体结构的制备方法,形成介质层30以覆盖且填满凸出部的下部侧壁的凹槽12,以避免有源区10角上生成的栅氧化层偏薄,从而解决栅氧化层不均匀问题。In the preparation method of the above-mentioned semiconductor structure, the
可选地,请参阅图5,于凸出部的侧壁形成介质层30包括:Optionally, referring to FIG. 5 , forming the
S31:形成第一介质材料层,第一介质材料层覆盖有源区的上表面、凸出部的侧壁及凸出部的顶面。S31 : forming a first dielectric material layer, the first dielectric material layer covering the upper surface of the active region, the sidewall of the protruding part and the top surface of the protruding part.
S32:刻蚀减薄第一介质材料层,以形成第二介质材料层。S32: Etching and thinning the first dielectric material layer to form a second dielectric material layer.
S33:去除位于有源区上表面及凸出部顶面的第二介质材料层,保留于凸出部侧壁的第二介质材料层即为介质层。S33: removing the second dielectric material layer located on the upper surface of the active region and the top surface of the protrusion, and the second dielectric material layer remaining on the sidewall of the protrusion is the dielectric layer.
在步骤S31中,请参阅图5中的S31步骤及图6,形成第一介质材料层300A,第一介质材料层300A覆盖有源区10的上表面、凸出部的侧壁及凸出部的顶面。In step S31, referring to step S31 in FIG. 5 and FIG. 6, a first
可选地,第一介质材料层300A的厚度范围包括:500埃~550埃。例如:第一介质材料层的厚度可以为500埃、510埃、520埃、530埃、540埃或550埃等等。Optionally, the thickness range of the first
在一些示例中,可以采用但不仅限于沉积工艺形成第一介质材料层300A。In some examples, the first
在步骤S32中,请参阅图5中的S32步骤及图7,刻蚀减薄第一介质材料层300A,以形成第二介质材料层300B。In step S32 , referring to step S32 in FIG. 5 and FIG. 7 , the first
可选地,第二介质材料层300B的厚度范围包括:100埃~120埃。例如:第二介质材料层300B的厚度可以为100埃、105埃、110埃、115埃或120埃等等。Optionally, the thickness range of the second
在一些示例中,采用干法刻蚀工艺刻蚀减薄第一介质材料层300A。In some examples, a dry etching process is used to etch and thin the first
可选地,采用的干法刻蚀工艺的气体包括碳氟气体、HBr和Cl2中的一种或多种以及载气,所述碳氟气体包括CF4、CHF3、CH2F2或CH3F,所述载气为惰性气体,例如He。Optionally, the gas used in the dry etching process includes fluorocarbon gas, one or more of HBr and Cl 2 and a carrier gas, and the fluorocarbon gas includes CF 4 , CHF 3 , CH 2 F 2 or CH 3 F, the carrier gas is an inert gas such as He.
可选地,刻蚀减薄第一介质材料层300A的过程中,刻蚀去除的第一介质材料层300A的厚度大于第二介质材料层300B的厚度。Optionally, in the process of etching and thinning the first
具体地,位于凸出部侧壁的第二介质材料层300B的厚度大于位于衬底1上表面及凸出部顶面的第二介质材料层300B的厚度。Specifically, the thickness of the second
在步骤S33中,请参阅图5中的S33步骤及图8,去除位于有源区10上表面及凸出部顶面的第二介质材料层300B,保留于凸出部侧壁的第二介质材料层300B即为介质层30。In step S33, referring to step S33 in FIG. 5 and FIG. 8, the second
可选地,以衬底1为硅衬底为例,介质层30可以包括但不仅限于氧化硅层。Optionally, taking the
可选地,介质层30与栅氧化层40相接触。如此,可以避免有源区10角上生成的栅氧化层偏薄,从而解决栅氧化层不均匀问题。Optionally, the
在一些示例中,以衬底1为硅衬底为例,介质层30与栅氧化层40均包括但不限于氧化硅层。In some examples, taking the
在一些示例中,采用湿法刻蚀工艺去除位于衬底1上表面及凸出部顶面的第二介质材料层300B。In some examples, a wet etching process is used to remove the second
在步骤S40中,请参阅图2中的S40步骤及图9,形成栅氧化层40,栅氧化层40覆盖有源区10的上表面。In step S40 , referring to step S40 in FIG. 2 and FIG. 9 , a
在步骤S50中,请参阅图2中的S50步骤及图10,形成栅极材料层500,栅极材料层500覆盖栅氧化层40的上表面、介质层30裸露的表面及凸出部的顶面。In step S50, referring to step S50 in FIG. 2 and FIG. 10, a
可选地,形成栅极材料层500之后,还包括:刻蚀栅极材料层500以形成栅极(未示出)。Optionally, after forming the
基于同样的发明构思,本申请实施例还提供了一种半导体结构,请参阅图10,包括:衬底1,衬底1内具有浅沟槽隔离结构11,浅沟槽隔离结构11自衬底1内向上延伸,具有凸出于衬底1上的凸出部;浅沟槽隔离结构11于衬底1内隔离出多个间隔排布的有源区10;介质层30,介质层30覆盖凸出部的侧壁;栅氧化层40,栅氧化层40覆盖有源区10的上表面;栅极材料层500,栅极材料层500覆盖栅氧化层40的上表面、介质层30裸露的表面及凸出部的顶面。Based on the same inventive concept, the embodiment of the present application also provides a semiconductor structure, please refer to FIG. 1 extending upwards, with a protruding portion protruding from the
上述半导体结构,介质层30覆盖且填满浅沟槽隔离结构11凸出于衬底1上的凸出部侧壁的凹槽12,如此,可以有效避免覆盖有源区10角上的栅氧化层40偏薄的问题,以有效提高有源区10角上的栅氧化层厚度,从而解决栅氧化层40不均匀问题,进而提高半导体器件的可靠性,降低芯片的失效率。In the above semiconductor structure, the
在一些示例中,衬底1可以包括但不仅限于硅衬底。当然,在其他示例中,衬底1的材料也可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底10还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底。In some examples, the
可选地,介质层30的厚度范围包括:100埃~120埃。例如:介质层30的厚度可以为100埃、105埃、110埃、115埃或120埃等等。Optionally, the thickness range of the
可选地,以衬底1为硅衬底为例,介质层30包括氧化硅层。Optionally, taking the
可选地,介质层30与栅氧化层40相接触。Optionally, the
在一些示例中,以衬底1为硅衬底为例,介质层30与栅氧化层40均包括但不限于氧化硅层。In some examples, taking the
上述半导体结构,介质层30与栅氧化层40相接触。如此,可以避免有源区10角上生成的栅氧化层40偏薄,从而解决栅氧化层40不均匀问题。In the above semiconductor structure, the
在本说明书的描述中,上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。In the description of this specification, the technical features of the above-mentioned embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features of the above-mentioned embodiments are not described. There is no contradiction in the combination, and all should be regarded as within the scope described in this specification.
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present disclosure, and the description thereof is relatively specific and detailed, but should not be construed as limiting the scope of the patent application. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present disclosure, and these all belong to the protection scope of the present disclosure. Therefore, the scope of protection of the disclosed patent should be based on the appended claims.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211226211.8A CN115458398A (en) | 2022-10-09 | 2022-10-09 | Semiconductor structure and its preparation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211226211.8A CN115458398A (en) | 2022-10-09 | 2022-10-09 | Semiconductor structure and its preparation method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115458398A true CN115458398A (en) | 2022-12-09 |
Family
ID=84307955
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211226211.8A Pending CN115458398A (en) | 2022-10-09 | 2022-10-09 | Semiconductor structure and its preparation method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115458398A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6093619A (en) * | 1998-06-18 | 2000-07-25 | Taiwan Semiconductor Manufaturing Company | Method to form trench-free buried contact in process with STI technology |
| US6130467A (en) * | 1997-12-18 | 2000-10-10 | Advanced Micro Devices, Inc. | Shallow trench isolation with spacers for improved gate oxide quality |
| US20060030136A1 (en) * | 2004-08-03 | 2006-02-09 | Tung-Po Chen | Method of fabricating a gate oxide layer |
| CN103579077A (en) * | 2012-07-27 | 2014-02-12 | 中芯国际集成电路制造(上海)有限公司 | Semi-conductor structure and forming method thereof |
| CN104409410A (en) * | 2014-11-19 | 2015-03-11 | 上海华力微电子有限公司 | Method for improving SiC stress property of shallow trench isolation edge |
-
2022
- 2022-10-09 CN CN202211226211.8A patent/CN115458398A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6130467A (en) * | 1997-12-18 | 2000-10-10 | Advanced Micro Devices, Inc. | Shallow trench isolation with spacers for improved gate oxide quality |
| US6093619A (en) * | 1998-06-18 | 2000-07-25 | Taiwan Semiconductor Manufaturing Company | Method to form trench-free buried contact in process with STI technology |
| US20060030136A1 (en) * | 2004-08-03 | 2006-02-09 | Tung-Po Chen | Method of fabricating a gate oxide layer |
| CN103579077A (en) * | 2012-07-27 | 2014-02-12 | 中芯国际集成电路制造(上海)有限公司 | Semi-conductor structure and forming method thereof |
| CN104409410A (en) * | 2014-11-19 | 2015-03-11 | 上海华力微电子有限公司 | Method for improving SiC stress property of shallow trench isolation edge |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180315857A1 (en) | Device and method to improve fin top corner rounding for finfet | |
| CN110970345B (en) | Semiconductor structure and preparation method | |
| CN105702736A (en) | A shield grid oxide layer of a shield grid-deep groove MOSFET and a formation method thereof | |
| CN103377912B (en) | Shallow trench isolation chemical mechanical planarization method | |
| CN103824764A (en) | Preparation method of trench gate in trench MOS device | |
| CN111986992A (en) | trench etching method | |
| CN104282543A (en) | Groove gate applied to groove-type MOS device and manufacturing method thereof | |
| US9570562B1 (en) | Method of planarizing polysilicon gate | |
| CN103839791B (en) | The preparation method being applied to the trench gate of groove type MOS device | |
| CN1202726A (en) | A method of manufacturing a semiconductor device | |
| CN103022036B (en) | single edge access device | |
| US7611950B2 (en) | Method for forming shallow trench isolation in semiconductor device | |
| CN103943500B (en) | The preparation method of fin formula field effect transistor | |
| KR0161430B1 (en) | Method for trench | |
| CN112466747B (en) | Trench gate and trench gate power device fabrication method | |
| CN103903969B (en) | The preparation method of floating boom | |
| CN107591399B (en) | Semiconductor structure and forming method thereof | |
| CN115458398A (en) | Semiconductor structure and its preparation method | |
| CN104576392B (en) | A kind of preparation method of fin field effect pipe | |
| CN111244167A (en) | Gate trench filling method | |
| CN113192826B (en) | Shielded gate trench device and manufacturing method thereof | |
| CN116313805A (en) | Semiconductor device and preparation method thereof | |
| CN115799322A (en) | Semiconductor structure and preparation method thereof | |
| CN115565868A (en) | Semiconductor structure and its preparation method | |
| CN107221511B (en) | Manufacturing method of trench isolation structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |