[go: up one dir, main page]

CN115498037A - Semiconductor structures and methods of forming them - Google Patents

Semiconductor structures and methods of forming them Download PDF

Info

Publication number
CN115498037A
CN115498037A CN202110674533.8A CN202110674533A CN115498037A CN 115498037 A CN115498037 A CN 115498037A CN 202110674533 A CN202110674533 A CN 202110674533A CN 115498037 A CN115498037 A CN 115498037A
Authority
CN
China
Prior art keywords
layer
resistance
resistance structure
resistive
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110674533.8A
Other languages
Chinese (zh)
Inventor
蔡巧明
马丽莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongxin North Integrated Circuit Manufacturing Beijing Co ltd
Original Assignee
Zhongxin North Integrated Circuit Manufacturing Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongxin North Integrated Circuit Manufacturing Beijing Co ltd filed Critical Zhongxin North Integrated Circuit Manufacturing Beijing Co ltd
Priority to CN202110674533.8A priority Critical patent/CN115498037A/en
Publication of CN115498037A publication Critical patent/CN115498037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

一种半导体结构及其形成方法,形成方法包括:提供半导体衬底,包括电阻区,电阻区的半导体衬底上形成有电阻结构材料层;在电阻区中,在电阻结构材料层中形成一个或多个平行的沟槽,沟槽贯穿部分厚度的电阻结构材料层;在形成沟槽后,图形化电阻结构材料层,去除沟槽外侧的部分电阻结构材料层,保留包含有沟槽的部分电阻结构材料层作为电阻结构;在电阻结构侧部的半导体衬底上形成介质层,介质层还填充于沟槽中,且介质层露出电阻结构的顶部;沿电阻结构的延伸方向,去除电阻结构和介质层交界处的部分电阻结构,形成由介质层和剩余的电阻结构围成的开口;在开口中形成电极。电阻结构顶部形成有沟槽,降低了电阻结构顶面出现凹陷缺陷的概率。

Figure 202110674533

A semiconductor structure and its forming method, the forming method comprising: providing a semiconductor substrate, including a resistance region, a resistance structure material layer is formed on the semiconductor substrate of the resistance region; in the resistance region, forming one or A plurality of parallel grooves, the grooves run through a partial thickness of the resistance structure material layer; after the grooves are formed, the resistance structure material layer is patterned, part of the resistance structure material layer outside the grooves is removed, and part of the resistance structure containing the grooves is retained The structural material layer is used as a resistance structure; a dielectric layer is formed on the semiconductor substrate at the side of the resistance structure, and the dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extension direction of the resistance structure, the resistance structure and Part of the resistance structure at the junction of the dielectric layer forms an opening surrounded by the dielectric layer and the remaining resistance structure; electrodes are formed in the opening. A groove is formed on the top of the resistance structure, which reduces the probability of sunken defects on the top surface of the resistance structure.

Figure 202110674533

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

集成电路中通常包括有源器件和无源器件。有源器件包括MOS晶体管,而无源器件包括电阻。电阻是集成电路设计中不可或缺的元器件,在集成电路设计中,所述电阻可以是多晶硅电阻或者是金属电阻。Integrated circuits usually include active and passive devices. Active devices include MOS transistors, while passive devices include resistors. Resistors are indispensable components in integrated circuit design, and in integrated circuit design, the resistors may be polysilicon resistors or metal resistors.

其中,在具有金属栅极结构的器件中,通常会使用多晶硅电阻结构。此外,目前通常所述多晶硅电阻结构的尺寸较大。Among them, in a device with a metal gate structure, a polysilicon resistance structure is usually used. In addition, the size of the polysilicon resistive structures is generally relatively large at present.

发明内容Contents of the invention

本发明实施例解决的问题是提供一种半导体结构及其形成方法,提高半导体结构的性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to improve the performance of the semiconductor structure.

为解决上述问题,本发明实施例提供一种半导体结构,包括:半导体衬底,包括电阻区;电阻结构,位于所述电阻区的半导体衬底上,其中,所述电阻结构顶部形成有一个或多个平行排列的沟槽,所述沟槽贯穿部分厚度的所述电阻结构;电极,位于所述电阻区中,沿所述电阻结构的延伸方向,所述电极位于所述电阻结构两侧,且与所述电阻结构的侧壁相连;介质层,位于所述电阻结构和电极侧部的半导体衬底上,所述介质层还填充于所述沟槽中,所述介质层露出所述电阻结构和电极的顶部。In order to solve the above problems, an embodiment of the present invention provides a semiconductor structure, including: a semiconductor substrate including a resistance region; a resistance structure located on the semiconductor substrate of the resistance region, wherein a top of the resistance structure is formed with one or A plurality of grooves arranged in parallel, the grooves penetrating through the resistance structure in partial thickness; electrodes, located in the resistance region, along the extension direction of the resistance structure, the electrodes are located on both sides of the resistance structure, And connected to the side wall of the resistance structure; a dielectric layer, located on the semiconductor substrate at the side of the resistance structure and the electrode, the dielectric layer is also filled in the trench, and the dielectric layer exposes the resistance top of the structure and electrodes.

相应的,本发明实施例还提供一种半导体结构的形成方法,包括:提供半导体衬底,包括电阻区,所述电阻区的半导体衬底上形成有电阻结构材料层;在所述电阻区中,在所述电阻结构材料层中形成一个或多个平行的沟槽,所述沟槽贯穿部分厚度的所述电阻结构材料层;在形成所述沟槽后,图形化所述电阻结构材料层,去除所述沟槽外侧的部分电阻结构材料层,保留包含有所述沟槽的部分电阻结构材料层作为电阻结构;在所述电阻结构侧部的半导体衬底上形成介质层,所述介质层还填充于所述沟槽中,且所述介质层露出所述电阻结构的顶部;沿所述电阻结构的延伸方向,去除所述电阻结构和所述介质层交界处的部分所述电阻结构,形成由所述介质层和剩余的所述电阻结构围成的开口;在所述开口中形成电极。Correspondingly, an embodiment of the present invention also provides a method for forming a semiconductor structure, including: providing a semiconductor substrate, including a resistance region, a resistance structure material layer is formed on the semiconductor substrate of the resistance region; , forming one or more parallel trenches in the resistive structure material layer, the trenches penetrating part of the thickness of the resistive structural material layer; after forming the trenches, patterning the resistive structural material layer , removing part of the resistive structure material layer outside the trench, retaining part of the resistive structure material layer containing the trench as a resistive structure; forming a dielectric layer on the semiconductor substrate at the side of the resistive structure, the dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extending direction of the resistance structure, part of the resistance structure at the junction of the resistance structure and the dielectric layer is removed , forming an opening surrounded by the dielectric layer and the remaining resistance structure; forming an electrode in the opening.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例提供的半导体结构中,所述电阻结构中顶部形成有一个或多个平行排列的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极位于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过使所述电阻结构顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the semiconductor structure provided by the embodiment of the present invention, one or more grooves arranged in parallel are formed on the top of the resistance structure; during the process of forming the resistance structure and the dielectric layer, usually including Layer planarization process, and during planarization, if the size of the resistance structure is large, more serious dishing defects are likely to appear on the top surface of the resistance structure, and, in this embodiment, the electrodes are located along the The two sides of the resistance structure in the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is relatively small, therefore, the remaining size of the resistance structure Larger, more prone to recessed defects, therefore, by making the top of the resistive structure with grooves, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the resistance of the resistive structure. The probability of sunken defects on the top surface improves the flatness of the top surface of the resistance structure, which is beneficial to ensure the integrity of the resistance structure, thereby reducing the probability of resistance value deviation of the resistance structure, thereby improving the performance of the semiconductor structure.

本发明实施例提供的半导体结构的形成方法中,在所述电阻结构材料层中形成一个或多个平行的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the method for forming a semiconductor structure provided by an embodiment of the present invention, one or more parallel grooves are formed in the material layer of the resistance structure; The structure and the dielectric layer are planarized, and when the planarization is performed, if the size of the resistive structure is large, serious dishing defects are likely to appear on the top surface of the resistive structure, and, in this embodiment, the electrode Formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is small, so the remaining The size of the resistive structure is relatively large, and it is more prone to sink defects. Therefore, by forming a groove on the top of the resistive structure, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the size of the resistive structure. The probability of sunken defects appearing on the top surface of the resistance structure improves the flatness of the top surface of the resistance structure, which is conducive to ensuring the integrity of the resistance structure, thereby reducing the probability that the resistance value of the resistance structure will shift, thereby improving the semiconductor structure. performance.

附图说明Description of drawings

图1至图4是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 4 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;

图5至图7是本发明半导体结构一实施例的结构示意图;5 to 7 are structural schematic diagrams of an embodiment of the semiconductor structure of the present invention;

图8至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。8 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

具体实施方式detailed description

目前半导体结构的性能仍有待提高。现结合一种半导体结构的形成方法分析半导体结构的性能仍有待提高的原因。The performance of current semiconductor structures still needs to be improved. The reason why the performance of the semiconductor structure still needs to be improved is analyzed in combination with a method for forming the semiconductor structure.

参考图1至图4,示出了一种半导体结构的形成方法中各步骤对应的结构示意图。Referring to FIG. 1 to FIG. 4 , schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure are shown.

参考图1,提供半导体衬底10,所述半导体衬底10包括电阻区10R和器件区10H,所述半导体衬底10上形成有电阻结构材料层20,所述电阻结构材料层20包括金属阻挡层22和位于所述金属阻挡层22上的顶部电阻层23。Referring to FIG. 1 , a semiconductor substrate 10 is provided, the semiconductor substrate 10 includes a resistance region 10R and a device region 10H, a resistance structure material layer 20 is formed on the semiconductor substrate 10, and the resistance structure material layer 20 includes a metal barrier layer 22 and a top resistive layer 23 on said barrier metal layer 22 .

参考图2,图形化所述电阻结构材料层20,保留位于所述电阻区10R中半导体衬底10上的剩余电阻结构材料层20作为电阻结构30,且在所述器件区10H中,保留位于剩余所述金属阻挡层22上的顶部电阻层23作为伪栅层31。Referring to FIG. 2, the resistive structure material layer 20 is patterned, and the remaining resistive structural material layer 20 on the semiconductor substrate 10 in the resistive region 10R is reserved as a resistive structure 30, and in the device region 10H, the remaining resistive structure material layer 20 located in the resistive region 10H is reserved. The remaining top resistive layer 23 on the barrier metal layer 22 is used as the dummy gate layer 31 .

在图形化所述电阻结构材料层20后,在所述电阻区10R中,剩余的所述金属阻挡层22用于作为所述电阻结构30中的底部电阻层。After patterning the resistive structure material layer 20 , in the resistive region 10R, the remaining metal barrier layer 22 is used as a bottom resistive layer in the resistive structure 30 .

其中,电阻结构30的延伸方向为第一方向(未标示),电阻结构30和伪栅层31的排列方向为第二方向(如图2中X方向所示)。第一方向与第二方向相垂直,且第一方向和第二方向均平行于半导体衬底10的表面。Wherein, the extending direction of the resistive structure 30 is the first direction (not shown), and the arrangement direction of the resistive structure 30 and the dummy gate layer 31 is the second direction (shown as the X direction in FIG. 2 ). The first direction is perpendicular to the second direction, and both the first direction and the second direction are parallel to the surface of the semiconductor substrate 10 .

参考图3,图3是沿第二方向的剖视图,在所述电阻结构30侧部的半导体衬底10上形成介质层40。Referring to FIG. 3 , which is a cross-sectional view along the second direction, a dielectric layer 40 is formed on the semiconductor substrate 10 at the side of the resistance structure 30 .

形成所述介质层40的过程中,通常包括对所述介质层40进行平坦化的过程,而由于所述电阻结构30的线宽尺寸较大,则在进行平坦化处理后,所述电阻结构30的顶部容易出现较严重的凹陷缺陷。The process of forming the dielectric layer 40 generally includes the process of planarizing the dielectric layer 40, and since the resistance structure 30 has a large line width, after the planarization process, the resistance structure The top of the 30 is prone to more serious sunken defects.

参考图4,图4是沿第一方向的剖视图,沿所述第一方向,去除所述电阻结构30和所述介质层40交界处的部分所述电阻结构30,形成由所述介质层40和剩余的所述电阻结构30围成的开口;在所述开口中形成电极35。Referring to FIG. 4 , FIG. 4 is a cross-sectional view along a first direction. Along the first direction, a part of the resistance structure 30 at the junction of the resistance structure 30 and the dielectric layer 40 is removed, and the dielectric layer 40 is formed. and the opening surrounded by the remaining resistive structure 30; an electrode 35 is formed in the opening.

在形成所述电极35的过程中,通常也包括对所述电极35进行平坦化的过程,而此次平坦化的过程又容易使得所述电阻结构30的顶面进一步凹陷,甚至导致所述电阻结构30中的顶部电阻层23过度凹陷,从而露出其底部的金属阻挡层22,而由于所述金属阻挡层22对所述电阻结构30的阻值有较大的影响,进而容易导致电阻结构30的阻值发生偏移。In the process of forming the electrode 35, the process of planarizing the electrode 35 is usually included, and the process of planarizing this time will easily make the top surface of the resistance structure 30 further concave, and even lead to the resistance of the resistance structure 30. The top resistance layer 23 in the structure 30 is excessively recessed, thereby exposing the metal barrier layer 22 at the bottom, and since the metal barrier layer 22 has a great influence on the resistance value of the resistance structure 30, it is easy to cause the resistance structure 30 The resistance value shifts.

而且,所述电极35形成于沿所述第一方向(也即电阻结构30的延伸方向)上的所述电阻结构30两侧,剩余的所述电阻结构30尺寸较大,更容易出现凹陷缺陷。Moreover, the electrodes 35 are formed on both sides of the resistive structure 30 along the first direction (that is, the extending direction of the resistive structure 30), and the remaining resistive structures 30 are larger in size and are more likely to have recessed defects. .

为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供半导体衬底,包括电阻区,所述电阻区的半导体衬底上形成有电阻结构材料层;在所述电阻区中,在所述电阻结构材料层中形成一个或多个平行的沟槽,所述沟槽贯穿部分厚度的所述电阻结构材料层;在形成所述沟槽后,图形化所述电阻结构材料层,去除所述沟槽外侧的部分电阻结构材料层,保留包含有所述沟槽的部分电阻结构材料层作为电阻结构;在所述电阻结构侧部的半导体衬底上形成介质层,所述介质层还填充于所述沟槽中,且所述介质层露出所述电阻结构的顶部;沿所述电阻结构的延伸方向,去除所述电阻结构和所述介质层交界处的部分所述电阻结构,形成由所述介质层和剩余的所述电阻结构围成的开口;在所述开口中形成电极。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a semiconductor substrate, including a resistance region, and a resistance structure material layer is formed on the semiconductor substrate of the resistance region; In the resistance area, one or more parallel grooves are formed in the resistance structure material layer, and the grooves penetrate part of the thickness of the resistance structure material layer; after forming the grooves, patterning the resistance A structural material layer, removing part of the resistive structure material layer outside the trench, and retaining a part of the resistive structure material layer including the trench as a resistive structure; forming a dielectric layer on the semiconductor substrate at the side of the resistive structure, The dielectric layer is also filled in the groove, and the dielectric layer exposes the top of the resistance structure; along the extension direction of the resistance structure, the portion at the junction of the resistance structure and the dielectric layer is removed The resistance structure is formed to form an opening surrounded by the dielectric layer and the remaining resistance structure; and an electrode is formed in the opening.

本发明实施例提供的半导体结构的形成方法中,在所述电阻结构材料层中形成一个或多个平行的沟槽;在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the method for forming a semiconductor structure provided by an embodiment of the present invention, one or more parallel grooves are formed in the material layer of the resistance structure; The structure and the dielectric layer are planarized, and when the planarization is performed, if the size of the resistive structure is large, serious dishing defects are likely to appear on the top surface of the resistive structure, and, in this embodiment, the electrode Formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to electrically connect the resistance structure, the size of the electrodes is small, so the remaining The size of the resistive structure is relatively large, and it is more prone to sink defects. Therefore, by forming a groove on the top of the resistive structure, the contact area between the polishing pad and the top surface of the resistive structure is reduced during the planarization process, thereby reducing the size of the resistive structure. The probability of sunken defects appearing on the top surface of the resistance structure improves the flatness of the top surface of the resistance structure, which is conducive to ensuring the integrity of the resistance structure, thereby reducing the probability that the resistance value of the resistance structure will shift, thereby improving the semiconductor structure. performance.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

结合参考图5至图7,示出了本发明半导体结构一实施例的结构示意图,其中,图5是电阻结构的俯视图,图6是图5基于AA方向的剖视图,图7是图5基于BB方向的剖视图。Referring to FIGS. 5 to 7, a schematic structural view of an embodiment of the semiconductor structure of the present invention is shown, wherein FIG. 5 is a top view of the resistance structure, FIG. 6 is a cross-sectional view of FIG. 5 based on the direction AA, and FIG. 7 is a view based on BB of FIG. Orientation section view.

其中,为了便于图示,图7中未示意出器件区,且图7仅示意出了电阻区。Wherein, for the convenience of illustration, the device area is not shown in FIG. 7 , and only the resistance area is shown in FIG. 7 .

所述半导体结构包括:半导体衬底101,包括电阻区101R;电阻结构301,位于所述电阻区101R的半导体衬底101上,其中,所述电阻结构301中顶部形成有一个或多个平行排列的沟槽(图未示),所述沟槽贯穿部分厚度的所述电阻结构301;电极351,位于所述电阻区101R中,沿所述电阻结构301的延伸方向(如图7和图9中的X方向),所述电极351位于所述电阻结构301两侧,且与所述电阻结构301的侧壁相连;介质层401,位于所述电阻结构301和电极351侧部的半导体衬底101上,所述介质层401还填充于所述沟槽中,所述介质层401露出所述电阻结构301和电极351的顶部。The semiconductor structure includes: a semiconductor substrate 101 including a resistance region 101R; a resistance structure 301 located on the semiconductor substrate 101 of the resistance region 101R, wherein one or more parallel arrays are formed on the top of the resistance structure 301 groove (not shown), the groove penetrates the resistance structure 301 of partial thickness; the electrode 351 is located in the resistance region 101R, along the extension direction of the resistance structure 301 (as shown in Figure 7 and Figure 9 In the X direction), the electrode 351 is located on both sides of the resistance structure 301 and is connected to the side wall of the resistance structure 301; the dielectric layer 401 is located on the semiconductor substrate at the side of the resistance structure 301 and the electrode 351 101 , the dielectric layer 401 is also filled in the groove, and the dielectric layer 401 exposes the top of the resistive structure 301 and the electrode 351 .

本发明实施例提供的半导体结构中,所述电阻结构301中顶部形成有一个或多个平行排列的沟槽;在形成所述电阻结构301和介质层401的过程中,通常包括对所述电阻结构301和介质层401进行平坦化的过程,且进行平坦化时,如果电阻结构301的尺寸较大,电阻结构301顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极351位于沿所述电阻结构301的延伸方向上所述电阻结构301的两侧,并且,所述电极351仅用于将电阻结构301的电性连接出去,则所述电极351的尺寸较小,因此,剩余的所述电阻结构301尺寸较大,更容易出现凹陷缺陷,因此,通过使所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率,提高了所述电阻结构301的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the semiconductor structure provided by the embodiment of the present invention, one or more trenches arranged in parallel are formed on the top of the resistance structure 301; during the process of forming the resistance structure 301 and the dielectric layer 401, usually including The process of planarizing the structure 301 and the dielectric layer 401, and when planarizing, if the size of the resistive structure 301 is large, serious dishing defects are likely to appear on the top surface of the resistive structure 301, and, in this embodiment , the electrodes 351 are located on both sides of the resistance structure 301 along the extension direction of the resistance structure 301, and the electrodes 351 are only used to electrically connect the resistance structure 301, then the electrodes 351 The size of the resistance structure 301 is smaller, therefore, the remaining resistance structure 301 is larger in size and is more likely to have recessed defects. Therefore, by forming a groove on the top of the resistance structure 301, the friction between the polishing pad and the grinding pad during planarization is reduced. The contact area of the top surface of the resistance structure 301, thereby reducing the probability of sunken defects on the top surface of the resistance structure 301, improving the flatness of the top surface of the resistance structure 301, which is conducive to ensuring the integrity of the resistance structure, thereby reducing the resistance The probability that the resistance of the structure will shift, thereby improving the performance of the semiconductor structure.

所述半导体衬底101为所述半导体结构的形成工艺提供工艺操作基础。The semiconductor substrate 101 provides a process operation basis for the formation process of the semiconductor structure.

本实施例中,所述半导体衬底101的材料为硅,在其他实施例中,所述半导体衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓和镓化铟中的一种或多种,所述半导体衬底还能够为绝缘体上的硅半导体衬底或者绝缘体上的锗半导体衬底等其他类型的半导体衬底。所述半导体衬底101的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the material of the semiconductor substrate 101 is silicon. In other embodiments, the material of the semiconductor substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide, and gallium indium. One or more, the semiconductor substrate can also be a silicon-on-insulator semiconductor substrate or a germanium-on-insulator semiconductor substrate or other types of semiconductor substrates. The material of the semiconductor substrate 101 may be a material suitable for process requirements or easy to integrate.

本实施例中,所述半导体衬底101包括电阻区101R和器件区101H。所述电阻区101R用于形成电阻结构,所述器件区101H用于形成MOS晶体管。In this embodiment, the semiconductor substrate 101 includes a resistance region 101R and a device region 101H. The resistance region 101R is used to form a resistance structure, and the device region 101H is used to form a MOS transistor.

本实施例中,所述器件区101H为低压(LV)器件区,用于形成低压器件。作为一种示例,所述低压器件的工作电压小于2V。In this embodiment, the device region 101H is a low voltage (LV) device region for forming low voltage devices. As an example, the operating voltage of the low voltage device is less than 2V.

需要说明的是,所述半导体衬底101还可以包括用于形成高压器件的高压器件区(图未示)。高压器件的工作电压大于低压器件的工作电压。作为一种示例,高压器件的工作电压大于10V。It should be noted that the semiconductor substrate 101 may further include a high-voltage device region (not shown) for forming a high-voltage device. The operating voltage of the high-voltage device is greater than that of the low-voltage device. As an example, high voltage devices operate at voltages greater than 10V.

本实施例中,所述半导体结构还包括隔离结构111,位于所述电阻区101R的半导体衬底101中。In this embodiment, the semiconductor structure further includes an isolation structure 111 located in the semiconductor substrate 101 of the resistance region 101R.

所述隔离结构111用于隔离所述隔离结构111上的电阻结构301和所述半导体衬底101,以防所述电阻结构301与半导体衬底101中的阱(well)区之间发生短路,所述隔离结构111还用于实现不同器件之间的绝缘,例如在CMOS制造工艺中,通常会在NMOS晶体管和PMOS晶体管之间形成隔离结构。具体地,所述隔离结构111为浅沟槽隔离结构(Shallow TrenchIsolation,STI)。The isolation structure 111 is used to isolate the resistance structure 301 on the isolation structure 111 from the semiconductor substrate 101, so as to prevent a short circuit between the resistance structure 301 and a well (well) region in the semiconductor substrate 101, The isolation structure 111 is also used to realize isolation between different devices, for example, in a CMOS manufacturing process, an isolation structure is usually formed between an NMOS transistor and a PMOS transistor. Specifically, the isolation structure 111 is a shallow trench isolation structure (Shallow Trench Isolation, STI).

所述隔离结构111的材料为绝缘材料。本实施例中,所述隔离结构111的材料包括氧化硅或氮氧化硅。The material of the isolation structure 111 is insulating material. In this embodiment, the material of the isolation structure 111 includes silicon oxide or silicon oxynitride.

需要说明的是,本实施例中,采用先形成高k栅介质层后形成金属栅极(high kfirst metal gate last)工艺形成第二器件区101H的金属栅极结构,且所述电阻结构301和所述第二器件区101H的伪栅层一同形成。其中,伪栅层用于为所述第二器件区101H的栅电极层占据空间位置。It should be noted that, in this embodiment, the metal gate structure of the second device region 101H is formed by first forming a high-k gate dielectric layer and then forming a metal gate (high k first metal gate last), and the resistance structure 301 and The dummy gate layer of the second device region 101H is formed together. Wherein, the dummy gate layer is used to occupy a spatial position for the gate electrode layer of the second device region 101H.

因此,本实施例中,所述半导体结构还包括:栅介质层211,位于所述器件区101H和电阻区101R的半导体衬底101上;金属阻挡层221,位于所述栅介质层211上;栅电极层361,位于所述器件区101H的所述金属阻挡层221上。Therefore, in this embodiment, the semiconductor structure further includes: a gate dielectric layer 211 located on the semiconductor substrate 101 of the device region 101H and the resistance region 101R; a metal barrier layer 221 located on the gate dielectric layer 211; The gate electrode layer 361 is located on the metal barrier layer 221 of the device region 101H.

本实施例中,在所述器件区101H中,所述栅介质层211、金属阻挡层221和栅电极层361构成金属栅极结构。In this embodiment, in the device region 101H, the gate dielectric layer 211 , the metal barrier layer 221 and the gate electrode layer 361 form a metal gate structure.

所述栅介质层211用于隔离电极351与半导体衬底101、以及所述栅电极层361与半导体衬底101。The gate dielectric layer 211 is used to isolate the electrode 351 from the semiconductor substrate 101 , and the gate electrode layer 361 from the semiconductor substrate 101 .

所述栅介质层211的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。本实施例中,所述栅介质层211包括高k栅介质层,高k栅介质层的材料包括高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述高k介质材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The material of the gate dielectric layer 211 includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 O 3 . In this embodiment, the gate dielectric layer 211 includes a high-k gate dielectric layer, and the material of the high-k gate dielectric layer includes a high-k dielectric material. Wherein, the high-k dielectric material refers to a dielectric material with a relative dielectric constant greater than that of silicon oxide. Specifically, the high-k dielectric material includes HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, or Al 2 O 3 .

需要说明的是,所述栅介质层211还可以包括位于高k栅介质层和半导体衬底101之间的栅氧化层。作为一种示例,栅氧化层的材料为氧化硅。It should be noted that the gate dielectric layer 211 may further include a gate oxide layer located between the high-k gate dielectric layer and the semiconductor substrate 101 . As an example, the material of the gate oxide layer is silicon oxide.

所述金属阻挡层221用于隔离栅介质层211和电极351、以及栅介质层211和栅电极层361,以保护栅介质层211,而且,金属阻挡层221还用于阻挡电极351和栅电极层361中的易扩散离子(例如:Al离子)向栅介质层211中扩散。The metal barrier layer 221 is used to isolate the gate dielectric layer 211 and the electrode 351, and the gate dielectric layer 211 and the gate electrode layer 361 to protect the gate dielectric layer 211, and the metal barrier layer 221 is also used to block the electrode 351 and the gate electrode Easily diffusible ions (for example, Al ions) in the layer 361 diffuse into the gate dielectric layer 211 .

具体地,所述金属阻挡层221的材料包括氮化钛(TiN)和掺硅的氮化钛(TiSiN)中的一种或两种。本实施例中,所述金属阻挡层221的材料为氮化钛。Specifically, the material of the barrier metal layer 221 includes one or both of titanium nitride (TiN) and silicon-doped titanium nitride (TiSiN). In this embodiment, the material of the barrier metal layer 221 is titanium nitride.

所述栅电极层361包括功函数层(未示出)、以及位于功函数层上的电极层(未示出)。其中,所述功函数层用于调节所形成晶体管的阈值电压,所述电极层用于将所述栅电极层361的电性引出。The gate electrode layer 361 includes a work function layer (not shown), and an electrode layer (not shown) on the work function layer. Wherein, the work function layer is used to adjust the threshold voltage of the formed transistor, and the electrode layer is used to extract the electricity of the gate electrode layer 361 .

所述电阻结构301作为集成电路中的无源器件。The resistor structure 301 is used as a passive device in an integrated circuit.

本实施例中,所述电阻结构301包括位于所述电阻区101R中的所述金属阻挡层221,以及位于所述金属阻挡层221上的顶部电阻层231,所述金属阻挡层221用于作为所述电阻结构中的底部电阻层。In this embodiment, the resistance structure 301 includes the metal barrier layer 221 located in the resistance region 101R, and the top resistance layer 231 located on the metal barrier layer 221, and the metal barrier layer 221 is used as The bottom resistive layer in the resistive structure.

本实施例中,所述电阻结构301位于所述电阻101R区的隔离结构111上,使得所述电阻结构301与所述半导体衬底101绝缘。In this embodiment, the resistor structure 301 is located on the isolation structure 111 of the resistor 101R region, so that the resistor structure 301 is insulated from the semiconductor substrate 101 .

本实施例中,所述顶部电阻层231的材料包括多晶硅。In this embodiment, the material of the top resistance layer 231 includes polysilicon.

需要说明的是,由于顶部电阻层231的阻值远大于金属阻挡层221的阻值,因此,电阻结构301工作时的电流主要流经所述金属阻挡层221,相应的,与顶部电阻层231相比,所述金属阻挡层221对所述电阻结构301的阻值的影响更大。It should be noted that, since the resistance value of the top resistance layer 231 is much greater than the resistance value of the metal barrier layer 221, the current of the resistance structure 301 mainly flows through the metal barrier layer 221 when the resistance structure 301 is in operation, correspondingly, it is different from the resistance value of the top resistance layer 231. In comparison, the metal barrier layer 221 has a greater influence on the resistance of the resistance structure 301 .

本实施例中,所述沟槽贯穿部分厚度的所述电阻结构301,保留部分厚度的所述电阻结构301,从而保持所述电阻结构301的电阻符合性能需求,并且保护位于所述电阻结构301下的其他膜层。In this embodiment, the groove penetrates through part of the thickness of the resistance structure 301, and retains part of the thickness of the resistance structure 301, so as to keep the resistance of the resistance structure 301 meeting the performance requirements, and protect the resistance located in the resistance structure 301. other layers below.

具体地,所述沟槽贯穿部分厚度的所述顶部电阻层231。Specifically, the trench penetrates through a partial thickness of the top resistive layer 231 .

本实施例中,所述多个平行排列的沟槽的延伸方向与所述电阻结构301的延伸方向相同,能够在形成较少个数的沟槽的情况下,减小在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积的效果下,节约工艺成本,降低工艺复杂度,提高工艺效率。In this embodiment, the extension direction of the plurality of trenches arranged in parallel is the same as the extension direction of the resistance structure 301, which can reduce the number of trenches in the planarization process when a small number of trenches are formed. Under the influence of the contact area between the polishing pad and the top surface of the resistance structure 301 , the process cost is saved, the process complexity is reduced, and the process efficiency is improved.

本实施例中,所述多个平行排列的沟槽的排列方向与所述电阻结构301的延伸方向相垂直,则在与所述电阻结构301的延伸方向相垂直的方向,根据电阻结构301的宽度,排列足够数量的多个沟槽,较大程度地减小在平坦化过程中与电阻结构301顶部表面的接触面积,从而降低所述电阻结构301顶面出现凹陷缺陷的概率。In this embodiment, the arrangement direction of the plurality of trenches arranged in parallel is perpendicular to the extending direction of the resistive structure 301, then in the direction perpendicular to the extending direction of the resistive structure 301, according to the A sufficient number of grooves are arranged to greatly reduce the contact area with the top surface of the resistance structure 301 during the planarization process, thereby reducing the probability of sunken defects appearing on the top surface of the resistance structure 301 .

需要说明的是,所述沟槽的深度h不能过大,也不能过小。如果所述沟槽的深度h过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且所述沟槽的深度h过大,形成所述沟槽的过程中,容易造成对沟槽下方的其他膜层的损伤;如果所述沟槽的深度h过小,则在所述沟槽周围凸立的电阻结构301的高度过小,则在对所述介质层401进行平坦化处理的过程中,容易将所述沟槽周围凸立的电阻结构301去除,从而在所述平坦化处理的过程中,容易接触到所述沟槽底部的电阻结构301,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率。因此,本实施例中,所述沟槽的深度h为所述电阻结构301厚度的1/4至1/3。It should be noted that the depth h of the groove can neither be too large nor too small. If the depth h of the trench is too large, too many resistive structures 301 will be removed, which will easily affect the resistance of the resistive structure 301, and if the depth h of the trench is too large, the process of forming the trench In the middle, it is easy to cause damage to other film layers below the trench; if the depth h of the trench is too small, the height of the resistance structure 301 protruding around the trench is too small, and the dielectric During the planarization process of the layer 401, it is easy to remove the resistance structure 301 protruding around the trench, so that during the planarization process, it is easy to contact the resistance structure 301 at the bottom of the trench, and it is difficult to Reducing the contact area with the top surface of the resistance structure 301 during the planarization process makes it difficult to reduce the probability of recess defects occurring on the top surface of the resistance structure 301 . Therefore, in this embodiment, the depth h of the trench is 1/4 to 1/3 of the thickness of the resistance structure 301 .

需要说明的是,所述沟槽的宽度w1不能过大,也不能过小。如果所述沟槽的宽度w1过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且,在平坦化过程中,位于沟槽中的介质层401容易出现顶面凹陷严重的问题;如果所述沟槽的宽度w1过小,则所述沟槽周围凸立的电阻结构301线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率,而且,还容易增大形成沟槽时所采用的光刻工艺的工艺难度。因此,本实施例中,所述沟槽的宽度w1为0.15μm至2μm。It should be noted that the width w1 of the groove can neither be too large nor too small. If the width w1 of the trench is too large, too many resistive structures 301 will be removed, which will easily affect the resistance of the resistive structure 301. Moreover, during the planarization process, the dielectric layer 401 in the trench will easily appear. The problem of serious top surface depression; if the width w1 of the trench is too small, the line width of the resistance structure 301 protruding around the trench is still large, so it is difficult to reduce the The contact area with the top surface of the resistance structure 301 is small in the planarization process, so it is difficult to reduce the probability of sunken defects on the top surface of the resistance structure 301, and it is also easy to increase the process of the photolithography process adopted when forming the trench. difficulty. Therefore, in this embodiment, the width w1 of the trench is 0.15 μm to 2 μm.

同时,还需要说明的是,相邻所述沟槽之间的距离w2不能过大,也不能过小。如果相邻所述沟槽之间的距离w2过大,也就是说,所述沟槽周围凸立的电阻结构301线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构301顶部表面的接触面积,进而难以降低所述电阻结构301顶面出现凹陷缺陷的概率,而且,相应导致所述沟槽的宽度w1过小;如果相邻所述沟槽之间的距离w2过小,则容易导致形成的所述沟槽的宽度w1过大,则去除的所述电阻结构301过多,容易影响所述电阻结构301的电阻,而且,在平坦化过程中,位于沟槽中的介质层401容易出现顶面凹陷严重的问题。因此,本实施例中,相邻所述沟槽之间的距离w2为0.15μm至2μm。At the same time, it should be noted that the distance w2 between adjacent grooves cannot be too large or too small. If the distance w2 between adjacent trenches is too large, that is to say, the line width of the resistive structures 301 around the trenches is still relatively large, so it is difficult to reduce the The contact area with the top surface of the resistive structure 301 is small in the planarization process, so it is difficult to reduce the probability of sunken defects on the top surface of the resistive structure 301, and the width w1 of the trench is correspondingly too small; If the distance w2 between the trenches is too small, the width w1 of the formed trenches will be too large, and too many resistive structures 301 will be removed, which will easily affect the resistance of the resistive structures 301. Moreover, in During the planarization process, the dielectric layer 401 located in the trench is prone to the problem of severe top surface dishing. Therefore, in this embodiment, the distance w2 between adjacent trenches is 0.15 μm to 2 μm.

本实施例中,所述半导体结构还包括:保护层341,位于所述沟槽的侧壁。In this embodiment, the semiconductor structure further includes: a protection layer 341 located on the sidewall of the trench.

在对所述电阻结构301和介质层401进行平坦化的过程中,所述保护层341保护了所述沟槽侧壁的电阻结构301,减小对所述电阻结构301造成过研磨的概率,进一步有效降低了所述电阻结构301顶面出现凹陷缺陷的概率,提高了所述电阻结构301的顶面平坦度,进而提高了半导体结构的性能。During the process of planarizing the resistive structure 301 and the dielectric layer 401, the protective layer 341 protects the resistive structure 301 on the sidewall of the trench, reducing the probability of over-grinding the resistive structure 301, This further effectively reduces the probability of sunken defects on the top surface of the resistance structure 301, improves the flatness of the top surface of the resistance structure 301, and further improves the performance of the semiconductor structure.

本实施例中,所述保护层341保形覆盖所述沟槽的侧壁和底部,则所述保护层341在保护所述沟槽侧壁的电阻结构301的同时,还对所述保护层341底部的电阻结构301起到保护作用。In this embodiment, the protective layer 341 conformally covers the sidewall and bottom of the trench, and the protective layer 341 protects the resistive structure 301 on the sidewall of the trench while protecting the protective layer. The resistance structure 301 at the bottom of 341 plays a protective role.

本实施例中,所述保护层341的材料包括氮化硅或氮氧化硅。In this embodiment, the material of the protective layer 341 includes silicon nitride or silicon oxynitride.

所述氮化硅硬度较高,在所述平坦化过程中,对所述沟槽侧壁和底部的电阻结构301能够起到较好的保护作用。The silicon nitride has a relatively high hardness, and can better protect the resistance structure 301 on the sidewall and bottom of the trench during the planarization process.

沿所述电阻结构301的延伸方向,所述电极351位于所述电阻结构301两侧,且与所述电阻结构301的侧壁相连,也就是说,所述电极351与所述电阻结构301的端部相连。Along the extension direction of the resistance structure 301, the electrodes 351 are located on both sides of the resistance structure 301 and connected to the side walls of the resistance structure 301, that is, the electrodes 351 and the sides of the resistance structure 301 The ends are connected.

具体地,所述电极351位于所述顶部电阻层231两侧的所述金属阻挡层221上。Specifically, the electrodes 351 are located on the metal barrier layer 221 on both sides of the top resistance layer 231 .

所述电极351用于与导电插塞实现电连接,从而实现所述电阻结构301与其他电路的电连接。The electrodes 351 are used to electrically connect with the conductive plug, so as to realize the electrical connection between the resistance structure 301 and other circuits.

所述电极351位于所述电阻结构301的端部。由于所述电阻结构301的长度越长,则所述电阻结构301的阻值越大,因此,通过使所述电极351位于所述电阻结构301的端部,能最大化所述电阻结构301的长度,使得所述电阻结构301获得较大的电阻。The electrodes 351 are located at ends of the resistive structure 301 . Since the longer the length of the resistive structure 301, the greater the resistance of the resistive structure 301, therefore, by making the electrode 351 at the end of the resistive structure 301, the resistance of the resistive structure 301 can be maximized. The length enables the resistance structure 301 to obtain greater resistance.

本实施例中,所述电极351的材料包括金属材料。所述金属材料具有较好的导电性,有利于提高电阻结构301与外部互连结构之前的电连接性能,从而提高所述半导体结构的电学性能。In this embodiment, the material of the electrode 351 includes a metal material. The metal material has good electrical conductivity, which is beneficial to improve the electrical connection performance between the resistance structure 301 and the external interconnection structure, thereby improving the electrical performance of the semiconductor structure.

本实施例中,所述电极351与MOS晶体管中的栅电极层361具有相同的材料和叠层结构,从而能够在同一制程中形成所述电极351和MOS晶体管中的栅电极层361。例如,低压器件区采用的器件栅极结构为金属栅极结构,采用金属栅极结构有利于提高MOS晶体管的电学性能,降低漏电流。In this embodiment, the electrode 351 has the same material and stacked structure as the gate electrode layer 361 of the MOS transistor, so that the electrode 351 and the gate electrode layer 361 of the MOS transistor can be formed in the same process. For example, the device gate structure used in the low-voltage device region is a metal gate structure, and the use of a metal gate structure is conducive to improving the electrical performance of the MOS transistor and reducing leakage current.

相应的,在所述半导体结构的形成过程中,在形成栅电极层361的步骤中,同时形成所述电极351。Correspondingly, during the formation of the semiconductor structure, in the step of forming the gate electrode layer 361 , the electrode 351 is formed simultaneously.

本实施例中,所述电极351的材料包括TiN、TaN、Ta、Ti、TiAl、W、AL、TiSiN和TiAlC中的一种或多种。In this embodiment, the material of the electrode 351 includes one or more of TiN, TaN, Ta, Ti, TiAl, W, AL, TiSiN and TiAlC.

本实施例中,所述电极351和所述栅电极层361的材料相同,则可以在同一步骤中形成所述电极351和所述栅电极层361,提高工艺效率,节约工艺成本。In this embodiment, the electrode 351 and the gate electrode layer 361 are made of the same material, so the electrode 351 and the gate electrode layer 361 can be formed in the same step, which improves process efficiency and saves process cost.

所述电极351包括功函数层(未示出)、以及位于功函数层上的电极层(未示出),所述电极层用于将所述电极351的电性引出。The electrode 351 includes a work function layer (not shown), and an electrode layer (not shown) located on the work function layer, and the electrode layer is used to extract electricity from the electrode 351 .

所述介质层401用于相邻器件之间起到隔离作用。The dielectric layer 401 is used to isolate adjacent devices.

本实施例中,所述介质层401填充于所述沟槽中并覆盖所述保护层341的侧壁,用于提高所述电阻结构301顶部的平坦度,为后续工艺制成提供较好的工艺平台。In this embodiment, the dielectric layer 401 is filled in the trench and covers the sidewall of the protective layer 341, which is used to improve the flatness of the top of the resistive structure 301, and provide a better structure for subsequent fabrication. craft platform.

本实施例中,所述介质层401的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the dielectric layer 401 includes one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride.

需要说明的是,通常形成所述介质层401的过程包括对所述电阻结构301和介质层401进行平坦化的过程,本实施例中,所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the dielectric layer 401 includes the process of planarizing the resistance structure 301 and the dielectric layer 401. In this embodiment, a groove is formed on the top of the resistance structure 301, which reduces the During the planarization process, the contact area between the polishing pad and the top surface of the resistance structure 301 is reduced, thereby reducing the probability of sunken defects occurring on the top surface of the resistance structure 301 .

本实施例中,所述半导体结构还包括:覆盖层501,覆盖所述介质层401、电阻结构301和电极351。In this embodiment, the semiconductor structure further includes: a covering layer 501 covering the dielectric layer 401 , the resistance structure 301 and the electrode 351 .

本实施例中,所述覆盖层401相应还覆盖所述栅电极层361。In this embodiment, the covering layer 401 also covers the gate electrode layer 361 accordingly.

所述覆盖层501用于为形成导电插塞提供工艺平台。The covering layer 501 is used to provide a process platform for forming conductive plugs.

所述覆盖层501的材料为绝缘材料,本实施例中,所述覆盖层501的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。The material of the cover layer 501 is an insulating material. In this embodiment, the material of the cover layer 501 includes silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride. one or more.

本实施例中,所述半导体结构还包括:导电插塞511,贯穿所述电极351顶部的覆盖层501,并电连接所述电极351。In this embodiment, the semiconductor structure further includes: a conductive plug 511 penetrating through the covering layer 501 on top of the electrode 351 and electrically connecting the electrode 351 .

所述导电插塞511用于实现所述电极351的电连接。The conductive plug 511 is used to realize the electrical connection of the electrode 351 .

本实施例中,所述导电插塞511的材料包括钨、钌或钴。In this embodiment, the material of the conductive plug 511 includes tungsten, ruthenium or cobalt.

需要说明的是,通常形成所述电极351的过程包括对所述电阻结构301和电极351进行平坦化的过程,本实施例中,所述电阻结构301顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构301顶部表面的接触面积,从而降低了所述电阻结构301顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the electrode 351 includes the process of planarizing the resistance structure 301 and the electrode 351. During the polishing process, the contact area between the polishing pad and the top surface of the resistance structure 301 is reduced, thereby reducing the probability of sunken defects occurring on the top surface of the resistance structure 301 .

还需要说明的是,本实施例提高了所述电阻结构301顶面的平坦度,从而提高了所述电极351的形成质量,进而提高导电插塞511与所述电极351的电连接可靠性,进一步提高了半导体结构的性能。It should also be noted that this embodiment improves the flatness of the top surface of the resistance structure 301, thereby improving the formation quality of the electrode 351, thereby improving the reliability of the electrical connection between the conductive plug 511 and the electrode 351, The performance of the semiconductor structure is further improved.

图8至图20是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。8 to 20 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

参考图8,提供半导体衬底100,包括电阻区100R,所述电阻区100R的半导体衬底100上形成有电阻结构材料层200。Referring to FIG. 8 , a semiconductor substrate 100 is provided, including a resistance region 100R, and a resistance structure material layer 200 is formed on the semiconductor substrate 100 of the resistance region 100R.

所述半导体衬底100为后续工艺提供工艺操作基础。The semiconductor substrate 100 provides a process operation basis for subsequent processes.

本实施例中,所述半导体衬底100的材料为硅,在其他实施例中,所述半导体衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓和镓化铟中的一种或多种,所述半导体衬底还能够为绝缘体上的硅半导体衬底或者绝缘体上的锗半导体衬底等其他类型的半导体衬底。所述半导体衬底100的材料可以是适宜于工艺需要或易于集成的材料。In this embodiment, the material of the semiconductor substrate 100 is silicon. In other embodiments, the material of the semiconductor substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide, and gallium indium. One or more, the semiconductor substrate can also be a silicon-on-insulator semiconductor substrate or a germanium-on-insulator semiconductor substrate or other types of semiconductor substrates. The material of the semiconductor substrate 100 may be a material suitable for process requirements or easy to integrate.

本实施例中,所述半导体衬底100包括电阻区100R,所述电阻区100R用于形成电阻结构。In this embodiment, the semiconductor substrate 100 includes a resistance region 100R, and the resistance region 100R is used to form a resistance structure.

本实施例中,所述半导体衬底100还包括器件区100H,所述器件区100H用于形成MOS晶体管。其中,MOS晶体管作为集成电路中的有源器件。In this embodiment, the semiconductor substrate 100 further includes a device region 100H, and the device region 100H is used to form a MOS transistor. Among them, MOS transistors are used as active devices in integrated circuits.

本实施例中,所述器件区100H为低压器件区,用于形成低压器件。作为一种示例,所述低压器件的工作电压小于2V。In this embodiment, the device region 100H is a low-voltage device region for forming low-voltage devices. As an example, the operating voltage of the low voltage device is less than 2V.

需要说明的是,所述半导体衬底100还可以包括用于形成高压器件的高压器件区(图未示)。高压器件的工作电压大于低压器件的工作电压。作为一种示例,高压器件的工作电压大于10V。It should be noted that the semiconductor substrate 100 may further include a high-voltage device region (not shown) for forming a high-voltage device. The operating voltage of the high-voltage device is greater than that of the low-voltage device. As an example, high voltage devices operate at voltages greater than 10V.

还需要说明的是,本实施例中,采用先形成高k栅介质层后形成金属栅极(high kfirst metal gate last)工艺形成第二器件区100H的金属栅极结构,且形成于所述电阻区100R的电阻结构和形成于所述第二器件区100H的伪栅层一同形成。It should also be noted that in this embodiment, the metal gate structure of the second device region 100H is formed by forming a high-k gate dielectric layer first and then forming a metal gate (high kfirst metal gate last) process, and is formed on the resistor The resistance structure of the region 100R is formed together with the dummy gate layer formed in the second device region 100H.

因此,本实施例中,所述电阻结构材料层200和半导体衬底100之间还形成有栅介质层210,所述电阻结构材料层200包括金属阻挡层220和位于所述金属阻挡层220上的顶部电阻层250。Therefore, in this embodiment, a gate dielectric layer 210 is further formed between the resistance structure material layer 200 and the semiconductor substrate 100, and the resistance structure material layer 200 includes a metal barrier layer 220 and is located on the metal barrier layer 220. The top resistive layer 250.

所述栅介质层210用于隔离后续形成的电极与半导体衬底100、以及后续形成的栅电极层与半导体衬底100。The gate dielectric layer 210 is used to isolate the subsequently formed electrode from the semiconductor substrate 100 , and the subsequently formed gate electrode layer from the semiconductor substrate 100 .

所述栅介质层210的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。本实施例中,所述栅介质层210包括高k栅介质层,高k栅介质层的材料包括高k介质材料。其中,高k介质材料是指相对介电常数大于氧化硅相对介电常数的介质材料。具体地,所述高k介质材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO或Al2O3等。The material of the gate dielectric layer 210 includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 O 3 . In this embodiment, the gate dielectric layer 210 includes a high-k gate dielectric layer, and the material of the high-k gate dielectric layer includes a high-k dielectric material. Wherein, the high-k dielectric material refers to a dielectric material with a relative dielectric constant greater than that of silicon oxide. Specifically, the high-k dielectric material includes HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, or Al 2 O 3 .

需要说明的是,所述栅介质层210还可以包括位于高k栅介质层和半导体衬底101之间的栅氧化层。作为一种示例,栅氧化层的材料为氧化硅。It should be noted that the gate dielectric layer 210 may further include a gate oxide layer located between the high-k gate dielectric layer and the semiconductor substrate 101 . As an example, the material of the gate oxide layer is silicon oxide.

所述金属阻挡层220用于隔离栅介质层210和后续形成的电极、以及栅介质层210和后续形成的栅电极层,以保护栅介质层210,而且,金属阻挡层220还用于阻挡电极和栅电极层中的易扩散离子(例如:Al离子)向栅介质层210中扩散。The metal barrier layer 220 is used to isolate the gate dielectric layer 210 and the subsequently formed electrode, and the gate dielectric layer 210 and the subsequently formed gate electrode layer to protect the gate dielectric layer 210, and the metal barrier layer 220 is also used to block the electrode and easily diffusible ions (for example: Al ions) in the gate electrode layer diffuse into the gate dielectric layer 210 .

具体地,所述金属阻挡层220的材料包括氮化钛(TiN)和掺硅的氮化钛(TiSiN)中的一种或两种。本实施例中,所述金属阻挡层220的材料为氮化钛。Specifically, the material of the barrier metal layer 220 includes one or both of titanium nitride (TiN) and silicon-doped titanium nitride (TiSiN). In this embodiment, the material of the barrier metal layer 220 is titanium nitride.

所述电阻结构材料层200用于后续形成电阻结构,所述电阻区100R的金属阻挡层220用于后续作为底部电阻层。The resistance structure material layer 200 is used to subsequently form a resistance structure, and the metal barrier layer 220 of the resistance region 100R is used to subsequently serve as a bottom resistance layer.

本实施例中,所述顶部电阻层250的材料包括多晶硅。In this embodiment, the material of the top resistance layer 250 includes polysilicon.

本实施例中,所述电阻结构材料层200还形成于所述器件区100H的半导体衬底100上,用于后续在所述器件区100H形成伪栅层做准备。其中,伪栅层用于为金属栅极结构的形成占据空间位置。In this embodiment, the resistive structure material layer 200 is also formed on the semiconductor substrate 100 in the device region 100H, which is used to prepare for the subsequent formation of a dummy gate layer in the device region 100H. Wherein, the dummy gate layer is used to occupy a space position for the formation of the metal gate structure.

本实施例中,所述电阻区101R的半导体衬底100中还形成有隔离结构110。In this embodiment, an isolation structure 110 is further formed in the semiconductor substrate 100 of the resistance region 101R.

后续在所述隔离结构110上形成电阻结构,所述隔离结构110用于隔离电阻结构和所述半导体衬底100,以防电阻结构与半导体衬底100中的阱(well)区之间发生短路,所述隔离结构110还用于实现不同器件之间的绝缘,例如在CMOS制造工艺中,通常会在NMOS晶体管和PMOS晶体管之间形成隔离结构。具体地,所述隔离结构110为浅沟槽隔离结构(ShallowTrench Isolation,STI)。Subsequently, a resistance structure is formed on the isolation structure 110, and the isolation structure 110 is used to isolate the resistance structure and the semiconductor substrate 100, so as to prevent a short circuit between the resistance structure and the well region in the semiconductor substrate 100. The isolation structure 110 is also used to achieve isolation between different devices, for example, in a CMOS manufacturing process, an isolation structure is usually formed between an NMOS transistor and a PMOS transistor. Specifically, the isolation structure 110 is a shallow trench isolation structure (Shallow Trench Isolation, STI).

所述隔离结构110的材料为绝缘材料。本实施例中,所述隔离结构110的材料包括氧化硅或氮氧化硅。The material of the isolation structure 110 is insulating material. In this embodiment, the material of the isolation structure 110 includes silicon oxide or silicon oxynitride.

结合参考图9和图10,图10是电阻区100R的电阻结构材料层200的俯视图,图9是图10基于AA方向的剖视图,在所述电阻区100R中,在所述电阻结构材料层200中形成一个或多个平行的沟槽230,所述沟槽230贯穿部分厚度的所述电阻结构材料层200。Referring to FIG. 9 and FIG. 10 in conjunction, FIG. 10 is a top view of the resistance structure material layer 200 of the resistance region 100R, and FIG. 9 is a cross-sectional view of FIG. 10 based on the AA direction. One or more parallel grooves 230 are formed in the middle, and the grooves 230 penetrate part of the thickness of the resistive structure material layer 200 .

后续图形化电阻结构材料层200,以形成位于电阻区100R的电阻结构后,所述沟槽230位于电阻结构中。After subsequent patterning of the resistive structure material layer 200 to form a resistive structure located in the resistive region 100R, the trench 230 is located in the resistive structure.

在形成所述电阻结构和介质层的过程中,通常包括对所述电阻结构和介质层进行平坦化的过程,且进行平坦化时,如果电阻结构的尺寸较大,电阻结构顶面容易出现较严重的凹陷缺陷(dishing defect),而且,本实施例中,所述电极形成于沿所述电阻结构的延伸方向上所述电阻结构的两侧,并且,所述电极仅用于将电阻结构的电性连接出去,则所述电极的尺寸较小,因此,剩余的所述电阻结构尺寸较大,更容易出现凹陷缺陷,因此,通过在所述电阻结构顶部形成沟槽230,减小了在平坦化过程中,研磨垫与电阻结构顶部表面的接触面积,从而降低了所述电阻结构顶面出现凹陷缺陷的概率,提高了所述电阻结构的顶面平坦度,有利于确保电阻结构的完整性,从而降低电阻结构的阻值发生偏移的概率,进而提高了半导体结构的性能。In the process of forming the resistance structure and the dielectric layer, the process of planarizing the resistance structure and the dielectric layer is usually included, and when the planarization is performed, if the size of the resistance structure is large, the top surface of the resistance structure is likely to appear larger. serious dishing defect, and in this embodiment, the electrodes are formed on both sides of the resistance structure along the extension direction of the resistance structure, and the electrodes are only used to If the electrode is electrically connected, the size of the electrode is smaller, therefore, the size of the remaining resistive structure is larger, and it is more likely to have a recess defect. Therefore, by forming the trench 230 on the top of the resistive structure, reducing the During the planarization process, the contact area between the polishing pad and the top surface of the resistance structure reduces the probability of sunken defects on the top surface of the resistance structure, improves the flatness of the top surface of the resistance structure, and is conducive to ensuring the integrity of the resistance structure properties, thereby reducing the probability that the resistance value of the resistance structure will shift, thereby improving the performance of the semiconductor structure.

本实施例中,所述沟槽230贯穿部分厚度的所述电阻结构材料层200,保留部分厚度的所述电阻结构材料层200,从而保持后续电阻结构的正常性能和电阻,并且保护位于所述电阻结构材料层200下的金属阻挡层220,以减小或避免对电阻结构的电阻值的影响。In this embodiment, the trench 230 penetrates part of the thickness of the resistive structure material layer 200, retaining part of the thickness of the resistive structure material layer 200, thereby maintaining the normal performance and resistance of the subsequent resistive structure, and protecting the The metal barrier layer 220 under the resistance structure material layer 200 is used to reduce or avoid the impact on the resistance value of the resistance structure.

具体地,所述沟槽230贯穿部分厚度的所述顶部电阻层250。Specifically, the groove 230 penetrates a partial thickness of the top resistive layer 250 .

本实施例中,采用干法刻蚀工艺形成一个或多个平行的沟槽230。In this embodiment, one or more parallel trenches 230 are formed by a dry etching process.

所述干法刻蚀工艺具有各向异性刻蚀的特性,因此通过选取干法刻蚀工艺,有利于减小对所述沟槽230侧部剩余所述电阻结构材料层200的损伤,同时,所述干法刻蚀更具刻蚀方向性,有利于提高所述沟槽230的侧壁形貌质量和尺寸精度。The dry etching process has the characteristics of anisotropic etching, so by selecting the dry etching process, it is beneficial to reduce the damage to the remaining resistive structure material layer 200 on the side of the trench 230, and at the same time, The dry etching is more directional, which is beneficial to improving the topography quality and dimensional accuracy of the trench 230 .

本实施例中,所述多个平行排列的沟槽230的延伸方向与所述电阻结构材料层200的延伸方向相同,能够在形成较少个数的沟槽的情况下,减小在平坦化过程中与电阻结构301顶部表面的接触面积的效果下,节约工艺成本,降低工艺复杂度,提高工艺效率。In this embodiment, the extension direction of the plurality of trenches 230 arranged in parallel is the same as the extension direction of the resistance structure material layer 200, which can reduce the effect on planarization under the condition of forming a small number of trenches. Under the effect of the contact area with the top surface of the resistance structure 301 during the process, the process cost is saved, the process complexity is reduced, and the process efficiency is improved.

本实施例中,所述多个平行排列的沟槽230的排列方向与所述电阻结构材料层200的延伸方向相垂直,则在与所述电阻结构材料层200的延伸方向相垂直的方向,根据电阻结构300的宽度,排列足够数量的多个沟槽230,较大程度地减小在平坦化过程中与电阻结构顶部表面的接触面积,从而降低所述电阻结构顶面出现凹陷缺陷的概率。In this embodiment, the arrangement direction of the plurality of trenches 230 arranged in parallel is perpendicular to the extension direction of the resistance structure material layer 200 , then in the direction perpendicular to the extension direction of the resistance structure material layer 200 , According to the width of the resistance structure 300, a sufficient number of grooves 230 are arranged to greatly reduce the contact area with the top surface of the resistance structure during the planarization process, thereby reducing the probability of sunken defects appearing on the top surface of the resistance structure .

需要说明的是,所述沟槽230的深度h不能过大,也不能过小。如果所述沟槽230的深度h过大,则去除的所述电阻结构材料层200过多,容易造成对沟槽230下方的金属阻挡层220的损伤,继而影响电阻结构300的电阻值;如果所述沟槽230的深度h过小,则在所述沟槽230周围凸立的电阻结构的高度过小,则在对所述介质层401进行平坦化处理的过程中,容易将所述沟槽230周围凸立的电阻结构去除,从而在所述平坦化处理的过程中,容易接触到所述沟槽230底部的电阻结构,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率。因此,本实施例中,所述沟槽230的深度h为所述电阻结构材料层200厚度的1/4至1/3。It should be noted that the depth h of the groove 230 cannot be too large or too small. If the depth h of the trench 230 is too large, too much material layer 200 of the resistive structure will be removed, which will easily cause damage to the metal barrier layer 220 below the trench 230, thereby affecting the resistance value of the resistive structure 300; if If the depth h of the trench 230 is too small, the height of the resistance structure protruding around the trench 230 is too small, and the trench will be easily distorted during the planarization process of the dielectric layer 401. The protruding resistance structure around the groove 230 is removed, so that during the planarization process, it is easy to contact the resistance structure at the bottom of the trench 230, and it is difficult to reduce the contact area with the top surface of the resistance structure during the planarization process , so it is difficult to reduce the probability of sunken defects appearing on the top surface of the resistance structure. Therefore, in this embodiment, the depth h of the trench 230 is 1/4 to 1/3 of the thickness of the resistance structure material layer 200 .

需要说明的是,所述沟槽230的宽度w1不能过大,也不能过小。如果所述沟槽230的宽度w1过大,则后续在沟槽230中还会形成有介质层,在平坦化过程中,位于沟槽中的介质层容易出现顶面凹陷严重的问题;如果所述沟槽230的宽度w1过小,则所述沟槽230周围凸立的电阻结构线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率,而且,还容易增大形成沟槽230时所采用的光刻工艺和干法刻蚀工艺的工艺难度。因此,本实施例中,所述沟槽230的宽度w1为0.15μm至2μm。It should be noted that the width w1 of the groove 230 cannot be too large or too small. If the width w1 of the trench 230 is too large, a dielectric layer will be formed in the trench 230 later, and during the planarization process, the dielectric layer in the trench is likely to have a serious problem of top surface depression; if the If the width w1 of the trench 230 is too small, the line width of the resistance structure protruding around the trench 230 will still be relatively large, so that it is difficult to reduce the contact with the resistance in the planarization process during the planarization process. The contact area of the top surface of the structure makes it difficult to reduce the probability of sunken defects on the top surface of the resistance structure, and it is also easy to increase the process difficulty of the photolithography process and dry etching process used when forming the trench 230 . Therefore, in this embodiment, the width w1 of the trench 230 is 0.15 μm to 2 μm.

同时,还需要说明的是,相邻所述沟槽230之间的距离w2不能过大,也不能过小。如果相邻所述沟槽230之间的距离w2过大,也就是说,所述沟槽230周围凸立的电阻结构线宽尺寸仍然较大,从而在所述平坦化处理的过程中,难以减小在平坦化过程中与电阻结构顶部表面的接触面积,进而难以降低所述电阻结构顶面出现凹陷缺陷的概率,而且,相应导致所述沟槽230的宽度w1过小;如果相邻所述沟槽230之间的距离w2过小,则容易导致形成的所述沟槽230的宽度w1过大,后续在沟槽230中还会形成有介质层,在平坦化过程中,位于沟槽230中的介质层容易出现顶面凹陷严重的问题,而且,还容易增加形成沟槽230的光刻工艺和干法刻蚀工艺的工艺难度。因此,本实施例中,相邻所述沟槽230之间的距离w2为0.15μm至2μm。At the same time, it should be noted that the distance w2 between adjacent grooves 230 cannot be too large or too small. If the distance w2 between the adjacent trenches 230 is too large, that is to say, the line width of the resistance structure protruding around the trenches 230 is still relatively large, so that it is difficult to Reducing the contact area with the top surface of the resistance structure during the planarization process makes it difficult to reduce the probability of sunken defects on the top surface of the resistance structure, and correspondingly causes the width w1 of the trench 230 to be too small; if adjacent If the distance w2 between the trenches 230 is too small, the width w1 of the formed trenches 230 will be too large, and a dielectric layer will be formed in the trenches 230 later. The dielectric layer in 230 is prone to the problem of severe top surface dishing, and it is also easy to increase the process difficulty of the photolithography process and dry etching process for forming the trench 230 . Therefore, in this embodiment, the distance w2 between adjacent trenches 230 is 0.15 μm to 2 μm.

结合参考图11和图12,图11和图12是基于图9的剖视图,在形成所述沟槽230后,图形化所述电阻结构材料层200,去除所述沟槽230外侧的部分电阻结构材料层200,保留包含有所述沟槽230的部分电阻结构材料层200作为电阻结构300。Referring to FIG. 11 and FIG. 12 in conjunction, FIG. 11 and FIG. 12 are cross-sectional views based on FIG. 9 , after the trench 230 is formed, the resistive structure material layer 200 is patterned, and part of the resistive structure outside the trench 230 is removed. The material layer 200 retains the part of the resistive structure material layer 200 including the groove 230 as the resistive structure 300 .

保留包含有所述沟槽230的部分电阻结构材料层200作为电阻结构300,使得后续在平坦化过程中,减小研磨垫与电阻结构300顶部表面的接触面积,从而降低了所述电阻结构300顶面出现凹陷缺陷的概率,提高了所述电阻结构300的顶面平坦度,有利于确保电阻结构300的完整性,同时保护金属阻挡层220的完整性,从而降低电阻结构300的阻值发生偏移的概率,进而提高了半导体结构的性能。Reserving part of the resistance structure material layer 200 including the groove 230 as the resistance structure 300, so that in the subsequent planarization process, the contact area between the polishing pad and the top surface of the resistance structure 300 is reduced, thereby reducing the resistance of the resistance structure 300. The probability of concave defects on the top surface improves the flatness of the top surface of the resistance structure 300, which is conducive to ensuring the integrity of the resistance structure 300, and at the same time protects the integrity of the metal barrier layer 220, thereby reducing the resistance of the resistance structure 300. The probability of offset, which in turn improves the performance of the semiconductor structure.

所述电阻结构300作为集成电路中的无源器件。The resistor structure 300 is used as a passive device in an integrated circuit.

本实施例中,所述电阻区100R中剩余的金属阻挡层220和顶部电阻层250作为电阻结构300,所述金属阻挡层220用于作为所述电阻结构300中的底部电阻层。In this embodiment, the remaining metal barrier layer 220 and the top resistance layer 250 in the resistance region 100R are used as the resistance structure 300 , and the metal barrier layer 220 is used as the bottom resistance layer in the resistance structure 300 .

本实施例中,所述电阻结构300位于所述电阻100R区的隔离结构110上,使得所述电阻结构300与所述半导体衬底100绝缘。In this embodiment, the resistance structure 300 is located on the isolation structure 110 of the resistance 100R region, so that the resistance structure 300 is insulated from the semiconductor substrate 100 .

本实施例中,所述电阻结构材料层200直接形成所述电阻结构300,因此,所述顶部电阻层250的材料包括多晶硅。In this embodiment, the resistive structure material layer 200 directly forms the resistive structure 300 , therefore, the material of the top resistive layer 250 includes polysilicon.

需要说明的是,由于顶部电阻层250的阻值远大于金属阻挡层220的阻值,因此,电阻结构300工作时的电流主要流经所述金属阻挡层220,相应的,与顶部电阻层250相比,所述金属阻挡层220对所述电阻结构300的阻值的影响更大。It should be noted that, since the resistance value of the top resistance layer 250 is much greater than the resistance value of the barrier metal layer 220, the current of the resistance structure 300 mainly flows through the barrier metal layer 220 when the resistance structure 300 is in operation, correspondingly, it is different from the barrier metal layer 250. In comparison, the metal barrier layer 220 has a greater influence on the resistance of the resistance structure 300 .

本实施例中,在形成所述沟槽230后,后续在所述电阻结构300侧部的半导体衬底100上形成介质层之前,还包括:在所述沟槽230的侧壁形成保护层340。In this embodiment, after forming the trench 230 and before forming a dielectric layer on the semiconductor substrate 100 at the side of the resistance structure 300, it further includes: forming a protective layer 340 on the sidewall of the trench 230 .

在对所述电阻结构300和介质层400进行平坦化的过程中,所述保护层340保护了所述沟槽侧壁的电阻结构300,减小对所述电阻结构300造成过研磨的概率,进一步有效降低了所述电阻结构300顶面出现凹陷缺陷的概率,提高了所述电阻结构300的顶面平坦度,进而提高了半导体结构的性能。During the process of planarizing the resistive structure 300 and the dielectric layer 400, the protective layer 340 protects the resistive structure 300 on the sidewall of the trench, reducing the probability of over-grinding the resistive structure 300, Further effectively reducing the probability of sunken defects on the top surface of the resistance structure 300, improving the flatness of the top surface of the resistance structure 300, and further improving the performance of the semiconductor structure.

本实施例中,在所述电阻结构300侧部的半导体衬底100上形成介质层之前形成所述保护层340,则所述保护层340保形覆盖所述沟槽230的侧壁和底部,从而所述保护层340在保护所述沟槽230侧壁的电阻结构300的同时,还对所述保护层340底部的电阻结构300起到保护作用。In this embodiment, the protection layer 340 is formed before the dielectric layer is formed on the semiconductor substrate 100 at the side of the resistance structure 300, so that the protection layer 340 conformally covers the sidewall and bottom of the trench 230, Therefore, while protecting the resistive structure 300 on the sidewall of the trench 230 , the protective layer 340 also protects the resistive structure 300 at the bottom of the protective layer 340 .

本实施例中,所述保护层340的材料包括氮化硅或氮氧化硅。In this embodiment, the material of the protective layer 340 includes silicon nitride or silicon oxynitride.

所述氮化硅硬度较高,在所述平坦化过程中,对所述沟槽侧壁和底部的电阻结构300能够起到较好的保护作用。The silicon nitride has relatively high hardness, and can better protect the resistance structure 300 on the sidewall and bottom of the trench during the planarization process.

具体地,本实施例中,在图形化所述电阻结构材料层200之前,形成所述保护层340,从而所述保护层340还用于作为图形化所述电阻结构材料层200的刻蚀掩膜,简化了工艺步骤。Specifically, in this embodiment, before patterning the resistance structure material layer 200, the protection layer 340 is formed, so that the protection layer 340 is also used as an etching mask for patterning the resistance structure material layer 200 Membrane simplifies the process steps.

参考图11,形成所述保护层340的步骤包括:在所述电阻结构材料层200上形成保护材料层240,所述保护材料层240保形覆盖所述沟槽230的底部和侧壁、以及所述电阻结构材料层200的顶部。Referring to FIG. 11 , the step of forming the protective layer 340 includes: forming a protective material layer 240 on the resistive structure material layer 200, the protective material layer 240 conformally covering the bottom and sidewalls of the trench 230, and The top of the resistive structure material layer 200 .

所述保护材料层240用于形成保护层340。The protective material layer 240 is used to form the protective layer 340 .

本实施例中,采用原子层沉积工艺形成所述保护材料层240。In this embodiment, the protective material layer 240 is formed by an atomic layer deposition process.

采用原子层沉积工艺形成的所述保护材料层240的厚度均匀性好,且具有良好的台阶覆盖(step coverage)能力,使得所述保护材料层240能够很好的保形覆盖所述沟槽230的底部和侧壁、以及所述电阻结构材料层200的顶部。The thickness uniformity of the protective material layer 240 formed by the atomic layer deposition process is good, and it has good step coverage (step coverage), so that the protective material layer 240 can conformally cover the trench 230 well. The bottom and sidewalls of and the top of the resistive structure material layer 200 .

参考图12,去除所述沟槽230外部的部分所述保护材料层240,形成保形覆盖所述沟槽230的底部和侧壁、并延伸覆盖所述电阻材料层200的部分顶部的保护层340。Referring to FIG. 12 , part of the protective material layer 240 outside the trench 230 is removed to form a protective layer that conformally covers the bottom and sidewalls of the trench 230 and extends to cover part of the top of the resistive material layer 200 340.

所述保护层340还用于作为图形化所述电阻结构材料层200的刻蚀掩膜。The passivation layer 340 is also used as an etching mask for patterning the resistive structure material layer 200 .

本实施例中,采用干法刻蚀工艺去除所述沟槽230外部的部分所述保护材料层240。In this embodiment, a dry etching process is used to remove part of the protective material layer 240 outside the trench 230 .

所述干法刻蚀工艺具有各向异性刻蚀的特性,因此通过选取干法刻蚀工艺,有利于减小对所述电阻结构材料层200的损伤,同时,所述干法刻蚀更具刻蚀方向性,有利于提高所述保护层340和电阻结构300的侧壁形貌质量和尺寸精度。The dry etching process has the characteristics of anisotropic etching, so by selecting the dry etching process, it is beneficial to reduce the damage to the resistance structure material layer 200, and at the same time, the dry etching is more The etching directionality is beneficial to improve the topography quality and dimensional accuracy of the sidewalls of the protection layer 340 and the resistance structure 300 .

继续参考图12,图形化所述电阻结构材料层200的步骤包括:以所述保护层340为掩膜,去除所述保护层340露出的电阻结构材料层200。Continuing to refer to FIG. 12 , the step of patterning the resistance structure material layer 200 includes: using the protection layer 340 as a mask, removing the resistance structure material layer 200 exposed by the protection layer 340 .

以所述保护层340为掩膜,形成电阻结构300,有利于形成尺寸精度较高的所述电阻结构300。Using the protective layer 340 as a mask to form the resistive structure 300 is beneficial to forming the resistive structure 300 with high dimensional accuracy.

本实施例中,在图形化所述电阻结构材料层200的步骤中,还保留位于所述器件区100H的半导体衬底100上的部分顶部电阻层250作为伪栅层310。In this embodiment, in the step of patterning the resistive structure material layer 200 , part of the top resistive layer 250 on the semiconductor substrate 100 in the device region 100H is reserved as the dummy gate layer 310 .

所述伪栅层310为后续制程中形成栅电极层占据空间位置。The dummy gate layer 310 occupies a spatial position for forming a gate electrode layer in a subsequent process.

本实施例中,所述伪栅层310与所述电阻结构300在同一步骤中形成,从而简化了形成所述半导体结构的工艺步骤。因此所述伪栅层310与所述顶部电阻层250的材料相同。In this embodiment, the dummy gate layer 310 and the resistance structure 300 are formed in the same step, thereby simplifying the process steps of forming the semiconductor structure. Therefore, the material of the dummy gate layer 310 is the same as that of the top resistor layer 250 .

本实施例中,图形化所述电阻结构材料层200后,后续形成介质层之前,还包括:去除所述电阻结构300和伪栅层310露出的栅介质层210。In this embodiment, after patterning the resistive structure material layer 200 and before subsequently forming a dielectric layer, further include: removing the gate dielectric layer 210 exposed by the resistive structure 300 and the dummy gate layer 310 .

参考图13,在所述电阻结构300侧部的半导体衬底100上形成介质层400,所述介质层400还填充于所述沟槽230中,且所述介质层400露出所述电阻结构300的顶部。Referring to FIG. 13, a dielectric layer 400 is formed on the semiconductor substrate 100 at the side of the resistance structure 300, the dielectric layer 400 is also filled in the trench 230, and the dielectric layer 400 exposes the resistance structure 300 the top of.

所述介质层400用于相邻器件之间起到隔离作用。The dielectric layer 400 is used to isolate adjacent devices.

本实施例中,采用化学气相沉积工艺形成所述介质层400。In this embodiment, the dielectric layer 400 is formed by a chemical vapor deposition process.

本实施例中,所述介质层400填充于所述沟槽230中并覆盖所述保护层340的侧壁,用于提高所述电阻结构300顶部的平坦度,为后续工艺制成提供较好的工艺平台。In this embodiment, the dielectric layer 400 is filled in the trench 230 and covers the sidewalls of the protection layer 340, which is used to improve the flatness of the top of the resistance structure 300, and provide better support for subsequent manufacturing processes. technology platform.

本实施例中,所述介质层400露出所述电阻结构300的顶部,为后续去除部分所述电阻结构300形成电极做准备。In this embodiment, the dielectric layer 400 exposes the top of the resistive structure 300 to prepare for subsequent removal of part of the resistive structure 300 to form electrodes.

本实施例中,所述介质层400还露出所述伪栅层310的顶部,为后续去除所述伪栅层310做准备。In this embodiment, the dielectric layer 400 also exposes the top of the dummy gate layer 310 to prepare for subsequent removal of the dummy gate layer 310 .

本实施例中,所述层间介质层400的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the interlayer dielectric layer 400 includes one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.

本实施例中,形成所述介质400层的步骤包括:在所述半导体衬底100上形成覆盖所述电阻结构300的介质材料层(图未示)。In this embodiment, the step of forming the dielectric layer 400 includes: forming a dielectric material layer (not shown) on the semiconductor substrate 100 covering the resistance structure 300 .

所述介质材料层用于形成介质层400。The dielectric material layer is used to form the dielectric layer 400 .

本实施例中,所述层间介质材料层的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。In this embodiment, the material of the interlayer dielectric material layer includes one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.

本实施例中,形成所述介质层400的步骤还包括:对所述电阻结构300顶部的保护层340和所述介质材料层进行平坦化处理,去除高于所述电阻结构300顶部的保护层340和介质材料层。In this embodiment, the step of forming the dielectric layer 400 further includes: planarizing the protective layer 340 and the dielectric material layer on the top of the resistive structure 300, and removing the protective layer higher than the top of the resistive structure 300 340 and dielectric material layer.

通过对电阻结构300顶部的保护层340和介质材料层进行平坦化处理,从而露出所述电阻结构300的顶部,以便于后续在所述电阻结构300中形成电极,同时,形成顶面平坦度较高的电阻结构300,为后续制成提供较好的工艺平台。By planarizing the protective layer 340 and the dielectric material layer on the top of the resistance structure 300, the top of the resistance structure 300 is exposed, so as to facilitate the subsequent formation of electrodes in the resistance structure 300, and at the same time, the flatness of the top surface is relatively high. The high resistance structure 300 provides a better process platform for subsequent manufacturing.

需要说明是,对所述介质材料层顶部进行平坦化处理的过程中,当形成的所述沟槽230深度较小、或者对所述介质材料层研磨过多时,所述沟槽230中的介质层400存在被去除的可能性,从而使得所述沟槽230中保留所述保护层340。本实施例中,以所述沟槽230中保留有介质层400的情况而述。It should be noted that, in the process of planarizing the top of the dielectric material layer, when the depth of the groove 230 formed is small, or the dielectric material layer is ground too much, the medium in the groove 230 There is a possibility that the layer 400 is removed, so that the protective layer 340 remains in the trench 230 . In this embodiment, the case where the dielectric layer 400 remains in the trench 230 is described.

结合参考图14至图16,图14是电阻结构300的俯视图,图15是图14基于AA方向的剖视图,图16图14基于BB方向的剖视图,沿所述电阻结构300的延伸方向,去除所述电阻结构300和所述介质层400交界处的部分所述电阻结构300,形成由所述介质层400和剩余的所述电阻结构300围成的开口330。14 to 16 in combination, FIG. 14 is a top view of the resistance structure 300, FIG. 15 is a sectional view of FIG. 14 based on the direction AA, and FIG. 16 and FIG. 14 are sectional views based on the direction of BB. The portion of the resistive structure 300 at the junction of the resistive structure 300 and the dielectric layer 400 forms an opening 330 surrounded by the dielectric layer 400 and the rest of the resistive structure 300 .

所述开口330用于为后续形成电极提供空间位置。The opening 330 is used to provide a space for subsequent electrode formation.

本实施例中,采用干法刻蚀工艺形成所述开口330。In this embodiment, the opening 330 is formed by a dry etching process.

本实施例中,去除所述电阻结构300和所述介质层400交界处的部分所述电阻结构300的步骤中,去除所述电阻结构300和所述介质层400交界处的部分所述顶部电阻层250,形成由所述介质层400、金属阻挡层220和剩余顶部电阻层250围成的开口330,且还去除所述伪栅层310,形成栅极开口320。In this embodiment, in the step of removing part of the resistive structure 300 at the junction of the resistive structure 300 and the dielectric layer 400, part of the top resistor at the junction of the resistive structure 300 and the dielectric layer 400 is removed. layer 250 to form an opening 330 surrounded by the dielectric layer 400 , metal barrier layer 220 and the remaining top resistance layer 250 , and remove the dummy gate layer 310 to form a gate opening 320 .

所述栅极开口320用于为后续形成栅电极层提供空间位置。The gate opening 320 is used to provide a space position for the subsequent formation of the gate electrode layer.

本实施例中,采用干法刻蚀工艺形成所述栅极开口320。In this embodiment, the gate opening 320 is formed by a dry etching process.

结合参考图17至图19,图17是电阻结构300的俯视图,图16是图17基于AA方向的剖视图,图19图17基于BB方向的剖视图,在所述开口330中形成电极350。Referring to FIG. 17 to FIG. 19 together, FIG. 17 is a top view of the resistance structure 300 , FIG. 16 is a cross-sectional view of FIG. 17 based on the direction AA, and FIG. 19 and FIG. 17 are cross-sectional views based on the direction of BB.

本实施例中,沿所述电阻结构300的延伸方向,所述电极350位于所述电阻结构300和所述介质层400之间,也就是说,所述电极350与所述电阻结构300的端部相连,具体地,所述电极350位于所述顶部电阻层250两侧的所述金属阻挡层220上。In this embodiment, along the extension direction of the resistance structure 300, the electrode 350 is located between the resistance structure 300 and the dielectric layer 400, that is, the end of the electrode 350 and the resistance structure 300 Specifically, the electrodes 350 are located on the barrier metal layer 220 on both sides of the top resistance layer 250 .

所述电极350位于所述电阻结构300的端部。由于所述电阻结构300的长度越长,则所述电阻结构300的阻值越大,则所述电极350位于所述电阻结构300的端部,则能最大化所述电阻结构300的长度,使得所述电阻结构300获得较大的电阻。The electrodes 350 are located at ends of the resistive structure 300 . Since the longer the resistance structure 300 is, the greater the resistance value of the resistance structure 300 is, the electrode 350 is located at the end of the resistance structure 300, and the length of the resistance structure 300 can be maximized, This makes the resistance structure 300 obtain greater resistance.

所述电极350用于与导电插塞实现电连接,从而实现所述电阻结构300与其他电路的电连接。The electrodes 350 are used to electrically connect with the conductive plug, so as to realize the electrical connection between the resistance structure 300 and other circuits.

本实施例中,所述电极350的材料包括金属材料。所述金属材料具有较好的导电性,有利于提高电阻结构300与外部互连结构之前的电连接性能,从而提高所述半导体结构的电学性能。In this embodiment, the material of the electrode 350 includes metal material. The metal material has good electrical conductivity, which is beneficial to improve the electrical connection performance between the resistance structure 300 and the external interconnection structure, thereby improving the electrical performance of the semiconductor structure.

本实施例中,所述电极350与MOS晶体管中的栅电极层具有相同的材料和叠层结构,从而能够在同一制程中形成所述电极350和MOS晶体管中的栅电极层。例如,低压器件区采用的器件栅极结构为金属栅极结构,采用金属栅极结构有利于提高MOS晶体管的电学性能,降低漏电流。In this embodiment, the electrode 350 has the same material and stacked structure as the gate electrode layer of the MOS transistor, so that the electrode 350 and the gate electrode layer of the MOS transistor can be formed in the same manufacturing process. For example, the device gate structure used in the low-voltage device region is a metal gate structure, and the use of a metal gate structure is conducive to improving the electrical performance of the MOS transistor and reducing leakage current.

相应的,本实施例中,在形成MOS晶体管的栅电极层的步骤中,同时形成所述电极350,从而简化了形成所述半导体结构的工艺步骤。Correspondingly, in this embodiment, in the step of forming the gate electrode layer of the MOS transistor, the electrode 350 is formed at the same time, thereby simplifying the process steps of forming the semiconductor structure.

继续参考图18,在所述开口330中形成电极350的步骤中,还包括:在所述栅极开口320中形成栅电极层360。Continuing to refer to FIG. 18 , the step of forming the electrode 350 in the opening 330 further includes: forming a gate electrode layer 360 in the gate opening 320 .

所述栅电极层360用于控制晶体管的沟道的开启或关断。The gate electrode layer 360 is used to control the opening or closing of the channel of the transistor.

本实施例中,所述栅电极层360与所述电阻结构300在同一步骤中形成,从而简化了形成所述半导体结构的工艺步骤。因此所述栅电极层360与所述电极350的材料相同。In this embodiment, the gate electrode layer 360 and the resistance structure 300 are formed in the same step, thereby simplifying the process steps of forming the semiconductor structure. Therefore, the material of the gate electrode layer 360 is the same as that of the electrode 350 .

本实施例中,采用先形成高k栅介质层后形成金属栅极(high k first metalgate last)工艺形成所述金属栅极结构,因此,所述金属栅极层360包括位于高k栅介质层上的功函数层(图未示)以及位于功函数层上的电极层(图未示)。其中,所述功函数层用于调节MOS晶体管的阈值电压,所述电极层用于将所述栅电极层361的电性引出。In this embodiment, the metal gate structure is formed by forming a high-k gate dielectric layer first and then forming a metal gate (high k first metalgate last). Therefore, the metal gate layer 360 includes The upper work function layer (not shown) and the electrode layer (not shown) on the work function layer. Wherein, the work function layer is used to adjust the threshold voltage of the MOS transistor, and the electrode layer is used to extract the electricity of the gate electrode layer 361 .

本实施例中,在所述器件区100H中,所述栅介质层210、金属阻挡层220和栅电极层360构成金属栅极结构。In this embodiment, in the device region 100H, the gate dielectric layer 210 , the metal barrier layer 220 and the gate electrode layer 360 form a metal gate structure.

需要说明的是,通常形成所述电极350和栅电极层360的过程包括对所述电阻结构300、电极350和栅电极层360进行平坦化的过程,本实施例中,所述电阻结构300顶部形成有沟槽,减小了在平坦化过程中,研磨垫与电阻结构300顶部表面的接触面积,从而降低了所述电阻结构300顶面出现凹陷缺陷的概率。It should be noted that, generally, the process of forming the electrode 350 and the gate electrode layer 360 includes the process of planarizing the resistance structure 300, the electrode 350 and the gate electrode layer 360. In this embodiment, the top of the resistance structure 300 The grooves are formed to reduce the contact area between the polishing pad and the top surface of the resistance structure 300 during the planarization process, thereby reducing the probability of sunken defects on the top surface of the resistance structure 300 .

参考图20,图20是基于图19的剖视图,在所述电极350顶部形成电连接所述电极350的导电插塞510。Referring to FIG. 20 , which is a cross-sectional view based on FIG. 19 , a conductive plug 510 electrically connected to the electrode 350 is formed on the top of the electrode 350 .

所述导电插塞510用于实现所述电极350的电连接。The conductive plug 510 is used to realize the electrical connection of the electrode 350 .

本实施例中,所述导电插塞510的材料包括钨、钌或钴。In this embodiment, the material of the conductive plug 510 includes tungsten, ruthenium or cobalt.

本实施例中,形成所述导电插塞510之前,还包括:形成覆盖所述介质层340、电阻结构300和电极350的覆盖层500。In this embodiment, before forming the conductive plug 510 , it further includes: forming a covering layer 500 covering the dielectric layer 340 , the resistance structure 300 and the electrode 350 .

所述覆盖层500用于为形成所述导电插塞510提供工艺平台。The covering layer 500 is used to provide a process platform for forming the conductive plug 510 .

所述覆盖层500的材料为绝缘材料。本实施例中,所述覆盖层500的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。The material of the covering layer 500 is insulating material. In this embodiment, the material of the covering layer 500 includes one or more of silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride.

本实施例中,所述覆盖层500相应还覆盖所述栅电极层360。In this embodiment, the covering layer 500 also covers the gate electrode layer 360 accordingly.

本实施例中,在所述电极350顶部形成电连接所述电极350的导电插塞510的步骤包括:形成贯穿所述电极350顶部的覆盖层500,且露出所述电极350的导电孔(未标示);在所述导电孔中形成所述导电插塞510。In this embodiment, the step of forming a conductive plug 510 electrically connected to the electrode 350 on the top of the electrode 350 includes: forming a cover layer 500 penetrating through the top of the electrode 350 and exposing a conductive hole (not shown) of the electrode 350 mark); forming the conductive plug 510 in the conductive hole.

所述导电插塞510贯穿所述电极350顶部的覆盖层500,从而与所述电极350实现电连接。The conductive plug 510 penetrates through the covering layer 500 on the top of the electrode 350 , so as to be electrically connected to the electrode 350 .

还需要说明的是,本实施例提高了所述电阻结构300顶面的平坦度,从而提高了所述电极350的形成质量,进而提高导电插塞510与所述电极350的电连接可靠性,进一步提高了半导体结构的性能。It should also be noted that this embodiment improves the flatness of the top surface of the resistance structure 300, thereby improving the formation quality of the electrode 350, thereby improving the reliability of the electrical connection between the conductive plug 510 and the electrode 350, The performance of the semiconductor structure is further improved.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (20)

1.一种半导体结构,其特征在于,包括:1. A semiconductor structure, characterized in that, comprising: 半导体衬底,包括电阻区;a semiconductor substrate, including a resistive region; 电阻结构,位于所述电阻区的半导体衬底上,其中,所述电阻结构顶部形成有一个或多个平行排列的沟槽,所述沟槽贯穿部分厚度的所述电阻结构;a resistance structure located on the semiconductor substrate in the resistance region, wherein one or more grooves arranged in parallel are formed on the top of the resistance structure, and the grooves penetrate part of the thickness of the resistance structure; 电极,位于所述电阻区中,沿所述电阻结构的延伸方向,所述电极位于所述电阻结构两侧,且与所述电阻结构的侧壁相连;electrodes, located in the resistance region, along the extension direction of the resistance structure, the electrodes are located on both sides of the resistance structure, and connected to the side walls of the resistance structure; 介质层,位于所述电阻结构和电极侧部的半导体衬底上,所述介质层还填充于所述沟槽中,所述介质层露出所述电阻结构和电极的顶部。The dielectric layer is located on the semiconductor substrate at the side of the resistance structure and the electrode, the dielectric layer is also filled in the trench, and the dielectric layer exposes the top of the resistance structure and the electrode. 2.如权利要求1所述的半导体结构,其特征在于,所述半导体结构还包括:保护层,位于所述沟槽的侧壁;2. The semiconductor structure according to claim 1, further comprising: a protective layer located on a sidewall of the trench; 所述介质层填充于所述沟槽中并覆盖所述保护层的侧壁。The dielectric layer is filled in the groove and covers the sidewall of the protection layer. 3.如权利要求2所述的半导体结构,其特征在于,所述保护层保形覆盖所述沟槽的侧壁和底部。3. The semiconductor structure of claim 2, wherein the protective layer conformally covers sidewalls and bottom of the trench. 4.如权利要求1所述的半导体结构,其特征在于,所述多个平行排列的沟槽的延伸方向与所述电阻结构的延伸方向相同;4. The semiconductor structure according to claim 1, wherein the extension direction of the plurality of parallel trenches is the same as the extension direction of the resistance structure; 所述多个平行排列的沟槽的排列方向与所述电阻结构的延伸方向相垂直。The arrangement direction of the plurality of trenches arranged in parallel is perpendicular to the extension direction of the resistance structure. 5.如权利要求1所述的半导体结构,其特征在于,所述半导体结构还包括隔离结构,位于所述电阻区的半导体衬底中;5. The semiconductor structure according to claim 1, wherein the semiconductor structure further comprises an isolation structure located in the semiconductor substrate of the resistance region; 所述电阻结构位于所述电阻区的隔离结构上。The resistance structure is located on the isolation structure of the resistance area. 6.如权利要求1所述的半导体结构,其特征在于,所述半导体衬底还包括器件区;6. The semiconductor structure according to claim 1, wherein the semiconductor substrate further comprises a device region; 所述半导体结构还包括:栅介质层,位于所述器件区和电阻区的半导体衬底上;金属阻挡层,位于所述栅介质层上;栅电极层,位于所述器件区的所述金属阻挡层上;The semiconductor structure further includes: a gate dielectric layer located on the semiconductor substrate of the device region and the resistance region; a metal barrier layer located on the gate dielectric layer; a gate electrode layer located on the metal barrier layer of the device region on the barrier layer; 所述电阻结构包括位于所述电阻区中的所述金属阻挡层,以及位于所述金属阻挡层上的顶部电阻层,所述金属阻挡层用于作为所述电阻结构中的底部电阻层;The resistive structure includes the metal barrier layer in the resistive region, and a top resistive layer on the metal barrier layer, the metal barrier layer is used as a bottom resistive layer in the resistive structure; 所述电极位于所述顶部电阻层两侧的所述金属阻挡层上,所述电极和所述栅电极层的材料相同。The electrodes are located on the metal barrier layer on both sides of the top resistance layer, and the materials of the electrodes and the gate electrode layer are the same. 7.如权利要求1所述的半导体结构,其特征在于,所述沟槽的深度为所述电阻结构厚度的1/4至1/3。7. The semiconductor structure according to claim 1, wherein the depth of the trench is 1/4 to 1/3 of the thickness of the resistance structure. 8.如权利要求1所述的半导体结构,其特征在于,所述沟槽的宽度为0.15μm至2μm,相邻所述沟槽之间的距离为0.15μm至2μm。8 . The semiconductor structure according to claim 1 , wherein the width of the trench is 0.15 μm to 2 μm, and the distance between adjacent trenches is 0.15 μm to 2 μm. 9.如权利要求2所述的半导体结构,其特征在于,所述保护层的材料包括氮化硅或氮氧化硅。9. The semiconductor structure according to claim 2, wherein a material of the protective layer comprises silicon nitride or silicon oxynitride. 10.如权利要求6所述的半导体结构,其特征在于,所述金属阻挡层的材料包括氮化钛和掺硅的氮化钛中的一种或两种;所述顶部电阻层的材料包括多晶硅。10. The semiconductor structure according to claim 6, wherein the material of the metal barrier layer comprises one or both of titanium nitride and silicon-doped titanium nitride; the material of the top resistance layer comprises polysilicon. 11.如权利要求1所述的半导体结构,其特征在于,所述电极的材料包括TiN、TaN、Ta、Ti、TiAl、W、AL、TiSiN和TiAlC中的一种或多种。11. The semiconductor structure according to claim 1, wherein the material of the electrode comprises one or more of TiN, TaN, Ta, Ti, TiAl, W, AL, TiSiN and TiAlC. 12.如权利要求5所述的半导体结构,其特征在于,所述隔离结构的材料包括氧化硅或氮氧化硅。12. The semiconductor structure according to claim 5, wherein the material of the isolation structure comprises silicon oxide or silicon oxynitride. 13.如权利要求6所述的半导体结构,其特征在于,所述栅介质层的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。13. The semiconductor structure according to claim 6, wherein the material of the gate dielectric layer comprises HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 One or more of O 3 . 14.一种半导体结构的形成方法,其特征在于,包括:14. A method for forming a semiconductor structure, comprising: 提供半导体衬底,包括电阻区,所述电阻区的半导体衬底上形成有电阻结构材料层;A semiconductor substrate is provided, including a resistance region, and a resistance structure material layer is formed on the semiconductor substrate of the resistance region; 在所述电阻区中,在所述电阻结构材料层中形成一个或多个平行的沟槽,所述沟槽贯穿部分厚度的所述电阻结构材料层;In the resistive region, one or more parallel trenches are formed in the layer of resistive structural material, the trenches penetrating part of the thickness of the layer of resistive structural material; 在形成所述沟槽后,图形化所述电阻结构材料层,去除所述沟槽外侧的部分电阻结构材料层,保留包含有所述沟槽的部分电阻结构材料层作为电阻结构;After forming the trench, patterning the resistance structure material layer, removing part of the resistance structure material layer outside the trench, and retaining a part of the resistance structure material layer including the trench as a resistance structure; 在所述电阻结构侧部的半导体衬底上形成介质层,所述介质层还填充于所述沟槽中,且所述介质层露出所述电阻结构的顶部;forming a dielectric layer on the semiconductor substrate at the side of the resistance structure, the dielectric layer is also filled in the trench, and the dielectric layer exposes the top of the resistance structure; 沿所述电阻结构的延伸方向,去除所述电阻结构和所述介质层交界处的部分所述电阻结构,形成由所述介质层和剩余的所述电阻结构围成的开口;Along the extension direction of the resistance structure, removing part of the resistance structure at the junction of the resistance structure and the dielectric layer, forming an opening surrounded by the dielectric layer and the remaining resistance structure; 在所述开口中形成电极。Electrodes are formed in the openings. 15.如权利要求14所述的半导体结构的形成方法,其特征在于,在形成所述沟槽后,在所述电阻结构侧部的半导体衬底上形成介质层之前,还包括:在所述沟槽的侧壁形成保护层。15. The method for forming a semiconductor structure according to claim 14, further comprising: after forming the trench and before forming a dielectric layer on the semiconductor substrate at the side of the resistance structure: The sidewalls of the trench form a protective layer. 16.如权利要求15所述的半导体结构的形成方法,其特征在于,在图形化所述电阻结构材料层之前,形成所述保护层;16. The method for forming a semiconductor structure according to claim 15, wherein the protective layer is formed before patterning the resistive structure material layer; 形成所述保护层的步骤包括:在所述电阻结构材料层上形成保护材料层,所述保护材料层保形覆盖所述沟槽的底部和侧壁、以及所述电阻结构材料层的顶部;The step of forming the protection layer includes: forming a protection material layer on the resistance structure material layer, the protection material layer conformally covering the bottom and sidewalls of the trench and the top of the resistance structure material layer; 去除所述沟槽外部的部分所述保护材料层,形成保形覆盖所述沟槽的底部和侧壁、并延伸覆盖所述电阻材料层的部分顶部的保护层;removing a portion of the protective material layer outside the trench to form a protective layer conformally covering the bottom and sidewalls of the trench and extending to cover a portion of the top of the resistive material layer; 图形化所述电阻结构材料层的步骤包括:以所述保护层为掩膜,去除所述保护层露出的电阻结构材料层。The step of patterning the resistance structure material layer includes: using the protection layer as a mask, removing the resistance structure material layer exposed by the protection layer. 17.如权利要求16所述的半导体结构的形成方法,其特征在于,形成所述介质层的步骤包括:在所述半导体衬底上形成覆盖所述电阻结构的介质材料层;17. The method for forming a semiconductor structure according to claim 16, wherein the step of forming the dielectric layer comprises: forming a dielectric material layer covering the resistance structure on the semiconductor substrate; 对所述电阻结构顶部的保护层和所述介质材料层进行平坦化处理,去除高于所述电阻结构顶部的保护层和介质材料层。The protective layer and the dielectric material layer on the top of the resistance structure are planarized, and the protective layer and the dielectric material layer higher than the top of the resistance structure are removed. 18.如权利要求14所述的半导体结构的形成方法,其特征在于,所述提供半导体衬底的步骤中,所述半导体衬底还包括器件区,所述电阻结构材料层还形成于所述器件区的半导体衬底上,所述电阻结构材料层包括金属阻挡层和位于所述金属阻挡层上的顶部电阻层,且所述电阻结构材料层和半导体衬底之间还形成有栅介质层;18. The method for forming a semiconductor structure according to claim 14, wherein in the step of providing a semiconductor substrate, the semiconductor substrate further includes a device region, and the resistance structure material layer is also formed on the On the semiconductor substrate in the device region, the resistance structure material layer includes a metal barrier layer and a top resistance layer on the metal barrier layer, and a gate dielectric layer is also formed between the resistance structure material layer and the semiconductor substrate ; 在图形化所述电阻结构材料层的步骤中,所述电阻区中剩余的金属阻挡层和顶部电阻层作为电阻结构,所述金属阻挡层用于作为所述电阻结构中的底部电阻层,且还保留位于所述器件区的半导体衬底上的部分顶部电阻层作为伪栅层;In the step of patterning the resistive structure material layer, the remaining metal barrier layer and top resistive layer in the resistive region serve as a resistive structure, the metal barrier layer is used as a bottom resistive layer in the resistive structure, and Reserving part of the top resistance layer on the semiconductor substrate in the device region as a dummy gate layer; 图形化所述电阻结构材料层后,形成所述介质层之前,还包括:去除所述电阻结构和伪栅层露出的栅介质层;After patterning the resistive structure material layer and before forming the dielectric layer, further include: removing the resistive structure and the gate dielectric layer exposed by the dummy gate layer; 形成所述介质层的步骤中,所述介质层还露出所述伪栅层的顶部;In the step of forming the dielectric layer, the dielectric layer also exposes the top of the dummy gate layer; 去除所述电阻结构和所述介质层交界处的部分所述电阻结构的步骤中,去除所述电阻结构和所述介质层交界处的部分所述顶部电阻层,形成由所述介质层、金属阻挡层和剩余顶部电阻层围成的开口,且还去除所述伪栅层,在所述器件区形成栅极开口;In the step of removing part of the resistance structure at the junction of the resistance structure and the dielectric layer, removing part of the top resistance layer at the junction of the resistance structure and the dielectric layer, forming a The opening surrounded by the barrier layer and the remaining top resistance layer, and the dummy gate layer is also removed to form a gate opening in the device region; 在所述开口中形成电极的步骤中,还包括:在所述栅极开口中形成栅电极层。In the step of forming an electrode in the opening, it further includes: forming a gate electrode layer in the gate opening. 19.如权利要求18所述的半导体结构的形成方法,其特征在于,所述金属阻挡层的材料包括氮化钛和掺硅的氮化钛中的一种或两种,所述顶部电阻层的材料包括多晶硅。19. The method for forming a semiconductor structure according to claim 18, wherein the material of the metal barrier layer comprises one or both of titanium nitride and silicon-doped titanium nitride, and the top resistance layer The material includes polysilicon. 20.如权利要求16所述的半导体结构的形成方法,其特征在于,采用原子层沉积工艺形成所述保护材料层。20. The method for forming a semiconductor structure according to claim 16, wherein the protective material layer is formed by an atomic layer deposition process.
CN202110674533.8A 2021-06-17 2021-06-17 Semiconductor structures and methods of forming them Pending CN115498037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110674533.8A CN115498037A (en) 2021-06-17 2021-06-17 Semiconductor structures and methods of forming them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110674533.8A CN115498037A (en) 2021-06-17 2021-06-17 Semiconductor structures and methods of forming them

Publications (1)

Publication Number Publication Date
CN115498037A true CN115498037A (en) 2022-12-20

Family

ID=84465406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110674533.8A Pending CN115498037A (en) 2021-06-17 2021-06-17 Semiconductor structures and methods of forming them

Country Status (1)

Country Link
CN (1) CN115498037A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270333A (en) * 2007-04-17 2008-11-06 Sony Corp Semiconductor device and manufacturing method thereof
CN102013424A (en) * 2009-09-04 2011-04-13 台湾积体电路制造股份有限公司 Integrated Circuits and Their Manufacturing Methods
CN102376538A (en) * 2010-08-04 2012-03-14 台湾积体电路制造股份有限公司 Method of forming polysilicon resistor device and semiconductor device
TW201338131A (en) * 2012-03-06 2013-09-16 United Microelectronics Corp Resistor and manufacturing method thereof
US20140167181A1 (en) * 2012-12-13 2014-06-19 Samsung Electronics Co., Ltd. Semiconductor devices including a resistor structure and methods of forming the same
US20150228708A1 (en) * 2014-02-10 2015-08-13 Globalfoundries Inc. Tunable poly resistors for hybrid replacement gate technology and methods of manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270333A (en) * 2007-04-17 2008-11-06 Sony Corp Semiconductor device and manufacturing method thereof
CN102013424A (en) * 2009-09-04 2011-04-13 台湾积体电路制造股份有限公司 Integrated Circuits and Their Manufacturing Methods
CN102376538A (en) * 2010-08-04 2012-03-14 台湾积体电路制造股份有限公司 Method of forming polysilicon resistor device and semiconductor device
TW201338131A (en) * 2012-03-06 2013-09-16 United Microelectronics Corp Resistor and manufacturing method thereof
US20140167181A1 (en) * 2012-12-13 2014-06-19 Samsung Electronics Co., Ltd. Semiconductor devices including a resistor structure and methods of forming the same
US20150228708A1 (en) * 2014-02-10 2015-08-13 Globalfoundries Inc. Tunable poly resistors for hybrid replacement gate technology and methods of manufacturing

Similar Documents

Publication Publication Date Title
US20210296257A1 (en) Fabrication method of semiconductor structure
TWI548096B (en) Method for forming contact structure on fin field effect transistor semiconductor device and device therefor
CN111653483B (en) Semiconductor device and method for manufacturing the same
CN111223865B (en) Method for forming contact-to-gate monitoring pattern and semiconductor element
KR20200000784A (en) Dielectric spacer to prevent contacting shorting
TW202002114A (en) Semiconductor devices
KR20120057818A (en) Method of manufacturing semiconductor devices
US20220230921A1 (en) Method and structure for metal gates
US12356658B2 (en) Semiconductor structure and method of forming the same
US12100706B2 (en) Semiconductor structure and method of forming thereof
KR20210148931A (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
CN114068481B (en) Semiconductor structure and forming method thereof
CN115621249A (en) Semiconductor structure and forming method thereof
WO2022126488A1 (en) Semiconductor structure and forming method therefor
JP5735680B2 (en) Semiconductor device and manufacturing method thereof
JP2013191808A (en) Semiconductor device and method for manufacturing semiconductor device
CN115084214B (en) Semiconductor structure and method for forming the same
CN115498037A (en) Semiconductor structures and methods of forming them
CN115692412A (en) Semiconductor structure and forming method thereof
JP2013254860A (en) Method for manufacturing semiconductor device
CN114551564B (en) Semiconductor structure and method for forming the same
US20240096753A1 (en) Semiconductor device including insulating structure surrounding through via and method for forming the same
CN114823842A (en) Semiconductor structure and forming method thereof
CN115224116A (en) Semiconductor structure and forming method thereof
CN115224115A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination