CN115498037A - Semiconductor structures and methods of forming them - Google Patents
Semiconductor structures and methods of forming them Download PDFInfo
- Publication number
- CN115498037A CN115498037A CN202110674533.8A CN202110674533A CN115498037A CN 115498037 A CN115498037 A CN 115498037A CN 202110674533 A CN202110674533 A CN 202110674533A CN 115498037 A CN115498037 A CN 115498037A
- Authority
- CN
- China
- Prior art keywords
- layer
- resistance
- resistance structure
- resistive
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
一种半导体结构及其形成方法,形成方法包括:提供半导体衬底,包括电阻区,电阻区的半导体衬底上形成有电阻结构材料层;在电阻区中,在电阻结构材料层中形成一个或多个平行的沟槽,沟槽贯穿部分厚度的电阻结构材料层;在形成沟槽后,图形化电阻结构材料层,去除沟槽外侧的部分电阻结构材料层,保留包含有沟槽的部分电阻结构材料层作为电阻结构;在电阻结构侧部的半导体衬底上形成介质层,介质层还填充于沟槽中,且介质层露出电阻结构的顶部;沿电阻结构的延伸方向,去除电阻结构和介质层交界处的部分电阻结构,形成由介质层和剩余的电阻结构围成的开口;在开口中形成电极。电阻结构顶部形成有沟槽,降低了电阻结构顶面出现凹陷缺陷的概率。
A semiconductor structure and its forming method, the forming method comprising: providing a semiconductor substrate, including a resistance region, a resistance structure material layer is formed on the semiconductor substrate of the resistance region; in the resistance region, forming one or A plurality of parallel grooves, the grooves run through a partial thickness of the resistance structure material layer; after the grooves are formed, the resistance structure material layer is patterned, part of the resistance structure material layer outside the grooves is removed, and part of the resistance structure containing the grooves is retained The structural material layer is used as a resistance structure; a dielectric layer is formed on the semiconductor substrate at the side of the resistance structure, and the dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extension direction of the resistance structure, the resistance structure and Part of the resistance structure at the junction of the dielectric layer forms an opening surrounded by the dielectric layer and the remaining resistance structure; electrodes are formed in the opening. A groove is formed on the top of the resistance structure, which reduces the probability of sunken defects on the top surface of the resistance structure.
Description
技术领域technical field
本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
集成电路中通常包括有源器件和无源器件。有源器件包括MOS晶体管,而无源器件包括电阻。电阻是集成电路设计中不可或缺的元器件,在集成电路设计中,所述电阻可以是多晶硅电阻或者是金属电阻。Integrated circuits usually include active and passive devices. Active devices include MOS transistors, while passive devices include resistors. Resistors are indispensable components in integrated circuit design, and in integrated circuit design, the resistors may be polysilicon resistors or metal resistors.
其中,在具有金属栅极结构的器件中,通常会使用多晶硅电阻结构。此外,目前通常所述多晶硅电阻结构的尺寸较大。Among them, in a device with a metal gate structure, a polysilicon resistance structure is usually used. In addition, the size of the polysilicon resistive structures is generally relatively large at present.
发明内容Contents of the invention
本发明实施例解决的问题是提供一种半导体结构及其形成方法,提高半导体结构的性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the performance of the semiconductor structure.
为解决上述问题,本发明实施例提供一种半导体结构,包括:半导体衬底,包括电阻区;电阻结构,位于所述电阻区的半导体衬底上,其中,所述电阻结构顶部形成有一个或多个平行排列的沟槽,所述沟槽贯穿部分厚度的所述电阻结构;电极,位于所述电阻区中,沿所述电阻结构的延伸方向,所述电极位于所述电阻结构两侧,且与所述电阻结构的侧壁相连;介质层,位于所述电阻结构和电极侧部的半导体衬底上,所述介质层还填充于所述沟槽中,所述介质层露出所述电阻结构和电极的顶部。In order to solve the above problems, an embodiment of the present invention provides a semiconductor structure, including: a semiconductor substrate including a resistance region; a resistance structure located on the semiconductor substrate of the resistance region, wherein a top of the resistance structure is formed with one or A plurality of grooves arranged in parallel, the grooves penetrating through the resistance structure in partial thickness; electrodes, located in the resistance region, along the extension direction of the resistance structure, the electrodes are located on both sides of the resistance structure, And connected to the side wall of the resistance structure; a dielectric layer, located on the semiconductor substrate at the side of the resistance structure and the electrode, the dielectric layer is also filled in the trench, and the dielectric layer exposes the resistance top of the structure and electrodes.
相应的,本发明实施例还提供一种半导体结构的形成方法,包括:提供半导体衬底,包括电阻区,所述电阻区的半导体衬底上形成有电阻结构材料层;在所述电阻区中,在所述电阻结构材料层中形成一个或多个平行的沟槽,所述沟槽贯穿部分厚度的所述电阻结构材料层;在形成所述沟槽后,图形化所述电阻结构材料层,去除所述沟槽外侧的部分电阻结构材料层,保留包含有所述沟槽的部分电阻结构材料层作为电阻结构;在所述电阻结构侧部的半导体衬底上形成介质层,所述介质层还填充于所述沟槽中,且所述介质层露出所述电阻结构的顶部;沿所述电阻结构的延伸方向,去除所述电阻结构和所述介质层交界处的部分所述电阻结构,形成由所述介质层和剩余的所述电阻结构围成的开口;在所述开口中形成电极。Correspondingly, an embodiment of the present invention also provides a method for forming a semiconductor structure, including: providing a semiconductor substrate, including a resistance region, a resistance structure material layer is formed on the semiconductor substrate of the resistance region; , forming one or more parallel trenches in the resistive structure material layer, the trenches penetrating part of the thickness of the resistive structural material layer; after forming the trenches, patterning the resistive structural material layer , removing part of the resistive structure material layer outside the trench, retaining part of the resistive structure material layer containing the trench as a resistive structure; forming a dielectric layer on the semiconductor substrate at the side of the resistive structure, the dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extending direction of the resistance structure, part of the resistance structure at the junction of the resistance structure and the dielectric layer is removed , forming an opening surrounded by the dielectric layer and the remaining resistance structure; forming an electrode in the opening.
与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:
本发明实施例提供的半导体结构中,所述电阻结构中顶部形成有一个或多个平行排列的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极位于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过使所述电阻结构顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the semiconductor structure provided by the embodiment of the present invention, one or more grooves arranged in parallel are formed on the top of the resistance structure; during the process of forming the resistance structure and the dielectric layer, usually including Layer planarization process, and during planarization, if the size of the resistance structure is large, more serious dishing defects are likely to appear on the top surface of the resistance structure, and, in this embodiment, the electrodes are located along the The two sides of the resistance structure in the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is relatively small, therefore, the remaining size of the resistance structure Larger, more prone to recessed defects, therefore, by making the top of the resistive structure with grooves, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the resistance of the resistive structure. The probability of sunken defects on the top surface improves the flatness of the top surface of the resistance structure, which is beneficial to ensure the integrity of the resistance structure, thereby reducing the probability of resistance value deviation of the resistance structure, thereby improving the performance of the semiconductor structure.
本发明实施例提供的半导体结构的形成方法中,在所述电阻结构材料层中形成一个或多个平行的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the method for forming a semiconductor structure provided by an embodiment of the present invention, one or more parallel grooves are formed in the material layer of the resistance structure; The structure and the dielectric layer are planarized, and when the planarization is performed, if the size of the resistive structure is large, serious dishing defects are likely to appear on the top surface of the resistive structure, and, in this embodiment, the electrode Formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is small, so the remaining The size of the resistive structure is relatively large, and it is more prone to sink defects. Therefore, by forming a groove on the top of the resistive structure, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the size of the resistive structure. The probability of sunken defects appearing on the top surface of the resistance structure improves the flatness of the top surface of the resistance structure, which is conducive to ensuring the integrity of the resistance structure, thereby reducing the probability that the resistance value of the resistance structure will shift, thereby improving the semiconductor structure. performance.
附图说明Description of drawings
图1至图4是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 4 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;
图5至图7是本发明半导体结构一实施例的结构示意图;5 to 7 are structural schematic diagrams of an embodiment of the semiconductor structure of the present invention;
图8至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。8 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
具体实施方式detailed description
目前半导体结构的性能仍有待提高。现结合一种半导体结构的形成方法分析半导体结构的性能仍有待提高的原因。The performance of current semiconductor structures still needs to be improved. The reason why the performance of the semiconductor structure still needs to be improved is analyzed in combination with a method for forming the semiconductor structure.
参考图1至图4,示出了一种半导体结构的形成方法中各步骤对应的结构示意图。Referring to FIG. 1 to FIG. 4 , schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure are shown.
参考图1,提供半导体衬底10,所述半导体衬底10包括电阻区10R和器件区10H,所述半导体衬底10上形成有电阻结构材料层20,所述电阻结构材料层20包括金属阻挡层22和位于所述金属阻挡层22上的顶部电阻层23。Referring to FIG. 1 , a
参考图2,图形化所述电阻结构材料层20,保留位于所述电阻区10R中半导体衬底10上的剩余电阻结构材料层20作为电阻结构30,且在所述器件区10H中,保留位于剩余所述金属阻挡层22上的顶部电阻层23作为伪栅层31。Referring to FIG. 2, the resistive
在图形化所述电阻结构材料层20后,在所述电阻区10R中,剩余的所述金属阻挡层22用于作为所述电阻结构30中的底部电阻层。After patterning the resistive
其中,电阻结构30的延伸方向为第一方向(未标示),电阻结构30和伪栅层31的排列方向为第二方向(如图2中X方向所示)。第一方向与第二方向相垂直,且第一方向和第二方向均平行于半导体衬底10的表面。Wherein, the extending direction of the
参考图3,图3是沿第二方向的剖视图,在所述电阻结构30侧部的半导体衬底10上形成介质层40。Referring to FIG. 3 , which is a cross-sectional view along the second direction, a
形成所述介质层40的过程中,通常包括对所述介质层40进行平坦化的过程,而由于所述电阻结构30的线宽尺寸较大,则在进行平坦化处理后,所述电阻结构30的顶部容易出现较严重的凹陷缺陷。The process of forming the
参考图4,图4是沿第一方向的剖视图,沿所述第一方向,去除所述电阻结构30和所述介质层40交界处的部分所述电阻结构30,形成由所述介质层40和剩余的所述电阻结构30围成的开口;在所述开口中形成电极35。Referring to FIG. 4 , FIG. 4 is a cross-sectional view along a first direction. Along the first direction, a part of the
在形成所述电极35的过程中,通常也包括对所述电极35进行平坦化的过程,而此次平坦化的过程又容易使得所述电阻结构30的顶面进一步凹陷,甚至导致所述电阻结构30中的顶部电阻层23过度凹陷,从而露出其底部的金属阻挡层22,而由于所述金属阻挡层22对所述电阻结构30的阻值有较大的影响,进而容易导致电阻结构30的阻值发生偏移。In the process of forming the
而且,所述电极35形成于沿所述第一方向(也即电阻结构30的延伸方向)上的所述电阻结构30两侧,剩余的所述电阻结构30尺寸较大,更容易出现凹陷缺陷。Moreover, the
为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供半导体衬底,包括电阻区,所述电阻区的半导体衬底上形成有电阻结构材料层;在所述电阻区中,在所述电阻结构材料层中形成一个或多个平行的沟槽,所述沟槽贯穿部分厚度的所述电阻结构材料层;在形成所述沟槽后,图形化所述电阻结构材料层,去除所述沟槽外侧的部分电阻结构材料层,保留包含有所述沟槽的部分电阻结构材料层作为电阻结构;在所述电阻结构侧部的半导体衬底上形成介质层,所述介质层还填充于所述沟槽中,且所述介质层露出所述电阻结构的顶部;沿所述电阻结构的延伸方向,去除所述电阻结构和所述介质层交界处的部分所述电阻结构,形成由所述介质层和剩余的所述电阻结构围成的开口;在所述开口中形成电极。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a semiconductor substrate, including a resistance region, and a resistance structure material layer is formed on the semiconductor substrate of the resistance region; In the resistance area, one or more parallel grooves are formed in the resistance structure material layer, and the grooves penetrate part of the thickness of the resistance structure material layer; after forming the grooves, patterning the resistance A structural material layer, removing part of the resistive structure material layer outside the trench, and retaining a part of the resistive structure material layer including the trench as a resistive structure; forming a dielectric layer on the semiconductor substrate at the side of the resistive structure, The dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extension direction of the resistance structure, the portion at the junction of the resistance structure and the dielectric layer is removed The resistance structure is formed to form an opening surrounded by the dielectric layer and the remaining resistance structure; and an electrode is formed in the opening.
本发明实施例提供的半导体结构的形成方法中,在所述电阻结构材料层中形成一个或多个平行的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the method for forming a semiconductor structure provided by an embodiment of the present invention, one or more parallel grooves are formed in the material layer of the resistance structure; The structure and the dielectric layer are planarized, and when the planarization is performed, if the size of the resistive structure is large, serious dishing defects are likely to appear on the top surface of the resistive structure, and, in this embodiment, the electrode Formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is small, so the remaining The size of the resistive structure is relatively large, and it is more prone to sink defects. Therefore, by forming a groove on the top of the resistive structure, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the size of the resistive structure. The probability of sunken defects appearing on the top surface of the resistance structure improves the flatness of the top surface of the resistance structure, which is conducive to ensuring the integrity of the resistance structure, thereby reducing the probability that the resistance value of the resistance structure will shift, thereby improving the semiconductor structure. performance.
为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
结合参考图5至图7,示出了本发明半导体结构一实施例的结构示意图,其中,图5是电阻结构的俯视图,图6是图5基于AA方向的剖视图,图7是图5基于BB方向的剖视图。Referring to FIGS. 5 to 7, a schematic structural view of an embodiment of the semiconductor structure of the present invention is shown, wherein FIG. 5 is a top view of the resistance structure, FIG. 6 is a cross-sectional view of FIG. 5 based on the direction AA, and FIG. 7 is a view based on BB of FIG. Orientation section view.
其中,为了便于图示,图7中未示意出器件区,且图7仅示意出了电阻区。Wherein, for the convenience of illustration, the device area is not shown in FIG. 7 , and only the resistance area is shown in FIG. 7 .
所述半导体结构包括:半导体衬底101,包括电阻区101R;电阻结构301,位于所述电阻区101R的半导体衬底101上,其中,所述电阻结构301中顶部形成有一个或多个平行排列的沟槽(图未示),所述沟槽贯穿部分厚度的所述电阻结构301;电极351,位于所述电阻区101R中,沿所述电阻结构301的延伸方向(如图7和图9中的X方向),所述电极351位于所述电阻结构301两侧,且与所述电阻结构301的侧壁相连;介质层401,位于所述电阻结构301和电极351侧部的半导体衬底101上,所述介质层401还填充于所述沟槽中,所述介质层401露出所述电阻结构301和电极351的顶部。The semiconductor structure includes: a
本发明实施例提供的半导体结构中,所述电阻结构301中顶部形成有一个或多个平行排列的沟槽;在形成所述电阻结构301和介质层401的过程中,通常包括对所述电阻结构301和介质层401进行平坦化的过程,且进行平坦化时,如果电阻结构301的尺寸较大,电阻结构301顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极351位于沿所述电阻结构301的延伸方向上所述电阻结构301的两侧,并且,所述电极351仅用于将电阻结构301的电性连接出去,则所述电极351的尺寸较小,因此,剩余的所述电阻结构301尺寸较大,更容易出现凹陷缺陷,因此,通过使所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率,提高了所述电阻结构301的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the semiconductor structure provided by the embodiment of the present invention, one or more trenches arranged in parallel are formed on the top of the
所述半导体衬底101为所述半导体结构的形成工艺提供工艺操作基础。The
本实施例中,所述半导体衬底101的材料为硅,在其他实施例中,所述半导体衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓和镓化铟中的一种或多种,所述半导体衬底还能够为绝缘体上的硅半导体衬底或者绝缘体上的锗半导体衬底等其他类型的半导体衬底。所述半导体衬底101的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the material of the
本实施例中,所述半导体衬底101包括电阻区101R和器件区101H。所述电阻区101R用于形成电阻结构,所述器件区101H用于形成MOS晶体管。In this embodiment, the
本实施例中,所述器件区101H为低压(LV)器件区,用于形成低压器件。作为一种示例,所述低压器件的工作电压小于2V。In this embodiment, the
需要说明的是,所述半导体衬底101还可以包括用于形成高压器件的高压器件区(图未示)。高压器件的工作电压大于低压器件的工作电压。作为一种示例,高压器件的工作电压大于10V。It should be noted that the
本实施例中,所述半导体结构还包括隔离结构111,位于所述电阻区101R的半导体衬底101中。In this embodiment, the semiconductor structure further includes an
所述隔离结构111用于隔离所述隔离结构111上的电阻结构301和所述半导体衬底101,以防所述电阻结构301与半导体衬底101中的阱(well)区之间发生短路,所述隔离结构111还用于实现不同器件之间的绝缘,例如在CMOS制造工艺中,通常会在NMOS晶体管和PMOS晶体管之间形成隔离结构。具体地,所述隔离结构111为浅沟槽隔离结构(Shallow TrenchIsolation,STI)。The
所述隔离结构111的材料为绝缘材料。本实施例中,所述隔离结构111的材料包括氧化硅或氮氧化硅。The material of the
需要说明的是,本实施例中,采用先形成高k栅介质层后形成金属栅极(high kfirst metal gate last)工艺形成第二器件区101H的金属栅极结构,且所述电阻结构301和所述第二器件区101H的伪栅层一同形成。其中,伪栅层用于为所述第二器件区101H的栅电极层占据空间位置。It should be noted that, in this embodiment, the metal gate structure of the
因此,本实施例中,所述半导体结构还包括:栅介质层211,位于所述器件区101H和电阻区101R的半导体衬底101上;金属阻挡层221,位于所述栅介质层211上;栅电极层361,位于所述器件区101H的所述金属阻挡层221上。Therefore, in this embodiment, the semiconductor structure further includes: a
本实施例中,在所述器件区101H中,所述栅介质层211、金属阻挡层221和栅电极层361构成金属栅极结构。In this embodiment, in the
所述栅介质层211用于隔离电极351与半导体衬底101、以及所述栅电极层361与半导体衬底101。The
所述栅介质层211的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。本实施例中,所述栅介质层211包括高k栅介质层,高k栅介质层的材料包括高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述高k介质材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The material of the
需要说明的是,所述栅介质层211还可以包括位于高k栅介质层和半导体衬底101之间的栅氧化层。作为一种示例,栅氧化层的材料为氧化硅。It should be noted that the
所述金属阻挡层221用于隔离栅介质层211和电极351、以及栅介质层211和栅电极层361,以保护栅介质层211,而且,金属阻挡层221还用于阻挡电极351和栅电极层361中的易扩散离子(例如:Al离子)向栅介质层211中扩散。The
具体地,所述金属阻挡层221的材料包括氮化钛(TiN)和掺硅的氮化钛(TiSiN)中的一种或两种。本实施例中,所述金属阻挡层221的材料为氮化钛。Specifically, the material of the
所述栅电极层361包括功函数层(未示出)、以及位于功函数层上的电极层(未示出)。其中,所述功函数层用于调节所形成晶体管的阈值电压,所述电极层用于将所述栅电极层361的电性引出。The
所述电阻结构301作为集成电路中的无源器件。The
本实施例中,所述电阻结构301包括位于所述电阻区101R中的所述金属阻挡层221,以及位于所述金属阻挡层221上的顶部电阻层231,所述金属阻挡层221用于作为所述电阻结构中的底部电阻层。In this embodiment, the
本实施例中,所述电阻结构301位于所述电阻101R区的隔离结构111上,使得所述电阻结构301与所述半导体衬底101绝缘。In this embodiment, the
本实施例中,所述顶部电阻层231的材料包括多晶硅。In this embodiment, the material of the
需要说明的是,由于顶部电阻层231的阻值远大于金属阻挡层221的阻值,因此,电阻结构301工作时的电流主要流经所述金属阻挡层221,相应的,与顶部电阻层231相比,所述金属阻挡层221对所述电阻结构301的阻值的影响更大。It should be noted that, since the resistance value of the
本实施例中,所述沟槽贯穿部分厚度的所述电阻结构301,保留部分厚度的所述电阻结构301,从而保持所述电阻结构301的电阻符合性能需求,并且保护位于所述电阻结构301下的其他膜层。In this embodiment, the groove penetrates through part of the thickness of the
具体地,所述沟槽贯穿部分厚度的所述顶部电阻层231。Specifically, the trench penetrates through a partial thickness of the top
本实施例中,所述多个平行排列的沟槽的延伸方向与所述电阻结构301的延伸方向相同,能够在形成较少个数的沟槽的情况下,减小在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积的效果下,节约工艺成本,降低工艺复杂度,提高工艺效率。In this embodiment, the extension direction of the plurality of trenches arranged in parallel is the same as the extension direction of the
本实施例中,所述多个平行排列的沟槽的排列方向与所述电阻结构301的延伸方向相垂直,则在与所述电阻结构301的延伸方向相垂直的方向,根据电阻结构301的宽度,排列足够数量的多个沟槽,较大程度地减小在平坦化过程中与电阻结构301顶部表面的接触面积,从而降低所述电阻结构301顶面出现凹陷缺陷的概率。In this embodiment, the arrangement direction of the plurality of trenches arranged in parallel is perpendicular to the extending direction of the
需要说明的是,所述沟槽的深度h不能过大,也不能过小。如果所述沟槽的深度h过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且所述沟槽的深度h过大,形成所述沟槽的过程中,容易造成对沟槽下方的其他膜层的损伤;如果所述沟槽的深度h过小,则在所述沟槽周围凸立的电阻结构301的高度过小,则在对所述介质层401进行平坦化处理的过程中,容易将所述沟槽周围凸立的电阻结构301去除,从而在所述平坦化处理的过程中,容易接触到所述沟槽底部的电阻结构301,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率。因此,本实施例中,所述沟槽的深度h为所述电阻结构301厚度的1/4至1/3。It should be noted that the depth h of the groove can neither be too large nor too small. If the depth h of the trench is too large, too many
需要说明的是,所述沟槽的宽度w1不能过大,也不能过小。如果所述沟槽的宽度w1过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且,在平坦化过程中,位于沟槽中的介质层401容易出现顶面凹陷严重的问题;如果所述沟槽的宽度w1过小,则所述沟槽周围凸立的电阻结构301线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率,而且,还容易增大形成沟槽时所采用的光刻工艺的工艺难度。因此,本实施例中,所述沟槽的宽度w1为0.15μm至2μm。It should be noted that the width w1 of the groove can neither be too large nor too small. If the width w1 of the trench is too large, too many
同时,还需要说明的是,相邻所述沟槽之间的距离w2不能过大,也不能过小。如果相邻所述沟槽之间的距离w2过大,也就是说,所述沟槽周围凸立的电阻结构301线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率,而且,相应导致所述沟槽的宽度w1过小;如果相邻所述沟槽之间的距离w2过小,则容易导致形成的所述沟槽的宽度w1过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且,在平坦化过程中,位于沟槽中的介质层401容易出现顶面凹陷严重的问题。因此,本实施例中,相邻所述沟槽之间的距离w2为0.15μm至2μm。At the same time, it should be noted that the distance w2 between adjacent grooves cannot be too large or too small. If the distance w2 between adjacent trenches is too large, that is to say, the line width of the
本实施例中,所述半导体结构还包括:保护层341,位于所述沟槽的侧壁。In this embodiment, the semiconductor structure further includes: a
在对所述电阻结构301和介质层401进行平坦化的过程中,所述保护层341保护了所述沟槽侧壁的电阻结构301,减小对所述电阻结构301造成过研磨的概率,进一步有效降低了所述电阻结构301顶面出现凹陷缺陷的概率,提高了所述电阻结构301的顶面平坦度,进而提高了半导体结构的性能。During the process of planarizing the
本实施例中,所述保护层341保形覆盖所述沟槽的侧壁和底部,则所述保护层341在保护所述沟槽侧壁的电阻结构301的同时,还对所述保护层341底部的电阻结构301起到保护作用。In this embodiment, the
本实施例中,所述保护层341的材料包括氮化硅或氮氧化硅。In this embodiment, the material of the
所述氮化硅硬度较高,在所述平坦化过程中,对所述沟槽侧壁和底部的电阻结构301能够起到较好的保护作用。The silicon nitride has a relatively high hardness, and can better protect the
沿所述电阻结构301的延伸方向,所述电极351位于所述电阻结构301两侧,且与所述电阻结构301的侧壁相连,也就是说,所述电极351与所述电阻结构301的端部相连。Along the extension direction of the
具体地,所述电极351位于所述顶部电阻层231两侧的所述金属阻挡层221上。Specifically, the
所述电极351用于与导电插塞实现电连接,从而实现所述电阻结构301与其他电路的电连接。The
所述电极351位于所述电阻结构301的端部。由于所述电阻结构301的长度越长,则所述电阻结构301的阻值越大,因此,通过使所述电极351位于所述电阻结构301的端部,能最大化所述电阻结构301的长度,使得所述电阻结构301获得较大的电阻。The
本实施例中,所述电极351的材料包括金属材料。所述金属材料具有较好的导电性,有利于提高电阻结构301与外部互连结构之前的电连接性能,从而提高所述半导体结构的电学性能。In this embodiment, the material of the
本实施例中,所述电极351与MOS晶体管中的栅电极层361具有相同的材料和叠层结构,从而能够在同一制程中形成所述电极351和MOS晶体管中的栅电极层361。例如,低压器件区采用的器件栅极结构为金属栅极结构,采用金属栅极结构有利于提高MOS晶体管的电学性能,降低漏电流。In this embodiment, the
相应的,在所述半导体结构的形成过程中,在形成栅电极层361的步骤中,同时形成所述电极351。Correspondingly, during the formation of the semiconductor structure, in the step of forming the
本实施例中,所述电极351的材料包括TiN、TaN、Ta、Ti、TiAl、W、AL、TiSiN和TiAlC中的一种或多种。In this embodiment, the material of the
本实施例中,所述电极351和所述栅电极层361的材料相同,则可以在同一步骤中形成所述电极351和所述栅电极层361,提高工艺效率,节约工艺成本。In this embodiment, the
所述电极351包括功函数层(未示出)、以及位于功函数层上的电极层(未示出),所述电极层用于将所述电极351的电性引出。The
所述介质层401用于相邻器件之间起到隔离作用。The
本实施例中,所述介质层401填充于所述沟槽中并覆盖所述保护层341的侧壁,用于提高所述电阻结构301顶部的平坦度,为后续工艺制成提供较好的工艺平台。In this embodiment, the
本实施例中,所述介质层401的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the
需要说明的是,通常形成所述介质层401的过程包括对所述电阻结构301和介质层401进行平坦化的过程,本实施例中,所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the
本实施例中,所述半导体结构还包括:覆盖层501,覆盖所述介质层401、电阻结构301和电极351。In this embodiment, the semiconductor structure further includes: a covering
本实施例中,所述覆盖层401相应还覆盖所述栅电极层361。In this embodiment, the
所述覆盖层501用于为形成导电插塞提供工艺平台。The
所述覆盖层501的材料为绝缘材料,本实施例中,所述覆盖层501的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。The material of the
本实施例中,所述半导体结构还包括:导电插塞511,贯穿所述电极351顶部的覆盖层501,并电连接所述电极351。In this embodiment, the semiconductor structure further includes: a
所述导电插塞511用于实现所述电极351的电连接。The
本实施例中,所述导电插塞511的材料包括钨、钌或钴。In this embodiment, the material of the
需要说明的是,通常形成所述电极351的过程包括对所述电阻结构301和电极351进行平坦化的过程,本实施例中,所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the
还需要说明的是,本实施例提高了所述电阻结构301顶面的平坦度,从而提高了所述电极351的形成质量,进而提高导电插塞511与所述电极351的电连接可靠性,进一步提高了半导体结构的性能。It should also be noted that this embodiment improves the flatness of the top surface of the
图8至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。8 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.
参考图8,提供半导体衬底100,包括电阻区100R,所述电阻区100R的半导体衬底100上形成有电阻结构材料层200。Referring to FIG. 8 , a
所述半导体衬底100为后续工艺提供工艺操作基础。The
本实施例中,所述半导体衬底100的材料为硅,在其他实施例中,所述半导体衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓和镓化铟中的一种或多种,所述半导体衬底还能够为绝缘体上的硅半导体衬底或者绝缘体上的锗半导体衬底等其他类型的半导体衬底。所述半导体衬底100的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the material of the
本实施例中,所述半导体衬底100包括电阻区100R,所述电阻区100R用于形成电阻结构。In this embodiment, the
本实施例中,所述半导体衬底100还包括器件区100H,所述器件区100H用于形成MOS晶体管。其中,MOS晶体管作为集成电路中的有源器件。In this embodiment, the
本实施例中,所述器件区100H为低压器件区,用于形成低压器件。作为一种示例,所述低压器件的工作电压小于2V。In this embodiment, the
需要说明的是,所述半导体衬底100还可以包括用于形成高压器件的高压器件区(图未示)。高压器件的工作电压大于低压器件的工作电压。作为一种示例,高压器件的工作电压大于10V。It should be noted that the
还需要说明的是,本实施例中,采用先形成高k栅介质层后形成金属栅极(high kfirst metal gate last)工艺形成第二器件区100H的金属栅极结构,且形成于所述电阻区100R的电阻结构和形成于所述第二器件区100H的伪栅层一同形成。It should also be noted that in this embodiment, the metal gate structure of the
因此,本实施例中,所述电阻结构材料层200和半导体衬底100之间还形成有栅介质层210,所述电阻结构材料层200包括金属阻挡层220和位于所述金属阻挡层220上的顶部电阻层250。Therefore, in this embodiment, a
所述栅介质层210用于隔离后续形成的电极与半导体衬底100、以及后续形成的栅电极层与半导体衬底100。The
所述栅介质层210的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。本实施例中,所述栅介质层210包括高k栅介质层,高k栅介质层的材料包括高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述高k介质材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The material of the
需要说明的是,所述栅介质层210还可以包括位于高k栅介质层和半导体衬底101之间的栅氧化层。作为一种示例,栅氧化层的材料为氧化硅。It should be noted that the
所述金属阻挡层220用于隔离栅介质层210和后续形成的电极、以及栅介质层210和后续形成的栅电极层,以保护栅介质层210,而且,金属阻挡层220还用于阻挡电极和栅电极层中的易扩散离子(例如:Al离子)向栅介质层210中扩散。The
具体地,所述金属阻挡层220的材料包括氮化钛(TiN)和掺硅的氮化钛(TiSiN)中的一种或两种。本实施例中,所述金属阻挡层220的材料为氮化钛。Specifically, the material of the
所述电阻结构材料层200用于后续形成电阻结构,所述电阻区100R的金属阻挡层220用于后续作为底部电阻层。The resistance
本实施例中,所述顶部电阻层250的材料包括多晶硅。In this embodiment, the material of the
本实施例中,所述电阻结构材料层200还形成于所述器件区100H的半导体衬底100上,用于后续在所述器件区100H形成伪栅层做准备。其中,伪栅层用于为金属栅极结构的形成占据空间位置。In this embodiment, the resistive
本实施例中,所述电阻区101R的半导体衬底100中还形成有隔离结构110。In this embodiment, an
后续在所述隔离结构110上形成电阻结构,所述隔离结构110用于隔离电阻结构和所述半导体衬底100,以防电阻结构与半导体衬底100中的阱(well)区之间发生短路,所述隔离结构110还用于实现不同器件之间的绝缘,例如在CMOS制造工艺中,通常会在NMOS晶体管和PMOS晶体管之间形成隔离结构。具体地,所述隔离结构110为浅沟槽隔离结构(ShallowTrench Isolation,STI)。Subsequently, a resistance structure is formed on the
所述隔离结构110的材料为绝缘材料。本实施例中,所述隔离结构110的材料包括氧化硅或氮氧化硅。The material of the
结合参考图9和图10,图10是电阻区100R的电阻结构材料层200的俯视图,图9是图10基于AA方向的剖视图,在所述电阻区100R中,在所述电阻结构材料层200中形成一个或多个平行的沟槽230,所述沟槽230贯穿部分厚度的所述电阻结构材料层200。Referring to FIG. 9 and FIG. 10 in conjunction, FIG. 10 is a top view of the resistance
后续图形化电阻结构材料层200,以形成位于电阻区100R的电阻结构后,所述沟槽230位于电阻结构中。After subsequent patterning of the resistive
在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽230,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the process of forming the resistance structure and the dielectric layer, the process of planarizing the resistance structure and the dielectric layer is usually included, and when the planarization is performed, if the size of the resistance structure is large, the top surface of the resistance structure is likely to appear larger. serious dishing defect, and in this embodiment, the electrodes are formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to If the electrode is electrically connected, the size of the electrode is smaller, therefore, the size of the remaining resistive structure is larger, and it is more likely to have a recess defect. Therefore, by forming the
本实施例中,所述沟槽230贯穿部分厚度的所述电阻结构材料层200,保留部分厚度的所述电阻结构材料层200,从而保持后续电阻结构的正常性能和电阻,并且保护位于所述电阻结构材料层200下的金属阻挡层220,以减小或避免对电阻结构的电阻值的影响。In this embodiment, the
具体地,所述沟槽230贯穿部分厚度的所述顶部电阻层250。Specifically, the
本实施例中,采用干法刻蚀工艺形成一个或多个平行的沟槽230。In this embodiment, one or more
所述干法刻蚀工艺具有各向异性刻蚀的特性,因此通过选取干法刻蚀工艺,有利于减小对所述沟槽230侧部剩余所述电阻结构材料层200的损伤,同时,所述干法刻蚀更具刻蚀方向性,有利于提高所述沟槽230的侧壁形貌质量和尺寸精度。The dry etching process has the characteristics of anisotropic etching, so by selecting the dry etching process, it is beneficial to reduce the damage to the remaining resistive
本实施例中,所述多个平行排列的沟槽230的延伸方向与所述电阻结构材料层200的延伸方向相同,能够在形成较少个数的沟槽的情况下,减小在平坦化过程中与电阻结构301顶部表面的接触面积的效果下,节约工艺成本,降低工艺复杂度,提高工艺效率。In this embodiment, the extension direction of the plurality of
本实施例中,所述多个平行排列的沟槽230的排列方向与所述电阻结构材料层200的延伸方向相垂直,则在与所述电阻结构材料层200的延伸方向相垂直的方向,根据电阻结构300的宽度,排列足够数量的多个沟槽230,较大程度地减小在平坦化过程中与电阻结构顶部表面的接触面积,从而降低所述电阻结构顶面出现凹陷缺陷的概率。In this embodiment, the arrangement direction of the plurality of
需要说明的是,所述沟槽230的深度h不能过大,也不能过小。如果所述沟槽230的深度h过大,则去除的所述电阻结构材料层200过多,容易造成对沟槽230下方的金属阻挡层220的损伤,继而影响电阻结构300的电阻值;如果所述沟槽230的深度h过小,则在所述沟槽230周围凸立的电阻结构的高度过小,则在对所述介质层401进行平坦化处理的过程中,容易将所述沟槽230周围凸立的电阻结构去除,从而在所述平坦化处理的过程中,容易接触到所述沟槽230底部的电阻结构,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率。因此,本实施例中,所述沟槽230的深度h为所述电阻结构材料层200厚度的1/4至1/3。It should be noted that the depth h of the
需要说明的是,所述沟槽230的宽度w1不能过大,也不能过小。如果所述沟槽230的宽度w1过大,则后续在沟槽230中还会形成有介质层,在平坦化过程中,位于沟槽中的介质层容易出现顶面凹陷严重的问题;如果所述沟槽230的宽度w1过小,则所述沟槽230周围凸立的电阻结构线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率,而且,还容易增大形成沟槽230时所采用的光刻工艺和干法刻蚀工艺的工艺难度。因此,本实施例中,所述沟槽230的宽度w1为0.15μm至2μm。It should be noted that the width w1 of the
同时,还需要说明的是,相邻所述沟槽230之间的距离w2不能过大,也不能过小。如果相邻所述沟槽230之间的距离w2过大,也就是说,所述沟槽230周围凸立的电阻结构线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率,而且,相应导致所述沟槽230的宽度w1过小;如果相邻所述沟槽230之间的距离w2过小,则容易导致形成的所述沟槽230的宽度w1过大,后续在沟槽230中还会形成有介质层,在平坦化过程中,位于沟槽230中的介质层容易出现顶面凹陷严重的问题,而且,还容易增加形成沟槽230的光刻工艺和干法刻蚀工艺的工艺难度。因此,本实施例中,相邻所述沟槽230之间的距离w2为0.15μm至2μm。At the same time, it should be noted that the distance w2 between
结合参考图11和图12,图11和图12是基于图9的剖视图,在形成所述沟槽230后,图形化所述电阻结构材料层200,去除所述沟槽230外侧的部分电阻结构材料层200,保留包含有所述沟槽230的部分电阻结构材料层200作为电阻结构300。Referring to FIG. 11 and FIG. 12 in conjunction, FIG. 11 and FIG. 12 are cross-sectional views based on FIG. 9 , after the
保留包含有所述沟槽230的部分电阻结构材料层200作为电阻结构300,使得后续在平坦化过程中,减小研磨垫与电阻结构300顶部表面的接触面积,从而降低了所述电阻结构300顶面出现凹陷缺陷的概率,提高了所述电阻结构300的顶面平坦度,有利于确保电阻结构300的完整性,同时保护金属阻挡层220的完整性,从而降低电阻结构300的阻值发生偏移的概率,进而提高了半导体结构的性能。Reserving part of the resistance
所述电阻结构300作为集成电路中的无源器件。The
本实施例中,所述电阻区100R中剩余的金属阻挡层220和顶部电阻层250作为电阻结构300,所述金属阻挡层220用于作为所述电阻结构300中的底部电阻层。In this embodiment, the remaining
本实施例中,所述电阻结构300位于所述电阻100R区的隔离结构110上,使得所述电阻结构300与所述半导体衬底100绝缘。In this embodiment, the
本实施例中,所述电阻结构材料层200直接形成所述电阻结构300,因此,所述顶部电阻层250的材料包括多晶硅。In this embodiment, the resistive
需要说明的是,由于顶部电阻层250的阻值远大于金属阻挡层220的阻值,因此,电阻结构300工作时的电流主要流经所述金属阻挡层220,相应的,与顶部电阻层250相比,所述金属阻挡层220对所述电阻结构300的阻值的影响更大。It should be noted that, since the resistance value of the
本实施例中,在形成所述沟槽230后,后续在所述电阻结构300侧部的半导体衬底100上形成介质层之前,还包括:在所述沟槽230的侧壁形成保护层340。In this embodiment, after forming the
在对所述电阻结构300和介质层400进行平坦化的过程中,所述保护层340保护了所述沟槽侧壁的电阻结构300,减小对所述电阻结构300造成过研磨的概率,进一步有效降低了所述电阻结构300顶面出现凹陷缺陷的概率,提高了所述电阻结构300的顶面平坦度,进而提高了半导体结构的性能。During the process of planarizing the
本实施例中,在所述电阻结构300侧部的半导体衬底100上形成介质层之前形成所述保护层340,则所述保护层340保形覆盖所述沟槽230的侧壁和底部,从而所述保护层340在保护所述沟槽230侧壁的电阻结构300的同时,还对所述保护层340底部的电阻结构300起到保护作用。In this embodiment, the
本实施例中,所述保护层340的材料包括氮化硅或氮氧化硅。In this embodiment, the material of the
所述氮化硅硬度较高,在所述平坦化过程中,对所述沟槽侧壁和底部的电阻结构300能够起到较好的保护作用。The silicon nitride has relatively high hardness, and can better protect the
具体地,本实施例中,在图形化所述电阻结构材料层200之前,形成所述保护层340,从而所述保护层340还用于作为图形化所述电阻结构材料层200的刻蚀掩膜,简化了工艺步骤。Specifically, in this embodiment, before patterning the resistance
参考图11,形成所述保护层340的步骤包括:在所述电阻结构材料层200上形成保护材料层240,所述保护材料层240保形覆盖所述沟槽230的底部和侧壁、以及所述电阻结构材料层200的顶部。Referring to FIG. 11 , the step of forming the
所述保护材料层240用于形成保护层340。The
本实施例中,采用原子层沉积工艺形成所述保护材料层240。In this embodiment, the
采用原子层沉积工艺形成的所述保护材料层240的厚度均匀性好,且具有良好的台阶覆盖(step coverage)能力,使得所述保护材料层240能够很好的保形覆盖所述沟槽230的底部和侧壁、以及所述电阻结构材料层200的顶部。The thickness uniformity of the
参考图12,去除所述沟槽230外部的部分所述保护材料层240,形成保形覆盖所述沟槽230的底部和侧壁、并延伸覆盖所述电阻材料层200的部分顶部的保护层340。Referring to FIG. 12 , part of the
所述保护层340还用于作为图形化所述电阻结构材料层200的刻蚀掩膜。The
本实施例中,采用干法刻蚀工艺去除所述沟槽230外部的部分所述保护材料层240。In this embodiment, a dry etching process is used to remove part of the
所述干法刻蚀工艺具有各向异性刻蚀的特性,因此通过选取干法刻蚀工艺,有利于减小对所述电阻结构材料层200的损伤,同时,所述干法刻蚀更具刻蚀方向性,有利于提高所述保护层340和电阻结构300的侧壁形貌质量和尺寸精度。The dry etching process has the characteristics of anisotropic etching, so by selecting the dry etching process, it is beneficial to reduce the damage to the resistance
继续参考图12,图形化所述电阻结构材料层200的步骤包括:以所述保护层340为掩膜,去除所述保护层340露出的电阻结构材料层200。Continuing to refer to FIG. 12 , the step of patterning the resistance
以所述保护层340为掩膜,形成电阻结构300,有利于形成尺寸精度较高的所述电阻结构300。Using the
本实施例中,在图形化所述电阻结构材料层200的步骤中,还保留位于所述器件区100H的半导体衬底100上的部分顶部电阻层250作为伪栅层310。In this embodiment, in the step of patterning the resistive
所述伪栅层310为后续制程中形成栅电极层占据空间位置。The
本实施例中,所述伪栅层310与所述电阻结构300在同一步骤中形成,从而简化了形成所述半导体结构的工艺步骤。因此所述伪栅层310与所述顶部电阻层250的材料相同。In this embodiment, the
本实施例中,图形化所述电阻结构材料层200后,后续形成介质层之前,还包括:去除所述电阻结构300和伪栅层310露出的栅介质层210。In this embodiment, after patterning the resistive
参考图13,在所述电阻结构300侧部的半导体衬底100上形成介质层400,所述介质层400还填充于所述沟槽230中,且所述介质层400露出所述电阻结构300的顶部。Referring to FIG. 13, a
所述介质层400用于相邻器件之间起到隔离作用。The
本实施例中,采用化学气相沉积工艺形成所述介质层400。In this embodiment, the
本实施例中,所述介质层400填充于所述沟槽230中并覆盖所述保护层340的侧壁,用于提高所述电阻结构300顶部的平坦度,为后续工艺制成提供较好的工艺平台。In this embodiment, the
本实施例中,所述介质层400露出所述电阻结构300的顶部,为后续去除部分所述电阻结构300形成电极做准备。In this embodiment, the
本实施例中,所述介质层400还露出所述伪栅层310的顶部,为后续去除所述伪栅层310做准备。In this embodiment, the
本实施例中,所述层间介质层400的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the
本实施例中,形成所述介质400层的步骤包括:在所述半导体衬底100上形成覆盖所述电阻结构300的介质材料层(图未示)。In this embodiment, the step of forming the
所述介质材料层用于形成介质层400。The dielectric material layer is used to form the
本实施例中,所述层间介质材料层的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the interlayer dielectric material layer includes one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.
本实施例中,形成所述介质层400的步骤还包括:对所述电阻结构300顶部的保护层340和所述介质材料层进行平坦化处理,去除高于所述电阻结构300顶部的保护层340和介质材料层。In this embodiment, the step of forming the
通过对电阻结构300顶部的保护层340和介质材料层进行平坦化处理,从而露出所述电阻结构300的顶部,以便于后续在所述电阻结构300中形成电极,同时,形成顶面平坦度较高的电阻结构300,为后续制成提供较好的工艺平台。By planarizing the
需要说明是,对所述介质材料层顶部进行平坦化处理的过程中,当形成的所述沟槽230深度较小、或者对所述介质材料层研磨过多时,所述沟槽230中的介质层400存在被去除的可能性,从而使得所述沟槽230中保留所述保护层340。本实施例中,以所述沟槽230中保留有介质层400的情况而述。It should be noted that, in the process of planarizing the top of the dielectric material layer, when the depth of the
结合参考图14至图16,图14是电阻结构300的俯视图,图15是图14基于AA方向的剖视图,图16图14基于BB方向的剖视图,沿所述电阻结构300的延伸方向,去除所述电阻结构300和所述介质层400交界处的部分所述电阻结构300,形成由所述介质层400和剩余的所述电阻结构300围成的开口330。14 to 16 in combination, FIG. 14 is a top view of the
所述开口330用于为后续形成电极提供空间位置。The
本实施例中,采用干法刻蚀工艺形成所述开口330。In this embodiment, the
本实施例中,去除所述电阻结构300和所述介质层400交界处的部分所述电阻结构300的步骤中,去除所述电阻结构300和所述介质层400交界处的部分所述顶部电阻层250,形成由所述介质层400、金属阻挡层220和剩余顶部电阻层250围成的开口330,且还去除所述伪栅层310,形成栅极开口320。In this embodiment, in the step of removing part of the
所述栅极开口320用于为后续形成栅电极层提供空间位置。The
本实施例中,采用干法刻蚀工艺形成所述栅极开口320。In this embodiment, the
结合参考图17至图19,图17是电阻结构300的俯视图,图16是图17基于AA方向的剖视图,图19图17基于BB方向的剖视图,在所述开口330中形成电极350。Referring to FIG. 17 to FIG. 19 together, FIG. 17 is a top view of the
本实施例中,沿所述电阻结构300的延伸方向,所述电极350位于所述电阻结构300和所述介质层400之间,也就是说,所述电极350与所述电阻结构300的端部相连,具体地,所述电极350位于所述顶部电阻层250两侧的所述金属阻挡层220上。In this embodiment, along the extension direction of the
所述电极350位于所述电阻结构300的端部。由于所述电阻结构300的长度越长,则所述电阻结构300的阻值越大,则所述电极350位于所述电阻结构300的端部,则能最大化所述电阻结构300的长度,使得所述电阻结构300获得较大的电阻。The
所述电极350用于与导电插塞实现电连接,从而实现所述电阻结构300与其他电路的电连接。The
本实施例中,所述电极350的材料包括金属材料。所述金属材料具有较好的导电性,有利于提高电阻结构300与外部互连结构之前的电连接性能,从而提高所述半导体结构的电学性能。In this embodiment, the material of the
本实施例中,所述电极350与MOS晶体管中的栅电极层具有相同的材料和叠层结构,从而能够在同一制程中形成所述电极350和MOS晶体管中的栅电极层。例如,低压器件区采用的器件栅极结构为金属栅极结构,采用金属栅极结构有利于提高MOS晶体管的电学性能,降低漏电流。In this embodiment, the
相应的,本实施例中,在形成MOS晶体管的栅电极层的步骤中,同时形成所述电极350,从而简化了形成所述半导体结构的工艺步骤。Correspondingly, in this embodiment, in the step of forming the gate electrode layer of the MOS transistor, the
继续参考图18,在所述开口330中形成电极350的步骤中,还包括:在所述栅极开口320中形成栅电极层360。Continuing to refer to FIG. 18 , the step of forming the
所述栅电极层360用于控制晶体管的沟道的开启或关断。The
本实施例中,所述栅电极层360与所述电阻结构300在同一步骤中形成,从而简化了形成所述半导体结构的工艺步骤。因此所述栅电极层360与所述电极350的材料相同。In this embodiment, the
本实施例中,采用先形成高k栅介质层后形成金属栅极(high k first metalgate last)工艺形成所述金属栅极结构,因此,所述金属栅极层360包括位于高k栅介质层上的功函数层(图未示)以及位于功函数层上的电极层(图未示)。其中,所述功函数层用于调节MOS晶体管的阈值电压,所述电极层用于将所述栅电极层361的电性引出。In this embodiment, the metal gate structure is formed by forming a high-k gate dielectric layer first and then forming a metal gate (high k first metalgate last). Therefore, the
本实施例中,在所述器件区100H中,所述栅介质层210、金属阻挡层220和栅电极层360构成金属栅极结构。In this embodiment, in the
需要说明的是,通常形成所述电极350和栅电极层360的过程包括对所述电阻结构300、电极350和栅电极层360进行平坦化的过程,本实施例中,所述电阻结构300顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构300顶部表面的接触面积,从而降低了所述电阻结构300顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the
参考图20,图20是基于图19的剖视图,在所述电极350顶部形成电连接所述电极350的导电插塞510。Referring to FIG. 20 , which is a cross-sectional view based on FIG. 19 , a
所述导电插塞510用于实现所述电极350的电连接。The
本实施例中,所述导电插塞510的材料包括钨、钌或钴。In this embodiment, the material of the
本实施例中,形成所述导电插塞510之前,还包括:形成覆盖所述介质层340、电阻结构300和电极350的覆盖层500。In this embodiment, before forming the
所述覆盖层500用于为形成所述导电插塞510提供工艺平台。The
所述覆盖层500的材料为绝缘材料。本实施例中,所述覆盖层500的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。The material of the
本实施例中,所述覆盖层500相应还覆盖所述栅电极层360。In this embodiment, the
本实施例中,在所述电极350顶部形成电连接所述电极350的导电插塞510的步骤包括:形成贯穿所述电极350顶部的覆盖层500,且露出所述电极350的导电孔(未标示);在所述导电孔中形成所述导电插塞510。In this embodiment, the step of forming a
所述导电插塞510贯穿所述电极350顶部的覆盖层500,从而与所述电极350实现电连接。The
还需要说明的是,本实施例提高了所述电阻结构300顶面的平坦度,从而提高了所述电极350的形成质量,进而提高导电插塞510与所述电极350的电连接可靠性,进一步提高了半导体结构的性能。It should also be noted that this embodiment improves the flatness of the top surface of the
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110674533.8A CN115498037A (en) | 2021-06-17 | 2021-06-17 | Semiconductor structures and methods of forming them |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110674533.8A CN115498037A (en) | 2021-06-17 | 2021-06-17 | Semiconductor structures and methods of forming them |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115498037A true CN115498037A (en) | 2022-12-20 |
Family
ID=84465406
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110674533.8A Pending CN115498037A (en) | 2021-06-17 | 2021-06-17 | Semiconductor structures and methods of forming them |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115498037A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008270333A (en) * | 2007-04-17 | 2008-11-06 | Sony Corp | Semiconductor device and manufacturing method thereof |
| CN102013424A (en) * | 2009-09-04 | 2011-04-13 | 台湾积体电路制造股份有限公司 | Integrated Circuits and Their Manufacturing Methods |
| CN102376538A (en) * | 2010-08-04 | 2012-03-14 | 台湾积体电路制造股份有限公司 | Method of forming polysilicon resistor device and semiconductor device |
| TW201338131A (en) * | 2012-03-06 | 2013-09-16 | United Microelectronics Corp | Resistor and manufacturing method thereof |
| US20140167181A1 (en) * | 2012-12-13 | 2014-06-19 | Samsung Electronics Co., Ltd. | Semiconductor devices including a resistor structure and methods of forming the same |
| US20150228708A1 (en) * | 2014-02-10 | 2015-08-13 | Globalfoundries Inc. | Tunable poly resistors for hybrid replacement gate technology and methods of manufacturing |
-
2021
- 2021-06-17 CN CN202110674533.8A patent/CN115498037A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008270333A (en) * | 2007-04-17 | 2008-11-06 | Sony Corp | Semiconductor device and manufacturing method thereof |
| CN102013424A (en) * | 2009-09-04 | 2011-04-13 | 台湾积体电路制造股份有限公司 | Integrated Circuits and Their Manufacturing Methods |
| CN102376538A (en) * | 2010-08-04 | 2012-03-14 | 台湾积体电路制造股份有限公司 | Method of forming polysilicon resistor device and semiconductor device |
| TW201338131A (en) * | 2012-03-06 | 2013-09-16 | United Microelectronics Corp | Resistor and manufacturing method thereof |
| US20140167181A1 (en) * | 2012-12-13 | 2014-06-19 | Samsung Electronics Co., Ltd. | Semiconductor devices including a resistor structure and methods of forming the same |
| US20150228708A1 (en) * | 2014-02-10 | 2015-08-13 | Globalfoundries Inc. | Tunable poly resistors for hybrid replacement gate technology and methods of manufacturing |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210296257A1 (en) | Fabrication method of semiconductor structure | |
| TWI548096B (en) | Method for forming contact structure on fin field effect transistor semiconductor device and device therefor | |
| CN111653483B (en) | Semiconductor device and method for manufacturing the same | |
| CN111223865B (en) | Method for forming contact-to-gate monitoring pattern and semiconductor element | |
| KR20200000784A (en) | Dielectric spacer to prevent contacting shorting | |
| TW202002114A (en) | Semiconductor devices | |
| KR20120057818A (en) | Method of manufacturing semiconductor devices | |
| US20220230921A1 (en) | Method and structure for metal gates | |
| US12356658B2 (en) | Semiconductor structure and method of forming the same | |
| US12100706B2 (en) | Semiconductor structure and method of forming thereof | |
| KR20210148931A (en) | Semiconducting metal oxide transistors having a patterned gate and methods for forming the same | |
| CN114068481B (en) | Semiconductor structure and forming method thereof | |
| CN115621249A (en) | Semiconductor structure and forming method thereof | |
| WO2022126488A1 (en) | Semiconductor structure and forming method therefor | |
| JP5735680B2 (en) | Semiconductor device and manufacturing method thereof | |
| JP2013191808A (en) | Semiconductor device and method for manufacturing semiconductor device | |
| CN115084214B (en) | Semiconductor structure and method for forming the same | |
| CN115498037A (en) | Semiconductor structures and methods of forming them | |
| CN115692412A (en) | Semiconductor structure and forming method thereof | |
| JP2013254860A (en) | Method for manufacturing semiconductor device | |
| CN114551564B (en) | Semiconductor structure and method for forming the same | |
| US20240096753A1 (en) | Semiconductor device including insulating structure surrounding through via and method for forming the same | |
| CN114823842A (en) | Semiconductor structure and forming method thereof | |
| CN115224116A (en) | Semiconductor structure and forming method thereof | |
| CN115224115A (en) | Semiconductor structure and forming method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |