CN115469333A - Depth measuring device and system - Google Patents
Depth measuring device and system Download PDFInfo
- Publication number
- CN115469333A CN115469333A CN202211140809.5A CN202211140809A CN115469333A CN 115469333 A CN115469333 A CN 115469333A CN 202211140809 A CN202211140809 A CN 202211140809A CN 115469333 A CN115469333 A CN 115469333A
- Authority
- CN
- China
- Prior art keywords
- tof
- time
- rgb
- depth
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
- G01S17/894—3D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本申请涉及图像采集、处理技术领域,尤其涉及一种深度测量装置及系统。The present application relates to the technical field of image acquisition and processing, in particular to a depth measurement device and system.
背景技术Background technique
深度相机根据工作原理可以分为飞行时间(Time ofFlight,TOF)、结构光等几种。深度相机已经逐渐应用于人类生产和生活的各个领域,例如:机器人、互动游戏、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、无人驾驶和3D建模等。Depth cameras can be divided into time of flight (Time of Flight, TOF) and structured light according to the working principle. Depth cameras have been gradually applied in various fields of human production and life, such as: robots, interactive games, augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR), unmanned driving and 3D modeling, etc.
其中,TOF深度测量技术因具有稳定性好,实用性强等优点,是诸多光学三维测量技术中表现较为突出的一种技术。TOF深度测量技术包括两种,一种常被称为脉冲测距法,其基本原理是通过TOF深度测量设备发出的激光脉冲从发射到接收的时间间隔来计算被测物体(或被测物体检测区域)至TOF深度测量设备之间的距离;另一种常被称为相位差测距法,其基本原理是通过TOF深度测量设备发出的激光往返被测物体一次所产生的相位变化来计算被测物体(或被测物体检测区域)至TOF深度测量设备之间的距离。Among them, the TOF depth measurement technology has the advantages of good stability and strong practicability, and it is a relatively outstanding technology among many optical three-dimensional measurement technologies. The TOF depth measurement technology includes two types, one is often called the pulse ranging method, the basic principle is to calculate the measured object (or the measured object detection distance) through the time interval of the laser pulse emitted by the TOF depth measurement device from emission to reception. area) to the distance between the TOF depth measurement equipment; the other is often called the phase difference distance measurement method, the basic principle of which is to calculate the phase change generated by the laser emitted by the TOF depth measurement equipment going back and forth to the object once. The distance between the measured object (or the detection area of the measured object) and the TOF depth measurement device.
一方面,为了提高探测精度和探测范围,TOF深度测量设备一般采用多频融合的方式进行深度探测,但是在使用多频融合算法时需获取多帧图像进行相位解缠绕。而在利用图像进行处理时,获取的多帧图像需要空间对齐和时间对齐,空间对齐可以通过图像标定实现,但是时间对齐难以实现。On the one hand, in order to improve the detection accuracy and detection range, TOF depth measurement equipment generally uses multi-frequency fusion for depth detection, but when using the multi-frequency fusion algorithm, it is necessary to obtain multiple frames of images for phase unwrapping. When using images for processing, the acquired multi-frame images need spatial alignment and temporal alignment. Spatial alignment can be achieved through image calibration, but temporal alignment is difficult to achieve.
另一方面,为提高TOF深度测量设备的纹理性,通常采用RGB相机获取RGB图像进行纹理贴图。但现有技术中RGB相机跟TOF深度测量设备采用各自的时间戳实现同步,采用这种实现方式时,一方面,由于两者曝光时间的差异,导致打的时间戳存在偏移,最终还是会造成同步偏差;另一方面,由于SOC芯片内存在任务优先级调度,且RGB相机跟TOF深度测量设备的同步任务在任务优先级中靠后,因此难以实现RGB相机跟TOF深度测量设备的同步输出。On the other hand, in order to improve the texture of TOF depth measurement equipment, RGB cameras are usually used to obtain RGB images for texture mapping. However, in the existing technology, the RGB camera and the TOF depth measurement device use their own time stamps to achieve synchronization. When this implementation method is adopted, on the one hand, due to the difference in exposure time between the two, the time stamps are offset, and eventually there will be Causes synchronization deviation; on the other hand, because there is task priority scheduling in the SOC chip, and the synchronization task between the RGB camera and the TOF depth measurement device is behind the task priority, it is difficult to realize the synchronous output of the RGB camera and the TOF depth measurement device .
发明内容Contents of the invention
有鉴于此,本申请实施例提供了一种深度测量装置及系统,可以解决相关技术中的至少一个技术问题。In view of this, the embodiments of the present application provide a depth measurement device and system, which can solve at least one technical problem in the related art.
第一方面,本申请一实施例提供了一种深度测量装置,包括:RGB传感器、包括投影模组及TOF传感器的TOF单元、中央处理器与微控制器;其中,中央处理器,用于分别产生RGB控制信号及TOF控制信号至RGB传感器及TOF单元,并同时发送修正信号至微控制器;RGB传感器,用于根据RGB控制信号采集RGB图像并发送RGB图像至中央处理器,同时产生选通信号或垂直同步信号至微控制器;微控制器,用于根据修正信号对选通信号或垂直同步信号进行修正产生TOF触发信号以触发TOF单元启动工作;TOF单元,用于在TOF触发信号同步触发下,投影模组向目标场景发射至少两种不同的调制光束,TOF传感器采集经目标场景反射回的不同调制光束生成至少两帧rawphase图像,并根据TOF控制信号传输rawphase图像至中央处理器;中央处理器,还用于对至少两帧rawphase图像进行相位解缠绕及深度融合计算得到TOF深度图像,以同步输出RGB图像及TOF深度图像。In the first aspect, an embodiment of the present application provides a depth measurement device, including: an RGB sensor, a TOF unit including a projection module and a TOF sensor, a central processing unit, and a microcontroller; Generate RGB control signal and TOF control signal to RGB sensor and TOF unit, and send correction signal to microcontroller at the same time; RGB sensor is used to collect RGB image according to RGB control signal and send RGB image to central processing unit, and generate selection communication at the same time No. or vertical synchronization signal to the microcontroller; the microcontroller is used to modify the strobe signal or vertical synchronization signal according to the correction signal to generate a TOF trigger signal to trigger the TOF unit to start working; the TOF unit is used to synchronize the TOF trigger signal When triggered, the projection module emits at least two different modulated beams to the target scene, and the TOF sensor collects different modulated beams reflected by the target scene to generate at least two frames of rawphase images, and transmits the rawphase images to the central processing unit according to the TOF control signal; The central processing unit is also used to perform phase unwrapping and depth fusion calculation on at least two frames of rawphase images to obtain TOF depth images, so as to synchronously output RGB images and TOF depth images.
第二方面,本申请一实施例提供了一种深度测量系统,包括:多台如第一方面实施例所述的深度测量装置。In a second aspect, an embodiment of the present application provides a depth measurement system, including: a plurality of depth measurement devices as described in the embodiment of the first aspect.
本申请实施例的有益效果在于,在深度测量装置实现测量扩距的同时,通过软硬件同步达到曝光同步,提升了图像的同步效果。The beneficial effect of the embodiment of the present application is that, while the depth measurement device realizes the measurement distance expansion, the exposure synchronization is achieved through software and hardware synchronization, which improves the synchronization effect of the image.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the accompanying drawings that need to be used in the descriptions of the embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description are only for the present application For some embodiments, those of ordinary skill in the art can also obtain other drawings based on these drawings without paying creative efforts.
图1是本申请一实施例提供的一种深度测量装置的结构示意图;Fig. 1 is a schematic structural diagram of a depth measuring device provided by an embodiment of the present application;
图2是本申请一实施例提供的一种两种曝光方式得到的图像形状示意图;Fig. 2 is a schematic diagram of image shapes obtained by two exposure methods provided by an embodiment of the present application;
图3是本申请一实施例提供的一种深度测量装置各模块的工作时序图;Fig. 3 is a working sequence diagram of each module of a depth measurement device provided by an embodiment of the present application;
图4是本申请一实施例提供的一种主设备各模块的工作时序图;FIG. 4 is a working sequence diagram of each module of a master device provided by an embodiment of the present application;
图5是本申请一实施例提供的一种从设备被同步触发时各模块的工作时序图;Fig. 5 is a working sequence diagram of each module when a slave device is synchronously triggered according to an embodiment of the present application;
图6是本申请一实施例提供的另一种从设备被同步触发时各模块的工作时序图;FIG. 6 is a working sequence diagram of each module when another slave device is synchronously triggered according to an embodiment of the present application;
图7本申请另一实施例提供的一种多个深度测量装置之间连接方式示意图;Fig. 7 is a schematic diagram of a connection mode between multiple depth measuring devices provided by another embodiment of the present application;
图8是本申请一实施例提供的另一种多个深度测量装置之间连接方式示意图;Fig. 8 is a schematic diagram of another connection mode between multiple depth measuring devices provided by an embodiment of the present application;
图9是本申请一实施例提供的一种深度测量系统的结构示意图;Fig. 9 is a schematic structural diagram of a depth measurement system provided by an embodiment of the present application;
图10是本申请一实施例提供的另一种深度测量系统的结构示意图。Fig. 10 is a schematic structural diagram of another depth measurement system provided by an embodiment of the present application.
具体实施方式detailed description
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the following description, specific details such as specific system structures and technologies are presented for the purpose of illustration rather than limitation, so as to thoroughly understand the embodiments of the present application. It will be apparent, however, to one skilled in the art that the present application may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present application with unnecessary detail.
在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。The term "and/or" used in the description of the present application and the appended claims refers to any combination and all possible combinations of one or more of the associated listed items, and includes these combinations.
在本申请说明书中描述的“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。此外,在本申请的描述中,“多个”的含义是两个或两个以上。"One embodiment" or "some embodiments" or the like described in the specification of the present application means that a specific feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application. Thus, appearances of the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically stated otherwise. The terms "including", "comprising", "having" and variations thereof mean "including but not limited to", unless specifically stated otherwise. In addition, in the description of the present application, "plurality" means two or more.
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solutions described in this application, specific examples are used below to illustrate.
图1为本申请一实施例提供的一种深度测量装置的结构示意图。如图1所示,深度测量装置包括RGB传感器11、TOF单元12、中央处理器13与微控制器(MicrocontrollerUnit,MCU)14,其中:FIG. 1 is a schematic structural diagram of a depth measuring device provided by an embodiment of the present application. As shown in Figure 1, the depth measurement device includes an RGB sensor 11, a
中央处理器13,用于发送RGB控制信号至RGB传感器11以控制RGB传感器11启动工作及同步发送TOF控制信号至TOF单元12,并同时发送修正信号至微控制器14;The
RGB传感器11,用于接收RGB控制信号,还用于根据RGB控制信号进行曝光以采集目标场景的RGB图像,还用于同时产生反馈信号至微控制器14;其中,反馈信号包括选通信号或垂直同步信号;The RGB sensor 11 is used to receive the RGB control signal, is also used to perform exposure according to the RGB control signal to collect the RGB image of the target scene, and is also used to simultaneously generate a feedback signal to the
微控制器14,用于接收修正信号及反馈信号,还用于根据修正信号对反馈信号进行修正得到TOF触发信号并发送至TOF单元12;The
TOF单元12,包括投影模组及TOF传感器,用于接收TOF触发信号;在TOF触发信号同步触发下,投影模组用于向目标场景发射至少两种不同的调制光束,TOF传感器至少曝光两次来采集经目标场景反射回的不同调制光束以生成至少两帧rawphase图像,即一种调制光束至少对应一帧rawphase图像,并根据TOF控制信号传输rawphase图像至中央处理器13;其中,rawphase图像为TOF传感器将采集得到的光信号转换为数字信号的原始数据,TOF传感器至少曝光两次的总时间与RGB传感器11的曝光时间对齐;
中央处理器13,还用于根据RGB控制信号和TOF控制信号同步接收RGB图像及至少两帧rawphase图像,并对接收的至少两帧rawphase图像进行相位解缠绕及深度融合计算得到TOF深度图像以同步输出RGB图像及TOF深度图像。The
需要说明的是,TOF传感器至少曝光两次的时间间隔可相同或不同,但RGB传感器11曝光一次的时间与TOF传感器至少曝光两次的总时间需对齐。It should be noted that the time intervals for at least two exposures of the TOF sensor may be the same or different, but the time for one exposure of the RGB sensor 11 needs to be aligned with the total time for at least two exposures of the TOF sensor.
在一个实施例中,微控制器14可搭载实时系统,用于实时接收各路信号以实时产生触发信号至各传感器。也就是说,微控制器14为单任务处理器,在申请中仅用于处理同步触发任务,以便微控制器14接收各路信号并实时反馈触发信号。具体地,微控制器14实时接收修正信号及反馈信号,并根据修正信号对反馈信号进行修正以产生TOF触发信号,TOF触发信号用于供TOF传感器启动工作。In one embodiment, the
在TOF触发信号触发下,TOF单元12中投影模组及TOF传感器的同步方式包括:TOF单元12中的TOF传感器接收TOF触发信号产生TOF曝光信号以控制本体曝光,并同步输出一投影触发信号至投影模组以驱动投影模组向目标场景发射不同频率的调制光束。优选地,调制光束包括不同频率的连续波或脉冲周期不同的脉冲光束。Under the triggering of the TOF trigger signal, the synchronization method of the projection module and the TOF sensor in the
在一个实施例中,为确保RGB传感器11曝光时间与TOF传感器至少曝光两次的时间对齐,可在RGB传感器11或TOF传感器每次曝光时得到的图像赋予相应的时间戳,以根据时间戳同步输送RGB图像及rawphase图像至中央处理器13;如根据时间戳使一帧RGB图像和两帧rawphase图像同步输送,因为一帧RGB图像曝光时间与两帧rawphase图像的曝光总时间是对齐的,由此在曝光完成时将对应的时间戳分别赋予一帧RGB图像和两帧rawphase图像,便可在输送一帧RGB图像的同时实现同步输送两帧rawphase图像。In one embodiment, in order to ensure that the exposure time of the RGB sensor 11 is aligned with the time of at least two exposures of the TOF sensor, the images obtained by each exposure of the RGB sensor 11 or the TOF sensor can be given corresponding time stamps to synchronize according to the time stamps Send the RGB image and the rawphase image to the
在一个实施例中,RGB传感器11或TOF传感器曝光方式为卷帘曝光或全局曝光。当曝光方式为卷帘曝光时,还需保证RGB传感器11的曝光中心与TOF传感器至少曝光两次的曝光中心对齐,以避免RGB图像与rawphase图像的对齐效果太差。需要说明的是,曝光中心可理解为传感器曝光后得到的图像中心。In one embodiment, the exposure mode of the RGB sensor 11 or the TOF sensor is rolling exposure or global exposure. When the exposure method is rolling exposure, it is also necessary to ensure that the exposure center of the RGB sensor 11 is aligned with the exposure center of the TOF sensor for at least two exposures, so as to avoid poor alignment between the RGB image and the rawphase image. It should be noted that the exposure center can be understood as the center of the image obtained after the sensor is exposed.
具体地,当RGB传感器11为卷帘曝光时,其得到的图像为平行四边形的;而TOF传感器为全局曝光时,其得到的图像为矩形的,如图2所示。由此可见,基于两种曝光方式得到的图像并不对齐,所以中央处理器13需对图像的曝光中心进行调整使曝光中心进行对齐,从而得到对齐的图像。具体地,预先比对不同曝光方式得到的曝光图像的曝光中心,若曝光中心不对齐则计算偏移量,再根据偏移量调整图像以供图像对齐且同步输送至中央处理器13。需要说明的是,上述计算偏移量可预先进行得到并进行保存以供后续进行图像同步时使用。Specifically, when the RGB sensor 11 is subjected to rolling shutter exposure, the obtained image is parallelogram; while when the TOF sensor is globally exposed, the obtained image is rectangular, as shown in FIG. 2 . It can be seen that the images obtained based on the two exposure methods are not aligned, so the
在一个实施例中,根据至少两帧rawphase图像进行相位解缠绕及深度融合计算得到的TOF深度图像,该TOF深度图像对应的曝光时间为两帧rawphase图像曝光时间段之间中某一时间,因此,为确保RGB图像和TOF深度图像同步输出效果,中央处理器13亦需要对RGB图像与TOF深度图像的曝光中心进行修正,以对齐曝光中心。In one embodiment, the TOF depth image obtained by phase unwrapping and depth fusion calculation based on at least two frames of rawphase images, the corresponding exposure time of the TOF depth image is a certain time between the exposure time periods of the two frames of rawphase images, so , in order to ensure the synchronous output effect of the RGB image and the TOF depth image, the
在一个实施例中,TOF传感器包括至少一个像素,各像素包括至少3个及3个以上抽头(电荷累计元件,用于采集经目标场景反射回的光束产生的电信号),每个抽头在连续帧周期内的曝光时刻是固定且不变的。为对经目标场景反射回的不同调制光束进行相位解缠绕得到缠绕周期数,TOF传感器需在连续不同帧周期内分别获取不同调制光束对应的至少一帧rawphase图像并传输至中央处理器13,中央处理器13根据不同调制光束对应的rawphase图像进行解缠绕计算得到不同调制光束的各缠绕周期数;利用各缠绕周期数计算得到基于不同调制光束得到的深度值,最后赋予不同调制光束对应的各深度值相应的权重进行融合计算以得到TOF深度图像。In one embodiment, the TOF sensor includes at least one pixel, and each pixel includes at least 3 and more than 3 taps (charge accumulation elements, used to collect electrical signals generated by light beams reflected back from the target scene), and each tap is continuously The exposure moment within the frame period is fixed and constant. In order to unwrap the phases of different modulated light beams reflected back from the target scene to obtain the number of winding cycles, the TOF sensor needs to obtain at least one frame of rawphase images corresponding to different modulated light beams in consecutive different frame periods and transmit them to the
在一个实施例中,为提高深度值精度,各像素包括的抽头优选通过轮转模式采集反射光束或背景光产生的电荷量。以三个抽头a、b、c为例实现轮转模式,在第一帧周期内,第一抽头、第二抽头、第三抽头依次开启积累电荷信号;在第二帧周期内,第二抽头、第三抽头、第一抽头依次开启积累电荷信号。TOF传感器在不同调制光束下根据上述方式各获取至少两帧rawphase图像并传输至中央处理器13;以两种不同的调制光束为例,此时TOF传感器需获取4帧rawphase图像,也即TOF传感器需曝光四次。中央处理器13根据不同调制光束将基于不同的帧周期得到的rawphase图像进行对应地叠加以消除噪声得到精度高的rawphase图像,从而提高深度精度;例如将同一调制光束基于不同帧周期得到的rawphase图像进行叠加以消除噪声。也即,当投影模组投影n种不同的调制光束时,TOF传感器至少可获取n帧rawphase图像;为提高深度精度,TOF传感器在n种不同的调制光束下可各获取至少2n帧rawphase图像以进行噪声消除。In one embodiment, in order to improve the precision of the depth value, the taps included in each pixel preferably collect the amount of charge generated by the reflected light beam or the background light in a circular mode. Take the three taps a, b, and c as an example to realize the rotation mode. In the first frame period, the first tap, the second tap, and the third tap turn on the accumulated charge signal in turn; in the second frame period, the second tap, The third tap and the first tap turn on the accumulated charge signal sequentially. The TOF sensor obtains at least two frames of rawphase images according to the above method under different modulated light beams and transmits them to the
需要说明的是,抽头的轮转模式不限于上述的方式,其也可为第三抽头、第一抽头、第二抽头依次开启;当各像素包括3个以上抽头时依次类推,此处不再赘述。It should be noted that the rotation mode of the taps is not limited to the above-mentioned method, and it can also be the third tap, the first tap, and the second tap that are turned on in turn; when each pixel includes more than 3 taps, and so on, it will not be described here. .
为便于理解,图3至图6的实施例内容以TOF传感器在至少两种不同的调制光束下各获取至少两帧rawphase图像并传输至中央处理器13生成一帧TOF深度图为例说明。For ease of understanding, the embodiments in FIG. 3 to FIG. 6 are illustrated by taking the TOF sensor acquiring at least two frames of rawphase images under at least two different modulated light beams and transmitting them to the
图3根据本申请提供的深度测量装置各模块的工作时序图,结合图1和图3所示,当RGB传感器11接收RGB控制信号时会产生一个高电平的RGB选通信号(记为RGB strobeout),RGB选通信号会被微控制器14搭载的实时系统监测。当微控制器14搭载的实时系统监测到RGB选通信号时,会根据同步接收到的来自中央处理器13的修正信号对RGB选通信号进行修正,产生高电平的TOF触发信号(记为TOFtriggle in)并发送至TOF单元。在TOF触发信号的触发下,TOF单元中的TOF传感器产生TOF曝光信号(记为TOF exposure)并根据TOF曝光信号进行至少四次曝光以采集至少四帧rawphase图像,并同步输送投影触发信号至投影模组以向目标场景发射至少两种不同的的调制光束。需要说明的是,本实施例仅以RGB选通信号为例进行说明,在其他一些实施例中,RGB传感器11接收RGB控制信号时亦可产生垂直同步(VSYNC)信号或产生其他同步信号作为反馈信号以实现同步曝光,此处不作限制。Fig. 3 is according to the working timing chart of each module of the depth measurement device that the present application provides, in conjunction with Fig. 1 and Fig. 3 shown, when RGB sensor 11 receives RGB control signal, can produce a high-level RGB strobe signal (marked as RGB strobeout), the RGB strobe signal will be monitored by the real-time system carried by the
本申请实施例还提供一种深度测量系统,深度测量系统包括多个上述深度测量装置(简称测量装置),选任一测量装置为主设备(Master设备),该测量装置处于主模式(Master模式),其余测量装置为从设备(Slave设备),也就是说其余测量装置处于从模式(Slave模式)。其中,主设备可产生同步触发信号(记为Ext Triggle out)至从设备以触发从设备同步工作,同步触发信号可由主设备中的RGB传感器11、TOF传感器或微控制器14中的任一个产生。优选地,在微控制器14搭载实时系统的情形下,可由主设备中的微控制器14产生同步触发信号(记为Ext Triggle out)触发从设备同步工作,以确保多设备间同步的精准稳定。The embodiment of the present application also provides a depth measurement system. The depth measurement system includes a plurality of the above-mentioned depth measurement devices (referred to as measurement devices), and any measurement device is selected as the master device (Master device), and the measurement device is in the master mode (Master mode) , the rest of the measurement devices are slave devices (Slave devices), that is to say, the rest of the measurement devices are in slave mode (Slave mode). Wherein, the master device can generate a synchronous trigger signal (denoted as Ext Triggle out) to the slave device to trigger the slave device to work synchronously, and the synchronous trigger signal can be generated by any one of the RGB sensor 11, the TOF sensor or the
具体地,图4所示为主设备各模块的工作时序图,结合图1和图4所示,当主设备的RGB传感器11的RGB选通信号(记为RGB strobe out)反馈至微控制器14时,微控制器14可发送TOF触发信号(TOF triggle in)至TOF单元并同时向从设备发送同步触发信号(ExtTriggle out)以实现主从设备同步工作。在一个实施例中,为避免主从设备之间的干扰,发送至从设备的同步触发信号的上升沿与主设备的TOF单元接收的TOF触发信号或TOF传感器第一次曝光对应的TOF曝光信号的上升沿相差一个延迟时间ΔT,ΔT的配置需要大于TOF传感器单帧相位的曝光时间且小于两帧时间间隔,其中,两帧时间间隔取决于主从设备的数量。Specifically, FIG. 4 shows the working timing diagram of each module of the master device. In combination with FIG. 1 and FIG. , the
进一步地,因本申请需采集至少两帧rawphase图像进行TOF深度图像合成,因此,基于两帧rawphase图像的间隙插入多路测量装置进行共同工作,可以最大化利用相机自身特性实现多机同步且避免了多机干扰。具体地,假设TOF传感器最大的曝光时间为600us,每帧IR图之间的空闲时间为8ms,则理论上在此空闲时间内,可插入约13路测量装置共同工作,亦可更多或更少,可根据实际TOF传感器的曝光时间进行设计,此处不作限制。Further, because this application needs to collect at least two frames of rawphase images for TOF depth image synthesis, therefore, based on the gap between two frames of rawphase images, multiple measurement devices are used to work together, which can maximize the use of the camera's own characteristics to achieve multi-machine synchronization and avoid Multi-device interference. Specifically, assuming that the maximum exposure time of the TOF sensor is 600us, and the idle time between each frame of IR images is 8ms, theoretically, within this idle time, about 13 measurement devices can be inserted to work together, or more or more It can be designed according to the exposure time of the actual TOF sensor, and there is no limitation here.
图5为从设备被同步触发时各模块的工作时序图。具体地,结合图1和图5所示,从设备的微控制器14接收主设备发送的同步触发信号(Ext Triggle in)以产生RGB触发信号(记为RGB triggle in,可为上述的RGB选通信号或垂直分布信号)以使RGB传感器11进行曝光得到RGB图像,同时产生TOF触发信号至TOF单元12以使TOF单元12中的TOF传感器产生TOF曝光信号并进行至少四次曝光得到至少四帧rawphase图像。Fig. 5 is a working timing diagram of each module when the slave device is triggered synchronously. Specifically, as shown in FIG. 1 and FIG. 5 , the
在图5所示时序图的基础上,图6所示为一从测量装置接收外部触发信号控制本机工作的完整时序图。结合图1和图6所示,微控制器14接收同步设备发送的外部触发信号(记为Ext Triggle in)控制本机的RGB传感器11与TOF传感器曝光,并输出输出信号(ExtTriggle out)以触发下一测量装置的同步曝光,使得其它设备与本机的曝光不产生干扰。On the basis of the timing diagram shown in Figure 5, Figure 6 shows a complete timing diagram for receiving an external trigger signal from the measuring device to control the operation of the machine. As shown in Figure 1 and Figure 6, the
需要说明的是,主从设备还可通过各自微控制器14定时产生相应的触发信号发送给TOF单元与RGB传感器11以实现主从设备数据同步。It should be noted that the master and slave devices can also periodically generate corresponding trigger signals through their
另外,在多测量装置时,从设备的微控制器14除同时分别发送TOF触发信号及RGB触发信号至TOF单元和RGB传感器11之外,还可以对照单机的工作模式,先发送RGB触发信号至RGB传感器11,再根据RGB触发信号产生TOF触发信号以实现同步输出。应当理解的是,无论是哪种方式,都应对曝光中心进行校正以确保同步输出。In addition, in the case of multiple measuring devices, in addition to sending the TOF trigger signal and the RGB trigger signal to the TOF unit and the RGB sensor 11 at the same time, the
在一个实施例中,多测量装置之间的连接方式可包括星式模式或链式模式。具体地,在多个测量装置中选取任一测量装置为主设备,其余测量装置为从测量装置。其中,如图7所示,链式模式为主设备的信号输出端与一从设备的信号输入端连接,一从设备的信号输出端与下一从设备的信号输入端连接,依次类推直至最后一个从设备的信号输出端与主设备的信号输入端连接,从而形成链式结构。如图8所示,星式模式为各从设备的信号输入端均与主设备的信号输出端连接。In one embodiment, the connection mode among multiple measurement devices may include a star mode or a chain mode. Specifically, any measuring device among the multiple measuring devices is selected as the master device, and the remaining measuring devices are slave measuring devices. Among them, as shown in Figure 7, the signal output terminal of the master device is connected to the signal input terminal of a slave device in the chain mode, and the signal output terminal of a slave device is connected to the signal input terminal of the next slave device, and so on until the end A signal output terminal of a slave device is connected to a signal input terminal of a master device, thereby forming a chain structure. As shown in FIG. 8 , in the star mode, the signal input terminals of each slave device are connected to the signal output terminals of the master device.
在一些实施例中,深度测量系统除了包括多个上述测量装置,还可以包括服务器,每个测量装置均连接服务器。其中,服务器作为主机,各测量装置作为从设备,这样设置便于将多个测量装置获取的图像传输至服务器进行同步处理。测量装置与服务器之间的连接可以是有线或无线的连接。作为一可能的实现方式,如图9所示,多个测量装置之间的连接为链式模式,各测量装置均与服务器连接。作为另一可能的实现方式,如图10所示,多个测量装置之间的连接为星式模式,各测量装置均与服务器连接。In some embodiments, the depth measurement system may further include a server in addition to the above-mentioned measurement devices, and each measurement device is connected to the server. Among them, the server is used as the host, and each measuring device is used as the slave device. This arrangement facilitates the transmission of images acquired by multiple measuring devices to the server for synchronous processing. The connection between the measurement device and the server can be a wired or wireless connection. As a possible implementation manner, as shown in FIG. 9 , the connection among multiple measurement devices is in a chain mode, and each measurement device is connected to the server. As another possible implementation manner, as shown in FIG. 10 , the connection among multiple measurement devices is in a star mode, and each measurement device is connected to the server.
在一个实施例中,在测量装置获取每帧图像时,需对每帧图像打上时间戳。深度测量系统执行以下方法,以同步多测量装置图像时间戳或系统时间,从而实现图像同步输出。需要说明的是,在执行以下方法时,深度测量系统中服务器为主机(Master设备),各测量装置为该主机的从设备(Slave设备)。In one embodiment, when the measurement device acquires each frame of image, it needs to stamp each frame of image with a time stamp. The depth measurement system implements the following methods to synchronize image time stamps or system time of multiple measurement devices, so as to realize image synchronization output. It should be noted that, when performing the following method, the server in the depth measurement system is a master (Master device), and each measuring device is a slave device (Slave device) of the master.
S1:服务器发送自身时间及请求信号至多台测量装置请求记录各测量装置的时间。S1: The server sends its own time and a request signal to multiple measuring devices to request to record the time of each measuring device.
S2:各测量装置返回自身时间,并设置自身时间为服务器发下来的时间T。S2: Each measuring device returns its own time, and sets its own time as the time T sent by the server.
S3:服务器记录多台测量装置的RTT时间(即往返时间);对于RTT时间偏差异常的测量装置,重复步骤S1、S2和S3;其中,RRT时间为服务器发送自身时间至测量装置,测量装置设置自身时间为服务器发下来的时间并发送设置成功信号至服务器所使用的时间。S3: The server records the RTT time (i.e. the round-trip time) of multiple measuring devices; for the measuring device with abnormal RTT time deviation, repeat steps S1, S2 and S3; wherein, the RRT time is the server sending its own time to the measuring device, and the measuring device is set The own time is the time sent by the server and the time used to send the setting success signal to the server.
S4:服务器发送RTT给测量装置,然后测量装置将自身时间设置为T+RTT/2,此处仅修改写入图像的时间戳或直接改变测量装置的系统时间。S4: The server sends RTT to the measuring device, and then the measuring device sets its own time as T+RTT/2, where only the time stamp of the written image is modified or the system time of the measuring device is directly changed.
在一些实施例中,可以定时对各测量装置的系统时间进行时间校准。In some embodiments, the system time of each measuring device can be time calibrated periodically.
在一些实施例中,进一步地,还可根据各测量装置接收到的触发信号修正各测量装置的系统时间以实现同步。更具体地包括:In some embodiments, further, the system time of each measuring device may be corrected according to the trigger signal received by each measuring device to achieve synchronization. More specifically include:
S10:各测量装置中的微控制器接收到同步触发信号(Ext triggle in)的上升沿,正常触发相应的帧同步功能,并记录此时的系统时间为Ts;S10: The microcontroller in each measuring device receives the rising edge of the synchronous trigger signal (Ext trigger in), normally triggers the corresponding frame synchronization function, and records the system time at this time as Ts;
S20:轮询读取各测量装置当前同步触发信号的电平;计算高电平的持续时间t ms(单位:毫秒);若t大于预设阈值则判断为时间同步信号,同时若|T0+(n-1)×NT-Ts|>NT,则置n=floor[(Ts-T0+NT/2)/NT];然后统一将各测量装置系统时间配置为T0+(n-1)×NT+t;其中,floor[]表示向下取整,预设阈值优选为10,T0为系统的初始起始时间(可以统一定义为1970年1月1日0分0秒0毫秒0微秒),n表示接收到时间同步信号的个数。S20: Polling to read the level of the current synchronous trigger signal of each measuring device; calculate the duration of the high level t ms (unit: millisecond); if t is greater than the preset threshold, it is judged as a time synchronous signal, and if |T0+( n-1)×NT-Ts|>NT, then set n=floor[(Ts-T0+NT/2)/NT]; then configure the system time of each measuring device as T0+(n-1)×NT+ t; where, floor[] means rounding down, the preset threshold is preferably 10, and T0 is the initial start time of the system (which can be uniformly defined as 0 minutes 0 seconds 0 milliseconds 0 microseconds on January 1, 1970), n represents the number of received time synchronization signals.
需要说明的是,本实施例复用Ext triggle in和Ext triggle out信号,当系统收到Ext triggle in的时间同步信号时,装置将系统时间配置为T0+NT;N为多测量装置时间同步的周期长度,单位可以设定为1/30秒或帧时间,N不宜过大,也不宜过小,建议区间可以是[1000,10000]。It should be noted that this embodiment multiplexes Ext trigger in and Ext trigger out signals. When the system receives the time synchronization signal of Ext trigger in, the device configures the system time as T0+NT; N is the time synchronization of multiple measurement devices Cycle length, the unit can be set to 1/30 second or frame time, N should not be too large or too small, the recommended interval can be [1000, 10000].
本申请实施例通过软硬件同步达到曝光同步,提升了图像的同步效果。此外,在一些实施例中,通过微控制器搭载实时系统,可实时对各路数据及信号进行实时反馈,控制精度可达微秒级别,确保同步效果的稳定精准。In the embodiments of the present application, exposure synchronization is achieved through hardware and software synchronization, which improves the image synchronization effect. In addition, in some embodiments, the microcontroller is equipped with a real-time system, which can perform real-time feedback on various data and signals in real time, and the control accuracy can reach the level of microseconds, ensuring stable and accurate synchronization effects.
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still apply to the foregoing embodiments Modifications to the technical solutions recorded, or equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of each embodiment of the application, and should be included in this application. within the scope of protection.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211140809.5A CN115469333A (en) | 2022-09-20 | 2022-09-20 | Depth measuring device and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211140809.5A CN115469333A (en) | 2022-09-20 | 2022-09-20 | Depth measuring device and system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115469333A true CN115469333A (en) | 2022-12-13 |
Family
ID=84334102
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211140809.5A Pending CN115469333A (en) | 2022-09-20 | 2022-09-20 | Depth measuring device and system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115469333A (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150023563A1 (en) * | 2013-07-16 | 2015-01-22 | Texas Instruments Incorporated | Depth Sensor Data with Real-Time Processing of Scene Sensor Data |
| CN108828887A (en) * | 2018-06-05 | 2018-11-16 | 深圳奥比中光科技有限公司 | Projector and depth camera |
| CN109040591A (en) * | 2018-08-22 | 2018-12-18 | Oppo广东移动通信有限公司 | Image processing method, image processing device, computer-readable storage medium and electronic equipment |
| CN109889690A (en) * | 2019-03-04 | 2019-06-14 | 青岛小鸟看看科技有限公司 | A method for increasing frame rate of depth image and depth camera group |
| CN111025319A (en) * | 2019-12-28 | 2020-04-17 | 深圳奥比中光科技有限公司 | Depth measuring device and measuring method |
| CN111427048A (en) * | 2020-02-25 | 2020-07-17 | 深圳奥比中光科技有限公司 | ToF depth measuring device, method for controlling ToF depth measuring device and electronic equipment |
| US20210044732A1 (en) * | 2019-08-06 | 2021-02-11 | Sony Semiconductor Solutions Corporation | Master image sensor, slave image sensor, imaging system, and information processing method |
| CN114120415A (en) * | 2021-11-30 | 2022-03-01 | 支付宝(杭州)信息技术有限公司 | Face detection method and device and electronic equipment |
-
2022
- 2022-09-20 CN CN202211140809.5A patent/CN115469333A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150023563A1 (en) * | 2013-07-16 | 2015-01-22 | Texas Instruments Incorporated | Depth Sensor Data with Real-Time Processing of Scene Sensor Data |
| CN108828887A (en) * | 2018-06-05 | 2018-11-16 | 深圳奥比中光科技有限公司 | Projector and depth camera |
| CN109040591A (en) * | 2018-08-22 | 2018-12-18 | Oppo广东移动通信有限公司 | Image processing method, image processing device, computer-readable storage medium and electronic equipment |
| CN109889690A (en) * | 2019-03-04 | 2019-06-14 | 青岛小鸟看看科技有限公司 | A method for increasing frame rate of depth image and depth camera group |
| US20210044732A1 (en) * | 2019-08-06 | 2021-02-11 | Sony Semiconductor Solutions Corporation | Master image sensor, slave image sensor, imaging system, and information processing method |
| CN111025319A (en) * | 2019-12-28 | 2020-04-17 | 深圳奥比中光科技有限公司 | Depth measuring device and measuring method |
| CN111427048A (en) * | 2020-02-25 | 2020-07-17 | 深圳奥比中光科技有限公司 | ToF depth measuring device, method for controlling ToF depth measuring device and electronic equipment |
| CN114120415A (en) * | 2021-11-30 | 2022-03-01 | 支付宝(杭州)信息技术有限公司 | Face detection method and device and electronic equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114025055B (en) | Data processing method, device, system, equipment and storage medium | |
| JP6463495B2 (en) | Global clock determination method and structure between systems | |
| CN107710753B (en) | Decentralized Synchronized Multi-Sensor System | |
| Olson | A passive solution to the sensor synchronization problem | |
| CN112230240A (en) | Space-time synchronization system, device and readable medium for lidar and camera data | |
| CN110319815B (en) | Multi-camera synchronous exposure system and method based on annular connection structure | |
| JP6529487B2 (en) | Method for driving a time of flight system | |
| CN110312056B (en) | Synchronous exposure method and image acquisition equipment | |
| EP3223093B1 (en) | Optical measurement device | |
| CN106683130A (en) | Depth image acquisition method and device | |
| JP2016123009A (en) | Semiconductor device, electronic device module, and network system | |
| CN113099211A (en) | Stereoscopic vision data acquisition system and method with time synchronization | |
| CN116389945A (en) | Synchronization of multi-sensor systems | |
| CN104296727A (en) | Time synchronization method and system of LMCCD camera | |
| JP2021517256A (en) | Flight time measurement vision camera optimized for multi-camera environment | |
| US20230082295A1 (en) | Measurement device, measurement method, and computer-readable recording medium storing measurement program | |
| CN115469333A (en) | Depth measuring device and system | |
| CN115407365A (en) | Depth measuring device and system | |
| CN115297222A (en) | Multi-camera synchronization system for bionic compound eye and control method thereof | |
| CN117394942A (en) | Image acquisition method, system and electronic equipment | |
| WO2021019929A1 (en) | Distance measurement device, distance measurement system, and adjustment method for distance measurement device | |
| CN116131985B (en) | Time synchronization method, system and device for multi-sensor fusion | |
| CN115551067B (en) | Time synchronization method, device, equipment and storage medium | |
| EP4575568A1 (en) | Method for sensing synchronization between plurality of types of sensors and control system | |
| EP4509860A1 (en) | Method and system for 3d content production |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20240301 Address after: Building 701, Building 2, Shenjiu Science and Technology Entrepreneurship Park, northwest of the intersection of Taohua Road and Binglang Road, Fubao Community, Futian District, Shenzhen City, Guangdong Province, 518017 Applicant after: Shenzhen AoXin micro vision technology Co.,Ltd. Country or region after: China Address before: 518063 floor 11-13, United headquarters building, high tech Zone, No. 63 Xuefu Road, Yuehai street, Nanshan District, Shenzhen, Guangdong Province Applicant before: Obi Zhongguang Technology Group Co.,Ltd. Country or region before: China Applicant before: Shenzhen AoXin micro vision technology Co.,Ltd. |
|
| TA01 | Transfer of patent application right |