CN115497830A - Method for manufacturing semiconductor device and semiconductor device - Google Patents
Method for manufacturing semiconductor device and semiconductor device Download PDFInfo
- Publication number
- CN115497830A CN115497830A CN202211456508.3A CN202211456508A CN115497830A CN 115497830 A CN115497830 A CN 115497830A CN 202211456508 A CN202211456508 A CN 202211456508A CN 115497830 A CN115497830 A CN 115497830A
- Authority
- CN
- China
- Prior art keywords
- field plate
- film layer
- semiconductor device
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims description 59
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 238000005530 etching Methods 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 15
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000001039 wet etching Methods 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001312 dry etching Methods 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 238000002425 crystallisation Methods 0.000 claims description 4
- 230000008025 crystallization Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 147
- 241000293849 Cordylanthus Species 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
- H10D30/655—Lateral DMOS [LDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本申请公开了一种半导体器件的制造方法及半导体器件,其中,该半导体器件的制造方法包括提供一基底;在基底上形成栅极结构;形成覆盖栅极结构上表面和基底上表面的场板膜层;在场板膜层的预设区域上形成具有预设图案的光阻层;以具有预设图案的光阻层为掩膜对场板膜层进行蚀刻,得到场板,场板与基底的接触面为平面。本方案可以提高半导体器件的性能。
The present application discloses a manufacturing method of a semiconductor device and a semiconductor device, wherein the manufacturing method of the semiconductor device includes providing a substrate; forming a gate structure on the substrate; forming a field plate covering the upper surface of the gate structure and the upper surface of the substrate film layer; forming a photoresist layer with a preset pattern on a predetermined area of the field plate film layer; using the photoresist layer with a preset pattern as a mask to etch the field plate film layer to obtain a field plate, field plate and substrate The contact surface is flat. The solution can improve the performance of the semiconductor device.
Description
技术领域technical field
本申请涉及半导体技术领域,具体涉及一种半导体器件的制造方法及半导体器件。The present application relates to the field of semiconductor technology, and in particular to a method for manufacturing a semiconductor device and the semiconductor device.
背景技术Background technique
BCD(Bipolar-CMOS-DMOS)工艺把双极(Bipolar)器件、互补金属氧化物半导体(Complementary Metal OxideSemiconductor,CMOS)器件和双扩散金属-氧化物半导体(Double-diffusion Metal Oxide Semiconductor,DMOS)器件同时制作在同一芯片上,它综合了双极器件高跨导、强负载驱动能力和CMOS集成度高、低功耗的优点,使其互相取长补短,发挥各自的优点。其中,DMOS器件是BCD电路中的核心所在,为了更好的与集成电路(Integrated Circuit,IC)成熟制程进行工艺集成,一般采用横向DMOS,即LDMOS(LateralDouble-diffusion Metal Oxide Semiconductor)。其中,场板是LDMOS的核心所在。为了达到LDMOS耐压的要求,需要采用热氧化层作为场板。The BCD (Bipolar-CMOS-DMOS) process combines bipolar (Bipolar) devices, complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) devices and double-diffusion metal-oxide semiconductor (Double-diffusion Metal Oxide Semiconductor, DMOS) devices simultaneously Produced on the same chip, it combines the advantages of high transconductance, strong load driving capability of bipolar devices, high integration and low power consumption of CMOS, so that they can learn from each other and give full play to their respective advantages. Among them, the DMOS device is the core of the BCD circuit. In order to better process integration with the mature integrated circuit (Integrated Circuit, IC) process, a horizontal DMOS, namely LDMOS (Lateral Double-diffusion Metal Oxide Semiconductor) is generally used. Among them, the field plate is the core of LDMOS. In order to meet the requirements of LDMOS withstand voltage, it is necessary to use a thermal oxide layer as a field plate.
然而,通过现有技术得到的场板与衬底之间的接触面不平整,导致LDMOS的导通电阻增大,从而降低了LDMOS的性能。However, the contact surface between the field plate and the substrate obtained by the prior art is uneven, which leads to an increase in the on-resistance of the LDMOS, thereby degrading the performance of the LDMOS.
发明内容Contents of the invention
本申请提供了一种半导体器件的制造方法及半导体器件,可以提高半导体器件的性能。The present application provides a method for manufacturing a semiconductor device and the semiconductor device, which can improve the performance of the semiconductor device.
本申请提供了一种半导体器件的制造方法,包括:The application provides a method for manufacturing a semiconductor device, comprising:
提供一基底;provide a base;
在所述基底上形成栅极结构;forming a gate structure on the substrate;
形成覆盖所述栅极结构上表面和所述基底上表面的场板膜层;forming a field plate film covering the upper surface of the gate structure and the upper surface of the substrate;
在所述场板膜层的预设区域上形成具有预设图案的光阻层;forming a photoresist layer with a predetermined pattern on a predetermined region of the field plate film layer;
以具有预设图案的所述光阻层为掩膜对所述场板膜层进行蚀刻,得到场板,所述场板与所述基底的接触面为平面。The field plate film layer is etched by using the photoresist layer with a preset pattern as a mask to obtain a field plate, and the contact surface between the field plate and the substrate is flat.
在本申请提供的半导体器件的制造方法中,所述以具有预设图案的所述光阻层为掩膜对所述场板膜层进行蚀刻,得到场板,包括:In the method for manufacturing a semiconductor device provided in the present application, the field plate film layer is etched using the photoresist layer with a preset pattern as a mask to obtain a field plate, including:
以所述光阻层为掩膜对所述场板膜层依次进行第一蚀刻;Using the photoresist layer as a mask to sequentially perform first etching on the field plate film layer;
去除所述光阻层,并对所述第一蚀刻后的场板膜层进行第二蚀刻,得到所述场板。removing the photoresist layer, and performing a second etching on the first etched field plate film layer to obtain the field plate.
在本申请提供的半导体器件的制造方法中,所述场板膜层包括依次层叠设置的第一膜层、第二膜层和第三膜层,所述第一膜层位于靠近所述基底的一侧,所述第一膜层的厚度为100Å~800Å,所述第二膜层的厚度为200Å~600Å,所述第三膜层的厚度为100Å~500Å。In the method for manufacturing a semiconductor device provided in this application, the field plate film layer includes a first film layer, a second film layer, and a third film layer that are sequentially stacked, and the first film layer is located near the base of the substrate. On one side, the thickness of the first film layer is 100Å-800Å, the thickness of the second film layer is 200Å-600Å, and the thickness of the third film layer is 100Å-500Å.
在本申请提供的半导体器件的制造方法中,所述第一蚀刻后的场板膜层包括第一膜层和第二膜层,所述第二膜层的残留厚度为50Å~200Å。In the manufacturing method of the semiconductor device provided in the present application, the field plate film layer after the first etching includes a first film layer and a second film layer, and the residual thickness of the second film layer is 50Ř200Å.
在本申请提供的半导体器件的制造方法中,所述第二蚀刻后的场板膜层在非预设区域的厚度为0,所述场板的第二膜层的残留厚度为30Å~200Å。In the manufacturing method of the semiconductor device provided in the present application, the thickness of the second etched field plate film layer in the non-preset area is 0, and the residual thickness of the second film layer of the field plate is 30Ř200Å.
在本申请提供的半导体器件的制造方法中,所述第一膜层的材料为氧化硅,所述第二膜层的材料为氮化硅,所述第三膜层的材料为氧化硅。In the method for manufacturing a semiconductor device provided in the present application, the material of the first film layer is silicon oxide, the material of the second film layer is silicon nitride, and the material of the third film layer is silicon oxide.
在本申请提供的半导体器件的制造方法中,在所述以所述光阻层为掩膜对所述场板膜层进行蚀刻,得到场板之后,还包括:In the manufacturing method of the semiconductor device provided in the present application, after the field plate film layer is etched using the photoresist layer as a mask to obtain the field plate, it further includes:
形成覆盖所述基底上表面和所述栅极结构上表面的晶化层;forming a crystallized layer covering the upper surface of the substrate and the upper surface of the gate structure;
形成覆盖所述基底上表面、所述栅极结构上表面和所述场板上表面的介质层;forming a dielectric layer covering the upper surface of the substrate, the upper surface of the gate structure and the upper surface of the field plate;
形成贯穿所述介质层的第一接触孔、第二接触孔、第三接触孔和第四接触孔;forming a first contact hole, a second contact hole, a third contact hole and a fourth contact hole penetrating through the dielectric layer;
在所述介质层上形成第一金属结构、第二金属结构、第三金属结构和第四金属结构,所述第一金属结构、所述第二金属结构和第三金属结构分别通过所述第一接触孔、所述第二接触孔和所述第三接触孔与所述晶化层连接,所述第四金属结构通过所述第四接触孔与所述场板连接。A first metal structure, a second metal structure, a third metal structure and a fourth metal structure are formed on the dielectric layer, and the first metal structure, the second metal structure and the third metal structure pass through the first metal structure respectively A contact hole, the second contact hole and the third contact hole are connected to the crystallized layer, and the fourth metal structure is connected to the field plate through the fourth contact hole.
在本申请提供的半导体器件的制造方法中,所述光阻层的材料为KrF类型的正光阻,所述光阻层的厚度为5000Å~20000Å,所述光阻层的关键尺寸为0.15um~0.8um。In the manufacturing method of the semiconductor device provided in the present application, the material of the photoresist layer is a KrF type positive photoresist, the thickness of the photoresist layer is 5000Å~20000Å, and the critical dimension of the photoresist layer is 0.15um~ 0.8um.
在本申请提供的半导体器件的制造方法中,所述第一蚀刻为干法蚀刻工艺,所述第二蚀刻为湿法蚀刻工艺。In the method for manufacturing a semiconductor device provided in the present application, the first etching is a dry etching process, and the second etching is a wet etching process.
本申请提供了一种半导体器件,所述半导体器件采用上述的半导体器件的制造方法制成,所述半导体器件包括:The present application provides a semiconductor device, the semiconductor device is made by the above-mentioned manufacturing method of the semiconductor device, and the semiconductor device includes:
基底;base;
栅极结构,所述栅极结构设置于所述基底上;a gate structure, the gate structure is disposed on the substrate;
场板,所述场板设置于所述基底上,所述场板与所述基底的接触面为平面。The field plate is arranged on the substrate, and the contact surface between the field plate and the substrate is a plane.
综上,本申请提供的半导体器件的制造方法包括:提供一基底;在所述基底上形成栅极结构;形成覆盖所述栅极结构上表面和所述基底上表面的场板膜层;在所述场板膜层的预设区域上形成具有预设图案的光阻层;以具有预设图案的所述光阻层为掩膜对所述场板膜层进行蚀刻,得到场板,所述场板与所述基底的接触面为平面。通过本方案可以得到与基底的接触面为平面的场板,从而避免出现由于场板与基底的接触面不平整,从而导致半导体器件的导通电阻增大的情况。也即,本方案可以降低半导体器件的导通电阻,从而增加半导体器件的性能。In summary, the method for manufacturing a semiconductor device provided by the present application includes: providing a substrate; forming a gate structure on the substrate; forming a field plate film covering the upper surface of the gate structure and the upper surface of the substrate; A photoresist layer with a preset pattern is formed on a preset region of the field plate film layer; the field plate film layer is etched using the photoresist layer with a preset pattern as a mask to obtain a field plate, and the The contact surface between the field plate and the substrate is plane. Through this solution, a field plate with a flat contact surface with the substrate can be obtained, thereby avoiding an increase in the on-resistance of the semiconductor device due to an uneven contact surface between the field plate and the substrate. That is, this solution can reduce the on-resistance of the semiconductor device, thereby increasing the performance of the semiconductor device.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本申请提供的半导体器件的制造方法的流程示意图。FIG. 1 is a schematic flowchart of a manufacturing method of a semiconductor device provided in the present application.
图2-图6是本申请提供的半导体器件的中间件的结构示意图。2-6 are structural schematic diagrams of the middleware of the semiconductor device provided by the present application.
图7是本申请提供的半导体器件的结构示意图。FIG. 7 is a schematic structural diagram of a semiconductor device provided in the present application.
图8是现有技术提供的半导体器件的版图。FIG. 8 is a layout of a semiconductor device provided in the prior art.
图9是本申请提供的半导体器件的版图。FIG. 9 is a layout of a semiconductor device provided by the present application.
具体实施方式detailed description
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application. Rather, they are merely examples of apparatuses and methods consistent with aspects of the present application as recited in the appended claims.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a..." does not exclude the existence of other identical elements in the process, method, article, or device that includes the element. In addition, different implementations of the present application Components, features, and elements with the same name in the example may have the same meaning, or may have different meanings, and the specific meaning shall be determined based on the explanation in the specific embodiment or further combined with the context in the specific embodiment.
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。In the following description, the use of suffixes such as 'module', 'part' or 'unit' for denoting elements is only for facilitating the description of the present application and has no specific meaning by itself. Therefore, 'module', 'part' or 'unit' may be mixedly used.
以下对本申请涉及的实施例进行具体描述,需要说明的是,在本申请中对实施例的描述顺序不作为对实施例优先顺序的限定。The embodiments involved in the present application are described in detail below. It should be noted that the description order of the embodiments in the present application is not used as a limitation on the priority order of the embodiments.
以下将通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的是,以下实施例的描述顺序不作为对实施例优先顺序的限定。The technical solutions shown in this application will be described in detail below through specific embodiments. It should be noted that the order of description of the following embodiments is not intended to limit the order of priority of the embodiments.
场板是LDMOS的核心所在。为了达到LDMOS耐压的要求,需要采用热氧化层作为场板。目前,场板的形成方式一般是通过两次热氧化工艺生成垫氧化层和垫氮化硅层作为衬垫,然后通过光刻定义出场板的生长区域和形状,之后通过热生长得到场板,最后再去除垫氧化层和垫氮化硅层。Field plate is the core of LDMOS. In order to meet the requirements of LDMOS withstand voltage, it is necessary to use a thermal oxide layer as a field plate. At present, the formation method of the field plate is generally to generate a pad oxide layer and a pad silicon nitride layer as a liner through two thermal oxidation processes, and then define the growth area and shape of the field plate by photolithography, and then obtain the field plate by thermal growth. Finally, the pad oxide layer and the pad silicon nitride layer are removed.
然而,通过上述方式形成的场板与栅极、衬底之间会形成“鸟嘴”,多个方向的电场线会集中到“鸟嘴”区域,使得该区域的电场强度较强,容易发生击穿。因此,由于“鸟嘴”的存在,使得LDMOS的击穿电压较低。However, a "bird's beak" will be formed between the field plate formed in the above way, the gate, and the substrate, and the electric field lines in multiple directions will be concentrated in the "bird's beak" area, making the electric field strength in this area stronger and prone to breakdown. Therefore, due to the existence of the "bird's beak", the breakdown voltage of LDMOS is low.
并且,由于场板与基底的接触面不平整,会导致LDMOS的导通电阻增大,从而降低了LDMOS的性能。Moreover, due to the unevenness of the contact surface between the field plate and the substrate, the on-resistance of the LDMOS will increase, thereby reducing the performance of the LDMOS.
基于此,本申请提供了一种半导体器件的制造方法,请参阅图1,图1是本申请提供的半导体器件的制造方法的流程示意图。该半导体器件的制造方法的具体流程可以如下:Based on this, the present application provides a method for manufacturing a semiconductor device, please refer to FIG. 1 , which is a schematic flowchart of the method for manufacturing a semiconductor device provided in the present application. The specific flow of the manufacturing method of the semiconductor device can be as follows:
101、提供一基底10。101. Provide a
在一些实施例中,该基底10可以为半导体衬底。在另一实施例中,该基底10可以包括半导体衬底、埋层和外延层。其中,埋层和外延层依次层叠设置于半导体衬底上。In some embodiments, the
在一些实施例中,在形成基底10之后,可以对基底10进行离子注入漂移区、沟道区、源极区、漏极区、深阱区等离子注入区。需要说明的是,当该基底10为半导体衬底时,漂移区、沟道区、源极区、漏极区、深阱区等离子注入区位于半导体衬底内。当该基底10包括半导体衬底、埋层和外延层时,漂移区、沟道区、源极区、漏极区、深阱区等离子注入区位于半导体衬底内位于外延层内。In some embodiments, after the
在一些实施例中,沟道区可以为第一导电类型沟道区,漂移区可以为第二导电类型漂移区,源极区可以为第二导电类型源极区,漏极区可以为第二导电类型漏极区,埋层可以为第一导电类型埋层,外延层可以为第二导电类型外延层。需要说明的是,第一导电类型为P型,第二导电类型为N型;或第一导电类型为N型,第二导电类型为P型。In some embodiments, the channel region may be a first conductivity type channel region, the drift region may be a second conductivity type drift region, the source region may be a second conductivity type source region, and the drain region may be a second conductivity type. For the conductivity type drain region, the buried layer may be a first conductivity type buried layer, and the epitaxial layer may be a second conductivity type epitaxial layer. It should be noted that the first conductivity type is P type and the second conductivity type is N type; or the first conductivity type is N type and the second conductivity type is P type.
在具体实施过程中,埋层可以通过对半导体衬底的上表层进行第一导电类型的离子注入而形成。比如,可以对半导体衬底的上表层进行Sb离子注入以得到埋层。外延层的形成方法有多种,比如,物理气相沉积、化学气相沉积或者其他适合的方法。In a specific implementation process, the buried layer may be formed by performing ion implantation of the first conductivity type on the upper surface layer of the semiconductor substrate. For example, Sb ion implantation can be performed on the upper surface layer of the semiconductor substrate to obtain the buried layer. There are many methods for forming the epitaxial layer, such as physical vapor deposition, chemical vapor deposition or other suitable methods.
其中,半导体衬底的材料可以采用单晶硅、碳化硅、砷化镓、磷化铟或锗硅等材料,半导体衬底还可以是锗硅衬底、Ⅲ-Ⅴ族元素化合物衬底、碳化硅衬底或其叠层结构,或绝缘体上硅结构,也可以是金刚石衬底或本领域技术人员公知的其他半导体材料衬底,例如,可以在单晶硅中注入P原子形成N型导电的半导体衬底,也可以在单晶硅中注入B原子形成P型导电的半导体衬底。Among them, the material of the semiconductor substrate can be single crystal silicon, silicon carbide, gallium arsenide, indium phosphide or silicon germanium, etc. The semiconductor substrate can also be a germanium silicon substrate, a III-V element compound substrate, Silicon substrate or its laminated structure, or silicon-on-insulator structure, also can be diamond substrate or other semiconductor material substrates known to those skilled in the art, for example, can implant P atoms in single crystal silicon to form N-type conductive The semiconductor substrate can also be implanted with B atoms in single crystal silicon to form a P-type conductive semiconductor substrate.
可以理解的是,该基底10的表面会具有自然氧化层、表面颗粒、金属离子等,导致基底10的表面不平整。为了解决以上问题,可以在离子注入后,采用湿法清洗工艺对该基底10进行清洗。例如,采用化学试剂对基底10进行清洗,以去除基底10表面的自然氧化层、表面颗粒、金属离子等。It can be understood that the surface of the
其中,该化学试剂可以包括硫酸、盐酸、硝酸、氢氟酸中的一种或多种的组合。也就是说,该酸性溶液可以包括上述各种溶液中的任一种,或者,也可以包括上述各种溶液中的任意两种或两种以上溶液的组合,本实施例在此不对其进行限制。Wherein, the chemical reagent may include one or a combination of sulfuric acid, hydrochloric acid, nitric acid, and hydrofluoric acid. That is to say, the acidic solution may include any one of the above-mentioned various solutions, or may also include a combination of any two or more of the above-mentioned various solutions, which is not limited in this embodiment .
102、在基底10上形成栅极结构20。102 . Form a
其中,如图2所示的栅极结构20可以包括栅极层和栅极侧墙。栅极侧墙位于栅极层的两侧。Wherein, the
在本实施例中,栅极层的材料为多晶硅。其他实施例中,栅极层的材料可以为无定型硅、碳化硅等。栅极侧墙的材料可以包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the gate layer is polysilicon. In other embodiments, the material of the gate layer may be amorphous silicon, silicon carbide, and the like. The material of the gate spacer may include one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon carbonitride.
103、形成覆盖栅极结构20上表面和基底10上表面的场板膜层30。103 , forming a field
其中,该场板膜层30包括依次层叠设置的第一膜层、第二膜层和第三膜层,所述第一膜层位于靠近基底10的一侧。Wherein, the field
在本实施例中,第一膜层的厚度为100Å~800Å,第二膜层的厚度为200Å~600Å,第三膜层的厚度为100Å~500Å。第一膜层的材料为氧化硅,第二膜层的材料为氮化硅,第三膜层的材料为氧化硅。In this embodiment, the thickness of the first film layer is 100Å-800Å, the thickness of the second film layer is 200Å-600Å, and the thickness of the third film layer is 100Å-500Å. The material of the first film layer is silicon oxide, the material of the second film layer is silicon nitride, and the material of the third film layer is silicon oxide.
在一些实施例中,如图3所示的结构可以通过化学气相沉积法在基底10上依次沉积第一膜层、第二膜层和第三膜层得到。In some embodiments, the structure shown in FIG. 3 can be obtained by sequentially depositing a first film layer, a second film layer and a third film layer on the
104、在场板膜层30的预设区域31上形成具有预设图案的光阻层40。104 . Form a
其中,该场板膜层30可以包括预设区域31和非预设区域。可以理解的是,该非预设区域为该场板膜层30除了预设区域31以外的区域。Wherein, the field
具体的,可以在场板膜层30的预设区域31上涂布光阻材料,形成光阻层40。然后,对该光阻层40进行光刻,得到具有预设图案的光阻层40。其中,对光阻层40进行光刻可以包括:在光阻层40上涂布光刻胶层;对所述光刻胶层进行曝光显影,形成预设图案图形;以该光刻胶层为掩模,沿预设图案蚀刻光阻层40,从而得到具有预设图案的光阻层40;最后,去除该光刻胶层。Specifically, a photoresist material may be coated on the
在一些实施例中,在形成具有预设图案的光阻层40之后,可以对该光阻层40进行固化处理。比如,采用紫外线对该光阻层40进行固化处理、采用烘烤工艺对该光阻层40进行固化处理等。In some embodiments, after forming the
在本申请实施例中,该光阻层40的材料为KrF(光源248nm)类型的正光阻。该光阻层40的厚度为5000Å~20000Å。该光阻层40的关键尺寸(Critical Dimension,CD)为0.15um~0.8um。In the embodiment of the present application, the material of the
105、以具有预设图案的光阻层40为掩膜对场板膜层30进行蚀刻,得到场板32,场板32与基底10的接触面为平面。105 . Etching the field
在一些实施例中,可以直接采用干法蚀刻工艺或湿法蚀刻工艺,以光阻层40为掩膜对场板膜层30进行蚀刻,然后去除光阻层40,从而得到与基底10的接触面为平面的场板32。具体可以参阅图4-图5。In some embodiments, the field
然而,直接采用干法蚀刻工艺(非等向性蚀刻)容易损伤晶圆而导致漏电。直接采用湿法蚀刻工艺(等向性蚀刻)会在场板32侧壁形成斜角凸台,增加层间电容。因此,在本实施例中,为了避免出现上述情况,本实施例采用干法蚀刻工艺和湿法蚀刻工艺相互配合的方式对场板膜层30进行蚀刻。However, directly using a dry etching process (anisotropic etching) is likely to damage the wafer and cause leakage. Directly adopting the wet etching process (isotropic etching) will form oblique protrusions on the sidewall of the
具体的,可以以光阻层40为掩膜对场板膜层30进行第一蚀刻;然后,去除光阻层40,并对第一蚀刻后的场板膜层30进行第二蚀刻,得到场板32。Specifically, the first etching can be performed on the field
其中,该第一蚀刻为干法蚀刻工艺。在一些实施例中,可以以光阻层40为掩膜,并采用四氟化碳作为蚀刻气体对场板膜层30进行干法蚀刻工艺。Wherein, the first etching is a dry etching process. In some embodiments, the field
其中,第二蚀刻为湿法蚀刻工艺。在一些实施例中,在去除该光阻层40之后,可以采用氢氟酸作为蚀刻液对第一蚀刻后的场板膜层30进行湿法蚀刻工艺,从而得到与基底10的接触面为平面的场板32。Wherein, the second etching is a wet etching process. In some embodiments, after removing the
可以理解的是,第二蚀刻后的场板膜层30即为场板32。在一些实施例中,可以采用灰化工艺去除该光阻层40。It can be understood that the second etched field
综上,本实施例可以避免直接采用干法蚀刻工艺损伤晶圆而导致的漏电,以及有效避免直接采用湿法蚀刻工艺在场板侧壁形成的斜角凸台,从而减小层间电容。To sum up, this embodiment can avoid the leakage caused by directly using the dry etching process to damage the wafer, and effectively avoid the beveled protrusions formed on the sidewall of the field plate by directly using the wet etching process, thereby reducing the interlayer capacitance.
需要说明的是,第一蚀刻后,第三膜层被完全蚀刻,第二膜层未被蚀刻或部分被蚀刻。也即,第一蚀刻后的场板膜层30包括第一膜层和第二膜层。需要说明的是,第二蚀刻后,第二膜层的残留厚度为50Å~200Å。It should be noted that after the first etching, the third film layer is completely etched, and the second film layer is not etched or partially etched. That is, the first etched field
在第二蚀刻后,非预设区域的场板膜层30被完全蚀刻,场板32的第二膜层未被蚀刻或部分被蚀刻。具体的,第二蚀刻后,该场板32的第二膜层厚度的损耗为0Å~20Å。也即,第二蚀刻后,场板32第二膜层的残留厚度为30Å~200Å。After the second etching, the field
在本实施例中,基底10在场板32的形成过程中无消耗,且基底10为平面。因此,场板32与基底10的接触面为平面。因此,本实施例所提供的半导体器件不会出现“鸟嘴”,从而避免现有技术中,由于“鸟嘴”的存在,使得半导体器件的击穿电压较低的问题。也即,本实施例可以提高半导体器件的击穿电压,提高该半导体器件的可靠性。In this embodiment, the
并且,与现有技术相比,由于场板32与基底10的接触面为平面,可以减少半导体器件电流的导通路径,从而降低其导通电阻,提高半导体器件的性能。Moreover, compared with the prior art, since the contact surface between the
还有,与现有技术相比,本申请实施例减少了垫氧化层和垫氮化硅层的形成流程。也即,本申请实施例可以减少两次热氧化工艺,从而减低半导体器件的制造成本和时间成本。In addition, compared with the prior art, the embodiment of the present application reduces the formation process of the pad oxide layer and the pad silicon nitride layer. That is, the embodiment of the present application can reduce two thermal oxidation processes, thereby reducing the manufacturing cost and time cost of the semiconductor device.
在一些实施例中,可以如图6-图7所示,在形成场板32之后还可以包括:In some embodiments, as shown in FIGS. 6-7 , after the
形成覆盖基底10上表面和栅极结构20上表面的晶化层50;forming a
形成覆盖基底10上表面、栅极结构20上表面和场板32上表面的介质层60;forming a
形成贯穿介质层60的第一接触孔61、第二接触孔62、第三接触孔63和第四接触孔64;forming a
在介质层60上形成第一金属结构71、第二金属结构72、第三金属结构73和第四金属结构74,第一金属结构71、第二金属结构72和第三金属结构73分别通过第一接触孔61、第二接触孔62和第三接触孔63与晶化层50连接,第四金属结构74通过第四接触孔64与场板32连接。A
需要说明的是,基底10上表面指的是基底10靠近栅极结构20的表面。栅极结构20上表面指的是栅极结构20背向基底10的表面。It should be noted that the upper surface of the
需要说明的是,覆盖基底10上表面的晶化层50分别位于源极区之上和漏极区之上,场板32位于部分漂移区和部分漏极区之上。也即,第一金属结构71可以通过第一接触孔61与源极区连接,第二金属结构72可以通过第二接触孔62与栅极结构20连接,第三金属结构73可以通过第三接触孔63与漏极区连接。第四金属结构74可以通过第四接触孔64与漂移区连接。It should be noted that the
也即,在本申请提供的半导体器件中,可以直接通过第四金属结构74和第四接触孔64对场板32施加电压,形成场板电容,使得漂移区进行耗尽。在一些实施例中,可以将第二金属结构72与第四金属结构74电连接,使得第二金属结构72和第四金属结构74同时对场板32施加电压,从而增加该半导体器件的耗尽能力。That is, in the semiconductor device provided in the present application, a voltage can be directly applied to the
请参阅图8-图9,图8是现有技术提供的半导体器件的版图,图9是本申请提供的半导体器件的版图。其中,1为多晶珊,2为场板,3为晶化层,4为接触孔。需要说明的是,在图8-图9中,O1≈O2,L1+W1>L2+W2。Please refer to FIG. 8-FIG. 9, FIG. 8 is a layout of a semiconductor device provided in the prior art, and FIG. 9 is a layout of a semiconductor device provided in the present application. Wherein, 1 is a polycrystalline layer, 2 is a field plate, 3 is a crystallization layer, and 4 is a contact hole. It should be noted that, in FIGS. 8-9 , O1≈O2, L1+W1>L2+W2.
本申请提供的半导体器件的O2约等于现有技术中的O1,因此,本申请提供的半导体器件的场板电容与现有技术中的场板电容几乎相等。并且,由于本申请提供的半导体器件中没有场板与多晶珊的交叠部分,使得L1+W1远小于L2+W2。也即,与现有技术相比,本申请提供的半导体器件的尺寸可以大幅度减小。O2 of the semiconductor device provided by the present application is approximately equal to O1 in the prior art, therefore, the field plate capacitance of the semiconductor device provided by the present application is almost equal to the field plate capacitance of the prior art. Moreover, since there is no overlapping portion between the field plate and the polysilicon in the semiconductor device provided by the present application, L1+W1 is much smaller than L2+W2. That is, compared with the prior art, the size of the semiconductor device provided by the present application can be greatly reduced.
综上,本申请提供的半导体器件的制造方法包括提供一基底10;在基底10上形成栅极结构20;形成覆盖栅极结构20上表面和基底10上表面的场板膜层30;在场板膜层30的预设区域31上形成具有预设图案的光阻层40;以具有预设图案的光阻层40为掩膜对场板膜层30进行蚀刻,得到场板32,场板32与基底10的接触面为平面。本方案可以提高半导体器件的可靠性和性能。并且,还可以减小半导体器件的尺寸。In summary, the method for manufacturing a semiconductor device provided by the present application includes providing a
请参阅图5,本申请提供了一种半导体器件,该半导体器件包括基底10和场板32。其中,该场板32设置于基底10上。场板32与基底10的接触面为平面。Referring to FIG. 5 , the present application provides a semiconductor device, which includes a
在本实施例中,基底10在场板32的形成过程中无消耗,且基底10为平面。因此,场板32与基底10的接触面为平面。因此,本实施例所提供的半导体器件不会出现“鸟嘴”,从而避免现有技术中,由于“鸟嘴”的存在,使得半导体器件的击穿电压较低的问题。也即,本实施例可以提高半导体器件的击穿电压,提高该半导体器件的可靠性。In this embodiment, the
并且,与现有技术相比,由于场板32与基底10的接触面为平面,可以减少半导体器件电流的导通路径,从而降低其导通电阻,提高半导体器件的性能。Moreover, compared with the prior art, since the contact surface between the
还有,与现有技术相比,本申请实施例减少了垫氧化层和垫氮化硅层的形成流程。也即,本申请实施例可以减少两次热氧化工艺,从而减低半导体器件的制造成本和时间成本。In addition, compared with the prior art, the embodiment of the present application reduces the formation process of the pad oxide layer and the pad silicon nitride layer. That is, the embodiment of the present application can reduce two thermal oxidation processes, thereby reducing the manufacturing cost and time cost of the semiconductor device.
该半导体器件的具体制程可以参阅上述半导体器件的制造方法中的各个实施例,在此不作赘述。需要说明的是,其中名词的含义与上述半导体器件的制造方法中相同,具体实现细节可以参考方法实施例中的说明。For the specific manufacturing process of the semiconductor device, reference may be made to the various embodiments in the above-mentioned manufacturing method of the semiconductor device, which will not be repeated here. It should be noted that the meanings of the nouns are the same as those in the above-mentioned manufacturing method of the semiconductor device, and for specific implementation details, reference may be made to the description in the method embodiments.
以上对本申请所提供的半导体器件的制造方法及半导体器件进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The manufacturing method of the semiconductor device and the semiconductor device provided by the application have been introduced in detail above. The principles and implementation methods of the application have been explained by using specific examples in this paper. The description of the above embodiments is only used to help understand the application. core idea; at the same time, for those skilled in the art, according to the idea of this application, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211456508.3A CN115497830A (en) | 2022-11-21 | 2022-11-21 | Method for manufacturing semiconductor device and semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211456508.3A CN115497830A (en) | 2022-11-21 | 2022-11-21 | Method for manufacturing semiconductor device and semiconductor device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115497830A true CN115497830A (en) | 2022-12-20 |
Family
ID=85114815
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211456508.3A Pending CN115497830A (en) | 2022-11-21 | 2022-11-21 | Method for manufacturing semiconductor device and semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115497830A (en) |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11243200A (en) * | 1998-02-26 | 1999-09-07 | Toshiba Corp | Semiconductor device |
| US20020135016A1 (en) * | 2001-03-23 | 2002-09-26 | Koninklijke Philips Electronics N.V. | Field effect transistor structure and method of manufacture |
| CN102054865A (en) * | 2009-11-05 | 2011-05-11 | 上海华虹Nec电子有限公司 | MOS (Metal Oxide Semiconductor) transistor used as electrostatic protection structure and manufacturing method thereof |
| CN106206310A (en) * | 2015-05-07 | 2016-12-07 | 北大方正集团有限公司 | The manufacture method of rf-ldmos semiconductor device |
| CN110767748A (en) * | 2018-07-25 | 2020-02-07 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| US20200220010A1 (en) * | 2017-08-04 | 2020-07-09 | Csmc Technologies Fab2 Co., Ltd. | Ldmos component, manufacturing method therefor, and electronic device |
| CN112635541A (en) * | 2019-10-08 | 2021-04-09 | 无锡华润上华科技有限公司 | LDMOS device and preparation method thereof |
| CN114256329A (en) * | 2021-12-20 | 2022-03-29 | 华虹半导体(无锡)有限公司 | Semiconductor device and method of forming the same |
| CN114566540A (en) * | 2022-02-11 | 2022-05-31 | 华虹半导体(无锡)有限公司 | LDMOS device and manufacturing method thereof |
-
2022
- 2022-11-21 CN CN202211456508.3A patent/CN115497830A/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11243200A (en) * | 1998-02-26 | 1999-09-07 | Toshiba Corp | Semiconductor device |
| US20020135016A1 (en) * | 2001-03-23 | 2002-09-26 | Koninklijke Philips Electronics N.V. | Field effect transistor structure and method of manufacture |
| CN102054865A (en) * | 2009-11-05 | 2011-05-11 | 上海华虹Nec电子有限公司 | MOS (Metal Oxide Semiconductor) transistor used as electrostatic protection structure and manufacturing method thereof |
| CN106206310A (en) * | 2015-05-07 | 2016-12-07 | 北大方正集团有限公司 | The manufacture method of rf-ldmos semiconductor device |
| US20200220010A1 (en) * | 2017-08-04 | 2020-07-09 | Csmc Technologies Fab2 Co., Ltd. | Ldmos component, manufacturing method therefor, and electronic device |
| CN110767748A (en) * | 2018-07-25 | 2020-02-07 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
| CN112635541A (en) * | 2019-10-08 | 2021-04-09 | 无锡华润上华科技有限公司 | LDMOS device and preparation method thereof |
| CN114256329A (en) * | 2021-12-20 | 2022-03-29 | 华虹半导体(无锡)有限公司 | Semiconductor device and method of forming the same |
| CN114566540A (en) * | 2022-02-11 | 2022-05-31 | 华虹半导体(无锡)有限公司 | LDMOS device and manufacturing method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105742169B (en) | Tapered Gate Oxide in LDMOS Devices | |
| TWI222711B (en) | Chip incorporating partially-depleted, fully-depleted and multiple-gate transistors and method of fabricating the multiple-gate transistor | |
| CN104103520B (en) | Form the method and FinFET structure of fin FET device | |
| US7202123B1 (en) | Mesa isolation technology for extremely thin silicon-on-insulator semiconductor devices | |
| CN106257641A (en) | For the method manufacturing high resistivity semiconductor-on-insulator substrate | |
| JP4029885B2 (en) | Manufacturing method of semiconductor device | |
| CN102769033A (en) | HEMT with high breakdown voltage and method of manufacturing the same | |
| CN102437060A (en) | Method for producing tunneling field effect transistor of U-shaped channel | |
| CN100342549C (en) | Structure of partial SOI power apparatus and implementing method | |
| CN103839791B (en) | The preparation method being applied to the trench gate of groove type MOS device | |
| TWI681464B (en) | Method of fabricating a metal-oxide-semiconductor device | |
| CN110729347A (en) | Manufacturing method of NLDMOS device and NLDMOS device | |
| JP2006093268A (en) | Semiconductor substrate, semiconductor device, semiconductor substrate manufacturing method, and semiconductor device manufacturing method | |
| CN103258742B (en) | The formation method of transistor | |
| JP4029884B2 (en) | Manufacturing method of semiconductor device | |
| WO2016008194A1 (en) | Semiconductor device and manufacturing method thereof | |
| CN104701262B (en) | A kind of forming method of semiconductor devices | |
| CN105552126A (en) | Finned-type field effect transistor and fabrication method thereof | |
| CN115497830A (en) | Method for manufacturing semiconductor device and semiconductor device | |
| CN113241375B (en) | Semiconductor device and method of manufacturing the same | |
| CN104716042A (en) | Semiconductor device manufacturing method | |
| CN106898553A (en) | A kind of fin formula field effect transistor and preparation method thereof | |
| CN115274422A (en) | Manufacturing method of semiconductor device and semiconductor device | |
| CN112802753A (en) | Method for manufacturing semiconductor device | |
| CN119317141B (en) | Semiconductor device and manufacturing method thereof, and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20221220 |
|
| RJ01 | Rejection of invention patent application after publication |