CN115513017A - Spindt cathode electron source and preparation method and application thereof - Google Patents
Spindt cathode electron source and preparation method and application thereof Download PDFInfo
- Publication number
- CN115513017A CN115513017A CN202210996108.5A CN202210996108A CN115513017A CN 115513017 A CN115513017 A CN 115513017A CN 202210996108 A CN202210996108 A CN 202210996108A CN 115513017 A CN115513017 A CN 115513017A
- Authority
- CN
- China
- Prior art keywords
- layer
- emission
- insulating layer
- silicon substrate
- cone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 239000010410 layer Substances 0.000 claims abstract description 222
- 239000000758 substrate Substances 0.000 claims abstract description 98
- 239000010703 silicon Substances 0.000 claims abstract description 88
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 88
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000011247 coating layer Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 72
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 37
- 238000005530 etching Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 19
- 239000000377 silicon dioxide Substances 0.000 claims description 19
- 235000012239 silicon dioxide Nutrition 0.000 claims description 19
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 239000011241 protective layer Substances 0.000 claims description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 12
- 238000001771 vacuum deposition Methods 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000001259 photo etching Methods 0.000 claims 1
- 238000000151 deposition Methods 0.000 description 24
- 238000005253 cladding Methods 0.000 description 22
- 230000008021 deposition Effects 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 12
- 230000005684 electric field Effects 0.000 description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000011733 molybdenum Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- 230000000873 masking effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000003631 wet chemical etching Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QSDQMOYYLXMEPS-UHFFFAOYSA-N dialuminium Chemical compound [Al]#[Al] QSDQMOYYLXMEPS-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 238000000233 ultraviolet lithography Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
- H01J1/3044—Point emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
技术领域technical field
本发明涉及真空电子技术领域。更具体地,涉及一种Spindt阴极电子源及其制备方法和应用。The invention relates to the technical field of vacuum electronics. More specifically, it relates to a Spindt cathode electron source and its preparation method and application.
背景技术Background technique
基于强电场诱发电子逸出原理的场发射电子源,具有无需外能,室温工作,瞬时启动以及大电流密度优势,在真空电子器件中替代传统热阴极电子源,有望保留器件高频率、大功率、耐高温、耐辐射的优点,同时还能实现更小的体积和更轻的重量,具有很好的综合优势。场发射电子源潜在应用,包括各种高端分析仪器、显示器件、X射线发射器、微波功率器件、高能粒子加速器件、空间推进器件等诸多场景。研制高性能场发射电子源,对真空电子器件的发展和进步,具有十分重要的意义。The field emission electron source based on the principle of electron escape induced by a strong electric field has the advantages of no external energy, room temperature operation, instant start and high current density. It can replace the traditional hot cathode electron source in vacuum electronic devices, and it is expected to retain the high frequency and high power of the device. , high temperature resistance, and radiation resistance, and at the same time achieve smaller volume and lighter weight, which has very good comprehensive advantages. Potential applications of field emission electron sources include various high-end analytical instruments, display devices, X-ray emitters, microwave power devices, high-energy particle acceleration devices, space propulsion devices and many other scenarios. The development of high-performance field emission electron sources is of great significance to the development and progress of vacuum electronic devices.
Spindt阴极是开发最早,发展和应用最为成熟的场发射电子源,后期很多场发射电子源研究都曾以此为借鉴。Spindt阴极是一种大量集成微发射单元的阵列式阴极,图1示出了一个其典型单元的结构,图1中各部件标号分别表示为:101-硅基底,201-绝缘层,301-栅极和401-发射尖锥。正常工作时,在101-硅基底和301-栅极施加正向偏压,即可在401-发射尖锥表面产生强电场,导致电子发射。随着栅极偏压的升高,单元发射电流能够呈指数形式迅速增长。微发射单元大量集成,使得Spindt阴极能够同时维持很大电流密度和总电流。The Spindt cathode is the field emission electron source that was developed the earliest and is the most mature in development and application. It was used as a reference for many researches on field emission electron sources in the later period. The Spindt cathode is an array cathode with a large number of integrated micro-emission units. Figure 1 shows the structure of a typical unit. The components in Figure 1 are marked as: 101-silicon substrate, 201-insulating layer, 301-gate pole and 401-emitter tip. When working normally, applying a forward bias voltage on the 101-silicon substrate and the 301-gate can generate a strong electric field on the surface of the 401-emission cone, resulting in electron emission. As the gate bias voltage increases, the cell emission current can rapidly increase exponentially. A large number of micro-emitting units are integrated, so that the Spindt cathode can maintain a large current density and total current at the same time.
然而Spindt阴极电子源,在大电流应用时常会出现电弧失效,影响器件可靠性。相关研究表明,出现电弧失效的最主要诱因,是当301-栅极和101-硅基底之间施加很高电压时,在101-硅基底、201-绝缘层和真空三结合点部位会产生非期望的电子发射,非期望的发射电子在电场作用下,沿201-绝缘层边壁向301-栅极爬升,期间不断碰撞产生电子倍增,继而形成沿络放电,并最终在301-栅极和401-发射尖锥诱发电弧导致损毁。对于这种电弧失效,前期已有两类相关的应对专利技术。However, the Spindt cathode electron source often has arc failure in high current applications, which affects the reliability of the device. Relevant studies have shown that the main cause of arc failure is that when a high voltage is applied between the 301-gate and the 101-silicon substrate, an abnormality will occur at the junction of the 101-silicon substrate, the 201-insulating layer and the vacuum triple junction. The expected electron emission, the undesired electron emission climbs along the side wall of the 201-insulation layer to the 301-gate under the action of the electric field, during which the electrons are multiplied by constant collisions, and then discharge along the network is formed, and finally in the 301-gate and 401-Emitting a cone-induced arc causes damage. For this kind of arc failure, there have been two types of related patented technologies in the early stage.
一类技术是力图阻断电子沿络放电的路径。日本专利JP-A8-321255结构,如图2所示,引入第二种绝缘层材料,这两种绝缘材料构建3层交替的绝缘层201,202和203,实际上也可以构建5层、7层或者更多层结构,利用两种材料不同腐蚀选择比导致的横向腐蚀差异,能够实现总体褶皱结构的绝缘侧壁。这种褶皱结构绝缘侧壁,使得从101-硅基底、201-绝缘层和真空三结合点部位产生电子,沿壁向301-栅极运动及产生沿络放电难度大大增加。美国专利US6075315A结构,如图3所示,同样引入另一种绝缘层材料,但只用其在201-绝缘层和301-栅极之间构建了204-屏蔽层。专门结构设计,使得301-栅极适度回缩,用204-屏蔽层隔绝101-硅基底、201-绝缘层和真空三结合点部位至301-栅极的空间直视,从而使得非期望发射电子难以产生沿络放电到达301-栅极。然而该类技术,并未阻止非期望电子发射,虽然增加了电子沿络放电难度,但未解决根本问题。并且美国专利结构,由于301-栅极回缩,大大降低了相同工作电压下401-发射尖锥表面电场强度,削弱了Spindt阴极电子发射能力。One type of technology is to try to block the path of electron discharge along the network. The structure of Japanese patent JP-A8-321255, as shown in Figure 2, introduces a second insulating layer material, and these two insulating materials construct three alternating layers of
另一类技术是力图阻断产生空间电弧的通道。美国专利US6369496B1结构,如图4所示,利用另一种绝缘材料构建205-绝缘环柱,用以包围401-发射尖锥,将其与201-绝缘层和301-栅极隔离,避免空间电弧产生。美国专利US005442193A结构,如图5所示,利用另一种绝缘材料构建206-遮盖层,将201-绝缘层和301-栅极完全敷形遮盖,以期阻断其和401-发射尖锥产生空间电弧。然而这类技术,也未从根本上阻止非期望电子发射,并且前者隔离不彻底,后者由于绝缘遮盖原因会要求更高工作电压,也会导致绝缘击穿以及空间电弧。Another type of technology is trying to block the channel that generates space arc. U.S. Patent US6369496B1 structure, as shown in Figure 4, uses another insulating material to construct 205-insulating ring columns to surround 401-emission cones and isolate them from 201-insulating layers and 301-grids to avoid space arcs produce. The US005442193A structure, as shown in Figure 5, uses another insulating material to construct the 206-covering layer, and completely conformally covers the 201-insulating layer and 301-gate, in order to block it and the 401-emission cone to create a space arc. However, this type of technology does not fundamentally prevent undesired electron emission, and the isolation of the former is not complete, while the latter requires a higher operating voltage due to insulation covering, which will also lead to insulation breakdown and space arcing.
发明内容Contents of the invention
基于以上事实,本发明的目的在于提供一种Spindt阴极电子源及其制备方法和应用,解决了现有技术中不能完全克服非期望电子发射的问题,进而可以有效防止传统结构电子源常见的沿络放电和空间电弧失效。Based on the above facts, the object of the present invention is to provide a Spindt cathode electron source and its preparation method and application, which solves the problem that the undesired electron emission cannot be completely overcome in the prior art, and then can effectively prevent the common edge of the electron source with the traditional structure. Network discharge and space arc failure.
一方面,本发明提供一种Spindt阴极电子源,其结构中包含:On the one hand, the invention provides a kind of Spindt cathode electron source, comprises in its structure:
从下到上依次设置的硅基底、绝缘层和栅极,所述硅基底、绝缘层和栅极透孔间形成绝缘层空腔;A silicon substrate, an insulating layer, and a gate are sequentially arranged from bottom to top, and an insulating layer cavity is formed between the silicon substrate, the insulating layer, and the through hole of the gate;
设置于硅基底上的位于绝缘层空腔中的发射尖锥,所述发射尖锥与栅极透孔相对应;以及,an emission cone disposed on the silicon substrate and located in the cavity of the insulating layer, the emission cone corresponding to the gate through-hole; and,
设置于硅基底上的包被层,所述包被层位于绝缘层空腔中且完全覆盖所述绝缘层空腔中暴露的硅基底;a cladding layer disposed on the silicon substrate, the cladding layer being located in the cavity of the insulating layer and completely covering the silicon substrate exposed in the cavity of the insulating layer;
位于包被层与发射尖锥之间的、且包覆在发射尖锥下侧面的附带氧化层;所述发射尖锥的上侧面暴露于所述附带氧化层外。An incidental oxide layer located between the coating layer and the emitting cone and covering the lower side of the emitting cone; the upper side of the emitting cone is exposed to the incidental oxide layer.
进一步地,所述包被层为由所述硅基底表面经热氧化得到的二氧化硅。Further, the coating layer is silicon dioxide obtained by thermal oxidation of the surface of the silicon substrate.
进一步地,所述包被层厚度为30-100nm。Further, the thickness of the coating layer is 30-100 nm.
进一步地,所述发射尖锥的上侧面暴露于所述附带氧化层外的高度为0.3-0.4μm。Further, the height of the upper side of the emitting cone exposed to the incidental oxide layer is 0.3-0.4 μm.
进一步地,所述发射尖锥的材料选自高熔点、低功函数的纯金属,优选为W或Mo。Further, the material of the emitting cone is selected from pure metals with high melting point and low work function, preferably W or Mo.
进一步地,所述发射尖锥底部直径为0.6-1μm,高度为0.8-2.2μm,顶部曲率半径为20-50nm。Further, the emission cone has a bottom diameter of 0.6-1 μm, a height of 0.8-2.2 μm, and a top curvature radius of 20-50 nm.
进一步地,所述发射尖锥的上侧面暴露于所述附带氧化层外的高度为发射尖锥整体高度的15-50%。Further, the height of the upper side of the emission cone exposed to the incidental oxide layer is 15-50% of the overall height of the emission cone.
进一步地,所述附带氧化层的材质为由发射尖锥下侧面的表面经热氧化得到。Further, the material of the oxidized layer is obtained by thermal oxidation of the surface of the lower side of the emitting cone.
进一步地,所述硅基底选自半导体工艺标准N型掺杂硅片。Further, the silicon substrate is selected from semiconductor process standard N-type doped silicon wafers.
进一步地,所述硅基底电阻率为0.005-5Ω·cm。Further, the resistivity of the silicon substrate is 0.005-5Ω·cm.
进一步地,所述绝缘层材料选自二氧化硅或氮化硅。Further, the insulating layer material is selected from silicon dioxide or silicon nitride.
进一步地,所述绝缘层材料厚度为0.8-2μm。Further, the thickness of the insulating layer material is 0.8-2 μm.
进一步地,所述栅极的材料选自高熔点纯金属,优选为W或Mo;优选地,所述栅极的厚度为100-200nm,所述栅极透孔直径为0.8-1.2μm。Further, the material of the gate is selected from pure metals with high melting point, preferably W or Mo; preferably, the thickness of the gate is 100-200 nm, and the diameter of the through-hole of the gate is 0.8-1.2 μm.
又一方面,本发明提供如上所述的Spindt阴极电子源的制备方法,包括如下步骤:In another aspect, the present invention provides the preparation method of Spindt cathode electron source as described above, comprising the steps:
在硅基底上形成绝缘层;forming an insulating layer on the silicon substrate;
真空镀膜,在所述绝缘层上形成栅极层;vacuum coating, forming a gate layer on the insulating layer;
通过光刻,并依次刻蚀栅极层和绝缘层直至硅基底,形成含有栅极透孔的栅极和绝缘层空腔;Through photolithography, and sequentially etch the gate layer and insulating layer until the silicon substrate, forming a gate and insulating layer cavity containing gate through holes;
旋转基片,采用表面小倾角的方法仅在栅极表面真空镀膜一层牺牲层,缩小栅极透孔;The substrate is rotated, and only a sacrificial layer is vacuum-coated on the surface of the grid by adopting the method of small surface inclination to reduce the through-hole of the grid;
表面垂直真空镀膜一层发射尖锥材料,在空腔内形成发射尖锥;The surface is vertically vacuum-coated with a layer of emitting cone material to form an emitting cone in the cavity;
去除牺牲层及沉积在牺牲层上的发射尖锥材料;removing the sacrificial layer and the emission tip material deposited on the sacrificial layer;
旋转基片,采用表面大倾角的方法仅在栅极表面和发射尖锥上侧面真空镀膜一层保护层;The substrate is rotated, and a protective layer is only vacuum-coated on the surface of the gate and the upper side of the emission cone by adopting the method of large surface inclination;
热氧化硅基底,空腔内硅基底表面形成所述包被层,发射尖锥未保护部分附带受氧化,形成附带氧化层;The silicon substrate is thermally oxidized, the coating layer is formed on the surface of the silicon substrate in the cavity, and the unprotected part of the emission tip is incidentally oxidized to form an incidental oxide layer;
腐蚀去除所述保护层,露出栅极以及发射尖锥上侧面,得到所述Spindt阴极电子源。The protective layer is removed by etching to expose the grid and the upper side of the emission cone to obtain the Spindt cathode electron source.
又一方面,本发明提供如上所述的Spindt阴极电子源在真空电子用器件中的应用。In yet another aspect, the present invention provides the application of the Spindt cathode electron source as described above in devices for vacuum electronics.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提供的Spindt阴极电子源,其包被层完全覆盖硅基底,消除了硅基底、绝缘层和真空形成的三结合点结构,杜绝了该结构点产生非期望电子发射。相对于前期阻断电子沿络放电传输路径或者电弧放电路径技术,本发明消除了产生放电和电弧的电子发射源头,可以有效防止传统结构电子源在高电压、大电流工作状态容易出现沿络放电和空间电弧失效,有效提高电子源工作可靠性。In the Spindt cathode electron source provided by the invention, the cladding layer completely covers the silicon substrate, eliminating the triple junction structure formed by the silicon substrate, insulating layer and vacuum, and preventing the undesired electron emission from the structure point. Compared with the previous technology of blocking the transmission path of electron discharge along the network or the path of arc discharge, the present invention eliminates the source of electron emission that generates discharge and arc, and can effectively prevent the traditional electronic source from being prone to discharge along the network under high voltage and high current working conditions. and space arc failure, effectively improving the reliability of the electron source.
本发明提供的Spindt阴极电子源的制作方法,只是在完成传统结构以后,实施发射尖锥保护层制作和基底包被层制作两步工艺,整个制作方法工艺流程简单易实施,兼容性强。The manufacturing method of the Spindt cathode electron source provided by the present invention is only to implement the two-step process of manufacturing the emitting cone protective layer and manufacturing the base coating layer after completing the traditional structure.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
图1示出示出现有技术中典型结构的Spindt阴极电子源的结构示意图。Fig. 1 shows a schematic structural diagram of a Spindt cathode electron source showing a typical structure in the prior art.
图2示出现有技术中多绝缘层褶皱侧壁结构Spindt阴极电子源的结构示意图。FIG. 2 shows a schematic structural diagram of a Spindt cathode electron source with a multi-insulation layer wrinkled sidewall structure in the prior art.
图3示出现有技术中带栅极屏蔽层Spindt阴极电子源的结构示意图。FIG. 3 shows a schematic structural diagram of a Spindt cathode electron source with a grid shielding layer in the prior art.
图4示出现有技术中带发射尖锥绝缘环柱隔离Spindt阴极电子源的结构示意图。Fig. 4 shows a schematic structural diagram of a Spindt cathode electron source with an emission tip insulating ring column isolation in the prior art.
图5示出现有技术中带遮盖层Spindt阴极电子源的结构示意图。Fig. 5 shows a schematic structural diagram of a Spindt cathode electron source with a covering layer in the prior art.
图6示出本发明一种基底包被的Spindt阴极电子源的结构示意图。Fig. 6 shows a schematic structural view of a substrate-coated Spindt cathode electron source of the present invention.
图7a-图7h示出本发明一种基底包被的Spindt阴极电子源的制作流程图。Fig. 7a-Fig. 7h show a fabrication flow chart of a substrate-coated Spindt cathode electron source of the present invention.
图8a和图8b示出本发明一种带基底包被层的常规高宽比Spindt阴极电子源照片及局部放大照片。Fig. 8a and Fig. 8b show a conventional aspect ratio Spindt cathode electron source photo and partial enlarged photo of the present invention with a base coating layer.
图9a-图9c示出本发明一种带基底包被层的较大高宽比Spindt阴极电子源一次、二次循环制作发射尖锥阵列及最终局部放大发射单元的扫描电子照片。Figures 9a-9c show the scanning electron photographs of a Spindt cathode electron source with a large aspect ratio and a substrate cladding layer in the present invention, which is produced in one cycle and two cycles, and the emission cone array and the final partial enlarged emission unit.
图10a-图10b分别示出本发明实施例1、实施例2所得Spindt阴极电子源发射性能测试曲线。Fig. 10a-Fig. 10b respectively show the emission performance test curves of Spindt cathode electron source obtained in
具体实施方式detailed description
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to illustrate the present invention more clearly, the present invention will be further described below in conjunction with preferred embodiments and accompanying drawings. Similar parts in the figures are denoted by the same reference numerals. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present invention.
针对现有技术中Spindt阴极电子源,在大电流应用时常会出现电弧失效,影响器件可靠性,以及并没有相关技术能很好的克服该不足的问题,本发明的一个具体实施方式提供了一种Spindt阴极电子源,如图6所示,其结构中包含:In view of the Spindt cathode electron source in the prior art, arc failure often occurs in high current applications, which affects the reliability of the device, and there is no related technology that can well overcome this problem. A specific embodiment of the present invention provides a A kind of Spindt cathode electron source, as shown in Figure 6, comprises in its structure:
从下到上依次设置的硅基底101、绝缘层201和栅极301,所述硅基底101、绝缘层201和栅极透孔间形成绝缘层空腔;A
设置于硅基底101上的位于绝缘层空腔中的发射尖锥401,所述发射尖锥401与栅极透孔相对应;以及,An
设置于硅基底101上的包被层207,所述包被层207位于绝缘层空腔中且完全覆盖所述绝缘层空腔中暴露的硅基底101;A
位于包被层207与发射尖锥401之间的、且包覆在发射尖锥401下侧面的附带氧化层402;所述发射尖锥401的上侧面暴露于所述附带氧化层402外。An
本实施方式中,栅极透孔的直径小于绝缘层空腔的直径。In this implementation manner, the diameter of the gate through hole is smaller than the diameter of the cavity of the insulating layer.
通过构建包被层207,消除了传统Spindt阴极电子源由所述硅基底、绝缘层和真空形成的三结合点结构,杜绝了该处产生非期望电子发射,以及由此带来的沿络放电和空间电弧,从而提高了Spindt阴极电子源在高电压、大电流下工作可靠性。By constructing the
包被层207作用是有效遮盖所述硅基底101,要求一定的厚度以耐受电场击穿。所述包被层207位于由所述硅基底101、发射尖锥401和绝缘层201构成的空腔中,完全覆盖所述硅基底101隔离真空,消除了传统结构中硅基底、绝缘层和真空构成的三结合点。综合考量包被层位置及工艺实现,所述207-包被层材料选用热氧化二氧化硅。为有效形成阻隔,所述包被层207厚度优选为30-100nm。The function of the
在一些优选示例中,所述包被层为由所述硅基底表面经热氧化得到的二氧化硅。In some preferred examples, the coating layer is silicon dioxide obtained by thermal oxidation of the surface of the silicon substrate.
发射尖锥的功能是发射电子,在一个优选示例中,所述发射尖锥401的材料选自高熔点、低功函数的纯金属,以实现对电子的有效发射。例如,发射尖锥401材料可优选为钼(熔点2620℃,功函数4.2eV)或钨(熔点3420℃,功函数4.5eV),相对于半导体工艺常用硅材料,可以克服逸出功大,化学不稳定,导电、导热差等问题,从而提供大电流稳定电子发射。The function of the emission cone is to emit electrons. In a preferred example, the material of the
所述发射尖锥401形状,影响其表面电场强度进而影响场电子发射。尖锥高度优化位置在栅极上下表面之间,具体由所述绝缘层201和栅极301厚度确定,范围优选在0.8-2.2μm;尖锥顶端曲率半径,具体由所述发射尖锥401高度、栅极透孔301直径以及制作尖锥双方向沉积膜层厚度确定,优化范围在20-50nm;发射尖锥底部直径,由所述栅极301孔直径以及制作尖锥倾斜方向沉积厚度确定,范围在0.6-1μm。The shape of the
Spindt阴极场发射电子源原理认为,场致电子发射仅存在于发射尖锥401顶端很小面积范围。示例性的,所述发射尖锥的上侧面暴露于所述附带氧化层外的高度为发射尖锥整体高度的15-50%。此条件下,发射尖锥401上侧面(上半部分)保持了原有材料特性,使Spindt阴极电子源保持应有的电子发射性能。发射尖锥401被附带氧化层包覆的下侧面(下半部分)由于位置原因,不影响电子源性能。According to the principle of the Spindt cathode field emission electron source, the field electron emission only exists in a small area at the top of the
在又一些优选实例中,所述发射尖锥的上侧面暴露于所述附带氧化层外的高度为0.3-0.4μm。In still some preferred examples, the height of the upper side of the emitting cone exposed to the incidental oxide layer is 0.3-0.4 μm.
示例性的,所述附带氧化层的材质为由发射尖锥下侧面的表面经热氧化得到。硅基底同时起承载结构作用,以及适用微加工工艺特点,选用微电子标准尺寸硅片;所述硅基底101承担提供发射电子及阴极导电功能,优选选用半导体工艺标准N型掺杂硅片,电阻率优选为0.005-5Ω·cm。Exemplarily, the material with the oxide layer is obtained by thermal oxidation of the surface of the lower side of the emitting cone. The silicon base plays the role of carrying structure at the same time, and is suitable for the characteristics of micro-machining technology. The standard size silicon chip of microelectronics is selected; the
绝缘层201的作用是抵御所述硅基底101和栅极301之间的高工作电压,需要所述绝缘层201有较高的击穿场强和厚度。绝缘层厚度,根据击穿场强以及所述栅极透孔直径和所述发射尖锥401形状综合影响而定,优选范围为0.8-2μm;绝缘层201材料优选自工艺兼容二氧化硅或氮化硅,更优选地,根据工艺实现方法,所述绝缘层201厚度为0.8-1.2μm时,材料选自综合性能更优的热氧化二氧化硅,厚度为1.2-2μm时,材料选自制备工艺更优的化学气相沉积氮化硅。The function of the insulating
栅极的作用是通过加载的高电压,在所述发射尖锥401表面形成强电场以引出电子,本身要承载结构强度以及一定的漏电热功率耗散。所述栅极301的材料,选自高熔点的金属材料,在一个优选示例中,栅极301材料选自钼或钨。所述栅极301厚度,受结构强度和微加工工艺影响,根据实际应用情况,优选为100-200nm。所述栅极透孔直径,在施加电压情况下,影响所述发射尖锥401表面电场强度以及电子发射性能,根据实际应用情况,优选为0.8-1.2μm。The function of the grid is to form a strong electric field on the surface of the emitting
根据本发明的又一个具体实施方式,提供一种Spindt阴极电子源的制备方法,其包括如下步骤:According to another specific embodiment of the present invention, a kind of preparation method of Spindt cathode electron source is provided, and it comprises the steps:
1)在硅基底101上形成绝缘层201。1) An insulating
绝缘层材料优选热氧化二氧化硅,它由硅片材料直接氧化形成,和硅片具有最佳结合效果;但二氧化硅超过一定厚度后热氧化生长极为缓慢,因而绝缘层较薄时选用热氧化二氧化硅,超过一定厚度后选用化学气相沉积方法的氮化硅。在一个示例中,热氧化二氧化硅绝缘层,厚度范围为0.8-1.2μm;在另一个示例中,化学气相沉积二氧化硅绝缘层,厚度范围为1.2-2μm。化学气相沉积方法,也可沉积氮化硅材料作为绝缘层。The material of the insulating layer is preferably thermally oxidized silicon dioxide, which is formed by direct oxidation of the silicon wafer material and has the best bonding effect with the silicon wafer; however, the thermal oxidation growth of silicon dioxide exceeds a certain thickness is extremely slow, so thermal oxidation is used when the insulating layer is thin. Oxide silicon dioxide, and silicon nitride by chemical vapor deposition method after exceeding a certain thickness. In one example, the thermally oxidized silicon dioxide insulating layer has a thickness in the range of 0.8-1.2 μm; in another example, the chemical vapor deposition silicon dioxide insulating layer has a thickness in the range of 1.2-2 μm. The chemical vapor deposition method can also deposit silicon nitride material as an insulating layer.
2)真空镀膜,在所述绝缘层201上形成栅极层301,如图7a所示。2) Vacuum coating, forming a
栅极材料选自高熔点的金属材料,优选W或Mo。栅极301通过真空镀膜技术形成,优选磁控溅射镀膜方法,相对其他镀膜工艺,溅射镀膜能够得到较好的膜层结合力。栅极301厚度可根据实际应用情况进行调整,优选为100-200nm。The gate material is selected from metal materials with high melting point, preferably W or Mo. The
3)通过光刻,并依次刻蚀栅极层301和绝缘层201直至硅基底101,形成含有栅极透孔的栅极301和绝缘层空腔,如图7b所示。3) By photolithography, and sequentially etching the
半导体工艺常规光刻技术,用于形成栅极透孔图形的掩蔽层,并可通过后续刻蚀工艺将该掩蔽层上图形复制转移到结构层,本发明中结构层为栅极层。Conventional photolithography technology in semiconductor technology is used to form the masking layer of the gate through-hole pattern, and the pattern on the masking layer can be copied and transferred to the structural layer through a subsequent etching process. The structural layer in the present invention is the gate layer.
透过图形掩蔽层刻蚀栅极301,形成栅极透孔,刻蚀优选反应离子刻蚀方法;反应离子刻蚀是高度各向异性的干法刻蚀方法,能在产生深度方向刻蚀同时基本保持宽度方向尺寸不变。对于本发明中栅极透孔刻蚀,能够完成301-栅极100-200nm深度方向刻蚀,同时维持光刻掩蔽层定义的0.8-1.2μm栅极透孔直径基本不变,得到近似陡直的侧壁。The
透过栅极透孔刻蚀绝缘层,形成绝缘层栅控空腔,刻蚀优选反应离子刻蚀和湿法化学腐蚀结合方法;首先反应离子刻蚀实现绝缘层0.8-2μm基本全部深度刻蚀,确保过程中不产生横向的钻蚀,从而避免栅极空悬和绝缘层结合不牢;湿法化学腐蚀用作短时间漂洗刻蚀,确保绝缘层空腔刻蚀直达硅基底。由于湿法化学腐蚀方法具有很好的腐蚀选择比,可以保证该过程只基本针对绝缘层材料,而不伤害硅基底。短时间湿法化学腐蚀过程,会产生轻微的横向钻蚀,使得绝缘空腔横向尺寸略大于0.8-1.2μm栅极透孔直径。Etch the insulating layer through the gate through hole to form a gate-controlled cavity in the insulating layer. The combination of reactive ion etching and wet chemical etching is preferred for etching; first, reactive ion etching realizes the etching of the insulating layer at a depth of 0.8-2 μm. , to ensure that there is no lateral undercutting during the process, so as to avoid the gate being suspended and the insulating layer bonded weakly; the wet chemical etching is used as a short-term rinse etching to ensure that the insulating layer cavity is etched directly to the silicon substrate. Since the wet chemical etching method has a good etching selection ratio, it can be ensured that the process only basically targets the insulating layer material and does not damage the silicon substrate. The short-term wet chemical etching process will produce slight lateral undercutting, making the lateral size of the insulating cavity slightly larger than the diameter of the 0.8-1.2 μm gate through-hole.
4)旋转基片,采用表面小倾角的方法仅在栅极表面真空镀膜一层牺牲层,缩小栅极透孔,如图7c所示。4) The substrate is rotated, and only one layer of sacrificial layer is vacuum-coated on the surface of the gate by adopting the method of a small surface inclination to reduce the through-hole of the gate, as shown in FIG. 7c.
小倾角沉积牺牲层目的,其一在于通过缩小栅极301的孔直径,进而控制4发射尖锥401的底部大小;其二在于完全包裹栅极301,使得后续工艺中制作发射尖锥401所沉积膜层和栅极301形成有效隔离。The purpose of depositing the sacrificial layer at a small inclination angle is to reduce the hole diameter of the
牺牲层501材料,选自和硅基底101,绝缘层201,栅极301和401发射尖锥401具有腐蚀选择比的材料,优选地选自金属氧化物材料以利于形成晶粒细小均匀膜层。在一个优选例中,选自三氧化二铝。The material of the
牺牲层501选自小倾角沉积,目的是为牺牲层501材料仅存在栅极301表面,包括上表面和栅极透孔边缘,但不会视线角度进入硅基底101和201-绝缘层形成的空腔内部。优选地,小倾角范围选自和栅极平面夹角15-30度。The
牺牲层501真空镀膜,优选自平行束流入射的真空蒸发镀膜。平行束流入射,以保证Spindt阴极阵列上各个单元的栅极收口一致性;真空蒸发,保证沉积材料颗粒细小以便在栅极透孔形成光滑边缘。在一个优选例中,真空镀膜选自电子束蒸发镀膜。The
牺牲层501沉积厚度,主要取决于栅极301透孔的开孔缩小程度,和沉积材料束流入射角度相关。优选地,栅极透孔的开孔直径缩小约为0.2μm,相应地牺牲层501沉积厚度范围100-200nm。The deposition thickness of the
5)表面垂直真空镀膜一层发射尖锥材料,在空腔内形成发射尖锥401,如图7d所示。5) A layer of emitting cone material is vacuum-coated vertically on the surface to form an emitting
表面垂直沉积目的,在于形成发射尖锥401。垂直沉积的材料,部分堆积在牺牲层501上面,形成附带沉积层403;部分透过经牺牲层501缩小的栅极透孔,堆积在硅基底101上,由于该过程中不断沉积的材料也会收缩栅极透孔,致使堆积在硅基底101上材料范围不断缩小,从而形成圆锥形状发射尖锥401。The purpose of the surface vertical deposition is to form the emitting
发射尖锥材料选自高熔点、低功函数的纯金属,例如优选钼或钨,以实现对电子的有效发射。在另一个优选示例中,还可以在发射尖锥401表面沉积高熔点、低功函数的导电非金属材料,如碳化锆作为电子发射材料。The emission tip material is selected from pure metals with high melting point and low work function, such as preferably molybdenum or tungsten, so as to realize efficient emission of electrons. In another preferred example, a conductive non-metallic material with a high melting point and low work function, such as zirconium carbide, can also be deposited on the surface of the
发射尖锥材料沉积,选自真空蒸发,保证沉积材料颗粒细小、均匀,以便形成结构致密、表面光滑的发射尖锥;适应高熔点材料沉积要求,发射尖锥材料沉积选自电子束蒸发镀膜。Emission cone material deposition is selected from vacuum evaporation, which ensures that the particles of the deposited material are fine and uniform, so as to form an emission cone with a dense structure and smooth surface; to meet the requirements of high melting point material deposition, the emission cone material deposition is selected from electron beam evaporation coating.
发射尖锥材料沉积厚度,取决于所要求形成的发射尖锥401高度,二者基本为(1-1.2):1比例关系。对于高度范围在0.8-1μm尖锥的形成,优选沉积厚度为1-1.2μm。鉴于优选结构中,小角度沉积牺牲层501已将栅极透孔缩小至0.6-1μm,发射尖锥401材料沉积过程中,由于栅极透孔会不断缩小直至完全封闭,导致沉积材料不能再进入空腔增高发射尖锥401,一次材料沉积形成的发射尖锥401高度不会超过1μm。因而对于高度范围在1-2.2μm尖锥的形成,需要进行多次发射尖锥材料沉积工艺。The deposition thickness of the emission cone material depends on the required height of the
6)去除牺牲层501及沉积在牺牲层上的发射尖锥材料,如图7e所示。6) Removing the
牺牲层501的材料,选自和硅基底101,绝缘层201,栅极301,发射尖锥401以及后续包被层207具有腐蚀选择比的材料,以便在腐蚀去除牺牲层材料时,腐蚀液不会损伤其他材料。在一个优选例中,牺牲层材料选自三氧化二铝,相应地腐蚀液选自120℃热磷酸,或者浓度20%的氢氧化钾溶液。The material of the
7)旋转基片,采用表面大倾角的方法仅在栅极301表面和发射尖锥601上侧面真空镀膜一层保护层601和602,如图7f所示。7) The substrate is rotated, and a
大倾角沉积保护层目的,在于在栅极301和发射尖锥401表面形成一层临时保护,使得在后续形成包被层207工艺中,栅极301表面和发射尖锥401部分表面状态不受影响。The purpose of depositing the protective layer at a large inclination angle is to form a layer of temporary protection on the surface of the
保护层材料,选自和硅基底101,绝缘层201,栅极301和发射尖锥401具有腐蚀选择比的材料,并且不受后续形成包被层207工艺影响,优选地选自金属氧化物材料以利于形成晶粒细小均匀膜层。在一个优选例中,选自三氧化二铝。The protective layer material is selected from materials having an etching selectivity ratio with the
保护层选自大倾角沉积,是相对于前述牺牲层的小倾角沉积而言,目的是为保护层材料存在栅极301表面,包括上表面和栅极透孔边缘,以及发射尖锥401的上半部分表面;附带地,保护层材料还可能存在于绝缘层201侧壁的上半部分601,这部分材料并无实际用途;但保护层材料应确保不会视线角度到达硅基底101表面,避免影响后续包被层207的形成。优选地,大倾角范围选自和栅极301平面夹角30-60度。The protection layer is selected from high-inclination-angle deposition, which is relative to the small-inclination-angle deposition of the aforementioned sacrificial layer. half of the surface; incidentally, the protective layer material may also exist in the
保护层真空镀膜,优选自平行束流入射的真空蒸发镀膜。平行束流入射,保证在倾角蒸镀时没有乱向粒子进入空腔到达硅基底101表面;真空蒸发,保证沉积材料颗粒细小以形成均匀保护。在一个优选例中,真空镀膜选自电子束蒸发镀膜。The protective layer is vacuum-coated, preferably vacuum-evaporated from parallel beams. Parallel beam flow ensures that no chaotic particles enter the cavity and reach the surface of the
保护层沉积厚度,以在栅极301和发射尖锥401表面形成连续致密薄膜为基准,优选地,沉积厚度范围50-100nm。The thickness of the protective layer is deposited on the basis of forming a continuous dense film on the surface of the
8)热氧化硅基底101,空腔内硅基底101表面形成所述包被层207,发射尖锥401未保护部分附带受氧化,形成附带氧化层402,如图7g所示。8) The
热氧化硅基底101的目的,是将硅材料直接氧化,形成的二氧化硅在空腔内硅基底101表面形成包被层207,完全覆盖硅基底,以消除由硅基底101、绝缘层201和空腔内真空形成的三结合点。包被层207要求一定的厚度以耐受电场击穿,以及有效形成电子发射阻隔,厚度优选为30-100nm。The purpose of thermally oxidizing the
常温下硅片即可自然氧化,但其氧化层厚度一般不超过20nm,不能满足所述包被层207要求,因而使用高温氧化方法。优选地,硅基底101热氧化使用较低温度700-800℃,既保证实现所需氧化层厚度,又不过度影响发射尖锥401和硅基底101结合。更优选地,热氧化可以使用干氧热氧化或水汽热氧化,前者速率慢可以得到致密氧化层,后者速率快可以缩短工艺时间。The silicon wafer can be naturally oxidized at room temperature, but the thickness of the oxide layer generally does not exceed 20nm, which cannot meet the requirements of the
9)腐蚀去除所述保护层601,602和603,露出栅极301以及发射尖锥401上侧面,得到所述Spindt阴极电子源,如图7h所示。9) Etching and removing the
发射尖锥保护层601和栅极保护602材料,选自和硅基底101,绝缘层201,栅极301,发射尖锥401以及包被层207具有腐蚀选择比的材料,腐蚀去除保护层材料时,腐蚀液不会损伤其他材料。在一个优选例中,牺牲层材料选自三氧化二铝,相应地腐蚀液选自120℃热磷酸,或者浓度20%的氢氧化钾溶液。Emitting
以下,结合具体实施例进行说明:Below, illustrate in conjunction with specific embodiment:
实施例1Example 1
一种带基底包被层的Spindt阴极电子源,发射尖锥常规高宽比接近1:1,其结构如图6所示,包括从下到上依次设置的硅基底101、发射尖锥401及附带氧化层402、包被层207、绝缘层201和栅极301。其制作方法包括如下步骤:A Spindt cathode electron source with a base cladding layer, the conventional aspect ratio of the emission cone is close to 1:1, and its structure is shown in Figure 6, including a
1)硅基底101选用N型掺杂,<100>晶向、电阻率0.01Ω·cm硅片,在1200℃热氧化16小时,生长一层厚度0.8μm二氧化硅作为绝缘层201。1) The
2)使用射频磁控溅射真空镀膜方法,600W功率下溅射3分钟,在绝缘层201上沉积一层厚度0.2μm钼作为栅极301,如图7a所示。2) Using the radio frequency magnetron sputtering vacuum coating method, sputtering for 3 minutes at a power of 600W, depositing a layer of molybdenum with a thickness of 0.2 μm on the insulating
3)在栅极301涂敷厚度1.4μm的Shipley S1818光刻胶,用紫外光刻在光刻胶层形成直径1μm圆孔阵列作为掩蔽层;透过光刻胶掩蔽层,通过感应耦合等离子体方法,使用六氟化硫工艺气氛刻蚀栅极301,放电功率500W,刻蚀功率300W,4分钟完全刻透,得到栅极301开孔(透孔);透过栅极开孔,通过感应耦合等离子体方法,使用三氟甲烷工艺气氛刻蚀绝缘层201,放电功率500W,刻蚀功率300W,6分钟刻蚀大约0.6μm深度,而后使用BOE缓冲液(氢氟酸:氟化铵:水=3ml:6g:10ml)继续腐蚀,5分钟完全腐蚀二氧化硅绝缘层直至硅基底101,同时产生一定程度的横向钻蚀;去除残余Shipley S1818光刻胶,形成栅极控制的空腔结构,如图7b所示。3) Coat the
4)上述基片沿平面法向,以30RPM自旋转,同时在平面夹角20度方向,用电子束蒸发三氧化二铝,2kW功率沉积10分钟,在栅极301平面上形成200nm厚度三氧化二铝作为牺牲层501;该牺牲层完全包裹栅极301上表面和开孔侧面,并将栅极开孔由1μm缩减至0.8μm,如图7c所示。4) The above-mentioned substrate is rotated at 30 RPM along the normal direction of the plane, and at the same time, in the direction of the included angle of 20 degrees, the Al2O3 is evaporated with an electron beam and deposited at a power of 2kW for 10 minutes to form a 200nm thick Al2O3 on the plane of the
5)上述基片沿垂直方向,用电子束蒸发钼,沉积材料透过301-栅极301开孔到达101-硅基底101,随着栅极开孔不断缩小,在硅基底101上逐渐形成发射尖锥401。4kW功率沉积40分钟,沉积钼层厚度1.1μm,得到发射尖锥401高度约0.9μm,同时在牺牲层501平面上形成厚度1.1μm的附带沉积层403,如图7d所示。5) The above substrate is evaporated molybdenum with electron beam along the vertical direction, and the deposited material reaches 101-
6)使用浓度85%温度120℃热磷酸,腐蚀牺牲层501,1分钟完全溶解,牺牲层501上的附带沉积层403随之从基体剥离,留下硅基底101、发射尖锥401、绝缘层201和栅极301构成的传统结构Spindt阴极电子源,如图7e所示。6) Use hot phosphoric acid with a concentration of 85% and a temperature of 120°C to etch the
7)上述基片沿平面法向,以30RPM自旋转,同时在平面夹角45度方向,用电子束蒸发三氧化二铝,2kW功率沉积2分钟,在栅极301平面上形成50nm厚度栅极保护层602,完全包裹栅极301上表面和开孔侧面,在发射尖锥401上半部分形成50nm厚度发射尖锥保护层601,完全包裹发射尖锥401顶端电子发射部分;同时在绝缘层201侧壁形成附带保护层,如图7f所示。7) The above-mentioned substrate is rotated at 30 RPM along the normal direction of the plane, and at the same time, in the direction of 45 degrees included in the plane, Al2O3 is evaporated with an electron beam and deposited for 2 minutes at a power of 2kW to form a 50nm thick grid on the
8)进行热氧化,在800℃下干氧氧化5小时,在空腔内101-硅基底101表面形成厚度30nm的二氧化硅207-包被层207,同时401-发射尖锥下半部分未受保护部分附带形成氧化表面附带氧化层402,如图7g所示。8) Carry out thermal oxidation, dry oxygen oxidation at 800°C for 5 hours, and form a silicon dioxide 207-
9)使用浓度85%温度120℃热磷酸,腐蚀发射尖锥保护层601、栅极保护层602和附带保护层603,1分钟完全溶解,露出栅极301以及发射尖锥401上半部分,得到基底包被的Spindt阴极电子源,如图7h所示。9) Use hot phosphoric acid with a concentration of 85% and a temperature of 120°C to corrode the
由上述流程得到基底包被的Spindt阴极电子源,发射阵列单元栅极开孔直径1μm,绝缘层厚度0.8μm,栅极厚度0.2μm,发射尖锥高度0.9μm,发射尖锥的尖端曲率半径50nm,包被层厚度30nm,该Spindt阴极电子源阵列及局部放大发射单元的扫描电子照片分别如图8a和8b所示。The substrate-coated Spindt cathode electron source is obtained by the above process, the diameter of the gate opening of the emission array unit is 1 μm, the thickness of the insulating layer is 0.8 μm, the thickness of the gate is 0.2 μm, the height of the emission cone is 0.9 μm, and the radius of curvature of the tip of the emission cone is 50nm , the thickness of the cladding layer is 30nm, the scanning electron photos of the Spindt cathode electron source array and the partially enlarged emission unit are shown in Fig. 8a and 8b respectively.
实施例2Example 2
一种带基底包被层的Spindt阴极电子源,发射尖锥常规高宽比接近1.5:1,其结构如图6所示,包括从下到上依次设置的硅基底101、发射尖锥401及附带氧化层402、包被层207、绝缘层201和栅极301。其制作方法包括重复实施例1,区别在于:A Spindt cathode electron source with a base cladding layer, the conventional aspect ratio of the emission cone is close to 1.5:1, and its structure is shown in Figure 6, including a
步骤1中,201-绝缘层201生长采用化学气相沉积方法,四乙基原硅酸盐(TEOS)640度分解120分钟,得到厚度1.2μm二氧化硅绝缘层。In
步骤3中,使用三氟甲烷工艺气氛刻蚀绝缘层201,工艺参数不变,15分钟刻蚀大约1μm深度二氧化硅。In step 3, the insulating
步骤4-6需循环做两次:第一次循环,步骤5中沉积钼层厚度0.6μm,得到发射尖锥401高度约0.5μm。第二次循环,步骤4中电子束蒸发三氧化二铝,在栅极301平面上形成250nm厚度牺牲层501,将栅极开孔由1μm缩减至0.7μm;步骤5中沉积钼层厚度1μm,在发射尖锥401已有0.5μm高度上叠加0.8μm。Steps 4-6 need to be repeated twice: in the first cycle, the thickness of the molybdenum layer deposited in
步骤8中,在800℃下水汽热氧化2小时,在空腔内硅基底101表面形成厚度100nm的二氧化硅包被层207。In step 8, thermal oxidation was performed with water vapor at 800° C. for 2 hours to form a silicon
由上述流程得到基底包被的Spindt阴极电子源,发射阵列单元栅极开孔直径1μm,绝缘层厚度1.2μm,栅极厚度0.2μm,发射尖锥高度1.3μm,发射尖锥的尖端曲率半径40nm,包被层厚度100nm,该Spindt阴极电子源一次、二次循环制作发射尖锥阵列及最终局部放大发射单元的扫描电子照片分别如图9a、9b和9c所示。The substrate-coated Spindt cathode electron source is obtained by the above process, the diameter of the gate opening of the emission array unit is 1 μm, the thickness of the insulating layer is 1.2 μm, the thickness of the gate is 0.2 μm, the height of the emission cone is 1.3 μm, and the radius of curvature of the tip of the emission cone is 40nm , the thickness of the cladding layer is 100nm, the scanning electron photos of the Spindt cathode electron source for the first and second cycles of manufacturing the emission cone array and the final partial enlarged emission unit are shown in Figures 9a, 9b and 9c, respectively.
上述各实施例验证结果表明,本发明提出的基底包被的Spindt阴极电子源,可以有效消除硅基底、绝缘层和真空三结合点产生非期望电子发射,进而避免由之导致的真空电弧电子源失效问题。The verification results of the above examples show that the substrate-coated Spindt cathode electron source proposed by the present invention can effectively eliminate the undesirable electron emission generated by the silicon substrate, the insulating layer and the vacuum triple junction, thereby avoiding the resulting vacuum arc electron source Invalidation problem.
以实施例结构参数(主要是栅极孔直径、发射尖锥高度和尖锥顶端曲率半径)和材料为例,不带有基底包被层结构的Spindt阴极电子源,产生电子发射的栅极电压阈值70-80V,发射电流随栅极电压升高而增大,但在栅极电压超过120-130V时,就可会产生明显真空电弧,导致阴极电子源损毁。而本实施例1中带有基底包被结构的Spindt阴极电子源,产生电子发射的栅极电压阈值基本不变,在栅极电压超过130V以上时仍能够稳定工作,保持大电流可靠发射。实施例2及其它实施例验证显示了相似的结果,表明了本发明能够较好解决Spindt阴极电子源三结合点非期望电子导致的真空电弧失效问题。Taking the structural parameters of the embodiment (mainly the diameter of the grid hole, the height of the emission tip and the radius of curvature of the tip of the tip) and the material as an example, the Spindt cathode electron source without the base cladding layer structure generates the grid voltage for electron emission The threshold value is 70-80V, and the emission current increases with the increase of the grid voltage, but when the grid voltage exceeds 120-130V, an obvious vacuum arc may be generated, resulting in damage to the cathode electron source. However, the Spindt cathode electron source with a substrate-coated structure in Example 1 basically does not change the gate voltage threshold for electron emission, and can still work stably when the gate voltage exceeds 130V, maintaining high current and reliable emission. Example 2 and other examples show similar results, indicating that the present invention can better solve the problem of vacuum arc failure caused by undesired electrons at triple junctions of the Spindt cathode electron source.
图10给出了两个带有基底包被结构的Spindt阴极电子源发射性能测试曲线,测试环境真空度2×10-7Pa。测试采用外加阳极的三极式测试,外加阳极施加固定高压,逐步升高栅极电压测试发射电流,发射总电流包括阳极电流和栅极截获电流。图10a对应实施例1得到的包含11000个发射单元阵列、单元中心间距5μm的Spindt阴极,其在70V栅极电压下开始产生电子发射,在148V时得到24.62mA的稳定发射电流,相应发射电流密度8.7A/cm2。图10b对应实施例2得到的包含25个发射单元阵列、单元中心间距5μm的Spindt阴极,其在80V栅极电压下开始产生电子发射,在160V时得到159μA的稳定发射电流,相应发射电流密度25.4A/cm2。Figure 10 shows the emission performance test curves of two Spindt cathode electron sources with a substrate-coated structure, and the vacuum degree of the test environment is 2×10 -7 Pa. The test adopts a three-pole test with an external anode. A fixed high voltage is applied to the external anode, and the grid voltage is gradually increased to test the emission current. The total emission current includes the anode current and the grid interception current. Figure 10a corresponds to the Spindt cathode obtained in Example 1 that contains 11,000 emitting unit arrays and a unit center spacing of 5 μm. It starts to generate electron emission at a gate voltage of 70V, and obtains a stable emission current of 24.62mA at 148V. The corresponding emission current density 8.7A/cm 2 . Figure 10b corresponds to the Spindt cathode obtained in Example 2, which contains 25 emitting unit arrays and a unit center spacing of 5 μm. It starts to generate electron emission at a gate voltage of 80V, and obtains a stable emission current of 159 μA at 160V, corresponding to an emission current density of 25.4 A/cm 2 .
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the implementation of the present invention. Those of ordinary skill in the art can also make It is impossible to exhaustively list all the implementation modes here, and any obvious changes or changes derived from the technical solutions of the present invention are still within the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210996108.5A CN115513017B (en) | 2022-08-19 | 2022-08-19 | A Spindt cathode electron source and its preparation method and application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210996108.5A CN115513017B (en) | 2022-08-19 | 2022-08-19 | A Spindt cathode electron source and its preparation method and application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115513017A true CN115513017A (en) | 2022-12-23 |
| CN115513017B CN115513017B (en) | 2025-01-28 |
Family
ID=84501239
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210996108.5A Active CN115513017B (en) | 2022-08-19 | 2022-08-19 | A Spindt cathode electron source and its preparation method and application |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115513017B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0594762A (en) * | 1991-10-02 | 1993-04-16 | Sharp Corp | Field emission type electron source and manufacture thereof |
| JPH05198253A (en) * | 1991-10-02 | 1993-08-06 | Sharp Corp | Field emission electron source |
| KR20000019383A (en) * | 1998-09-10 | 2000-04-06 | 구자홍 | Field emission device and method for manufacturing the same |
| CN101752160A (en) * | 2008-12-02 | 2010-06-23 | 佳能株式会社 | Method of fabricating electron-emitting device and method of manufacturing image display apparatus |
| CN105931931A (en) * | 2016-05-12 | 2016-09-07 | 东南大学 | Pointed-cone array field emission tripolar structure and manufacturing method therefor |
| CN109767961A (en) * | 2018-12-28 | 2019-05-17 | 中国电子科技集团公司第十二研究所 | Sharp cone array type field emission electron source with shielding structure and method of making the same |
-
2022
- 2022-08-19 CN CN202210996108.5A patent/CN115513017B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0594762A (en) * | 1991-10-02 | 1993-04-16 | Sharp Corp | Field emission type electron source and manufacture thereof |
| JPH05198253A (en) * | 1991-10-02 | 1993-08-06 | Sharp Corp | Field emission electron source |
| KR20000019383A (en) * | 1998-09-10 | 2000-04-06 | 구자홍 | Field emission device and method for manufacturing the same |
| CN101752160A (en) * | 2008-12-02 | 2010-06-23 | 佳能株式会社 | Method of fabricating electron-emitting device and method of manufacturing image display apparatus |
| CN105931931A (en) * | 2016-05-12 | 2016-09-07 | 东南大学 | Pointed-cone array field emission tripolar structure and manufacturing method therefor |
| CN109767961A (en) * | 2018-12-28 | 2019-05-17 | 中国电子科技集团公司第十二研究所 | Sharp cone array type field emission electron source with shielding structure and method of making the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115513017B (en) | 2025-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4983878A (en) | Field induced emission devices and method of forming same | |
| US5150019A (en) | Integrated circuit electronic grid device and method | |
| JPH0799666B2 (en) | Method and structure for manufacturing integrated vacuum microelectronic device | |
| US5713774A (en) | Method of making an integrated circuit vertical electronic grid device | |
| CN109767961B (en) | Pointed cone array type field emission electron source with shielding structure and manufacturing method thereof | |
| US6570305B1 (en) | Field emission electron source and fabrication process thereof | |
| JP2001068012A (en) | Field emission electron source and manufacture thereof | |
| CN115513017A (en) | Spindt cathode electron source and preparation method and application thereof | |
| JP3033179B2 (en) | Field emission type emitter and method of manufacturing the same | |
| JP2017183180A (en) | Field emission element and device including field emission element | |
| CN111725040B (en) | A kind of preparation method of field emission transistor, field emission transistor and equipment | |
| CN109860002B (en) | Terahertz vacuum triode and manufacturing method thereof | |
| CN109300750B (en) | Field emission cathode electron source, array and electron emission method | |
| CN107170657A (en) | A kind of preparation method without integrated grid pointed cone array field emission cathode | |
| JPH03194829A (en) | Micro vacuum triode and manufacture thereof | |
| JP3603682B2 (en) | Field emission electron source | |
| JP3539305B2 (en) | Field emission type electron source and method of manufacturing the same | |
| JPH1167057A (en) | Micro cold cathode | |
| KR100469398B1 (en) | Field emission device and manufacturing method thereof | |
| JPH0487135A (en) | Electron emission element and its manufacture | |
| KR100278502B1 (en) | Manufacturing method of volcanic metal FEA with double gate | |
| JPH11238451A (en) | Field emission type cold cathode and its manufacture | |
| JPH04206124A (en) | Method for manufacturing electron-emitting devices | |
| JP4781141B2 (en) | Method for manufacturing field electron emission device | |
| CN206877963U (en) | Electron source for field emission cathode and vacuum electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |