CN115469398A - Array waveguide grating with input port of asymmetric conical structure and communication device - Google Patents
Array waveguide grating with input port of asymmetric conical structure and communication device Download PDFInfo
- Publication number
- CN115469398A CN115469398A CN202211135268.7A CN202211135268A CN115469398A CN 115469398 A CN115469398 A CN 115469398A CN 202211135268 A CN202211135268 A CN 202211135268A CN 115469398 A CN115469398 A CN 115469398A
- Authority
- CN
- China
- Prior art keywords
- arrayed waveguide
- port
- waveguide grating
- waveguide
- input port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 238000005253 cladding Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 241000826860 Trapezium Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12016—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/12038—Glass (SiO2 based materials)
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明属于波导技术领域,具体涉及一种输入端口为不对称锥形结构的阵列波导光栅、通信装置。The invention belongs to the field of waveguide technology, and in particular relates to an arrayed waveguide grating and a communication device whose input port is an asymmetric tapered structure.
背景技术Background technique
光互连技术在应用中具有超高速率、超大容量、超长传输距离和超低串扰等显著优势。当前,光互连的方向主要朝着更高的集成密度和更短传输距离发展,而阵列波导光栅(Arrayed Waveguide Grating, AWG)作为一种重要的基于平面波导集成技术的滤波器件,在基于光子集成技术的领域中有着较为广泛的应用价值。Optical interconnect technology has significant advantages in applications such as ultra-high speed, ultra-large capacity, ultra-long transmission distance and ultra-low crosstalk. At present, the direction of optical interconnection is mainly developing towards higher integration density and shorter transmission distance, and arrayed waveguide grating (Arrayed Waveguide Grating, AWG), as an important filter device based on planar waveguide integration technology, is based on photon It has a wide application value in the field of integrated technology.
阵列波导光栅主要由平板波导构成的自由传播区域、阵列波导和输入输出波导构成,具有结构紧凑,插入损耗小,覆盖波段宽,制作工艺简单等优点。其工作原理为:宽谱光信号由输入端口传入平板波导构成的自由传播区域后,经衍射,光场逐步展宽并最终耦合进阵列波导。由于阵列波导长度成等差数列,导致耦合进入的光在不同阵列波导之间产生光程差,由此,阵列波导输出端的光相位也成等差数列分布。不同波长光在阵列波导光栅中传输时的折射率不同,因此其相位差为波长的函数。带有不同相位差的光信号再次输入自由传播区域后会在罗兰圆弧的不同位置干涉叠加,相同波长的光波将会聚到罗兰圆弧的同一位置,此处即可作为相应输出波导的端口。The arrayed waveguide grating is mainly composed of a free propagation area composed of a slab waveguide, an array waveguide, and an input-output waveguide. It has the advantages of compact structure, small insertion loss, wide coverage band, and simple manufacturing process. Its working principle is: after the wide-spectrum optical signal is introduced into the free propagation area formed by the slab waveguide from the input port, the optical field is gradually broadened by diffraction and finally coupled into the arrayed waveguide. Since the lengths of the arrayed waveguides are arranged in an arithmetic sequence, the light coupled in produces an optical path difference between different arrayed waveguides, and thus the phase of the light at the output end of the arrayed waveguide is also distributed in an arithmetic sequence. The refractive index of light of different wavelengths is different when it is transmitted in the arrayed waveguide grating, so its phase difference is a function of wavelength. Optical signals with different phase differences will be interfered and superimposed at different positions of the Rowland arc after entering the free propagation area again, and light waves of the same wavelength will converge to the same position of the Rowland arc, which can be used as the port of the corresponding output waveguide.
各通道的输出光的损耗均匀性是阵列波导光栅性能的一个重要指标。对于传统入射光源端口位置在罗兰圆中心点处的阵列波导光栅的光谱响应呈高斯型,其3dB带宽通常只有信道间隔40%左右。为了优化出光均匀性,可通过将阵列波导光栅和其他滤波元件组合,例如马赫曾德尔干涉仪和阵列波导光栅级联来获得较宽的峰值半宽,或在输入端口设计一段多模干涉结构(Multiple-mode interference,MMI)形成高阶模分量以优化光谱形状。然而,级联其他滤波元件往往会降低器件的集成度,利用MMI时,MMI的宽度往往又可能受到输入/输出波导间隔宽度的影响,这一点在入射光源端口处于边缘处的阵列波导光栅中体现的更为明显。The loss uniformity of the output light of each channel is an important indicator of the performance of the arrayed waveguide grating. For the traditional incident light source port position at the central point of the Rowland circle, the spectral response of the arrayed waveguide grating is Gaussian, and its 3dB bandwidth is usually only about 40% of the channel spacing. In order to optimize the uniformity of light output, a wide half-width of the peak can be obtained by combining the arrayed waveguide grating with other filter elements, such as Mach-Zehnder interferometer and arrayed waveguide grating cascade, or design a multi-mode interference structure at the input port ( Multiple-mode interference, MMI) to form high-order mode components to optimize the spectral shape. However, cascading other filtering elements often reduces the integration of the device. When using MMI, the width of MMI may be affected by the width of the input/output waveguide interval, which is reflected in the arrayed waveguide grating at the edge of the incident light source port. more obvious.
对于入射光源端口位置不在罗兰圆中心,光源为斜向端口入射的阵列波导光栅来说其光谱响应并非高斯型,在阵列波导接收平面,其光场分布体现不对称特性。不对称的光场分布可导致阵列波导光栅输出的光谱响应也存在不对称特性,这严重影响阵列波导光栅各通道的出光均匀性,反映在输出光谱上表现为不同通道的输出光谱强度存在较大差异。For the AWG whose incident light source port is not at the center of the Rowland circle and the light source is incident obliquely to the port, its spectral response is not Gaussian, and its light field distribution exhibits asymmetric characteristics at the receiving plane of the array waveguide. The asymmetric light field distribution can lead to the asymmetric characteristics of the spectral response of the arrayed waveguide grating output, which seriously affects the uniformity of the light emitted by each channel of the arrayed waveguide grating, and it is reflected in the output spectrum that the output spectrum intensity of different channels is large. difference.
发明内容Contents of the invention
为解决现有技术中的不足,本发明的目的在于提供一种输入端口为不对称锥形结构的阵列波导光栅、通信装置,能够改善入射光源的端口位于非罗兰圆中心的阵列波导光栅各通道的出光均匀性,即改善耦合损耗均匀性。In order to solve the deficiencies in the prior art, the purpose of the present invention is to provide an arrayed waveguide grating and a communication device with an input port of an asymmetric tapered structure, which can improve the performance of each channel of the arrayed waveguide grating with the port of the incident light source located at the center of the non-Rowland circle. The uniformity of light output, that is, to improve the uniformity of coupling loss.
为达到上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
第一方面,提供一种输入端口为不对称锥形结构的阵列波导光栅,包括:依次连接的第一输入波导、第一自由传播区域、阵列波导、第二自由传播区域和第二输出波导;所述第二输出波导通过第二输出端口锥形结构与所述第二自由传播区域连接;所述第二自由传播区域通过第二阵列波导锥形端口与所述阵列波导连接;所述阵列波导通过第一阵列波导锥形端口与所述第一自由传播区域连接;所述第一输入波导通过第一输入端口锥形结构在罗兰圆的非中心区域将光源输入所述第一自由传播区域;所述第一输入端口锥形结构为不对称锥形结构,包括与所述第一输入波导连接的对称梯形结构、连接对称梯形结构与第一自由传播区域的不规则四边形结构。In the first aspect, there is provided an arrayed waveguide grating whose input port is an asymmetric tapered structure, comprising: a first input waveguide, a first free propagation region, an array waveguide, a second free propagation region and a second output waveguide connected in sequence; The second output waveguide is connected to the second free propagation area through the tapered structure of the second output port; the second free propagation area is connected to the array waveguide through the second array waveguide tapered port; the array waveguide The tapered port of the first arrayed waveguide is connected to the first free propagation area; the first input waveguide inputs the light source into the first free propagation area in the non-central area of the Rowland circle through the tapered structure of the first input port; The tapered structure of the first input port is an asymmetric tapered structure, including a symmetrical trapezoidal structure connected with the first input waveguide, and a trapezoidal structure connected with the symmetrical trapezoidal structure and the first free propagation area.
进一步地,所述不规则四边形结构解构成一个与对称梯形结构连接的矩形和位于矩形两侧的直角三角形,其中,远离罗兰圆中心的直角三角形在第一自由传播区域上的边的边长大于靠近罗兰圆中心的直角三角形在第一自由传播区域上的边的边长。Further, the trapezoidal structure is decomposed into a rectangle connected with a symmetrical trapezoidal structure and right-angled triangles located on both sides of the rectangle, wherein the side length of the side of the right-angled triangle away from the center of the Rowland circle on the first free propagation area is greater than The side length of the side of the right triangle near the center of the Rowland circle on the first free propagation area.
进一步地,所述不规则四边形结构解构成一个与对称梯形结构连接的第一直角梯形和位于第一直角梯形两侧的直角三角形,其中,第一直角梯形的斜边与对称梯形结构连接,远离罗兰圆中心的直角三角形在第一自由传播区域上的边的边长大于靠近罗兰圆中心的直角三角形在第一自由传播区域上的边的边长。Further, the trapezoidal structure is decomposed into a first right-angled trapezoid connected with a symmetrical trapezoidal structure and right-angled triangles located on both sides of the first right-angled trapezoid, wherein the hypotenuse of the first right-angled trapezoid is connected with the symmetrical trapezoidal structure, away from The side length of the right-angled triangle at the center of the Rowland circle on the first free propagation area is longer than the side length of the side of the right-angled triangle near the center of the Rowland circle on the first free propagation area.
进一步地,所述不规则四边形结构解构成一个与对称梯形结构连接的第二直角梯形和位于第二直角梯形一侧的直角三角形,其中,第二直角梯形的长直角边与对称梯形结构连接,直角三角形为远离罗兰圆中心的直角三角形。Further, the trapezoidal structure is decomposed into a second right-angled trapezoid connected to the symmetrical trapezoidal structure and a right-angled triangle located on one side of the second right-angled trapezoid, wherein the long right-angled side of the second right-angled trapezoid is connected to the symmetrical trapezoidal structure, A right triangle is a right triangle that is far from the center of the Rowland circle.
进一步地,所述不规则四边形结构解构成一个与对称梯形结构连接的具有一个直角的四边形和位于具有一个直角的四边形一侧的直角三角形,其中,直角三角形为远离罗兰圆中心的直角三角形。Further, the trapezoidal structure is decomposed into a quadrilateral with a right angle connected to a symmetrical trapezoidal structure and a right triangle located on one side of the quadrilateral with a right angle, wherein the right triangle is a right triangle away from the center of the Rowland circle.
进一步地,所述阵列波导光栅是单口输入多口输出阵列波导光栅、多口输入多口输出阵列波导光栅、反射型阵列波导光栅或对称型阵列波导光栅。Further, the arrayed waveguide grating is a single-port input-multiple-output arrayed waveguide grating, a multi-port input-multiple-output arrayed waveguide grating, a reflective arrayed waveguide grating or a symmetrical arrayed waveguide grating.
进一步地,所述阵列波导光栅以氮化硅作为波导材料,二氧化硅作为包层材料。Further, the arrayed waveguide grating uses silicon nitride as the waveguide material, and silicon dioxide as the cladding material.
进一步地,第一输入波导、阵列波导和第二输出波导均为条形波导。Further, the first input waveguide, the array waveguide and the second output waveguide are all strip waveguides.
进一步地,第一阵列波导锥形端口、第二阵列波导锥形端口、第二输出端口锥形结构为对称锥形结构。Further, the tapered structures of the first arrayed waveguide tapered port, the second arrayed waveguide tapered port, and the second output port are symmetrical tapered structures.
第二方面,提供一种通信装置,所述通信装置配置有第一方面所述的输入端口为不对称锥形结构的阵列波导光栅。A second aspect provides a communication device configured with the arrayed waveguide grating whose input port is an asymmetric tapered structure as described in the first aspect.
与现有技术相比,本发明所达到的有益效果:本发明输入波导通过输入端口锥形结构在罗兰圆的非中心区域将光源输入自由传播区域;输入端口锥形结构为不对称锥形结构,包括与输入波导连接的对称梯形结构、连接对称梯形结构与自由传播区域的不规则四边形结构;本发明提出的不对称锥形结构,通过在光源输入端口处将锥形结构设计为不对称结构形状从而实现对由边缘波导输入自由传播区的光源在远场处的光场分布调整,由此改善这种光源输入端口在非中心处的阵列波导光栅的各通道间的损耗均匀性。此方法简单易行,只需对非对称结构进行合理优化,利用现有平面波导制作工艺便可加工,适用于各种输入光源端口位于罗兰圆非中心点的阵列波导光栅。Compared with the prior art, the beneficial effects achieved by the present invention are as follows: the input waveguide of the present invention inputs the light source into the free propagation area in the non-central area of the Rowland circle through the tapered structure of the input port; the tapered structure of the input port is an asymmetrical tapered structure , including a symmetrical trapezoidal structure connected to the input waveguide, a trapezoidal structure connecting the symmetrical trapezoidal structure and a free propagation area; the asymmetric tapered structure proposed by the present invention, by designing the tapered structure as an asymmetrical structure at the light source input port The shape realizes the adjustment of light field distribution in the far field of the light source input into the free propagation region from the edge waveguide, thereby improving the loss uniformity among the channels of the arrayed waveguide grating whose input port of the light source is at a non-center position. This method is simple and easy, only needs to rationally optimize the asymmetric structure, and can be processed by using the existing planar waveguide manufacturing process, and is suitable for arrayed waveguide gratings whose input light source ports are located at non-central points of the Rowland circle.
附图说明Description of drawings
图1是本发明实施例提供的一种输入端口为不对称锥形结构的阵列波导光栅的结构示意图;FIG. 1 is a schematic structural diagram of an arrayed waveguide grating with an input port of an asymmetric tapered structure provided by an embodiment of the present invention;
图2是图1中不对称锥形结构的输入端口的结构示意图;Fig. 2 is a structural schematic diagram of the input port of the asymmetric tapered structure in Fig. 1;
图3是图2的变形结构一;Fig. 3 is the deformation structure one of Fig. 2;
图4是图2的变形结构二;Fig. 4 is the deformation structure two of Fig. 2;
图5是图2的变形结构三;Fig. 5 is the deformation structure three of Fig. 2;
图6是不同形状的入射端口的阵列波导光栅的光谱响应对比图;Fig. 6 is a comparison diagram of the spectral response of arrayed waveguide gratings with different shapes of incident ports;
图中:1、第一输入波导;2、第一输出波导;3、第一输入端口锥形结构;4、第一输出端口锥形结构;5、第一自由传播区域;6、第一阵列波导锥形端口;7、阵列波导;8、第二阵列波导锥形端口;9、第二自由传播区域;10、第二输出端口锥形结构;11、第二输入端口锥形结构;12、第二输出波导;13、第二输入波导;14、不规则四边形结构;141、矩形;142、远离罗兰圆中心的直角三角形;143、靠近罗兰圆中心的直角三角形;144、第一直角梯形;145、第二直角梯形;146、具有一个直角的四边形;15、对称梯形结构。In the figure: 1. The first input waveguide; 2. The first output waveguide; 3. The tapered structure of the first input port; 4. The tapered structure of the first output port; 5. The first free propagation area; 6. The first array 7. Arrayed waveguide; 8. Second arrayed waveguide tapered port; 9. Second free propagation area; 10. Tapered structure of the second output port; 11. Tapered structure of the second input port; 12. The second output waveguide; 13, the second input waveguide; 14, the trapezoidal structure; 141, the rectangle; 142, the right triangle away from the center of the Rowland circle; 143, the right triangle close to the center of the Rowland circle; 144, the first right trapezoid; 145. A second right-angled trapezoid; 146. A quadrilateral with one right angle; 15. A symmetrical trapezoidal structure.
具体实施方式detailed description
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.
实施例一:Embodiment one:
如图1所示,一种输入端口为不对称锥形结构的阵列波导光栅,包括:第一输入波导1、第二输入波导13、第一自由传播区域5、阵列波导7、第二自由传播区域9、第一输出波导2、第二输出波导12;第二输出波导12通过第二输出端口锥形结构10与第二自由传播区域9连接;第一输出波导2通过第一输出端口锥形结构4与第一自由传播区域5连接;第二自由传播区域9通过第二阵列波导锥形端口8与阵列波导7连接;阵列波导7通过第一阵列波导锥形端口6与第一自由传播区域5连接;第一输入波导1通过第一输入端口锥形结构3在罗兰圆的非中心区域将光源输入第一自由传播区域5;第二输入波导13通过第二输入端口锥形结构11在罗兰圆的非中心区域将光源输入第二自由传播区域9。As shown in Figure 1, an arrayed waveguide grating whose input port is an asymmetric tapered structure includes: a
第一输入端口锥形结构3与第二输入端口锥形结构11结构相同,均为不对称锥形结构。如图1、图2所示,以第一输入端口锥形结构3为例进行说明,第一输入端口锥形结构3包括与第一输入波导1连接的对称梯形结构15、连接对称梯形结构15与第一自由传播区域5的不规则四边形结构14。不规则四边形结构14解构成一个与对称梯形结构15连接的矩形141和位于矩形两侧的直角三角形,其中,远离罗兰圆中心的直角三角形142在第一自由传播区域5上的边的边长大于靠近罗兰圆中心的直角三角形143在第一自由传播区域5上的边的边长。The first input port tapered
本实施例中,光源输入端口位于边缘波导处且端口为不对称锥形结构的阵列波导光栅。阵列波导光栅可以是单口输入多口输出阵列波导光栅、多口输入多口输出阵列波导光栅、反射式阵列波导光栅等。In this embodiment, the input port of the light source is located at the edge waveguide, and the port is an arrayed waveguide grating with an asymmetric tapered structure. The arrayed waveguide grating may be a single-input multi-output arrayed waveguide grating, a multi-input multi-output arrayed waveguide grating, a reflective arrayed waveguide grating, and the like.
阵列波导光栅以氮化硅作为波导材料(535nm波长附近折射率为2.036)厚度为180nm,二氧化硅作为包层材料(折射率为1.44)厚度为3μm,阵列波导工作波段范为:525-540nm范围,阵列波导光栅为1×8,出射通道之间的波长间隔为1.8nm。The arrayed waveguide grating uses silicon nitride as the waveguide material (refractive index near 535nm wavelength is 2.036) with a thickness of 180nm, silicon dioxide as the cladding material (refractive index is 1.44) with a thickness of 3μm, and the working band of the arrayed waveguide is: 525-540nm The range, the arrayed waveguide grating is 1×8, and the wavelength interval between the output channels is 1.8nm.
输入/输出波导及阵列波导均为条形波导。波导和自由传输区域的连接处用锥形波导进行连接。输出波导及阵列波导的锥形结构为宽度逐渐线性扩大的对称锥形波导,而输入端口为不对称锥形结构。Both the input/output waveguide and the array waveguide are strip waveguides. The junction of the waveguide and the free transmission area is connected with a tapered waveguide. The tapered structure of the output waveguide and the arrayed waveguide is a symmetrical tapered waveguide whose width gradually expands linearly, while the input port is an asymmetric tapered structure.
如图1、图3所示,不规则四边形结构14在自由传输区域上的边和对边可以不平行。不规则四边形结构14解构成一个与对称梯形结构15连接的第一直角梯形144和位于第一直角梯形144两侧的直角三角形,其中,第一直角梯形144的斜边与对称梯形结构15连接,远离罗兰圆中心的直角三角形142在第一自由传播区域5上的边的边长大于靠近罗兰圆中心的直角三角形143在第一自由传播区域5上的边的边长。因此,不对称锥形结构在远离罗兰圆中心方向的开口被不对称的放大,大于靠近罗兰圆中心方向的开口。As shown in FIG. 1 and FIG. 3 , the side and the opposite side of the
如图1、图4所示,不规则四边形结构14在靠近罗兰圆中心的一边的部分被切掉,被切掉的部分为靠近罗兰圆中心点的直角三角形的形貌。不规则四边形结构14解构成一个与对称梯形结构15连接的第二直角梯形145和位于第二直角梯形145一侧的直角三角形,其中,第二直角梯形145的长直角边与对称梯形结构15连接,直角三角形为远离罗兰圆中心的直角三角形142,靠近罗兰圆中心的直角三角形143被切除。As shown in FIG. 1 and FIG. 4 , the
如图1、图5所示,不规则四边形结构14综合了图3、图4的结构。不规则四边形结构14解构成一个与对称梯形结构15连接的具有一个直角的四边形146和位于四边形一侧的直角三角形,其中,直角三角形为远离罗兰圆中心的直角三角形142,靠近罗兰圆中心的直角三角形143被切除。As shown in FIG. 1 and FIG. 5 , the
如图4所示,不对称锥形结构在自由传输区域上的边的边长总长为3μm;不规则四边形结构14在第一自由传播区域5上的边到和对称梯形结构15共用的边的垂直距离为10μm;第二直角梯形145的长直角边的边长设置为1.55μm,远离罗兰圆中心的直角三角形142和第一自由传播区域5连接的边的边长为1.65μm,靠近罗兰圆中心的直角三角形143和第一自由传播区域5连接的边的边长为0.2μm,即不对称锥形结构在自由传输区域上的边的边长为:1.65μm +1.55μm -0.2μm=3μm。对称梯形结构15和不规则四边形结构14共用的边的长度为1.55μm,对称梯形结构15的高为12μm,对称梯形结构15连接第一输入波导1的边长和第一输入波导的宽度相同,同为0.5μm。其他输出通道的端口的锥形结构为传统锥形(对称梯形)结构,其在自由传输区域上的边的边长为1.2μm,和波导相连接的边的边长为0.5μm,锥形结构总长为12μm。As shown in Figure 4, the total length of the side length of the side of the asymmetric tapered structure on the free transmission region is 3 μm; The vertical distance is 10 μm; the side length of the long right-angled side of the second right-
如图6所示,分别为光源入射端接口为传统锥形结构的阵列波导光栅的光谱响应(虚线)和光源入射端接口为不对称锥形结构阵列波导光栅的光谱响应(实线)之间的对比。其中光源入射端为传统锥形结构的阵列波导光栅的输入端口结构(第一输入端口锥形结构3、第二输入端口锥形结构11)为一个对称的梯形结构;输出端口锥口结构(第一输出端口锥形结构4、第二输出端口锥形结构10)为一个对称的梯形结构。其中,光源入射端接口为不对称锥形结构阵列波导光栅的入射端连接口选取图4中所示的不对称锥形结构,其结构参数为上一自然段图4所示结构描述的参数。除入射端接口为不同参数外,两种阵列波导光栅(光源入射端接口为传统锥形结构的阵列波导光栅、光源入射端接口为不对称锥形结构阵列波导光栅)的其他所有结构参数相同。从图6中可以看到,入射端口为对称锥形的阵列波导光栅的光谱输出响应差异较大,在0.525到0.54μm波段内,显示处从短波长到长波长强度响应逐步降低的趋势,其通道中最大输出和最小输出相对强度相差0.17,而输入端口为不对称锥形的阵列波导光栅的光谱输出较为均匀,在0.525到0.54μm波段内,其通道中最大输出和最小输出相对强度仅相差0.04。As shown in Fig. 6, the spectral response of the arrayed waveguide grating (dotted line) with the traditional tapered structure at the light source incident interface and the spectral response (solid line) of the asymmetric tapered structure arrayed waveguide grating at the light source incident interface are respectively contrast. The input port structure (the first input port tapered
本发明提出的不对称锥形结构,通过在光源输入端口处将锥形结构设计为不对称结构形状从而实现对由边缘波导输入自由传播区的光源在远场处的光场分布调整,由此改善这种光源输入端口在非中心处的阵列波导光栅的各通道间的损耗均匀性。此方法简单易行,只需对非对称结构进行合理优化,利用现有平面波导制作工艺便可加工,适用于各种输入光源端口位于罗兰圆非中心点的阵列波导光栅。The asymmetric tapered structure proposed by the present invention realizes the adjustment of the light field distribution at the far field of the light source input into the free propagation area from the edge waveguide by designing the tapered structure as an asymmetrical structural shape at the light source input port, thus The loss uniformity among channels of the arrayed waveguide grating in which the input port of the light source is not at the center is improved. This method is simple and easy, only needs to rationally optimize the asymmetric structure, and can be processed by using the existing planar waveguide manufacturing process, and is suitable for arrayed waveguide gratings whose input light source ports are located at non-central points of the Rowland circle.
本发明结构简单,无额外附加器件,易于设计及加工;不会降低器件的集成度;对于输入光源不在罗兰圆中心位置的阵列波导光栅,通过此设计可有效改善通道损耗均匀性。The invention has a simple structure, no additional devices, and is easy to design and process; the integration degree of the devices will not be reduced; for the arrayed waveguide grating whose input light source is not at the center of the Rowland circle, the channel loss uniformity can be effectively improved through this design.
实施例二:Embodiment two:
基于实施例一所述的输入端口为不对称锥形结构的阵列波导光栅,本实施例提供一种通信装置,所述通信装置配置有实施例一所述的输入端口为不对称锥形结构的阵列波导光栅。Based on the arrayed waveguide grating whose input port is an asymmetric tapered structure as described in
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211135268.7A CN115469398A (en) | 2022-09-19 | 2022-09-19 | Array waveguide grating with input port of asymmetric conical structure and communication device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211135268.7A CN115469398A (en) | 2022-09-19 | 2022-09-19 | Array waveguide grating with input port of asymmetric conical structure and communication device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115469398A true CN115469398A (en) | 2022-12-13 |
Family
ID=84371175
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211135268.7A Pending CN115469398A (en) | 2022-09-19 | 2022-09-19 | Array waveguide grating with input port of asymmetric conical structure and communication device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115469398A (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6069990A (en) * | 1997-11-27 | 2000-05-30 | Hitachi Cable Ltd. | Optical wavelength multiplexer/demultiplexer |
| JP2000258647A (en) * | 1999-03-02 | 2000-09-22 | Lucent Technol Inc | Wavegude grating router and method for forming its prescribed synthetic output spectrum |
| JP2003195068A (en) * | 2001-12-21 | 2003-07-09 | Nec Corp | Array waveguide grating, array waveguide grating module, and optical communication system |
| JP2004347971A (en) * | 2003-05-23 | 2004-12-09 | Nippon Telegr & Teleph Corp <Ntt> | Array waveguide diffraction grating type optical multiplexing / demultiplexing circuit |
| JP2006154123A (en) * | 2004-11-26 | 2006-06-15 | Nhk Spring Co Ltd | Multi-channel array waveguide diffraction grating type multiplexer / demultiplexer and method of connecting array waveguide and output waveguide |
| CN105137538A (en) * | 2015-10-15 | 2015-12-09 | 中国科学院半导体研究所 | Arrayed waveguide grating spectrum planarization method |
| CN106371172A (en) * | 2015-07-24 | 2017-02-01 | 无锡宏纳科技有限公司 | Arrayed waveguide grating |
| CN110082906A (en) * | 2018-01-26 | 2019-08-02 | 中国科学院半导体研究所 | Optical phased array based on imperfect asymmetric AWG |
-
2022
- 2022-09-19 CN CN202211135268.7A patent/CN115469398A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6069990A (en) * | 1997-11-27 | 2000-05-30 | Hitachi Cable Ltd. | Optical wavelength multiplexer/demultiplexer |
| JP2000258647A (en) * | 1999-03-02 | 2000-09-22 | Lucent Technol Inc | Wavegude grating router and method for forming its prescribed synthetic output spectrum |
| JP2003195068A (en) * | 2001-12-21 | 2003-07-09 | Nec Corp | Array waveguide grating, array waveguide grating module, and optical communication system |
| JP2004347971A (en) * | 2003-05-23 | 2004-12-09 | Nippon Telegr & Teleph Corp <Ntt> | Array waveguide diffraction grating type optical multiplexing / demultiplexing circuit |
| JP2006154123A (en) * | 2004-11-26 | 2006-06-15 | Nhk Spring Co Ltd | Multi-channel array waveguide diffraction grating type multiplexer / demultiplexer and method of connecting array waveguide and output waveguide |
| CN106371172A (en) * | 2015-07-24 | 2017-02-01 | 无锡宏纳科技有限公司 | Arrayed waveguide grating |
| CN105137538A (en) * | 2015-10-15 | 2015-12-09 | 中国科学院半导体研究所 | Arrayed waveguide grating spectrum planarization method |
| CN110082906A (en) * | 2018-01-26 | 2019-08-02 | 中国科学院半导体研究所 | Optical phased array based on imperfect asymmetric AWG |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112433295B (en) | Ultra-wideband beam splitting and combining device | |
| US7151873B2 (en) | Waveguide type optical splitter and waveguide type optical module comprising the same | |
| CN109270627B (en) | Polarization insensitive directional coupler based on multimode sub-wavelength grating | |
| JPH11237517A (en) | Optical waveguide device | |
| CN106959163B (en) | A kind of TE mould analyzers based on symmetrical three guide directional couplers structure | |
| CN111679365A (en) | A four-channel silicon-based arrayed waveguide grating wavelength division multiplexer | |
| CN102902010B (en) | Waveguide grating device with uniform channel loss | |
| CN111897050A (en) | An arrayed waveguide grating | |
| CN105137538A (en) | Arrayed waveguide grating spectrum planarization method | |
| CN115032740A (en) | Grating auxiliary reverse coupler type coarse wavelength division multiplexer based on SOI material | |
| CN112946815A (en) | Low-crosstalk 32-channel silicon-based array waveguide grating wavelength division multiplexer | |
| CN108594364B (en) | Ultra wide bandwidth 3dB based on narrow slit wave-guide divides bundling device and method | |
| US7164823B2 (en) | Optical isolator using photonic crystal | |
| CN111221068B (en) | Polarizer based on sub-wavelength grating structure | |
| CN113985524B (en) | Array waveguide grating based on metamaterial waveguide | |
| CN113589429B (en) | Array waveguide grating based on auxiliary waveguide | |
| CN115469398A (en) | Array waveguide grating with input port of asymmetric conical structure and communication device | |
| CN116224491B (en) | Slit crossing optical waveguide and optical sensor device | |
| US20120189249A1 (en) | Single-Stage 1x5 Grating-Assisted Wavelength Division Multiplexer | |
| CN117891028A (en) | Ultra-compact broadband wavelength demultiplexer and design method thereof | |
| CN104090331B (en) | Efficient compact rectangular ring resonant cavity waveguide type optical filter | |
| CN202904056U (en) | Waveguide grating device with uniform channel loss | |
| CN112596254B (en) | A compact polarizing beam splitter based on photonic crystal | |
| CN209640529U (en) | Planar optical waveguide wavelength division multiplexer based on sub-wave length grating | |
| KR20030069361A (en) | Optical power splitter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |