[go: up one dir, main page]

CN115527166A - Image processing method, computer-readable storage medium, and electronic device - Google Patents

Image processing method, computer-readable storage medium, and electronic device Download PDF

Info

Publication number
CN115527166A
CN115527166A CN202211182408.6A CN202211182408A CN115527166A CN 115527166 A CN115527166 A CN 115527166A CN 202211182408 A CN202211182408 A CN 202211182408A CN 115527166 A CN115527166 A CN 115527166A
Authority
CN
China
Prior art keywords
pixel
target
density
monitoring image
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211182408.6A
Other languages
Chinese (zh)
Inventor
王健
秦宇
高思琦
陶明渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alibaba China Co Ltd
Original Assignee
Alibaba China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alibaba China Co Ltd filed Critical Alibaba China Co Ltd
Priority to CN202211182408.6A priority Critical patent/CN115527166A/en
Publication of CN115527166A publication Critical patent/CN115527166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/53Recognition of crowd images, e.g. recognition of crowd congestion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本申请公开了一种图像处理方法、计算机可读存储介质以及电子设备。其中,该方法包括:获取待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。本申请解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。

Figure 202211182408

The application discloses an image processing method, a computer-readable storage medium and electronic equipment. Wherein, the method includes: acquiring a monitoring image of the area to be monitored, wherein the monitoring image contains a target object; performing density estimation on the monitoring image to obtain a density estimation result of the target object, wherein the density estimation result contains a plurality of density values for Characterize the probability of the target object being present in multiple pixels in the monitoring image; determine the target pixel point from multiple pixel points based on the density estimation result, wherein the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, A target positioning result of the target object in the area to be monitored is obtained. The present application solves the technical problem that it is difficult for an algorithm in the related art to output more information about a target object in a monitoring image.

Figure 202211182408

Description

图像处理方法、计算机可读存储介质以及电子设备Image processing method, computer-readable storage medium, and electronic device

技术领域technical field

本申请涉及数据处理领域,具体而言,涉及一种图像处理方法、计算机可读存储介质以及电子设备。The present application relates to the field of data processing, and in particular, to an image processing method, a computer-readable storage medium, and electronic equipment.

背景技术Background technique

传统的群体态势感知,往往只需要实时估计视频画面中的总体对象的数量,进而把握整体对象的数量可能的变化趋势,然而,随着城市治理水平的快速发展,对于数量的变化态势提出了更加精确化的感知需求,对于一些包含大量对象的监测图像,目前的算法只能估计出图像中对象的总数量,输出信息有限,粒度不够精细。Traditional group situational awareness often only needs to estimate the number of overall objects in the video screen in real time, and then grasp the possible change trend of the number of overall objects. Accurate perception needs. For some monitoring images containing a large number of objects, the current algorithm can only estimate the total number of objects in the image, the output information is limited, and the granularity is not fine enough.

针对上述的问题,目前尚未提出有效的解决方案。For the above problems, no effective solution has been proposed yet.

发明内容Contents of the invention

本申请实施例提供了一种图像处理方法、计算机可读存储介质以及电子设备,以至少解决相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。Embodiments of the present application provide an image processing method, a computer-readable storage medium, and an electronic device to at least solve the technical problem that it is difficult for an algorithm in the related art to output more information about a target object in a monitoring image.

根据本申请实施例的一个方面,提供了一种图像处理方法,包括:获取待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。According to an aspect of an embodiment of the present application, an image processing method is provided, including: acquiring a monitoring image of an area to be monitored, wherein the monitoring image contains a target object; performing density estimation on the monitoring image to obtain a density estimation result of the target object, Among them, the multiple density values contained in the density estimation result are used to represent the probability of the target object being present in multiple pixel points in the monitoring image; based on the density estimation result, the target pixel point is determined from multiple pixel points, wherein the target pixel point has the target object Object: Based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

根据本申请实施例的一个方面,提供了一种图像处理方法,包括:通过监测设备监测活动区域得到监测图像,其中,监测图像包含目标人群;对监测图像进行密度估计,得到目标人群的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标人群的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标人群;基于目标像素点在监测图像中的位置,得到目标人群在活动区域中的目标定位结果。According to an aspect of an embodiment of the present application, an image processing method is provided, including: monitoring an active area through a monitoring device to obtain a monitoring image, wherein the monitoring image contains a target population; performing density estimation on the monitoring image to obtain a density estimation of the target population As a result, the multiple density values contained in the density estimation result are used to characterize the probability of the presence of the target crowd in multiple pixels in the monitoring image; based on the density estimation result, the target pixel is determined from the multiple pixel points, wherein the target pixel There is a target group; based on the position of the target pixel in the monitoring image, the target positioning result of the target group in the active area is obtained.

根据本申请实施例的一个方面,提供了一种图像处理方法,包括:响应作用于操作界面上的输入指令,在操作界面上显示待监测区域的监测图像,其中,监测图像包含目标对象;响应作用于操作界面上的定位指令,在操作界面上显示目标对象在待监测区域中的目标定位结果,其中,目标定位结果通过从监测图像中多个像素点中确定的目标像素点在监测图像中的位置确定,目标像素点基于目标对象的密度估计结果确定,密度估计结果通过对监测图像进行密度估计得到,密度估计结果包含的多个密度值用于表征多个像素点存在目标对象的概率。According to an aspect of an embodiment of the present application, an image processing method is provided, including: responding to an input instruction acting on the operation interface, displaying a monitoring image of the area to be monitored on the operation interface, wherein the monitoring image contains a target object; responding The positioning instruction acts on the operation interface, and the target positioning result of the target object in the area to be monitored is displayed on the operation interface, wherein the target positioning result is displayed in the monitoring image through the target pixel points determined from the multiple pixel points in the monitoring image The position of the target is determined, and the target pixel is determined based on the density estimation result of the target object. The density estimation result is obtained by performing density estimation on the monitoring image. The multiple density values contained in the density estimation result are used to represent the probability of the target object existing at multiple pixel points.

根据本申请实施例的一个方面,提供了一种图像处理方法,包括:通过监测设备监测待监测区域的监测图像,其中,监测图像包含目标对象;在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;驱动VR设备或AR设备渲染展示目标定位结果。According to an aspect of an embodiment of the present application, an image processing method is provided, including: monitoring a monitoring image of an area to be monitored by a monitoring device, wherein the monitoring image contains a target object; presenting the image on a virtual reality VR device or an augmented reality AR device The monitoring image is displayed on the screen; the density estimation of the monitoring image is performed to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the probability of the target object existing in multiple pixels in the monitoring image; based on the density Estimating the result, determining the target pixel point from multiple pixels, wherein the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained; drive the VR device Or AR device rendering to display the target positioning results.

根据本申请实施例的一个方面,提供了一种图像处理方法,包括:通过调用第一接口获取待监测区域的监测图像,其中,第一接口包括第一参数,第一参数的参数值为监测图像,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;通过调用第二接口输出目标定位结果,其中,第二接口包括第二参数,第二参数的参数值为目标定位结果。According to an aspect of an embodiment of the present application, an image processing method is provided, including: obtaining a monitoring image of an area to be monitored by calling a first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter is monitoring An image, the monitoring image contains a target object; density estimation is performed on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the probability that the target object exists at multiple pixels in the monitoring image; Based on the density estimation result, a target pixel point is determined from a plurality of pixel points, wherein the target pixel point has a target object; based on the position of the target pixel point in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained; by calling the second interface to output the target positioning result, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the target positioning result.

在本申请实施例中,首先待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果,实现了对监测图像中对象的定位。容易注意到的是,可以对监测图像进行密度估计,得到目标对象的密度估计结果,可以基于密度估计结果从多个像素点中确定出存在目标对象的像素点,避免对未包含目标对象的像素点进行定位,以便提高目标对象的定位结果的准确度,通过获取目标对象的定位结果,可以实现增加目标对象的输出信息的效果,进而解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。In the embodiment of the present application, firstly, the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used It is used to characterize the probability of the target object in multiple pixels in the monitoring image; based on the density estimation result, determine the target pixel from multiple pixels, wherein the target pixel has the target object; based on the position of the target pixel in the monitoring image , the target location result of the target object in the area to be monitored is obtained, and the location of the object in the monitoring image is realized. It is easy to notice that the density estimation of the monitoring image can be performed to obtain the density estimation result of the target object, and the pixel points with the target object can be determined from multiple pixel points based on the density estimation result, avoiding the detection of pixels that do not contain the target object. In order to improve the accuracy of the positioning result of the target object, by obtaining the positioning result of the target object, the effect of increasing the output information of the target object can be achieved, thereby solving the problem that the algorithm of the related technology is difficult to output more accurate information of the target object in the monitoring image. Multi-information technical issues.

附图说明Description of drawings

此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. In the attached picture:

图1是根据本申请实施例的一种图像处理方法的虚拟现实设备的硬件环境的示意图;FIG. 1 is a schematic diagram of a hardware environment of a virtual reality device according to an image processing method according to an embodiment of the present application;

图2是根据本申请实施例的一种图像处理方法的计算环境的结构框图;Fig. 2 is a structural block diagram of a computing environment of an image processing method according to an embodiment of the present application;

图3是根据本申请实施例1的一种图像处理方法的流程图;FIG. 3 is a flowchart of an image processing method according to Embodiment 1 of the present application;

图4是根据本申请实施例的一种图像处理过程的流程图;FIG. 4 is a flowchart of an image processing process according to an embodiment of the present application;

图5是根据本申请实施例的另一种图像处理方法的流程图;FIG. 5 is a flowchart of another image processing method according to an embodiment of the present application;

图6是根据本申请实施例2的一种图像处理方法的流程图;FIG. 6 is a flowchart of an image processing method according to Embodiment 2 of the present application;

图7是根据本申请实施例3的一种图像处理方法的流程图;FIG. 7 is a flowchart of an image processing method according to Embodiment 3 of the present application;

图8是根据本申请实施例4的一种图像处理方法的流程图;FIG. 8 is a flowchart of an image processing method according to Embodiment 4 of the present application;

图9是根据本申请实施例5的一种图像处理方法的流程图;FIG. 9 is a flowchart of an image processing method according to Embodiment 5 of the present application;

图10是根据本申请实施例6的一种图像处理装置的示意图;FIG. 10 is a schematic diagram of an image processing device according to Embodiment 6 of the present application;

图11是根据本申请实施例7的一种图像处理装置的示意图;FIG. 11 is a schematic diagram of an image processing device according to Embodiment 7 of the present application;

图12是根据本申请实施例8的一种图像处理装置的示意图;FIG. 12 is a schematic diagram of an image processing device according to Embodiment 8 of the present application;

图13是根据本申请实施例9的一种图像处理装置的示意图;FIG. 13 is a schematic diagram of an image processing device according to Embodiment 9 of the present application;

图14是根据本申请实施例10的一种图像处理装置的示意图;FIG. 14 is a schematic diagram of an image processing device according to Embodiment 10 of the present application;

图15是根据本申请实施例的一种计算机终端的结构框图。Fig. 15 is a structural block diagram of a computer terminal according to an embodiment of the present application.

具体实施方式detailed description

为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the solution of the present application, the technical solution in the embodiment of the application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiment of the application. Obviously, the described embodiment is only It is an embodiment of a part of the application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.

需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the present application and the above drawings are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.

首先,在对本申请实施例进行描述的过程中出现的部分名词或术语适用于如下解释:First of all, some nouns or terms that appear during the description of the embodiments of the present application are applicable to the following explanations:

人群态势:人群态势分析指的是利用自动化算法获取人群的数量、密度、流向等量化指标,根据上述指标分析导出监测区域中人群的疏导及管理模型。Crowd situation: Crowd situation analysis refers to the use of automated algorithms to obtain quantitative indicators such as the number, density, and flow direction of the crowd, and based on the analysis of the above indicators, the crowd control and management model in the monitoring area is derived.

群体态势:包括人群态势、动物群落态势、机器人群体态势等,本申请的内容不限于上述几种群体态势,可以包括任何同类物体形成的群体态势计算。Group situation: including crowd situation, animal group situation, robot group situation, etc. The content of this application is not limited to the above-mentioned group situations, and may include group situation calculations formed by any similar objects.

密集计数:目的在于统计场景中的人群数目。人群计数在视频监测、交通监测、公共安全、城市规划等方面有着广泛应用,如监测某个人群易聚集区域的人群数目,防止发生踩踏等事件。Dense Counting: The purpose is to count the number of people in the scene. Crowd counting is widely used in video monitoring, traffic monitoring, public safety, urban planning, etc., such as monitoring the number of people in an area where people tend to gather, and preventing stampedes and other events.

密度图:可以根据已知的每个目标位置,估计该位置目标的大小,得到该目标的覆盖区域,然后通过一些方法(几何自适应高斯核)将该区域转化为该区域内可能为目标的概率,该区域概率和为1(或者表示每个像素可能有多少个人),由此可以得到该画面中的目标分布密度。Density map: According to the known position of each target, the size of the target at the position can be estimated, and the coverage area of the target can be obtained, and then the area can be converted into a possible target in the area by some methods (geometric adaptive Gaussian kernel) Probability, the area probability sum is 1 (or indicates how many people may be in each pixel), thus the target distribution density in the picture can be obtained.

爬山算法(Hill Climbing):可以是一种局部搜索算法,它在增加高度/值的方向上连续移动,以找到局部峰值。Hill Climbing: Can be a local search algorithm that moves continuously in directions of increasing height/value to find local peaks.

N叉树:在树状数据结构中,如果每个父节点允许有两个以上的子节点,那么这个树就称为N叉树。N-ary tree: In a tree-like data structure, if each parent node allows more than two child nodes, then the tree is called an N-ary tree.

深度优先搜索(Depth First Search,简称DFS):可以是一种用于遍历搜索树或图的算法,这个算法会尽可能深地搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。Depth First Search (DFS for short): It can be an algorithm for traversing a search tree or graph, which searches the branches of the tree as deep as possible. When all edges of node v have been explored, the search will backtrack to the start node of the edge where node v was found. This process continues until all nodes reachable from the source node have been found.

目前,由于在密集场景下的总估计人数可能达到数千个对象,如果算法仅输出对象的总数量,那么人群态势的监测人员难以第一时间感知到算法识别效果的优劣,因此,需要算法能够提供画面中每一个对象的具体像素位置,同时,在与活动场所的三维建模相结合时,人群的密度分布图难以与三维模型精细贴合,将算法的感知能力映射到三维模型当中。At present, since the total estimated number of people in a dense scene may reach thousands of objects, if the algorithm only outputs the total number of objects, it is difficult for the monitoring personnel of the crowd situation to perceive the advantages and disadvantages of the algorithm recognition effect at the first time. Therefore, an algorithm is needed It can provide the specific pixel position of each object in the picture. At the same time, when combined with the 3D modeling of the event venue, it is difficult for the density distribution map of the crowd to fit the 3D model finely, and the algorithm's perception ability is mapped to the 3D model.

相关技术中通过如下方式解决上述问题:In related technologies, the above problems are solved in the following ways:

(1)人群计数和定位网络(SCALNet)实现了从密度图到散点化坐标的转化,该方案仅适用一个3×3的最大池化滤波对密度图进行扫描,并使用一个根据验证集选出的阈值对峰值点进行选取,但是,该方案的缺点是难以保证得到的目标坐标数量与密度图估计人数相吻合,导致人数对应错误,该方法对阈值较为敏感。(1) The crowd counting and localization network (SCALNet) realizes the transformation from the density map to the scattered coordinates. This scheme only applies a 3×3 maximum pooling filter to scan the density map, and uses a selection based on the verification set. However, the disadvantage of this scheme is that it is difficult to ensure that the number of target coordinates obtained matches the estimated number of people in the density map, resulting in a corresponding error in the number of people. This method is more sensitive to the threshold.

(2)人群密度估计(FIDTM)实现了从密度图到散点化坐标的转化,该方案与SCALNet大体相同,其区别在于将阈值固定为密度图中最大值缩放100/255,避免了阈值的选取问题,但是,该方案也难以保证得到的目标坐标数量与密度图估计人数相吻合。(2) Crowd Density Estimation (FIDTM) realizes the transformation from density map to scattered coordinates. This scheme is roughly the same as SCALNet. The difference is that the threshold is fixed at the maximum value in the density map and scaled to 100/255, avoiding the threshold value. However, it is also difficult for this scheme to ensure that the number of target coordinates obtained coincides with the estimated number of people in the density map.

上述两个方案的缺点还在于使用了3×3区域内至多只有一个峰值点这一假设,在极度密集的情况下,可能会造成目标坐标的遗漏。The disadvantage of the above two schemes is that the assumption that there is at most one peak point in the 3×3 area is used, which may cause the omission of the target coordinates in an extremely dense situation.

本申请中提供了一种图像处理方法,可以结合密度聚类算法和深度优先搜索算法,从密度图中产出了更加准确的目标坐标位置,提高了输出目标坐标位置的准确度。This application provides an image processing method that can combine the density clustering algorithm and the depth-first search algorithm to produce more accurate target coordinate positions from the density map and improve the accuracy of the output target coordinate positions.

实施例1Example 1

根据本申请实施例,还提供了一种图像处理方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present application, an image processing method is also provided. It should be noted that the steps shown in the flow charts of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although in the flow chart The figures show a logical order, but in some cases the steps shown or described may be performed in an order different from that shown or described herein.

图1是根据本申请实施例的一种图像处理方法的虚拟现实设备的硬件环境的示意图。如图1所示,虚拟现实设备104与终端106相连接,终端106与服务器102通过网络进行连接,上述虚拟现实设备104并不限定于:虚拟现实头盔、虚拟现实眼镜、虚拟现实一体机等,上述终端104并不限定于PC、手机、平板电脑等,服务器102可以为媒体文件运营商对应的服务器,上述网络包括但不限于:广域网、城域网或局域网。Fig. 1 is a schematic diagram of a hardware environment of a virtual reality device according to an image processing method according to an embodiment of the present application. As shown in Figure 1, the virtual reality device 104 is connected to the terminal 106, and the terminal 106 is connected to the server 102 through the network. The virtual reality device 104 is not limited to: virtual reality helmets, virtual reality glasses, virtual reality all-in-one machines, etc. The above-mentioned terminal 104 is not limited to PC, mobile phone, tablet computer, etc., and the server 102 may be a server corresponding to a media file operator, and the above-mentioned network includes but not limited to: a wide area network, a metropolitan area network or a local area network.

可选地,该实施例的虚拟现实设备104包括:存储器、处理器和传输装置。存储器用于存储应用程序,该应用程序可以用于执行:获取待监测区域的监测图像,其中,所述监测图像包含目标对象;对所述监测图像进行密度估计,得到所述目标对象的密度估计结果,其中,所述密度估计结果包含的多个密度值用于表征所述监测图像中多个像素点存在所述目标对象的概率;基于所述密度估计结果,从所述多个像素点中确定目标像素点,其中,所述目标像素点存在所述目标对象;基于所述目标像素点在所述监测图像中的位置,得到所述目标对象在所述待监测区域中的目标定位结果,从而解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。Optionally, the virtual reality device 104 in this embodiment includes: a memory, a processor, and a transmission device. The memory is used to store an application program, and the application program can be used to perform: acquiring a monitoring image of the area to be monitored, wherein the monitoring image contains a target object; performing density estimation on the monitoring image to obtain a density estimation of the target object As a result, the multiple density values included in the density estimation result are used to characterize the probability that the target object exists at multiple pixel points in the monitoring image; based on the density estimation result, from the multiple pixel points determining a target pixel, wherein the target pixel exists the target object; based on the position of the target pixel in the monitoring image, obtaining a target positioning result of the target object in the area to be monitored, Therefore, the technical problem that it is difficult for the algorithm in the related art to output more information about the target object in the monitoring image is solved.

可选地,该实施例的虚拟现实设备104带有的眼球追踪的HMD(Head MountDisplay,头戴式显示器)头显与眼球追踪模块与上述实施例中的作用相同,也即,HMD头显中的屏幕,用于显示实时的画面,HMD中的眼球追踪模块,用于获取用户眼球的实时运动轨迹。该实施例的终端通过跟踪系统获取用户在真实三维空间的位置信息与运动信息,并计算出用户头部在虚拟三维空间中的三维坐标,以及用户在虚拟三维空间中的视野朝向。Optionally, the eye-tracking HMD (Head Mount Display, head-mounted display) head-mounted display and the eye-tracking module of the virtual reality device 104 of this embodiment have the same functions as those in the above-mentioned embodiment, that is, the HMD head-mounted display The screen is used to display real-time images, and the eye tracking module in the HMD is used to obtain the real-time movement trajectory of the user's eyeballs. The terminal in this embodiment obtains the position information and motion information of the user in the real three-dimensional space through the tracking system, and calculates the three-dimensional coordinates of the user's head in the virtual three-dimensional space, and the direction of the user's field of view in the virtual three-dimensional space.

图1示出的硬件结构框图,不仅可以作为上述AR/VR设备(或移动设备)的示例性框图,还可以作为上述服务器的示例性框图,一种可选实施例中,图2以框图示出了使用上述图1所示的AR/VR设备(或移动设备)作为计算环境201中计算节点的一种实施例。图2是根据本申请实施例的一种图像处理方法的计算环境的结构框图,如图2所示,计算环境201包括运行在分布式网络上的多个(图中采用210-1,210-2,…,来示出)计算节点(如服务器)。每个计算节点都包含本地处理和内存资源,终端用户202可以在计算环境201中远程运行应用程序或存储数据。应用程序可以作为计算环境301中的多个服务220-1,220-2,220-3和220-4进行提供,分别代表服务“A”,“D”,“E”和“H”。The block diagram of the hardware structure shown in FIG. 1 can not only be used as an exemplary block diagram of the above-mentioned AR/VR device (or mobile device), but also can be used as an exemplary block diagram of the above-mentioned server. In an optional embodiment, FIG. 2 uses a block diagram An embodiment of using the above-mentioned AR/VR device (or mobile device) shown in FIG. 1 as a computing node in the computing environment 201 is shown. Fig. 2 is a structural block diagram of a computing environment of an image processing method according to an embodiment of the present application. As shown in Fig. 2, the computing environment 201 includes multiple (210-1, 210- 2, ..., to show) computing nodes (such as servers). Each computing node contains local processing and memory resources, and end users 202 can remotely run applications or store data in computing environment 201 . Applications may be provided as a plurality of services 220-1, 220-2, 220-3, and 220-4 in computing environment 301, representing services "A," "D," "E," and "H," respectively.

终端用户202可以通过客户端上的web浏览器或其他软件应用程序提供和访问服务,在一些实施例中,可以将终端用户202的供应和/或请求提供给入口网关230。入口网关230可以包括一个相应的代理来处理针对服务220(计算环境201中提供的一个或多个服务)的供应和/或请求。End user 202 may offer and access services through a web browser or other software application on a client, and in some embodiments, end user 202 offers and/or requests may be provided to ingress gateway 230 . Ingress gateway 230 may include a corresponding agent to handle offers and/or requests for services 220 (one or more services provided in computing environment 201).

服务220是根据计算环境201支持的各种虚拟化技术来提供或部署的。在一些实施例中,可以根据基于虚拟机(VM)的虚拟化、基于容器的虚拟化和/或类似的方式提供服务220。基于虚拟机的虚拟化可以是通过初始化虚拟机来模拟真实的计算机,在不直接接触任何实际硬件资源的情况下执行程序和应用程序。在虚拟机虚拟化机器的同时,根据基于容器的虚拟化,可以启动容器来虚拟化整个操作系统(OS),以便多个工作负载可以在单个操作系统实例上运行。Services 220 are provided or deployed according to various virtualization technologies supported by computing environment 201 . In some embodiments, service 220 may be provided according to virtual machine (VM)-based virtualization, container-based virtualization, and/or the like. Virtual machine-based virtualization can emulate a real computer by initializing a virtual machine to execute programs and applications without directly touching any actual hardware resources. While virtual machines virtualize machines, according to container-based virtualization, containers can be launched to virtualize an entire operating system (OS) so that multiple workloads can run on a single OS instance.

在基于容器虚拟化的一个实施例中,服务220的若干容器可以被组装成一个POD(例如,Kubernetes POD)。举例来说,如图2所示,服务220-2可以配备一个或多个POD 240-1,240-2,…,240-N(统称为POD 240)。每个POD 240可以包括代理245和一个或多个容器242-1,242-2,…,242-M(统称为容器242)。POD 240中一个或多个容器242处理与服务的一个或多个相应功能相关的请求,代理245通常控制与服务相关的网络功能,如路由、负载均衡等。其他服务220也可以陪陪类似于POD 240的POD。In an embodiment based on container virtualization, several containers of the service 220 may be assembled into a POD (eg, Kubernetes POD). For example, as shown in FIG. 2, the service 220-2 may be equipped with one or more PODs 240-1, 240-2, . . . , 240-N (collectively referred to as POD 240). Each POD 240 may include an agent 245 and one or more containers 242-1, 242-2, . . . , 242-M (collectively containers 242). One or more containers 242 in the POD 240 process requests related to one or more corresponding functions of the service, and the proxy 245 generally controls network functions related to the service, such as routing, load balancing, and the like. Other services 220 may also accompany PODs similar to POD 240 .

在操作过程中,执行来自终端用户202的用户请求可能需要调用计算环境201中的一个或多个服务220,执行一个服务220的一个或多个功能坑你需要调用另一个服务220的一个或多个功能。如图2所示,服务“A”220-1从入口网关230接收终端用户202的用户请求,服务“A”220-1可以调用服务“D”220-2,服务“D”220-2可以请求服务“E”220-3执行一个或多个功能。During operation, executing a user request from an end user 202 may require invoking one or more services 220 in the computing environment 201. To execute one or more functions of one service 220, you need to invoke one or more functions of another service 220. function. As shown in FIG. 2, service "A" 220-1 receives a user request from end user 202 from ingress gateway 230, service "A" 220-1 may call service "D" 220-2, and service "D" 220-2 may Service "E" 220-3 is requested to perform one or more functions.

上述的计算环境可以是云计算环境,资源的分配由云服务提供上管理,允许功能的开发无需考虑实现、调整或扩展服务器。该计算环境允许开发人员在不构建或维护复杂基础设施的情况下执行响应事件的代码。服务可以被分割完成一组可以自动独立伸缩的功能,而不是扩展单个硬件设备来处理潜在的负载。The above-mentioned computing environment may be a cloud computing environment, and the allocation of resources is managed by the cloud service provider, allowing the development of functions without considering the implementation, adjustment or expansion of servers. This computing environment allows developers to execute code that responds to events without building or maintaining complex infrastructure. Services can be partitioned to perform a set of functions that can be automatically and independently scaled, rather than scaling a single hardware appliance to handle the underlying load.

在上述运行环境下,本申请提供了如图3所示的图像处理方法。需要说明的是,该实施例的图像处理方法可以由图1所示实施例的移动终端执行。图3是根据本申请实施例1的一种图像处理方法的流程图。如图3所示,该方法可以包括如下步骤:Under the above operating environment, the present application provides an image processing method as shown in FIG. 3 . It should be noted that the image processing method in this embodiment may be executed by the mobile terminal in the embodiment shown in FIG. 1 . FIG. 3 is a flowchart of an image processing method according to Embodiment 1 of the present application. As shown in Figure 3, the method may include the following steps:

步骤S302,获取待监测区域的监测图像。Step S302, acquiring a monitoring image of the area to be monitored.

其中,监测图像包含目标对象。Wherein, the monitoring image contains the target object.

上述监测图像中目标对象的数量可以为预设数量,在预设数量大于预设值时,则说明该监测图像为超密集图像,可以通过对监测图像中目标对象的数量进行估计得到预设数量,其中,预设值可以根据实际情况自行设置。The number of target objects in the above monitoring image can be a preset number. When the preset number is greater than the preset value, it means that the monitoring image is an ultra-dense image, and the preset number can be obtained by estimating the number of target objects in the monitoring image. , where the preset value can be set according to the actual situation.

上述的待监测区域可以是大型活动场景、大型聚集场所等人群密度较大的区域。待监测区域还可以是物体密度较大的区域,例如,森林、群居动物栖居地等。待监测区域还可以是任意需要进行监测的区域,此处不做限定。The above-mentioned to-be-monitored area may be a large-scale event scene, a large-scale gathering place, and other areas with high crowd density. The area to be monitored may also be an area with a high density of objects, for example, a forest, a habitat of animals living in groups, and the like. The area to be monitored may also be any area that needs to be monitored, which is not limited here.

上述的监测图像可以是待监测区域中目标对象的数量大于预设数量时采集到的图像。可选的,可以通过拍摄设备获取到监测图像;还可以通过摄像头获取待监测区域的视频信息,通过对视频信息进行裁剪,得到上述的监测图像,其中,可以将视频信息中目标对象的数量大于预设数量的视频帧作为监测图像。The aforementioned monitoring images may be images collected when the number of target objects in the area to be monitored is greater than a preset number. Optionally, the monitoring image can be obtained through the shooting device; the video information of the area to be monitored can also be obtained through the camera, and the above-mentioned monitoring image can be obtained by cutting the video information, wherein the number of target objects in the video information can be greater than A preset number of video frames are used as monitoring images.

上述的监测图像还可以是遥感图像。上述的监测图像还可以为人群热力分布图。The aforementioned monitoring images may also be remote sensing images. The above monitoring image may also be a thermal distribution map of the crowd.

上述的目标对象可以人、动物、植物、物体等,此处不做限定,本申请以目标对象为人进行举例。The above-mentioned target object may be a human, an animal, a plant, an object, etc., which is not limited here, and the present application takes the target object as an example.

上述的预设数量可以自定设定。在监测图像中目标对象的数量大于预设数量的情况下,说明该待监测区域中目标对象的数量较多,即目标对象较为密集,此时需要对待监测区域中的目标对象进行监测。The above-mentioned preset quantity can be set independently. If the number of target objects in the monitoring image is greater than the preset number, it means that the number of target objects in the to-be-monitored area is large, that is, the target objects are relatively dense, and it is necessary to monitor the target objects in the to-be-monitored area.

在一种可选的实施例中,可以根据待监测区域确定预设数量。例如,可以根据待监测区域的面积确定预设数量,若待监测区域的面积越大,其可以容纳较多的目标对象,此时可以将预设数量设置的较大,当目标对象的数量大于该预设数量时,该待监测区域才会出现目标对象密集的情况。若待监测区域的面积较小,其可以容纳较小的目标对象,此时可以将预设数量设置的较小,只要目标对象的数量大于该预设数量,则确定该待监测区域出现了目标对象密集的情况。In an optional embodiment, the preset number can be determined according to the area to be monitored. For example, the preset number can be determined according to the area of the area to be monitored. If the area of the area to be monitored is larger, it can accommodate more target objects. At this time, the preset number can be set larger. When the number of target objects is greater than When the preset number is reached, the area to be monitored will be densely populated with target objects. If the area to be monitored is small, it can accommodate smaller target objects. At this time, the preset number can be set smaller. As long as the number of target objects is greater than the preset number, it is determined that a target has appeared in the area to be monitored. dense objects.

步骤S304,对监测图像进行密度估计,得到目标对象的密度估计结果。Step S304, performing density estimation on the monitoring image to obtain a density estimation result of the target object.

其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率。Wherein, the multiple density values included in the density estimation result are used to characterize the probability that the target object exists in multiple pixel points in the monitoring image.

在一种可选的实施例中,可以通过密度估计模型对监测图像进行密度估计,得到目标对象的密度估计结果。其中,密度估计模型可以为通用的密度估计模型,此处不做任何限定。In an optional embodiment, a density estimation model may be used to perform density estimation on the monitoring image to obtain a density estimation result of the target object. Wherein, the density estimation model may be a general density estimation model, which is not limited here.

在监测图像中包含密集人群的情况下,其密度估计结果可以为密集人群的大致数量。In the case that the surveillance image contains dense crowds, the density estimation result can be an approximate number of dense crowds.

上述的密度值可以用于表示区域内存在目标对象的概率,其中,密度值越大,其对应的目标对象的数量也越多,则说明该区域存在目标对象的可能性越大,密度值越小,其对应的目标对象的数量越少,则说明该区域存在目标对象的可能性越小。The above-mentioned density value can be used to indicate the probability of the target object in the area. The larger the density value is, the more the number of corresponding target objects is. The smaller the number of corresponding target objects, the less likely there are target objects in this area.

通过上述的密度估计结果可以得到监测图像中多个区域内存在目标对象的概率,从而确定出监测图像整体的密度情况。Through the above density estimation results, the probabilities of target objects in multiple regions in the monitoring image can be obtained, so as to determine the overall density of the monitoring image.

在另一种可选的实施例中,可以通过目前的人群密度估计模型在高密集的监测图像上进行密度估计,得到密度估计结果,可选的,对于一张从视频流中截取到的高分辨率彩色图像(Red、Green、Blue,简称为RGB图像),其形状为(H,W,3),通过一个人群密度估计模型,可以获得一个低分辨率下的密度图,即一个形状为(H/4,W/4)的矩阵M,矩阵中元素为浮点数,代表每一个像素位置可能出现目标对象的概率,因此,将矩阵中的元素求和,即可得到监测图像中目标对象的总数K,即

Figure BDA0003867396440000081
其中,i,j为矩阵M的行和列;h,w为图像的长和宽。In another optional embodiment, the current crowd density estimation model can be used to perform density estimation on high-density monitoring images to obtain the density estimation result. Optionally, for a high-density surveillance image captured from a video stream The resolution color image (Red, Green, Blue, referred to as RGB image) has a shape of (H, W, 3). Through a crowd density estimation model, a low-resolution density map can be obtained, that is, a shape of The matrix M of (H/4, W/4), the elements in the matrix are floating-point numbers, representing the probability that the target object may appear at each pixel position, therefore, the target object in the monitoring image can be obtained by summing the elements in the matrix The total number of K, that is
Figure BDA0003867396440000081
Among them, i, j are the rows and columns of the matrix M; h, w are the length and width of the image.

步骤S306,基于密度估计结果,从多个像素点中确定目标像素点。Step S306, based on the density estimation result, determine the target pixel point from the plurality of pixel points.

其中,目标像素点存在目标对象。Wherein, there is a target object in the target pixel.

在一种可选的实施例中,可以根据密度估计结果中的多个密度值,确定出密度值较大的目标像素点。In an optional embodiment, target pixel points with larger density values may be determined according to multiple density values in the density estimation result.

在另一种可选的实施例中,可以根据密度估计结果,将多个像素点划分为多个第一像素集合,对质量超过第一预设质量的第一像素集合进行分裂操作,得到多个第二像素集合,从第二像素集合中确定出目标像素点,建立多个目标树状结构,其中,每个目标树状结构包含的所有节点在密度估计结果中的密度值之和小于第一预设值,目标树状结构可以包含多个节点,每个节点可以包含一个目标对象。In another optional embodiment, multiple pixel points may be divided into multiple first pixel sets according to the density estimation result, and the first pixel set whose quality exceeds the first preset quality is split to obtain multiple a second set of pixels, determine the target pixel points from the second set of pixels, and establish multiple target tree structures, wherein the sum of the density values of all nodes contained in each target tree structure in the density estimation result is less than the first As a preset value, the target tree structure may contain multiple nodes, and each node may contain a target object.

上述的目标树状结构可以为N叉树结构。The aforementioned target tree structure may be an N-ary tree structure.

上述的第一预设值可以为1。The above-mentioned first preset value may be 1.

可以根据密度估计结果建立密集人群中目标树状结构,其中,目标树状结构中包含的多个节点可以对应于多个像素点,可以将目标像素点作为目标树状结构中的父节点,对于其他的像素点,可以根据与目标像素点之间的距离确定为父节点的子节点。The target tree structure in the dense crowd can be established according to the density estimation result, wherein the multiple nodes contained in the target tree structure can correspond to multiple pixel points, and the target pixel point can be used as the parent node in the target tree structure, for Other pixel points can be determined as child nodes of the parent node according to the distance between them and the target pixel point.

在一种可选的实施例中,可以使用局部的密度爬山算法和深度优先质量聚合方法,根据密度估计结果搭建多个目标树状结构。其中,目标树状结构包含的节点在密度估计结果中密度值之和小于1,说明其节点代表一个目标对象,避免出现一个节点代表多个目标对象从而导致多个目标对象共同使用一个定位点。In an optional embodiment, a local density hill-climbing algorithm and a depth-first quality aggregation method may be used to build multiple target tree structures according to the density estimation results. Among them, the sum of the density values of the nodes contained in the target tree structure is less than 1 in the density estimation result, indicating that the node represents a target object, and avoiding the occurrence of one node representing multiple target objects, which will cause multiple target objects to share one anchor point.

步骤S308,基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。Step S308, based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

在一种可选的实施例中,可以目标像素点可以在监测图像中的位置,确定出该目标对象在待监测区域中的目标定位结果。In an optional embodiment, the position of the target pixel in the monitoring image can be used to determine the target positioning result of the target object in the area to be monitored.

在另一种可选的实施例中,在搭建的多个目标树状结构中,可以确定出目标像素点对应于目标根节点,可以根据目标根节点的辐射范围确定出目标对象在待监测区域中的目标定位结果。上述的目标根节点的数量可以与目标对象的数量大致一致,或者目标根节点的数量可以与目标对象的数量相同。每个目标树状结构包含的所有节点在密度估计结果中的密度值之和小于第一预设值,则说明该节点对应的目标对象的数量大致为一个。基于上述目标树状结构包含的目标根节点对应在监测图像中的像素位置可以确定出密集人群中每个人大致对应的目标定位结果。In another optional embodiment, in the multiple target tree structures built, it can be determined that the target pixel point corresponds to the target root node, and it can be determined according to the radiation range of the target root node that the target object is in the area to be monitored Targeting results in . The above-mentioned number of target root nodes may be approximately the same as the number of target objects, or the number of target root nodes may be the same as the number of target objects. If the sum of the density values of all nodes included in each target tree structure in the density estimation result is less than the first preset value, it means that the number of target objects corresponding to this node is approximately one. Based on the target root node contained in the above-mentioned target tree structure corresponding to the pixel position in the monitoring image, the roughly corresponding target positioning result of each person in the dense crowd can be determined.

上述的目标定位结果可以是目标对象在监测图像中的坐标信息。The above target positioning result may be the coordinate information of the target object in the monitoring image.

在一种可选的实施例中,由于目标根节点代表的是监测图像中的目标对象,因此,可以根据多个目标树状结构包含的目标根节点对应在监测图像中的像素点位置,确定目标对象在监测结果中的目标定位结果。In an optional embodiment, since the target root node represents the target object in the monitoring image, it can be determined according to the pixel position of the target root node contained in the multiple target tree structures corresponding to the monitoring image. The target positioning result of the target object in the monitoring result.

本申请的上述方法可以利用密度爬山算法和深度优选算法,在密集场景下从模糊的人群热力分布图中采样行人的具体位置,为密集人群的三维建模、趋势预测等提供重要的位置信息。The above method of this application can use the density climbing algorithm and the depth optimization algorithm to sample the specific positions of pedestrians from the fuzzy crowd thermal distribution map in dense scenes, and provide important position information for 3D modeling and trend prediction of dense crowds.

以人群密集场景的监测图像为例进行说明,可以先获取人群密集场景对应的监测图像,例如大型演唱会、大型活动的现场,对监测图像进行密度估计,得到人群的密度估计结果,也即可以大致估计出人群密集场景中的个体数量,可以根据密度估计结果,从多个像素点中确定目标像素点,可以根据该目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。可选的,可以建立出人群密度团对应的初始树状结构,可以将人群密度团中质量较小的点叠加到人群密度团中的中心节点,得到多个聚合树状结构,对于多个聚合树状结构中人群密度值超过1的目标树状结构,由于其中包含了多个个体,因此,需要对目标树状结构进行分裂操作,得到多个目标初始树状结构,可以基于多个目标树状结构包含的目标根节点对应在监测图像中的目标像素点的位置,得到人群密集场景中每个个体在监测结果中的目标定位位置,从而获取到人群密集场景中与人群数量一致的定位结果。需要说明的是,人群密度团可以是监测图像中以密度较大的位置为中心形成的人群密度团,人群密度团可以是一个也可以是多个。Taking the monitoring images of crowded scenes as an example to illustrate, you can first obtain the monitoring images corresponding to crowded scenes, such as the scene of large-scale concerts and large-scale events, and estimate the density of the monitoring images to obtain the density estimation results of the crowd, that is, you can Roughly estimate the number of individuals in a densely populated scene. According to the density estimation result, the target pixel point can be determined from multiple pixel points. According to the position of the target pixel point in the monitoring image, the position of the target object in the area to be monitored can be obtained. Targeting results. Optionally, the initial tree structure corresponding to the crowd density cluster can be established, and the points with lower mass in the crowd density cluster can be superimposed on the central node of the crowd density cluster to obtain multiple aggregated tree structures. For multiple clusters The target tree structure whose crowd density value exceeds 1 in the tree structure contains multiple individuals, so it is necessary to split the target tree structure to obtain multiple target initial tree structures, which can be based on multiple target trees The root node of the target contained in the shape structure corresponds to the position of the target pixel in the monitoring image, and the target positioning position of each individual in the monitoring result in the crowded scene is obtained, so as to obtain the positioning result consistent with the number of people in the crowded scene . It should be noted that the crowd density cluster may be a crowd density cluster formed centering on a location with higher density in the monitoring image, and there may be one or more crowd density clusters.

以动物密集场景的监测图像为例进行说明,可以先获取动物密集场景对应的监测图像,例如动物迁徙场景、动物群居场景,对监测图像进行密度估计,得到动物的密度估计结果,也即可以大致估计出动物密集场景中的个体数量,可以根据密度估计结果,从多个像素点中确定目标像素点,可以根据该目标像素点在监测图像中的位置,得到动物在待监测区域中的目标定位结果。可选的,可以建立出动物密度团对应的初始树状结构,可以将动物密度团中质量较小的点叠加到动物密度团中的中心节点,得到多个聚合树状结构,对于多个聚合树状结构中动物密度值超过1的目标树状结构,由于其中包含了多个动物个体,因此,需要对目标树状结构进行分裂操作,得到多个目标初始树状结构,可以基于多个目标树状结构包含的目标根节点对应在监测图像中的目标像素点的位置,得到动物密集场景中每个动物个体在监测结果中的目标定位位置,从而获取到动物密集场景中与动物数量一致的定位结果。需要说明的是,动物密度团可以是监测图像中以密度较大的位置为中心形成的动物密度团,动物密度团可以是一个也可以是多个。Taking the monitoring images of dense animal scenes as an example, you can first obtain the monitoring images corresponding to animal dense scenes, such as animal migration scenes, animal group living scenes, and estimate the density of the monitoring images to obtain the animal density estimation results, that is, you can roughly Estimate the number of individuals in the animal-intensive scene, and determine the target pixel point from multiple pixels according to the density estimation result, and obtain the target location of the animal in the area to be monitored according to the position of the target pixel point in the monitoring image result. Optionally, the initial tree structure corresponding to the animal density cluster can be established, and the points with lower mass in the animal density cluster can be superimposed on the central node in the animal density cluster to obtain multiple aggregated tree structures. For multiple aggregates The target tree structure whose animal density value exceeds 1 in the tree structure contains multiple animal individuals, so it is necessary to split the target tree structure to obtain multiple target initial tree structures, which can be based on multiple targets The target root node contained in the tree structure corresponds to the position of the target pixel in the monitoring image, and the target positioning position of each individual animal in the monitoring results in the animal-intensive scene is obtained, so as to obtain the number of animals in the animal-intensive scene. positioning results. It should be noted that the animal density cluster may be an animal density cluster formed centering on a position with a higher density in the monitoring image, and there may be one animal density cluster or multiple animal density clusters.

以物体密集场景的监测图像为例进行说明,可以先获取物体密集场景对应的监测图像,例如包含有多个同类物体的场景,对监测图像进行密度估计,得到物体的密度估计结果,也即可以大致估计出物体密集场景中的个体数量,可以根据密度估计结果,从多个像素点中确定目标像素点,可以根据该目标像素点在监测图像中的位置,得到物体在待监测区域中的目标定位结果。可选的,可以建立出物体密度团对应的初始树状结构,可以将物体密度团中质量较小的点叠加到物体密度团中的中心节点,得到多个聚合树状结构,对于多个聚合树状结构中物体密度值超过1的目标树状结构,由于其中包含了多个物体,因此,需要对目标树状结构进行分裂操作,得到多个目标初始树状结构,可以基于多个目标树状结构包含的目标根节点对应在监测图像中的目标像素点的位置,得到物体密集场景中每个物体在监测结果中的目标定位位置,从而获取到物体密集场景中与物体数量一致的定位结果。需要说明的是,物体密度团可以是监测图像中以密度较大的位置为中心形成的物体密度团,物体密度团可以是一个也可以是多个。Taking the monitoring image of a scene with dense objects as an example to illustrate, you can first obtain the monitoring image corresponding to the scene with dense objects, such as a scene containing multiple objects of the same type, and perform density estimation on the monitoring image to obtain the density estimation result of the object, that is, you can Roughly estimate the number of individuals in the object-intensive scene. According to the density estimation result, the target pixel can be determined from multiple pixels. According to the position of the target pixel in the monitoring image, the target of the object in the area to be monitored can be obtained. positioning results. Optionally, the initial tree-like structure corresponding to the object density cluster can be established, and the points with lower mass in the object density cluster can be superimposed on the central node in the object density cluster to obtain multiple aggregated tree structures. For multiple aggregates The target tree structure with an object density value exceeding 1 in the tree structure contains multiple objects, so it is necessary to split the target tree structure to obtain multiple target initial tree structures, which can be based on multiple target trees The target root node contained in the shape structure corresponds to the position of the target pixel in the monitoring image, and the target positioning position of each object in the monitoring result in the object-intensive scene is obtained, so as to obtain the positioning result consistent with the number of objects in the object-intensive scene . It should be noted that the object density cluster may be an object density cluster formed centering on a position with higher density in the monitoring image, and there may be one object density cluster or multiple object density clusters.

通过上述步骤,首先待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果,实现了对监测图像中对象的定位。容易注意到的是,可以对监测图像进行密度估计,得到目标对象的密度估计结果,可以基于密度估计结果从多个像素点中确定出存在目标对象的像素点,避免对未包含目标对象的像素点进行定位,以便提高目标对象的定位结果的准确度,通过获取目标对象的定位结果,可以实现增加目标对象的输出信息的效果,进而解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。Through the above steps, firstly, the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the monitoring The probability of the target object existing in multiple pixels in the image; based on the density estimation result, determine the target pixel point from multiple pixel points, where the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, get the target The target positioning result of the object in the area to be monitored realizes the positioning of the object in the monitoring image. It is easy to notice that the density estimation of the monitoring image can be performed to obtain the density estimation result of the target object, and the pixel points with the target object can be determined from multiple pixel points based on the density estimation result, avoiding the detection of pixels that do not contain the target object. In order to improve the accuracy of the positioning result of the target object, by obtaining the positioning result of the target object, the effect of increasing the output information of the target object can be achieved, thereby solving the problem that the algorithm of the related technology is difficult to output more accurate information of the target object in the monitoring image. Multi-information technical issues.

本申请上述实施例中,基于密度估计结果,从多个像素点中确定目标像素点,包括:基于密度估计结果,将多个像素点划分为多个第一像素集合,其中,不同第一像素集合中的像素点存在不同对象;对对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量;基于多个第一像素集合对应的质量对多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,其中,预设像素集合对应的质量大于第一预设质量;基于多个第二像素集合对应的质量,从多个第二像素集合中确定目标像素点。In the above embodiments of the present application, determining the target pixel from multiple pixel points based on the density estimation result includes: dividing the multiple pixel points into multiple first pixel sets based on the density estimation result, wherein different first pixel There are different objects in the pixels in the set; aggregate the density values corresponding to the pixels in each first pixel set to obtain the quality corresponding to each first pixel set; based on the quality corresponding to multiple first pixel sets The preset pixel set in the first pixel set is split to obtain multiple second pixel sets, wherein the quality corresponding to the preset pixel set is greater than the first preset quality; based on the quality corresponding to the multiple second pixel sets, from Target pixel points are determined from the plurality of second pixel sets.

上述的多个第一像素集合可以是多个初始树状结构的形式,每个初始树状结构包含的每个节点的质量为该节点在密度估计结果中的密度值;将多个初始树状结构中所有节点的质量进行聚合,得到多个聚合树状结构,也即上述的每个第一像素集合对应的质量;对多个聚合树状结构中目标树状结构进行分裂操作,得到多个第一树状结构,其中,目标树状结构为上述的预设像素结构,第一树状结构为上述的第一像素集合,第一树状结构的第一根节点的质量大于第一预设质量。The multiple first pixel sets mentioned above may be in the form of multiple initial tree structures, and the quality of each node contained in each initial tree structure is the density value of the node in the density estimation result; the multiple initial tree structures The quality of all nodes in the structure is aggregated to obtain multiple aggregated tree structures, that is, the quality corresponding to each first pixel set mentioned above; the target tree structure in the multiple aggregated tree structures is split to obtain multiple The first tree structure, wherein, the target tree structure is the above-mentioned preset pixel structure, the first tree structure is the above-mentioned first pixel set, and the quality of the first root node of the first tree structure is greater than the first preset quality.

上述的密度值可以是浮点密度值。上述的第一预设质量可以为1,但不仅限于此,可以根据实际需求设置。The aforementioned density values may be floating point density values. The above-mentioned first preset quality may be 1, but it is not limited thereto, and may be set according to actual needs.

在密集人群中,多个初始树状结构可以为密集人群中密度团对应的树状结构,其中,密度团密度值较大的像素点可以对应于树状结构中的父节点,该像素点附近范围的其他像素点可以为父节点的后代子节点。In dense crowds, multiple initial tree structures can be tree structures corresponding to density clusters in dense crowds, where the pixel with a larger density value of the density cluster can correspond to the parent node in the tree structure. Other pixels in the range can be descendant child nodes of the parent node.

在一种可选的实施例中,可以在得到密度估计结果后,逐一扫描密度矩阵M中的元素,判断该元素是否是自己3×3领域内的最大浮点数密度值点,如果是则将其推入候选点的栈S,如果不是,则将其推入其邻域内峰值点C的子节点栈C_S中,此处在入栈时,可以同时存储每个元素的像素坐标(i,j)和其在M中的浮点密度值V,同时存储每个元素的辐射范围为自身坐标,此处辐射范围指每个元素作为父节点所后继的后代节点的坐标范围。In an optional embodiment, after obtaining the density estimation result, the elements in the density matrix M can be scanned one by one to determine whether the element is the maximum floating-point density value point in its own 3×3 field, and if so, set It is pushed into the stack S of the candidate point, if not, it is pushed into the child node stack C_S of the peak point C in its neighborhood, where the pixel coordinates of each element (i, j ) and its floating-point density value V in M, and store the radiation range of each element as its own coordinates, where the radiation range refers to the coordinate range of each element as the descendant node that is the successor of the parent node.

进一步地,由于候选点的质量仅为自身质量,因此,可以通过深度优先搜索算法,将候选点的全部后代节点(包括子节点、子节点的子节点等)的质量加到自身,更新为自身质量v',同时,可以将辐射范围值更新为全部后代节点中,最远离候选节点自身坐标的左上、右下位置,即将候选点的辐射范围更新为自身所有后代节点的最大范围。Furthermore, since the quality of the candidate point is only its own quality, the quality of all descendant nodes (including child nodes, child nodes of child nodes, etc.) of the candidate point can be added to itself through the depth-first search algorithm, and updated as At the same time, the radiation range value can be updated to the upper left and lower right positions farthest from the coordinates of the candidate node among all descendant nodes, that is, the radiation range of the candidate point can be updated to the maximum range of all descendant nodes.

在另一种可选的实施例中,可以根据密度估计结果,将多个像素点划分为多个第一像素集合,不同第一像素集合中的像素点存在不同的对象,可选的,可以将密度估计结果以密度值较大的一个或多个区域对应的像素点为中心,将多个像素点划分为多个第一像素集合。In another optional embodiment, multiple pixel points may be divided into multiple first pixel sets according to the density estimation result, and there are different objects in the pixel points in different first pixel sets. Optionally, The density estimation result is centered on the pixel points corresponding to one or more areas with larger density values, and the multiple pixel points are divided into multiple first pixel sets.

进一步的,可以对每个第一像素集合中的像素点对应的密度值进行聚合,可选的,可以对每个第一像素集合中的所有像素点进行扫描,将其中密度值最大的像素点作为目标像素点,可以将该像素点辐射范围内的其他像素点的密度值叠加到质量最大的像素点上,更新密度值最大的像素点自身的质量,其中,对像素点的密度值进行叠加的过程实质上就是对像素点的密度值进行聚合的过程,从而达到对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量。Further, the density values corresponding to the pixels in each first pixel set may be aggregated, optionally, all the pixels in each first pixel set may be scanned, and the pixel with the largest density value among them may be As the target pixel, the density value of other pixels within the radiation range of the pixel can be superimposed on the pixel with the highest quality, and the quality of the pixel with the highest density value can be updated, among which, the density value of the pixel can be superimposed The process is essentially the process of aggregating the density values of the pixels, so as to aggregate the density values corresponding to the pixels in each first pixel set, and obtain the quality corresponding to each first pixel set.

又进一步的,由于预设像素集合对应的质量大于第一预设质量,说明该预设像素集合对应的目标对象数量超过1,此时,需要对预设像素集合进行分类操作,得到多个第二像素集合。Still further, since the quality corresponding to the preset pixel set is greater than the first preset quality, it means that the number of target objects corresponding to the preset pixel set exceeds 1. At this time, it is necessary to perform a classification operation on the preset pixel set to obtain multiple first A collection of two pixels.

表现在树状结构中,可以根据密度估计结果,先建立多个初始树状结构,每个初始树状结构包含的每个节点的质量为该节点在密度估计结果中的密度值,可以对每个初始树状结构中的所有节点进行扫描,得到其中质量最大的节点作为候选节点,可以将该候选节点辐射范围内的子节点的质量叠加到质量最大的节点上,更新质量最大节点自身的质量,其中,对节点质量进行叠加的过程实质上就是对节点质量进行聚合的过程,从而达到将多个初始树状结构中所有节点的质量进行聚合,得到多个聚合树状结构。In the tree structure, multiple initial tree structures can be established based on the density estimation results. The quality of each node contained in each initial tree structure is the density value of the node in the density estimation result, and each All nodes in an initial tree structure are scanned, and the node with the highest quality is obtained as a candidate node. The quality of the child nodes within the radiation range of the candidate node can be superimposed on the node with the highest quality, and the quality of the node with the highest quality can be updated. , wherein the process of superimposing the node quality is essentially the process of aggregating the node quality, so as to aggregate the qualities of all nodes in multiple initial tree structures to obtain multiple aggregated tree structures.

在另一种可选的实施例中,对于父节点质量超过1的目标树状结构,可以从递归进行分裂操作,使得每个父节点对应的坐标数量恰好等于总质量的取整,由此可以避免在极度密集区域丢失目标对象数量的问题。In another optional embodiment, for the target tree structure whose parent node quality exceeds 1, the split operation can be performed recursively, so that the number of coordinates corresponding to each parent node is exactly equal to the rounding of the total quality, so that Avoid the problem of losing the number of target objects in extremely dense areas.

本申请上述实施例中,基于密度估计结果,将多个像素点划分为多个第一像素集合,包括:遍历监测图像中每个像素点,确定密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,其中,预设区域用于表征监测图像中以该像素点为中心,与该像素点相邻的像素点组成的区域;在该像素点对应的密度值为最大密度值的情况下,建立新集合,并将该像素点存储至新集合,其中,新集合用于生成多个第一像素集合;在该像素点对应的密度值不为最大密度值的情况下,将该像素点存储至多个第一像素集合中存储有最大密度值的集合。In the above embodiments of the present application, based on the density estimation result, dividing a plurality of pixel points into a plurality of first pixel sets includes: traversing each pixel point in the monitoring image, and determining whether the density value corresponding to the pixel point in the density estimation result is is the maximum density value among the density values corresponding to all pixels in the preset area, where the preset area is used to represent the area in the monitoring image centered on the pixel and adjacent to the pixel; When the density value corresponding to the pixel point is the maximum density value, a new set is established, and the pixel point is stored in the new set, wherein the new set is used to generate a plurality of first pixel sets; the density corresponding to the pixel point If the value is not the maximum density value, the pixel point is stored in the set in which the maximum density value is stored among the plurality of first pixel sets.

在一种可选的实施例中,可以遍历监测图像中的每个像素点,确定密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,在密度值为大于预设区域内最大密度值的情况下,可以建立新集合,并将该像素点存储至新集合中,该新集合表现在监测图像中密集人群中人群数量较多的密度团。In an optional embodiment, each pixel in the monitoring image can be traversed to determine whether the density value corresponding to the pixel in the density estimation result is the maximum density among the density values corresponding to all pixels in the preset area value, when the density value is greater than the maximum density value in the preset area, a new set can be established, and the pixel point can be stored in the new set, which is shown in the dense crowd in the monitoring image. Density clusters.

上述的预设区域可以为3×3的区域,还可以为其他大小的区域,此处对预设区域的面积不做限定。该像素点的预设区域内不包含该像素点的密度值。The aforementioned preset area may be a 3×3 area, or an area of other sizes, and the area of the preset area is not limited here. The preset area of the pixel does not contain the density value of the pixel.

在一种可选的实施例中,可以对监测图像中每个像素点的密度值进行遍历,判断该密度值是否为预设区域内的最大的密度值,若该密度值为预设区域内的最大密度值,则可以根据该密度值建立新集合。In an optional embodiment, the density value of each pixel in the monitoring image can be traversed to determine whether the density value is the maximum density value in the preset area, if the density value is in the preset area The maximum density value of , you can build a new set based on the density value.

在密度值不为预设区域内的最大密度值的情况下,可以将该像素点存储在多个第一像素集合中存储有最大密度值的集合,该In the case that the density value is not the maximum density value in the preset area, the pixel point can be stored in a set with the maximum density value stored in a plurality of first pixel sets, the

在另一种可选的实施例中,可以将遍历过程中预设区域内的最大密度值作为初始根节点,将预设区域内小于最大密度值的其他密度值作为初始根节点的子节点,从而建立多个初始树状结构。可选的,可以将最大密度值推入到候选点的栈S,可以将其他密度值推入到其邻域内峰值点C的子节点栈C_S中,在入栈的过程中,可以同时存储每个像素对应的像素值和像素坐标。In another optional embodiment, the maximum density value in the preset area during the traversal process can be used as the initial root node, and other density values smaller than the maximum density value in the preset area can be used as child nodes of the initial root node, Thereby establishing multiple initial tree structures. Optionally, the maximum density value can be pushed into the stack S of the candidate point, and other density values can be pushed into the child node stack C_S of the peak point C in its neighborhood. During the stacking process, each The pixel value and pixel coordinates corresponding to each pixel.

本申请上述实施例中,每个第一像素集合采用树状结构,每个第一像素集合中的像素点对应于树状结构中的节点,每个第一像素集合中像素点之间的相邻关系对应于树状结构中节点之间的连接关系,其中,对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量,包括:确定树状结构中父节点对应的密度值和子节点对应的密度值,其中,子节点为树状结构中的父节点的后代节点;对父节点对应的密度值和子节点对应的密度值进行聚合,得到父节点的质量;确定树状结构中根节点的质量为每个第一像素集合对应的质量。In the above-mentioned embodiments of the present application, each first set of pixels adopts a tree structure, and the pixels in each first set of pixels correspond to nodes in the tree structure, and the relationship between the pixels in each first set of pixels The neighbor relationship corresponds to the connection relationship between nodes in the tree structure, wherein the density values corresponding to the pixel points in each first pixel set are aggregated to obtain the quality corresponding to each first pixel set, including: determining the tree structure The density value corresponding to the parent node and the density value corresponding to the child node in the structure, where the child node is the descendant node of the parent node in the tree structure; aggregate the density value corresponding to the parent node and the density value corresponding to the child node to obtain the parent node quality; determine the quality of the root node in the tree structure as the quality corresponding to each first pixel set.

上述的父节点可以是状结构中质量最大的节点,上述的子节点可以是初始树状结构中质量小于最大质量的节点。The above-mentioned parent node may be the node with the highest quality in the tree structure, and the above-mentioned child node may be the node with the quality less than the maximum quality in the initial tree structure.

在一种可选的实施例中,每个树状结构中都包含有父节点和子节点,可以将子节点的密度值叠加到父节点的密度值上,得到父节点的质量,这样就达到了对父节点的密度值和子节点的密度值进行聚合的目的,通过对父节点对应密度值和子节点对应的密度值进行聚合,使得父节点的质量提高,从而增加该区域存在目标对象的概率,可以确定树状结构中父节点的质量为每个第一像素集合对应的质量,从而将第一像素集合中存在目标对象对应像素的可能性提高。In an optional embodiment, each tree structure contains a parent node and a child node, and the density value of the child node can be superimposed on the density value of the parent node to obtain the quality of the parent node, thus achieving The purpose of aggregating the density value of the parent node and the density value of the child node is to improve the quality of the parent node by aggregating the density value corresponding to the parent node and the density value corresponding to the child node, thereby increasing the probability of the target object in the area, which can be The quality of the parent node in the tree structure is determined to be the quality corresponding to each first pixel set, thereby increasing the possibility that there is a pixel corresponding to the target object in the first pixel set.

在另一种可选的实施例中,父节点的质量仅为自身密度值,可以通过深度优先搜索算法,将父节点的全部后代子节点的密度值加到父节点上,得到父节点的质量,同时,可以将辐射范围值更新到全部后代节点中,最远离目标父节点自身坐标的左上、右下位置,即可以将父节点的辐射范围更新为自身所有后代节点的最大范围。In another optional embodiment, the quality of the parent node is only its own density value, and the density value of all descendant child nodes of the parent node can be added to the parent node through the depth-first search algorithm to obtain the quality of the parent node , at the same time, the radiation range value can be updated to all descendant nodes, the farthest from the upper left and lower right positions of the target parent node's own coordinates, that is, the radiation range of the parent node can be updated to the maximum range of all its descendant nodes.

本申请上述实施例中,基于多个第一像素集合对应的质量对多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,包括:步骤A,获取预设像素集合的辐射范围,其中,辐射范围用于表征预设像素集合中的所有像素点的坐标范围;步骤B,确定辐射范围内最大密度值对应的像素点,得到候选像素;步骤C,基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,其中,分裂后的第一集合包含候选像素和与候选像素具有关联关系的关联像素,分裂后的第二集合包含预设像素集合中除分裂后的第一集合中的像素点之外的其他像素点;步骤D,在分裂后的第二集合对应的质量大于第二预设值时,将辐射范围更新为分裂后的第二集合中的所有像素点的坐标范围,并重复执行上述步骤B和步骤C,直至分裂后的第二集合对应的质量小于或等于第二预设值,得到多个第二像素集合,其中,第二预设值小于第一预设值。In the above-mentioned embodiments of the present application, based on the qualities corresponding to the multiple first pixel sets, the preset pixel sets in the multiple first pixel sets are split to obtain multiple second pixel sets, including: step A, obtaining preset pixels The radiation range of the set, wherein the radiation range is used to characterize the coordinate range of all pixels in the preset pixel set; step B, determine the pixel corresponding to the maximum density value in the radiation range, and obtain candidate pixels; step C, based on the candidate pixels A split operation is performed on the preset pixel set to obtain the split first set and the second set, wherein the split first set includes candidate pixels and associated pixels associated with the candidate pixels, and the split second set includes Other pixels in the preset pixel set except the pixels in the split first set; step D, when the quality corresponding to the split second set is greater than the second preset value, update the radiation range to split coordinate range of all pixels in the second set after splitting, and repeat the above step B and step C until the quality corresponding to the second set after splitting is less than or equal to the second preset value, and multiple second sets of pixels are obtained , wherein the second preset value is smaller than the first preset value.

上述候选像素的密度值可以为大于1的值。The density value of the above candidate pixels may be a value greater than 1.

上述的第一预设值可以为1,上述的第二预设值可以为0,但不限于此,具体的第一预设值和第二预设值可以根据需求自行设置。The above-mentioned first preset value may be 1, and the above-mentioned second preset value may be 0, but not limited thereto, and the specific first and second preset values may be set according to requirements.

上述的预设像素集合中的父节点的密度值大于1,若父节点的密度值大于1,则说明该预设像素集合表示多个目标对象,因此,需要对该预设像素集合进行分裂,使得每个目标对象都可以对应于一个像素集合。映射在监测图像中,是将多个目标对象的位置信息聚合在一个位置信息中,因此,需要对预设像素集合进行分裂,得到每个目标对象单独对应的集合,从而实现对监测图像中密集的目标对象进行定位的目的。The density value of the parent node in the above preset pixel set is greater than 1. If the density value of the parent node is greater than 1, it means that the preset pixel set represents multiple target objects. Therefore, the preset pixel set needs to be split. So that each target object can correspond to a set of pixels. Mapping in the monitoring image is to aggregate the position information of multiple target objects into one position information. Therefore, it is necessary to split the preset pixel set to obtain a set corresponding to each target object, so as to realize the dense target audience for targeting purposes.

在一种可选的实施例中,可以获取预设像素集合的辐射范围,其中,预设像素集合的辐射范围为预设像素集合中所有像素点的坐标范围,可以确定辐射范围内的最大密度值对应的像素点,得到候选像素,可以根据候选像素的密度值对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,此时,第一集合包含的候选像素和与候选像素具有关联关系的关联像素,若分裂后的第二集合对应的质量大于第二预设值,则说明第二集合代表多个目标对象,此时可以将辐射范围更新为分裂后的第二集合中的所有像素点的坐标范围,并对第二集合重复执行上述的操作,直至分裂后的第二集合对应的质量小于或等于第二预设值,得到多个第二像素集合,若第二集合对应的质量小于或等于第二预设值,则说明第二集合中仅表示一个目标对象,此时不需要对第二集合再次进行分裂操作,使用该第二集合可以准确的表示其对应目标对象的位置。In an optional embodiment, the radiation range of the preset pixel set can be obtained, wherein the radiation range of the preset pixel set is the coordinate range of all pixels in the preset pixel set, and the maximum density within the radiation range can be determined Values corresponding to the pixel points to obtain candidate pixels, the preset pixel set can be split according to the density value of the candidate pixel to obtain the first set and the second set after splitting. At this time, the candidate pixels contained in the first set and Candidate pixels have an associated relationship. If the quality corresponding to the second set after splitting is greater than the second preset value, it means that the second set represents multiple target objects. At this time, the radiation range can be updated to the second set after splitting. Coordinate ranges of all pixels in the set, and repeat the above operations on the second set until the quality corresponding to the split second set is less than or equal to the second preset value, and multiple second pixel sets are obtained. If the second set If the quality corresponding to the two sets is less than or equal to the second preset value, it means that only one target object is represented in the second set. At this time, there is no need to split the second set again, and the second set can accurately represent its corresponding The location of the target object.

本申请上述实施例中,基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,包括:以候选像素为中心进行多次扩散,将预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,其中,第一次扩散位置的累加结果通过将第一次扩散位置上像素点对应的密度值与候选像素点对应的密度值进行累加得到,每次扩散位置为监测图像中与前一次扩散位置上像素点相邻,且远离候选像素点的像素点所在的位置,第一次扩散位置为与候选像素相邻的像素点所在的位置;在该扩散位置的累加结果大于第一预设值的情况下,基于候选像素和该扩散位置之前所有扩散位置上的像素点,得到分裂后的第一集合;将分裂后的第一集合中的像素点从预设像素集合中删除,得到分裂后的第二集合。In the above-mentioned embodiments of the present application, the preset pixel set is split based on the candidate pixels to obtain the split first set and the second set, including: multiple times of diffusion centered on the candidate pixel, and each of the preset pixel sets The density value corresponding to the pixel point at the second diffusion position is accumulated with the accumulation result of the previous diffusion position to obtain the accumulation result of the diffusion position, wherein the accumulation result of the first diffusion position is obtained by adding the pixel point corresponding to the first diffusion position The density value of is obtained by accumulating the density value corresponding to the candidate pixel. Each diffusion position is the position of the pixel adjacent to the previous diffusion position in the monitoring image and far away from the candidate pixel. The first diffusion The position is the position of the pixel adjacent to the candidate pixel; if the cumulative result of the diffusion position is greater than the first preset value, based on the candidate pixel and the pixels at all diffusion positions before the diffusion position, the post-split The first set of ; the pixel points in the first set after splitting are deleted from the preset pixel set to obtain the second set after splitting.

在一种可选的实施例中,可以以候选像素为中心进行多次扩散,将预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,通过对扩散位置进行累加,可以将预设像素集合中表示多个目标对象的像素逐渐分裂出来,在扩散位置的累加结果大于第一预设值的情况下,可以根据候选像素和该扩散位置之前的所有扩散位置上的像素点,得到分裂后的第一集合,可以将分裂后的第一集合中的像素点从预设像素集合中删除,也即,可以将预设集合中关于第一集合中的像素点的密度值置为0,从而得到分裂后的第二集合,这样,分裂后的第二集合质量可以减少,继续对第二集合进行分裂操作,直至第二集合的质量小于0,说明分裂完毕。In an optional embodiment, multiple diffusions can be performed with the candidate pixel as the center, and the density value corresponding to the pixel point at each diffusion position in the preset pixel set is accumulated with the cumulative result of the previous diffusion position to obtain The accumulation result of the diffusion position can gradually split the pixels representing multiple target objects in the preset pixel set by accumulating the diffusion position. When the accumulation result of the diffusion position is greater than the first preset value, it can be based on The candidate pixel and the pixel points at all diffusion positions before the diffusion position are obtained to obtain the first set after splitting, and the pixels in the first set after splitting can be deleted from the preset pixel set, that is, the preset pixel set can be deleted. Set the density value of the pixel points in the first set in the set to 0, so as to obtain the second set after splitting, so that the quality of the second set after splitting can be reduced, and continue to split the second set until the second set The quality of the two sets is less than 0, indicating that the split is complete.

需要说明的是,由于分裂后的第一集合是候选像素和该扩散位置之前所有扩散位置上的像素点,其并未将超过第一预设值的扩散位置加进去,因此,分裂后的第一集合的累加结果应该是小于第一预设值,也即,分裂后的第一集合代表的是一个目标对象。It should be noted that since the first set after splitting is the candidate pixel and the pixels at all diffusion positions before the diffusion position, it does not add the diffusion positions exceeding the first preset value, therefore, the first set after splitting The accumulation result of a set should be smaller than the first preset value, that is, the first set after splitting represents a target object.

在另一种可选的实施例中,在质量聚合的步骤之后,对于质量超出1.0的候选节点(即上述的预设像素集合),表示在该候选节点的辐射范围内,存在不止一个目标对象,因此需要对该候选节点执行分裂操作,可选的,可以先将该候选节点出栈,然后以该候选节点的辐射范围内中密度最大的位置C'(即上述的候选像素对应的位置)作为起始位置,逐渐向周围扩散,可以将这些被扩散位置作为C'的子节点,可以将所有子节点的质量和加到C'(第一集合)中,直至C'的质量超过1.0,可以将C'加入到候选节点栈中,并将原候选节点C(预设像素集合)范围中属于C'的位置密度值设置为0,因此节点C的总质量相应被减少重复上一步骤,直至原节点C的质量和低于0,说明此时原节点C中已经提取出所有的候选节点,该过程代表向上取整。In another optional embodiment, after the quality aggregation step, for a candidate node whose quality exceeds 1.0 (that is, the above-mentioned preset pixel set), it means that there is more than one target object within the radiation range of the candidate node , so it is necessary to perform a split operation on the candidate node. Optionally, the candidate node can be popped out of the stack first, and then the position C' with the highest density in the radiation range of the candidate node (that is, the position corresponding to the above-mentioned candidate pixel) As the starting position, gradually spread to the surrounding, these diffused positions can be used as child nodes of C', and the mass sum of all child nodes can be added to C' (the first set) until the quality of C' exceeds 1.0, You can add C' to the candidate node stack, and set the position density value belonging to C' in the range of the original candidate node C (preset pixel set) to 0, so the total mass of node C is correspondingly reduced and repeat the previous step, Until the quality sum of the original node C is lower than 0, it means that all candidate nodes have been extracted from the original node C at this time, and this process represents rounding up.

本申请上述实施例中,每个第一像素集合采用树状结构,在基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将候选像素点对应的节点的质量设定为第三预设值。In the above-mentioned embodiments of the present application, each first pixel set adopts a tree structure, and after splitting the preset pixel set based on the candidate pixels to obtain the split first set and second set, the candidate pixel points correspond to The quality of the nodes is set to a third preset value.

上述的第三预设值可以为0,但不仅限于此,可以根据需求自行设定。The above-mentioned third preset value may be 0, but not limited thereto, and may be set according to requirements.

在一种可选的实施例中,在根据候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将候选像素点对应的节点的质量设定为第三预设值,也即,可以将辐射范围内候选像素节点对应的节点的质量设定为0,说明此时已经从预设像素集合中将候选像素节点提取出来了。In an optional embodiment, after splitting the preset pixel set according to the candidate pixels to obtain the split first set and the second set, the quality of the node corresponding to the candidate pixel is set to the third The preset value, that is, the quality of the node corresponding to the candidate pixel node within the radiation range can be set to 0, indicating that the candidate pixel node has been extracted from the preset pixel set at this time.

本申请上述实施例中,基于多个第二像素集合对应的质量,从多个第二像素集合中确定目标像素点,包括:按照多个第二像素集合对应的质量对多个第二像素集合进行排序,得到排序结果;获取排序结果中预设数量的第二像素集合,得到目标像素集合,其中,预设数量为目标对象的数量;从目标像素集合中的像素点中确定最大密度值对应的像素点为目标像素点。In the above embodiments of the present application, based on the quality corresponding to the multiple second pixel sets, determining the target pixel point from the multiple second pixel sets includes: according to the quality corresponding to the multiple second pixel sets Perform sorting to obtain a sorting result; obtain a preset number of second pixel sets in the sorting result to obtain a target pixel set, wherein the preset number is the number of target objects; determine the corresponding maximum density value from the pixel points in the target pixel set The pixels of are the target pixels.

在一种可选的实施例中,可以按照多个第二像素集合对应的质量对多个第二像素集合从小到大进行排序,质量越大的第二像素集合说明其中包含目标对象的概率越大,此时可以根据第二像素集合确定目标对象的目标定位结果,可以根据大致估计出的目标对象的数量,确定出需要保留的第二像素集合的数量,也即,上述的目标像素集合的数量,可以从目标像素集合中的像素点中确定最大密度值对应的像素点为目标像素点,由于目标对象的数量等于预设数量,因此得到的目标定位结果需要与目标对象的数量一致,以获取排序结果中最大密度值对应的像素点作为目标像素点,并确定该目标像素点为目标对象的目标定位结果。In an optional embodiment, the plurality of second pixel sets may be sorted from small to large according to the quality corresponding to the plurality of second pixel sets, and the second pixel set with higher quality indicates that the second pixel set has a higher probability of containing the target object. is large, at this time, the target positioning result of the target object can be determined according to the second pixel set, and the number of the second pixel set to be retained can be determined according to the roughly estimated number of target objects, that is, the above-mentioned target pixel set Quantity, the pixel point corresponding to the maximum density value can be determined from the pixels in the target pixel set as the target pixel point. Since the number of target objects is equal to the preset number, the obtained target positioning result needs to be consistent with the number of target objects, so that Obtain the pixel point corresponding to the maximum density value in the sorting result as the target pixel point, and determine the target pixel point as the target positioning result of the target object.

通过上述步骤,可以从密度估计结果中提取出较为准确的目标对象的定位结果,并且定位结果的总数与监测图像中目标对象的数量基本一致。Through the above steps, relatively accurate positioning results of the target object can be extracted from the density estimation results, and the total number of positioning results is basically consistent with the number of target objects in the monitoring image.

图4是根据本申请实施例的一种图像处理过程的流程图。如图4所示,首先获取到监测图像,其中,监测图像中可以是包含密集人群的密集图像,可以利用人群密度估计模型对监测图像进行人群密度估计,得到密度估计结果,然后利用密度爬山算法的方法遍历密度估计结果中的每个密度值,确定该密度值是否为预设区域内的最大密度值,在该密度值大于预设区域内最大密度值的情况下,建立新集合,并将该像素点存储至新集合,并根据新集合生成多个第一像素集合,图中的漩涡中心可以为最大密度值的像素点所在的位置,在像素点对应的密度值不为最大密度值的情况下,可以将该像素点存储至多个第一像素集合中存储有最大密度值的集合,其中,该像素点可以是图中的漩涡中心点以外区域的节点,可以根据像素点对应的密度值建立多个第一像素集合;可以对每个第一像素集合进行聚合,得到每个第一像素集合对应的质量,由于多个第一像素集合会出现质量大于1的情况,也即,一个第一像素集合可能会代表多个目标对象,因此,需要对多个第一像素集合进行分裂,得到多个第二像素集合,可以对多个第二像素集合进行质量排序,选取质量处于监测图像中估计出的总人数数量的节点坐标,将这些坐标作为监测图像中人群的目标定位结果。Fig. 4 is a flowchart of an image processing process according to an embodiment of the present application. As shown in Figure 4, the monitoring image is first obtained, where the monitoring image can be a dense image containing dense crowds, and the crowd density estimation model can be used to estimate the crowd density of the monitoring image to obtain the density estimation result, and then use the density climbing algorithm The method traverses each density value in the density estimation result to determine whether the density value is the maximum density value in the preset area, and if the density value is greater than the maximum density value in the preset area, a new set is established, and The pixel points are stored in a new set, and multiple first pixel sets are generated according to the new set. The center of the vortex in the figure can be the position of the pixel point with the maximum density value, and the density value corresponding to the pixel point is not the maximum density value. In this case, the pixel point can be stored in the set with the maximum density value stored in the plurality of first pixel sets, where the pixel point can be a node in an area other than the center point of the vortex in the figure, and the density value corresponding to the pixel point can be Establish multiple first pixel sets; each first pixel set can be aggregated to obtain the quality corresponding to each first pixel set, because multiple first pixel sets will have a quality greater than 1, that is, a first pixel set A set of pixels may represent multiple target objects. Therefore, it is necessary to split multiple sets of first pixels to obtain multiple sets of second pixels. The quality of multiple second sets of pixels can be sorted, and the selected quality is in the monitoring image. The node coordinates of the estimated total number of people are used as the target positioning results of the crowd in the monitoring image.

图5是根据本申请实施例的另一种图像处理方法的流程图,如图5所示,该方法包括:Fig. 5 is a flowchart of another image processing method according to an embodiment of the present application. As shown in Fig. 5, the method includes:

步骤S501,获取通用的人群密度估计模型在高密集图像上的密度估计输出。Step S501, obtaining the density estimation output of a general crowd density estimation model on a high-density image.

上述的高密集图像可以为监测图像。The above-mentioned high-intensity images may be monitoring images.

可选的,对于一张从视频流中截取的高分辨率RGB图像,其形状为(H,W,3),通过一个人群密度估计模型,一般获得一个低分辨率下的密度图,即一个形状为(H/4,W/4)的矩阵M,矩阵中元素为浮点数,代表每一个像素位置可能出现目标的概率,因此将矩阵中的元素求和,即可得到画面中的总人数K,即

Figure BDA0003867396440000161
Optionally, for a high-resolution RGB image intercepted from a video stream, its shape is (H, W, 3), through a crowd density estimation model, a low-resolution density map is generally obtained, that is, a A matrix M with a shape of (H/4, W/4), the elements in the matrix are floating-point numbers, representing the probability that a target may appear at each pixel position, so the total number of people in the screen can be obtained by summing the elements in the matrix K, namely
Figure BDA0003867396440000161

步骤S502,逐一扫描密度矩阵M中元素,判断该元素是否是自己3x3邻域内的最大浮点数密度值点,如果是则将其推入候选点的栈S,如果不是,则将其推入其邻域内峰值点C的子节点栈C_S中。Step S502, scan the elements in the density matrix M one by one, judge whether the element is the maximum floating-point density value point in its own 3x3 neighborhood, if it is, push it into the stack S of candidate points, if not, push it into the other In the child node stack C_S of the peak point C in the neighborhood.

上述的最大浮点数密度值点可以为预设区域内的最大密度值。The aforementioned maximum floating point density value point may be the maximum density value in a preset area.

上述的候选点可以为候选像素。The aforementioned candidate points may be candidate pixels.

此处在入栈时,同时存储每个元素的像素坐标(i,j)和其在M中的浮点数密度值v(后文称之为质量),同时存储每个元素的辐射范围为自身坐标,此处辐射范围指每个元素作为父节点所后继的后代节点的坐标范围。Here, when pushing into the stack, store the pixel coordinates (i, j) of each element and its floating-point density value v in M (hereinafter referred to as quality), and store the radiation range of each element as itself Coordinates, where the radiation range refers to the coordinate range of the descendant nodes that each element is the successor of the parent node.

步骤S503,候选点的质量仅为自身质量,可以通过深度优先搜索算法,将候选点的全部后代节点的质量加和到自身,更新为自身质量v';Step S503, the quality of the candidate point is only its own quality, and the quality of all descendant nodes of the candidate point can be added to itself through the depth-first search algorithm, and updated as its own quality v';

上述的全部后代节点可以包括子节点,子节点的子节点等。All the descendant nodes mentioned above may include child nodes, child nodes of child nodes, and so on.

同时,将辐射范围值更新为全部后代节点中,最远离候选节点自身坐标的左上、右下位置,即将候选点的辐射范围更新为自身所有后代节点的最大范围,为步骤S504中提取候选节点提供坐标依据。At the same time, the radiation range value is updated to the upper left and lower right positions farthest from the candidate node's own coordinates among all descendant nodes, that is, the radiation range of the candidate point is updated to the maximum range of all descendant nodes of itself, which provides for extracting candidate nodes in step S504 Coordinate basis.

步骤S504,以该候选节点的辐射范围中密度最大的位置C'为起始位置,逐渐向周围扩散,将这些被扩散位置作为C'的子节点,将其质量加和到C'中,直到C'质量和超过1.0,将C'加入到候选节点栈中,并将原节点C范围中属于C'的位置的密度值置为0,此时节点C的总质量相应被减少,并重复该步骤,直至原节点C的质量和低于0。Step S504, starting from the position C' with the highest density in the radiation range of the candidate node, gradually spreading to the surroundings, taking these diffused positions as the child nodes of C', adding their mass to C', until If the quality sum of C' exceeds 1.0, add C' to the candidate node stack, and set the density value of the position belonging to C' in the range of the original node C to 0. At this time, the total mass of node C is correspondingly reduced, and repeat the process Steps until the sum of the original node C's quality is lower than 0.

若原节点C的质量和低于0,说明此时原节点C中已经提取出个候选节点If the quality sum of the original node C is lower than 0, it means that a candidate node has been extracted from the original node C at this time

在质量聚合步骤之后,质量超出1.0的候选节点(如质量为V)表示在该候选节点的辐射范围内,存在不止1个目标。因此需要对该候选节点执行分裂操作。具体来讲,可以先将该候选节点C出栈。After the quality aggregation step, a candidate node whose quality exceeds 1.0 (for example, the quality is V) indicates that there is more than one target within the radiation range of the candidate node. Therefore, it is necessary to perform a split operation on the candidate node. Specifically, the candidate node C may be popped out of the stack first.

步骤S505,对全部候选点进行质量排序,选取质量处于TOPK节点的坐标。Step S505, sort all the candidate points by quality, and select the coordinates whose quality is at the TOPK node.

上述的K为高密集图像中估计出的总人数。The above K is the estimated total number of people in the high-density image.

本申请中使用了局部密度的爬山算法,从密度图中建立了严格的节点树结构,将密度图划分为质量不一的密度团,利用深度优先算法对节点质量进行聚合,每一个父节点的质量都包含了自己的全部子节点的质量。对于每一个质量超过1的父节点(人数超过1),可以递归进行分裂操作,使得每个父节点所对应的坐标数量恰好等于它的总质量的取整,由此避免了在极度密集区域丢失目标数量的问题。在聚合和分裂操作完成之后,可以对全部候选节点进行质量排序,若总人数为N,可以选取前N个候选节点作为最终坐标的输出,由此避免了坐标数量与总人数不符的问题,同时避免了阈值敏感问题。This application uses the local density hill-climbing algorithm, establishes a strict node tree structure from the density map, divides the density map into density groups with different quality, and uses the depth-first algorithm to aggregate the node quality. Each quality contains the quality of all its child nodes. For each parent node whose quality exceeds 1 (the number of people exceeds 1), the split operation can be performed recursively, so that the number of coordinates corresponding to each parent node is exactly equal to the rounding of its total quality, thus avoiding loss in extremely dense areas The problem with the number of targets. After the aggregation and splitting operations are completed, the quality of all candidate nodes can be sorted. If the total number of people is N, the first N candidate nodes can be selected as the output of the final coordinates, thus avoiding the problem that the number of coordinates does not match the total number of people, and at the same time Threshold sensitivity issues are avoided.

本申请中基于自主设计的密度爬山算法以及深度优先质量聚合操作,从密度估计结果中产出了更加准确的目标对象的坐标位置,本申请中的目标对象的数量与密度估计结果中坐标的数量一致,为人群密度监测提供了更加精细化的结构化输出,为该算法提供了更加直观的展现形式和更加广泛的利用场景。In this application, based on the self-designed density climbing algorithm and depth-first quality aggregation operation, more accurate coordinate positions of target objects are produced from the density estimation results. The number of target objects in this application is the same as the number of coordinates in the density estimation results. Consistent, it provides a more refined structured output for crowd density monitoring, and provides a more intuitive display form and a wider range of application scenarios for the algorithm.

需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。It should be noted that for the foregoing method embodiments, for the sake of simple description, they are expressed as a series of action combinations, but those skilled in the art should know that the present application is not limited by the described action sequence. Depending on the application, certain steps may be performed in other orders or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification belong to preferred embodiments, and the actions and modules involved are not necessarily required by this application.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the method of each embodiment of the present application.

实施例2Example 2

根据本申请实施例,还提供了一种图像处理方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present application, an image processing method is also provided. It should be noted that the steps shown in the flow charts of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although in the flow chart The figures show a logical order, but in some cases the steps shown or described may be performed in an order different from that shown or described herein.

图6是根据本申请实施例2的一种图像处理方法的流程图,如图6所示,该方法可以包括如下步骤:Fig. 6 is a flow chart of an image processing method according to Embodiment 2 of the present application. As shown in Fig. 6, the method may include the following steps:

步骤S602,通过监测设备监测活动区域得到监测图像。Step S602, monitor the active area through the monitoring device to obtain a monitoring image.

其中,监测图像包含目标人群。Wherein, the monitoring image contains the target population.

步骤S604,对监测图像进行密度估计,得到目标人群的密度估计结果。Step S604, performing density estimation on the monitoring image to obtain a density estimation result of the target population.

其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标人群的概率。Wherein, the multiple density values contained in the density estimation result are used to represent the probability that the target crowd exists in multiple pixel points in the monitoring image.

步骤S606,基于密度估计结果,从多个像素点中确定目标像素点。Step S606, based on the density estimation result, determine the target pixel point from the plurality of pixel points.

其中,目标像素点存在目标人群。Wherein, there is a target crowd in the target pixel.

步骤S608,基于目标像素点在监测图像中的位置,得到目标人群在活动区域中的目标定位结果。Step S608, based on the position of the target pixel in the monitoring image, the target positioning result of the target crowd in the activity area is obtained.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例3Example 3

根据本申请实施例,还提供了一种图像处理方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present application, an image processing method is also provided. It should be noted that the steps shown in the flow charts of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although in the flow chart The figures show a logical order, but in some cases the steps shown or described may be performed in an order different from that shown or described herein.

图7是根据本申请实施例3的一种图像处理方法的流程图,如图7所示,该方法可以包括如下步骤:Fig. 7 is a flowchart of an image processing method according to Embodiment 3 of the present application. As shown in Fig. 7, the method may include the following steps:

步骤S702,响应作用于操作界面上的输入指令,在操作界面上显示待监测区域的监测图像。Step S702, in response to an input instruction acting on the operation interface, displaying a monitoring image of the area to be monitored on the operation interface.

其中,监测图像包含目标对象。Wherein, the monitoring image contains the target object.

步骤S704,响应作用于操作界面上的定位指令,在操作界面上显示目标对象在待监测区域中的目标定位结果。Step S704, responding to the positioning instruction acting on the operation interface, displaying the target positioning result of the target object in the area to be monitored on the operation interface.

其中,目标定位结果通过从监测图像中多个像素点中确定的目标像素点在监测图像中的位置确定,目标像素点基于目标对象的密度估计结果确定,密度估计结果通过对监测图像进行密度估计得到,密度估计结果包含的多个密度值用于表征多个像素点存在目标对象的概率。Among them, the target positioning result is determined by the position of the target pixel in the monitoring image determined from a plurality of pixels in the monitoring image, and the target pixel is determined based on the density estimation result of the target object, and the density estimation result is obtained by performing density estimation on the monitoring image It is obtained that the multiple density values contained in the density estimation result are used to characterize the probability that the target object exists at multiple pixel points.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例4Example 4

根据本申请实施例,还提供了一种可以应用于虚拟现实VR设备、增强现实AR设备等虚拟现实场景下的图像处理方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to the embodiment of the present application, an image processing method that can be applied to virtual reality scenarios such as virtual reality VR devices and augmented reality AR devices is also provided. It should be noted that the steps shown in the flow chart of the accompanying drawings can be and, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.

图8是根据本申请实施例4的一种图像处理方法的流程图。如图8所示,该方法可以包括如下步骤:FIG. 8 is a flowchart of an image processing method according to Embodiment 4 of the present application. As shown in Figure 8, the method may include the following steps:

步骤S802,通过监测设备监测待监测区域的监测图像。Step S802, monitor the monitoring image of the area to be monitored through the monitoring device.

其中,监测图像包含目标对象。Wherein, the monitoring image contains the target object.

步骤S804,在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像。Step S804, displaying the monitoring image on the presentation screen of the virtual reality VR device or the augmented reality AR device.

步骤S806,基于密度估计结果,从多个像素点中确定目标像素点。Step S806, based on the density estimation result, determine the target pixel point from the plurality of pixel points.

其中,目标像素点存在目标对象。Wherein, there is a target object in the target pixel.

步骤S808,基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。Step S808, based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

步骤S810,驱动VR设备或AR设备渲染展示目标定位结果。Step S810, driving the VR device or the AR device to render and display the target positioning result.

可选地,在本实施例中,上述图像处理方法可以应用于由服务器、虚拟现实设备所构成的硬件环境中。在虚拟现实VR设备或增强现实AR设备的呈现画面上展示目标定位结果,服务器可以为媒体文件运营商对应的服务器,上述网络包括但不限于:广域网、城域网或局域网,上述虚拟现实设备并不限定于:虚拟现实头盔、虚拟现实眼镜、虚拟现实一体机等。Optionally, in this embodiment, the above image processing method may be applied in a hardware environment composed of a server and a virtual reality device. The target positioning results are displayed on the presentation screen of the virtual reality VR device or the augmented reality AR device. The server can be the server corresponding to the media file operator. The above-mentioned network includes but not limited to: wide area network, metropolitan area network or local area network. The above-mentioned virtual reality device does not Not limited to: virtual reality helmets, virtual reality glasses, virtual reality all-in-one machines, etc.

可选地,虚拟现实设备包括:存储器、处理器和传输装置。存储器用于存储应用程序,该应用程序可以用于执行:Optionally, the virtual reality device includes: a memory, a processor, and a transmission device. The memory is used to store an application program that can be used to perform:

通过监测设备监测待监测区域的监测图像,其中,监测图像包含目标对象;在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;驱动VR设备或AR设备渲染展示目标定位结果。Monitor the monitoring image of the area to be monitored through the monitoring equipment, wherein the monitoring image contains the target object; display the monitoring image on the presentation screen of the virtual reality VR device or the augmented reality AR device; perform density estimation on the monitoring image to obtain the density estimation of the target object As a result, the multiple density values contained in the density estimation result are used to characterize the probability of the target object at multiple pixels in the monitoring image; based on the density estimation result, the target pixel is determined from the multiple pixels, wherein the target pixel There is a target object; based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained; the VR device or AR device is driven to render and display the target positioning result.

需要说明的是,该实施例的上述应用在VR设备或AR设备中的图像处理方法可以包括图8所示实施例的方法,以实现驱动VR设备或AR设备展示目标定位结果的目的。It should be noted that the above-mentioned image processing method applied in a VR device or an AR device of this embodiment may include the method of the embodiment shown in FIG. 8 , so as to realize the purpose of driving the VR device or AR device to display the target positioning result.

可选地,该实施例的处理器可以通过传输装置调用上述存储器存储的应用程序以执行上述步骤。传输装置可以通过网络接收服务器发送的媒体文件,也可以用于上述处理器与存储器之间的数据传输。Optionally, the processor in this embodiment may call the application program stored in the above-mentioned memory through a transmission device to perform the above-mentioned steps. The transmission device can receive the media file sent by the server through the network, and can also be used for data transmission between the processor and the memory.

可选地,在虚拟现实设备中,带有眼球追踪的头戴式显示器,该HMD头显中的屏幕,用于显示展示的视频画面,HMD中的眼球追踪模块,用于获取用户眼球的实时运动轨迹,跟踪系统,用于追踪用户在真实三维空间的位置信息与运动信息,计算处理单元,用于从跟踪系统中获取用户的实时位置与运动信息,并计算出用户头部在虚拟三维空间中的三维坐标,以及用户在虚拟三维空间中的视野朝向等。Optionally, in the virtual reality device, there is a head-mounted display with eyeball tracking, the screen in the HMD head-mounted display is used to display the displayed video picture, and the eyeball tracking module in the HMD is used to obtain real-time information about the user's eyeballs. Motion trajectory, tracking system, used to track the position information and motion information of the user in the real three-dimensional space, and a calculation processing unit, used to obtain the real-time position and motion information of the user from the tracking system, and calculate the position of the user's head in the virtual three-dimensional space The three-dimensional coordinates in the virtual three-dimensional space, and the direction of the user's field of view in the virtual three-dimensional space.

在本申请实施例中,虚拟现实设备可以与终端相连接,终端与服务器通过网络进行连接,上述虚拟现实设备并不限定于:虚拟现实头盔、虚拟现实眼镜、虚拟现实一体机等,上述终端并不限定于PC、手机、平板电脑等,服务器可以为媒体文件运营商对应的服务器,上述网络包括但不限于:广域网、城域网或局域网。In the embodiment of this application, the virtual reality device can be connected to the terminal, and the terminal and the server are connected through the network. The above-mentioned virtual reality device is not limited to: virtual reality helmet, virtual reality glasses, virtual reality all-in-one machine, etc. The above-mentioned terminal is not limited to Not limited to PCs, mobile phones, tablet computers, etc., the server may be a server corresponding to a media file operator, and the above-mentioned network includes but is not limited to: a wide area network, a metropolitan area network or a local area network.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例5Example 5

根据本申请实施例,还提供了一种图像处理方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present application, an image processing method is also provided. It should be noted that the steps shown in the flow charts of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and although in the flow chart The figures show a logical order, but in some cases the steps shown or described may be performed in an order different from that shown or described herein.

图9是根据本申请实施例5的一种图像处理方法的流程图,如图9所示,该方法可以包括如下步骤:Fig. 9 is a flowchart of an image processing method according to Embodiment 5 of the present application. As shown in Fig. 9, the method may include the following steps:

步骤S902,通过调用第一接口获取待监测区域的监测图像。Step S902, acquiring the monitoring image of the area to be monitored by calling the first interface.

其中,第一接口包括第一参数,第一参数的参数值为监测图像,监测图像包含目标对象。Wherein, the first interface includes a first parameter, and a parameter value of the first parameter is a monitoring image, and the monitoring image includes a target object.

步骤S904,对监测图像进行密度估计,得到目标对象的密度估计结果。Step S904, performing density estimation on the monitoring image to obtain a density estimation result of the target object.

其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率。Wherein, the multiple density values included in the density estimation result are used to characterize the probability that the target object exists in multiple pixel points in the monitoring image.

步骤S906,基于密度估计结果,从多个像素点中确定目标像素点。Step S906, based on the density estimation result, determine the target pixel point from the plurality of pixel points.

其中,目标像素点存在目标对象。Wherein, there is a target object in the target pixel.

步骤S908,基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。Step S908, based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

步骤S910,通过调用第二接口输出目标定位结果。Step S910, outputting a target positioning result by calling the second interface.

其中,第二接口包括第二参数,第二参数的参数值为目标定位结果。Wherein, the second interface includes a second parameter, and a parameter value of the second parameter is a target positioning result.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例6Example 6

根据本申请实施例,还提供了一种用于实施上述图像处理方法的图像处理装置,图10是根据本申请实施例6的一种图像处理装置的示意图,如图10所示,该装置1000包括:获取模块1002、估计模块1004、确定模块1006、生成模块1008。According to an embodiment of the present application, an image processing device for implementing the above image processing method is also provided. FIG. 10 is a schematic diagram of an image processing device according to Embodiment 6 of the present application. As shown in FIG. 10 , the device 1000 It includes: an acquisition module 1002 , an estimation module 1004 , a determination module 1006 and a generation module 1008 .

其中,获取模块用于获取待监测区域的监测图像,其中,监测图像包含目标对象;估计模块用于对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;确定模块用于基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;生成模块用于基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。。Wherein, the acquisition module is used to obtain the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; the estimation module is used to perform density estimation on the monitoring image to obtain the density estimation result of the target object, wherein the density estimation result contains multiple The density value is used to represent the probability of the target object being present in multiple pixels in the monitoring image; the determination module is used to determine the target pixel point from multiple pixel points based on the density estimation result, wherein the target pixel point has the target object; the generation module uses Based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained. .

此处需要说明的是,上述获取模块1002、估计模块1004、确定模块1006、生成模块1008对应于实施例1中的步骤S302至步骤S308,四个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在实施例1提供的计算机终端中。It should be noted here that the acquisition module 1002, estimation module 1004, determination module 1006, and generation module 1008 correspond to steps S302 to S308 in Embodiment 1, and the examples and application scenarios realized by the four modules and corresponding steps The same, but not limited to the content disclosed in Embodiment 1 above. It should be noted that, as a part of the device, the above modules can run in the computer terminal provided in Embodiment 1.

本申请上述实施例中,确定模块,包括:划分单元、聚合单元、分裂单元、第一确定单元。In the above embodiments of the present application, the determining module includes: a dividing unit, an aggregating unit, a splitting unit, and a first determining unit.

其中,划分单元用于基于密度估计结果,将多个像素点划分为多个第一像素集合,其中,不同第一像素集合中的像素点存在不同对象;聚合单元用于对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量;分裂单元用于基于多个第一像素集合对应的质量对多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,其中,预设像素集合对应的质量大于第一预设质量;第一确定单元用于基于多个第二像素集合对应的质量,从多个第二像素集合中确定目标像素点。Wherein, the division unit is used for dividing multiple pixel points into multiple first pixel sets based on the density estimation result, wherein, there are different objects in the pixel points in different first pixel sets; the aggregation unit is used for each first pixel The density values corresponding to the pixel points in the set are aggregated to obtain the quality corresponding to each first pixel set; the splitting unit is used to split the preset pixel set in the multiple first pixel sets based on the quality corresponding to the multiple first pixel sets Operation, to obtain a plurality of second pixel sets, wherein the quality corresponding to the preset pixel set is greater than the first preset quality; the first determination unit is used to obtain from the plurality of second pixel sets Determine the target pixel in .

本申请上述实施例中,划分单元还用于遍历监测图像中每个像素点,确定密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,其中,预设区域用于表征监测图像中以该像素点为中心,与该像素点相邻的像素点组成的区域;划分单元还用于在该像素点对应的密度值为最大密度值的情况下,建立新集合,并将该像素点存储至新集合,其中,新集合用于生成多个第一像素集合;划分单元还用于在该像素点对应的密度值不为最大密度值的情况下,将该像素点存储至多个第一像素集合中存储有最大密度值的集合。In the above embodiments of the present application, the division unit is also used to traverse each pixel in the monitoring image, and determine whether the density value corresponding to the pixel in the density estimation result is the maximum density among the density values corresponding to all pixels in the preset area Value, wherein, the preset area is used to represent the area composed of pixels adjacent to the pixel point in the monitoring image centered on the pixel point; the division unit is also used to set the maximum density value at the density value corresponding to the pixel point In the case of , a new set is established and the pixel point is stored in the new set, wherein the new set is used to generate a plurality of first pixel sets; the division unit is also used when the density value corresponding to the pixel point is not the maximum density value In the case of , the pixel point is stored in the set in which the maximum density value is stored among the plurality of first pixel sets.

本申请上述实施例中,聚合单元还用于确定树状结构中父节点对应的密度值和子节点对应的密度值,其中,子节点为树状结构中父节点的后代节点;聚合单元还用于对父节点对应的密度值和子节点对应的密度值进行聚合,得到父节点的质量;聚合单元还用于确定树状结构中父节点的质量为每个第一像素集合对应的质量。In the above embodiments of the present application, the aggregation unit is also used to determine the density value corresponding to the parent node in the tree structure and the density value corresponding to the child node, wherein the child node is a descendant node of the parent node in the tree structure; the aggregation unit is also used for The density value corresponding to the parent node and the density value corresponding to the child node are aggregated to obtain the quality of the parent node; the aggregation unit is also used to determine that the quality of the parent node in the tree structure is the quality corresponding to each first pixel set.

本申请上述实施例中,分裂单元还用于执行步骤A,获取预设像素集合的辐射范围,其中,辐射范围用于表征预设像素集合中的所有像素点的坐标范围;步骤B,确定辐射范围内最大密度值对应的像素点,得到候选像素;步骤C,基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,其中,分裂后的第一集合包含候选像素和与候选像素具有关联关系的关联像素,分裂后的第二集合包含预设像素集合中除分裂后的第一集合中的像素点之外的其他像素点;步骤D,在分裂后的第二集合对应的质量大于第二预设值时,将辐射范围更新为分裂后的第二集合中的所有像素点的坐标范围,并重复执行上述步骤B和步骤C,直至分裂后的第二集合对应的质量小于或等于第二预设值,得到多个第二像素集合,其中,第二预设值小于第一预设值。In the above-mentioned embodiments of the present application, the splitting unit is also used to perform step A to obtain the radiation range of the preset pixel set, wherein the radiation range is used to represent the coordinate range of all pixel points in the preset pixel set; step B is to determine the radiation range The pixel point corresponding to the maximum density value within the range is obtained as a candidate pixel; step C, based on the candidate pixel, the preset pixel set is split to obtain the first set and the second set after splitting, wherein the first set after splitting contains Candidate pixels and associated pixels that have an association relationship with the candidate pixels, the second set after splitting contains other pixels in the preset pixel set except the pixels in the first set after splitting; step D, after splitting When the quality corresponding to the second set is greater than the second preset value, the radiation range is updated to the coordinate range of all pixels in the second set after splitting, and the above steps B and C are repeated until the second set after splitting The quality corresponding to the set is less than or equal to a second preset value to obtain a plurality of second pixel sets, wherein the second preset value is smaller than the first preset value.

本申请上述实施例中,分裂单元还用于以候选像素为中心进行多次扩散,将预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,其中,第一次扩散位置的累加结果通过将第一次扩散位置上像素点对应的密度值与候选像素点对应的密度值进行累加得到,每次扩散位置为监测图像中与前一次扩散位置上像素点相邻,且远离候选像素点的像素点所在的位置,第一次扩散位置为与候选像素相邻的像素点所在的位置;分裂单元还用于在该扩散位置的累加结果大于第一预设值的情况下,基于候选像素和该扩散位置之前所有扩散位置上的像素点,得到分裂后的第一集合;分裂单元还用于将分裂后的第一集合中的像素点从预设像素集合中删除,得到分裂后的第二集合。In the above-mentioned embodiments of the present application, the splitting unit is also used to perform multiple diffusions centering on the candidate pixel, and accumulate the density value corresponding to the pixel point at each diffusion position in the preset pixel set with the accumulation result of the previous diffusion position, The accumulation result of the diffusion position is obtained, wherein the accumulation result of the first diffusion position is obtained by accumulating the density value corresponding to the pixel point at the first diffusion position and the density value corresponding to the candidate pixel point, and each diffusion position is a monitoring In the image, the pixel point adjacent to the previous diffusion position and away from the pixel point of the candidate pixel is located, and the first diffusion position is the position of the pixel adjacent to the candidate pixel; the splitting unit is also used in the When the cumulative result of the diffusion position is greater than the first preset value, based on the candidate pixel and the pixel points at all diffusion positions before the diffusion position, the first set after splitting is obtained; the splitting unit is also used to split the first The pixels in the set are deleted from the preset pixel set to obtain the second set after splitting.

本申请上述实施例中,每个第一像素集合采用树状结构,在基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将候选像素点对应的节点的质量设定为第三预设值。In the above-mentioned embodiments of the present application, each first pixel set adopts a tree structure, and after splitting the preset pixel set based on the candidate pixels to obtain the split first set and second set, the candidate pixel points correspond to The quality of the nodes is set to a third preset value.

本申请上述实施例中,确定模块包括:排序单元、获取单元、第二确定单元。In the above embodiments of the present application, the determination module includes: a sorting unit, an acquisition unit, and a second determination unit.

其中,排序单元用于按照多个第二像素集合对应的质量对多个第二像素集合进行排序,得到排序结果;获取单元用于获取排序结果中预设数量的第二像素集合,得到目标像素集合,其中,预设数量为目标对象的数量;第二确定单元用于从目标像素集合中的像素点中确定最大密度值对应的像素点为目标像素点。Wherein, the sorting unit is used to sort the plurality of second pixel sets according to the quality corresponding to the multiple second pixel sets to obtain a sorting result; the obtaining unit is used to obtain a preset number of second pixel sets in the sorting result to obtain the target pixel The set, wherein the preset number is the number of target objects; the second determination unit is configured to determine the pixel point corresponding to the maximum density value from the pixel points in the target pixel set as the target pixel point.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例7Example 7

根据本申请实施例,还提供了一种用于实施上述图像处理方法的图像处理装置,图11是根据本申请实施例7的一种图像处理装置的示意图,如图11所示,该装置1100包括:监测模块1102、估计模块1104、确定模块1106、生成模块1108、输出模块1110。According to an embodiment of the present application, an image processing device for implementing the above image processing method is also provided. FIG. 11 is a schematic diagram of an image processing device according to Embodiment 7 of the present application. As shown in FIG. 11 , the device 1100 It includes: a monitoring module 1102 , an estimating module 1104 , a determining module 1106 , a generating module 1108 , and an output module 1110 .

其中,监测模块通过监测设备监测活动区域得到监测图像,其中,监测图像包含目标人群;估计模块用于对监测图像进行密度估计,得到目标人群的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标人群的概率;确定模块用于基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标人群;生成模块用于基于目标像素点在监测图像中的位置,得到目标人群在活动区域中的目标定位结果。Wherein, the monitoring module obtains the monitoring image by monitoring the active area of the monitoring equipment, wherein the monitoring image contains the target population; the estimation module is used to perform density estimation on the monitoring image to obtain the density estimation result of the target population, wherein the density estimation result contains multiple The density value is used to characterize the probability of the target group being present in multiple pixels in the monitoring image; the determination module is used to determine the target pixel point from multiple pixel points based on the density estimation result, wherein the target pixel point has the target group; the generation module uses Based on the position of the target pixel in the monitoring image, the target positioning result of the target crowd in the active area is obtained.

此处需要说明的是,上述监测模块1102、估计模块1104、确定模块1106、生成模块1108、输出模块1110对应于实施例2中的步骤S602至步骤S608,四个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在实施例1提供的计算机终端中。It should be noted here that the monitoring module 1102, estimation module 1104, determination module 1106, generation module 1108, and output module 1110 correspond to steps S602 to S608 in Embodiment 2, and the four modules and corresponding steps realize The examples and application scenarios are the same, but are not limited to the content disclosed in Embodiment 1 above. It should be noted that, as a part of the device, the above modules can run in the computer terminal provided in Embodiment 1.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例8Example 8

根据本申请实施例,还提供了一种用于实施上述图像处理方法的图像处理装置,图12是根据本申请实施例8的一种图像处理装置的示意图,如图12所示,该装置1200包括:第一显示模块1202、第二显示模块1204。According to an embodiment of the present application, an image processing device for implementing the above image processing method is also provided. FIG. 12 is a schematic diagram of an image processing device according to Embodiment 8 of the present application. As shown in FIG. 12 , the device 1200 It includes: a first display module 1202 and a second display module 1204 .

其中,第一显示模块用于响应作用于操作界面上的输入指令,在操作界面上显示待监测区域的监测图像,其中,监测图像包含目标对象;第二显示模块用于Wherein, the first display module is used to display the monitoring image of the area to be monitored on the operation interface in response to the input instruction acting on the operation interface, wherein the monitoring image contains the target object; the second display module is used to

响应作用于操作界面上的定位指令,在操作界面上显示目标对象在待监测区域中的目标定位结果,其中,目标定位结果通过从监测图像中多个像素点中确定的目标像素点在监测图像中的位置确定,目标像素点基于目标对象的密度估计结果确定,密度估计结果通过对监测图像进行密度估计得到,密度估计结果包含的多个密度值用于表征多个像素点存在目标对象的概率。In response to the positioning instruction acting on the operation interface, the target positioning result of the target object in the area to be monitored is displayed on the operation interface, wherein the target positioning result is displayed on the monitoring image through the target pixel points determined from the multiple pixel points in the monitoring image In the position determination, the target pixel is determined based on the density estimation result of the target object, and the density estimation result is obtained by performing density estimation on the monitoring image, and the multiple density values contained in the density estimation result are used to represent the probability of the target object existing in multiple pixel points .

此处需要说明的是,上述第一显示模块1202、第二显示模块1204对应于实施例3中的步骤S702至步骤S704,两个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在实施例1提供的计算机终端中。It should be noted here that the above-mentioned first display module 1202 and second display module 1204 correspond to steps S702 to S704 in Embodiment 3, and the examples and application scenarios implemented by the two modules are the same as the corresponding steps, but not It is limited to the content disclosed in the above-mentioned embodiment 1. It should be noted that, as a part of the device, the above modules can run in the computer terminal provided in Embodiment 1.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例9Example 9

根据本申请实施例,还提供了一种用于实施上述图像处理方法的图像处理装置,图13是根据本申请实施例9的一种图像处理装置的示意图,如图13所示,该装置1300包括:监测模块1302、展示模块1304、估计模块1306、确定模块1308、生成模块1310、驱动模块1312。According to an embodiment of the present application, an image processing device for implementing the above image processing method is also provided. FIG. 13 is a schematic diagram of an image processing device according to Embodiment 9 of the present application. As shown in FIG. 13 , the device 1300 It includes: a monitoring module 1302 , a display module 1304 , an estimation module 1306 , a determination module 1308 , a generation module 1310 , and a driving module 1312 .

其中,监测模块用于通过监测设备监测待监测区域的监测图像,其中,监测图像包含目标对象;展示模块用于在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像;估计模块用于对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;确定模块用于基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;生成模块用于基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;驱动模块用于驱动VR设备或AR设备渲染展示目标定位结果。Wherein, the monitoring module is used to monitor the monitoring image of the area to be monitored through the monitoring device, wherein the monitoring image contains the target object; the display module is used to display the monitoring image on the presentation screen of the virtual reality VR device or the augmented reality AR device; the estimation module uses It is used to perform density estimation on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the probability of the target object at multiple pixel points in the monitoring image; the determination module is used for density estimation based on As a result, the target pixel is determined from a plurality of pixels, wherein the target pixel has a target object; the generation module is used to obtain a target positioning result of the target object in the area to be monitored based on the position of the target pixel in the monitoring image; The driver module is used to drive VR devices or AR devices to render and display target positioning results.

此处需要说明的是,上述监测模块1302、展示模块1304、估计模块1306、确定模块1308、生成模块1310、驱动模块1312对应于实施例4中的步骤S802至步骤S812,五个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在实施例1提供的计算机终端中。It should be noted here that the monitoring module 1302, the display module 1304, the estimation module 1306, the determination module 1308, the generation module 1310, and the driving module 1312 correspond to steps S802 to S812 in Embodiment 4, and the five modules correspond to the corresponding The examples and application scenarios implemented by the steps are the same, but are not limited to the content disclosed in the above-mentioned embodiment 1. It should be noted that, as a part of the device, the above modules can run in the computer terminal provided in Embodiment 1.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例10Example 10

根据本申请实施例,还提供了一种用于实施上述图像处理方法的图像处理装置,图14是根据本申请实施例10的一种图像处理装置的示意图,如图14所示,该装置1400包括:调用模块1402、估计模块1404、确定模块1406、生成模块1408、输出模块1410。According to an embodiment of the present application, an image processing device for implementing the above image processing method is also provided. FIG. 14 is a schematic diagram of an image processing device according to Embodiment 10 of the present application. As shown in FIG. 14 , the device 1400 It includes: calling module 1402 , estimating module 1404 , determining module 1406 , generating module 1408 , and outputting module 1410 .

其中,调用模块用于通过调用第一接口获取待监测区域的监测图像,其中,第一接口包括第一参数,第一参数的参数值为监测图像,监测图像包含目标对象;估计模块用于对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;确定模块用于基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;生成模块用于基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;输出模块用于通过调用第二接口输出目标定位结果,其中,第二接口包括第二参数,第二参数的参数值为目标定位结果。Wherein, the calling module is used to obtain the monitoring image of the area to be monitored by calling the first interface, wherein the first interface includes a first parameter, the parameter value of the first parameter is a monitoring image, and the monitoring image contains a target object; the estimation module is used to Perform density estimation on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the probability of the target object existing at multiple pixels in the monitoring image; the determination module is used to determine based on the density estimation result, Determining a target pixel point from a plurality of pixels, wherein the target pixel point has a target object; the generation module is used to obtain the target positioning result of the target object in the area to be monitored based on the position of the target pixel point in the monitoring image; the output module It is used to output the target positioning result by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the target positioning result.

此处需要说明的是,上述调用模块1402、估计模块1404、确定模块1406、生成模块1408、输出模块1410对应于实施例5中的步骤S902至步骤S910,五个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在实施例1提供的计算机终端中。It should be noted here that the above calling module 1402, estimation module 1404, determination module 1406, generation module 1408, and output module 1410 correspond to steps S902 to S910 in Embodiment 5, and the five modules and corresponding steps realize The examples and application scenarios are the same, but are not limited to the content disclosed in Embodiment 1 above. It should be noted that, as a part of the device, the above modules can run in the computer terminal provided in Embodiment 1.

需要说明的是,本申请上述实施例中涉及到的优选实施方案与实施例1提供的方案以及应用场景、实施过程相同,但不仅限于实施例1所提供的方案。It should be noted that the preferred implementations involved in the above examples of the present application are the same as those provided in Example 1, as well as the application scenarios and implementation process, but are not limited to the solutions provided in Example 1.

实施例11Example 11

本申请的实施例可以提供一种电子设备,该电子设备可以是电子设备群中的任意一个电子设备。可选地,在本实施例中,上述电子设备也可以替换为移动终端等终端设备。Embodiments of the present application may provide an electronic device, and the electronic device may be any electronic device in a group of electronic devices. Optionally, in this embodiment, the foregoing electronic device may also be replaced with a terminal device such as a mobile terminal.

可选地,在本实施例中,上述电子设备可以位于计算机网络的多个网络设备中的至少一个网络设备。Optionally, in this embodiment, the foregoing electronic device may be located in at least one network device among multiple network devices in the computer network.

在本实施例中,上述电子设备可以执行图像处理方法中以下步骤的程序代码:获取待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。In this embodiment, the above-mentioned electronic device can execute the program codes of the following steps in the image processing method: acquire the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; perform density estimation on the monitoring image to obtain the density estimation of the target object As a result, the multiple density values contained in the density estimation result are used to characterize the probability of the target object at multiple pixels in the monitoring image; based on the density estimation result, the target pixel is determined from the multiple pixels, wherein the target pixel There is a target object; based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

可选地,图15是根据本申请实施例的一种计算机终端的结构框图。如图15所示,该计算机终端A可以包括:一个或多个(图中仅示出一个)处理器、存储器。Optionally, FIG. 15 is a structural block diagram of a computer terminal according to an embodiment of the present application. As shown in FIG. 15 , the computer terminal A may include: one or more (only one is shown in the figure) processors and memory.

其中,存储器可用于存储软件程序以及模块,如本申请实施例中的图像处理方法和装置对应的程序指令/模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的图像处理方法。存储器可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至终端A。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。Wherein, the memory can be used to store software programs and modules, such as the program instructions/modules corresponding to the image processing method and device in the embodiment of the present application, and the processor executes various functional applications by running the software programs and modules stored in the memory. And data processing, that is, realizing the above-mentioned image processing method. The memory may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory. In some examples, the memory may further include a memory remotely located relative to the processor, and these remote memories may be connected to the terminal A through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.

处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:获取待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。The processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: obtain the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; perform density estimation on the monitoring image to obtain the density estimation of the target object As a result, the multiple density values contained in the density estimation result are used to characterize the probability of the target object at multiple pixels in the monitoring image; based on the density estimation result, the target pixel is determined from the multiple pixels, wherein the target pixel There is a target object; based on the position of the target pixel in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

可选的,上述处理器还可以执行如下步骤的程序代码:基于密度估计结果,将多个像素点划分为多个第一像素集合,其中,不同第一像素集合中的像素点存在不同对象;对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量;基于多个第一像素集合对应的质量对多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,其中,预设像素集合对应的质量大于第一预设质量;基于多个第二像素集合对应的质量,从多个第二像素集合中确定目标像素点。Optionally, the above-mentioned processor may also execute the program code of the following steps: based on the density estimation result, divide the multiple pixel points into multiple first pixel sets, wherein different objects exist in the pixel points in different first pixel sets; Aggregating the density values corresponding to the pixel points in each first pixel set to obtain the quality corresponding to each first pixel set; performing a splitting operation to obtain multiple second pixel sets, wherein the quality corresponding to the preset pixel set is greater than the first preset quality; based on the quality corresponding to the multiple second pixel sets, determine the target pixel from the multiple second pixel sets point.

可选的,上述处理器还可以执行如下步骤的程序代码:遍历监测图像中每个像素点,确定密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,其中,预设区域用于表征监测图像中以该像素点为中心,与该像素点相邻的像素点组成的区域;在该像素点对应的密度值为最大密度值的情况下,建立新集合,并将该像素点存储至新集合,其中,新集合用于生成多个第一像素集合;在该像素点对应的密度值不为最大密度值的情况下,将该像素点存储至多个第一像素集合中存储有最大密度值的集合。Optionally, the above-mentioned processor can also execute the program code of the following steps: traverse each pixel in the monitoring image, and determine whether the density value corresponding to the pixel in the density estimation result is the density value corresponding to all pixels in the preset area The maximum density value in , where the preset area is used to characterize the area of the monitoring image centered on the pixel point and adjacent to the pixel point; the density value corresponding to the pixel point is equal to the maximum density value case, establish a new set, and store the pixel in the new set, wherein the new set is used to generate a plurality of first pixel sets; in the case that the density value corresponding to the pixel is not the maximum density value, the The pixel points are stored in the set with the maximum density value stored in the plurality of first pixel sets.

可选的,上述处理器还可以执行如下步骤的程序代码:确定树状结构中父节点对应的密度值和子节点对应的密度值,其中,子节点为树状结构中父节点的后代节点;对父节点对应的密度值和子节点对应的密度值进行聚合,得到父节点的质量;确定树状结构中父节点的质量为每个第一像素集合对应的质量。Optionally, the above-mentioned processor can also execute the program code of the following steps: determine the density value corresponding to the parent node in the tree structure and the density value corresponding to the child node, wherein the child node is a descendant node of the parent node in the tree structure; The density value corresponding to the parent node and the density value corresponding to the child node are aggregated to obtain the quality of the parent node; the quality of the parent node in the tree structure is determined to be the quality corresponding to each first pixel set.

可选的,上述处理器还可以执行如下步骤的程序代码:步骤A,获取预设像素集合的辐射范围,其中,辐射范围用于表征预设像素集合中的所有像素点的坐标范围;步骤B,确定辐射范围内最大密度值对应的像素点,得到候选像素;步骤C,基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,其中,分裂后的第一集合包含候选像素和与候选像素具有关联关系的关联像素,分裂后的第二集合包含预设像素集合中除分裂后的第一集合中的像素点之外的其他像素点;步骤D,在分裂后的第二集合对应的质量大于第二预设值时,将辐射范围更新为分裂后的第二集合中的所有像素点的坐标范围,并重复执行上述步骤B和步骤C,直至分裂后的第二集合对应的质量小于或等于第二预设值,得到多个第二像素集合,其中,第二预设值小于第一预设值。Optionally, the above-mentioned processor may also execute the program code of the following steps: Step A, obtain the radiation range of the preset pixel set, wherein the radiation range is used to represent the coordinate range of all pixel points in the preset pixel set; Step B , determine the pixel point corresponding to the maximum density value within the radiation range, and obtain candidate pixels; step C, perform splitting operation on the preset pixel set based on the candidate pixels, and obtain the first and second sets after splitting, wherein, the first set after splitting A set includes candidate pixels and associated pixels that have an association relationship with the candidate pixels, and the second set after splitting includes other pixels in the preset pixel set except the pixels in the first set after splitting; step D, in When the quality corresponding to the second set after splitting is greater than the second preset value, update the radiation range to the coordinate range of all pixels in the second set after splitting, and repeat the above steps B and C until after the split The quality corresponding to the second set of is less than or equal to the second preset value to obtain a plurality of second pixel sets, wherein the second preset value is smaller than the first preset value.

可选的,上述处理器还可以执行如下步骤的程序代码:以候选像素为中心进行多次扩散,将预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,其中,第一次扩散位置的累加结果通过将第一次扩散位置上像素点对应的密度值与候选像素点对应的密度值进行累加得到,每次扩散位置为监测图像中与前一次扩散位置上像素点相邻,且远离候选像素点的像素点所在的位置,第一次扩散位置为与候选像素相邻的像素点所在的位置;在该扩散位置的累加结果大于第一预设值的情况下,基于候选像素和该扩散位置之前所有扩散位置上的像素点,得到分裂后的第一集合;将分裂后的第一集合中的像素点从预设像素集合中删除,得到分裂后的第二集合。Optionally, the above-mentioned processor can also execute the program code of the following steps: performing multiple diffusions with the candidate pixel as the center, and accumulating the density value corresponding to the pixel point at each diffusion position in the preset pixel set with the previous diffusion position The results are accumulated to obtain the accumulation result of the diffusion position, wherein the accumulation result of the first diffusion position is obtained by accumulating the density value corresponding to the pixel point at the first diffusion position and the density value corresponding to the candidate pixel point, each time The diffusion position is the position of the pixel adjacent to the previous diffusion position in the monitoring image and far away from the candidate pixel, and the first diffusion position is the position of the pixel adjacent to the candidate pixel; When the cumulative result of the position is greater than the first preset value, based on the candidate pixel and the pixels at all diffusion positions before the diffusion position, the first set after splitting is obtained; the pixels in the first set after splitting are obtained from The preset pixel set is deleted to obtain the second set after splitting.

可选的,上述处理器还可以执行如下步骤的程序代码:每个第一像素集合采用树状结构,在基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将候选像素点对应的节点的质量设定为第三预设值。Optionally, the above-mentioned processor can also execute the program code in the following steps: each first set of pixels adopts a tree structure, and performs a split operation on the preset set of pixels based on the candidate pixels to obtain the first set and the second set after splitting. After the collection, the quality of the node corresponding to the candidate pixel is set to a third preset value.

可选的,上述处理器还可以执行如下步骤的程序代码:按照多个第二像素集合对应的质量对多个第二像素集合进行排序,得到排序结果;获取排序结果中预设数量的第二像素集合,得到目标像素集合,其中,预设数量为目标对象的数量;从目标像素集合中的像素点中确定最大密度值对应的像素点为目标像素点。Optionally, the above-mentioned processor can also execute the program code of the following steps: sort the multiple second pixel sets according to the quality corresponding to the multiple second pixel sets to obtain the sorting result; obtain the preset number of second pixel sets in the sorting result. A pixel set to obtain a target pixel set, wherein the preset number is the number of target objects; and the pixel point corresponding to the maximum density value is determined from the pixel points in the target pixel set as the target pixel point.

处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:通过监测设备监测活动区域得到监测图像,其中,监测图像包含目标人群;对监测图像进行密度估计,得到目标人群的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标人群的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标人群;基于目标像素点在监测图像中的位置,得到目标人群在活动区域中的目标定位结果。The processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: monitor the active area through the monitoring equipment to obtain a monitoring image, wherein the monitoring image contains the target population; perform density estimation on the monitoring image to obtain the target population Density estimation results, wherein the multiple density values contained in the density estimation results are used to characterize the probability of the presence of target groups in multiple pixel points in the monitoring image; based on the density estimation results, the target pixel points are determined from multiple pixel points, wherein the target There is a target crowd in the pixel; based on the position of the target pixel in the monitoring image, the target positioning result of the target crowd in the active area is obtained.

处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:响应作用于操作界面上的输入指令,在操作界面上显示待监测区域的监测图像,其中,监测图像包含目标对象;响应作用于操作界面上的定位指令,在操作界面上显示目标对象在待监测区域中的目标定位结果,其中,目标定位结果通过从监测图像中多个像素点中确定的目标像素点在监测图像中的位置确定,目标像素点基于目标对象的密度估计结果确定,密度估计结果通过对监测图像进行密度估计得到,密度估计结果包含的多个密度值用于表征多个像素点存在目标对象的概率。The processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: in response to the input instruction acting on the operation interface, display the monitoring image of the area to be monitored on the operation interface, wherein the monitoring image contains the target object ; In response to the positioning instruction acting on the operation interface, the target positioning result of the target object in the area to be monitored is displayed on the operation interface, wherein the target positioning result is monitored by the target pixel points determined from the multiple pixel points in the monitoring image The position in the image is determined, and the target pixel is determined based on the density estimation result of the target object. The density estimation result is obtained by performing density estimation on the monitoring image. The multiple density values contained in the density estimation result are used to represent the presence of the target object at multiple pixel points. probability.

处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:通过监测设备监测待监测区域的监测图像,其中,监测图像包含目标对象;在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;驱动VR设备或AR设备渲染展示目标定位结果。The processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: monitor the monitoring image of the area to be monitored through the monitoring device, wherein the monitoring image contains the target object; in the virtual reality VR device or the augmented reality AR device The monitoring image is displayed on the presentation screen; density estimation is performed on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the probability that the target object exists at multiple pixels in the monitoring image; Based on the density estimation result, determine the target pixel point from multiple pixel points, wherein the target pixel point has a target object; based on the position of the target pixel point in the monitoring image, obtain the target positioning result of the target object in the area to be monitored; drive The VR device or AR device renders and displays the target positioning results.

处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:通过调用第一接口获取待监测区域的监测图像,其中,第一接口包括第一参数,第一参数的参数值为监测图像,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;通过调用第二接口输出目标定位结果,其中,第二接口包括第二参数,第二参数的参数值为目标定位结果。The processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: obtain the monitoring image of the area to be monitored by calling the first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter In order to monitor the image, the monitoring image contains the target object; the density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the existence of the target object at multiple pixel points in the monitoring image Probability; based on the density estimation result, determine the target pixel point from multiple pixel points, wherein the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, obtain the target positioning result of the target object in the area to be monitored ; Outputting the target positioning result by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the target positioning result.

采用本申请实施例,首先待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果,实现了对监测图像中对象的定位。容易注意到的是,可以对监测图像进行密度估计,得到目标对象的密度估计结果,可以基于密度估计结果从多个像素点中确定出存在目标对象的像素点,避免对未包含目标对象的像素点进行定位,以便提高目标对象的定位结果的准确度,通过获取目标对象的定位结果,可以实现增加目标对象的输出信息的效果,进而解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。Using the embodiment of the present application, firstly, the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used for Characterize the probability of the target object existing in multiple pixels in the monitoring image; based on the density estimation result, determine the target pixel point from multiple pixel points, wherein, the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, The target positioning result of the target object in the area to be monitored is obtained, and the positioning of the object in the monitoring image is realized. It is easy to notice that the density estimation of the monitoring image can be performed to obtain the density estimation result of the target object, and the pixel points with the target object can be determined from multiple pixel points based on the density estimation result, avoiding the detection of pixels that do not contain the target object. In order to improve the accuracy of the positioning result of the target object, by obtaining the positioning result of the target object, the effect of increasing the output information of the target object can be achieved, thereby solving the problem that the algorithm of the related technology is difficult to output more accurate information of the target object in the monitoring image. Multi-information technical issues.

本领域普通技术人员可以理解,图15所示的结构仅为示意,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(MobileInternet Devices,MID)、PAD等终端设备。图15其并不对上述电子装置的结构造成限定。例如,计算机终端10还可包括比图15中所示更多或者更少的组件(如网络接口、显示装置等),或者具有与图15所示不同的配置。Those of ordinary skill in the art can understand that the structure shown in Figure 15 is only schematic, and the computer terminal can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (Mobile Internet Devices, MID) , PAD and other terminal equipment. FIG. 15 does not limit the structure of the above-mentioned electronic device. For example, the computer terminal 10 may also include more or fewer components (eg, network interface, display device, etc.) than those shown in FIG. 15 , or have a configuration different from that shown in FIG. 15 .

本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(RandomAccess Memory,RAM)、磁盘或光盘等。Those skilled in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing hardware related to the terminal device through a program, and the program can be stored in a computer-readable storage medium, and the storage medium can be Including: a flash disk, a read-only memory (Read-Only Memory, ROM), a random access device (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.

实施例12Example 12

本申请的实施例还提供了一种计算机可读存储介质。可选地,在本实施例中,上述计算机可读存储介质可以用于保存上述实施例1所提供的图像处理方法所执行的程序代码。The embodiment of the present application also provides a computer-readable storage medium. Optionally, in this embodiment, the above-mentioned computer-readable storage medium may be used to store the program code executed by the image processing method provided in Embodiment 1 above.

可选地,在本实施例中,上述计算机可读存储介质可以位于AR/VR设备网络中AR/VR设备终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。Optionally, in this embodiment, the above-mentioned computer-readable storage medium may be located in any computer terminal in the AR/VR equipment terminal group in the AR/VR equipment network, or in any mobile terminal in the mobile terminal group .

可选地,在本实施例中,计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:获取待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果。Optionally, in this embodiment, the computer-readable storage medium is configured to store program codes for performing the following steps: acquiring a monitoring image of the area to be monitored, wherein the monitoring image contains a target object; performing density estimation on the monitoring image , to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to characterize the probability of the target object existing in multiple pixels in the monitoring image; based on the density estimation result, determine the target pixel from the multiple pixel points Points, where there is a target object in the target pixel point; based on the position of the target pixel point in the monitoring image, the target positioning result of the target object in the area to be monitored is obtained.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:基于密度估计结果,将多个像素点划分为多个第一像素集合,其中,不同第一像素集合中的像素点存在不同对象;对每个第一像素集合中像素点对应的密度值进行聚合,得到每个第一像素集合对应的质量;基于多个第一像素集合对应的质量对多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,其中,预设像素集合对应的质量大于第一预设质量;基于多个第二像素集合对应的质量,从多个第二像素集合中确定目标像素点。Optionally, the above-mentioned storage medium is further configured to store program codes for performing the following steps: based on the density estimation result, dividing multiple pixel points into multiple first pixel sets, wherein pixels in different first pixel sets There are different objects in the points; the density values corresponding to the pixel points in each first pixel set are aggregated to obtain the quality corresponding to each first pixel set; based on the quality corresponding to multiple first pixel sets, multiple first pixel sets Perform a split operation on the preset pixel set to obtain multiple second pixel sets, wherein the quality corresponding to the preset pixel set is greater than the first preset quality; based on the quality corresponding to the multiple second pixel sets, from the multiple second pixel sets Determine the target pixel in the set.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:遍历监测图像中每个像素点,确定密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,其中,预设区域用于表征监测图像中以该像素点为中心,与该像素点相邻的像素点组成的区域;在该像素点对应的密度值为最大密度值的情况下,建立新集合,并将该像素点存储至新集合,其中,新集合用于生成多个第一像素集合;在该像素点对应的密度值不为最大密度值的情况下,将该像素点存储至多个第一像素集合中存储有最大密度值的集合。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: traverse each pixel in the monitoring image, and determine whether the density value corresponding to the pixel in the density estimation result is all pixels in the preset area The maximum density value among the density values corresponding to a point, wherein, the preset area is used to represent the area composed of pixels adjacent to the pixel point in the monitoring image centered on the pixel point; the density value corresponding to the pixel point In the case of the maximum density value, a new set is established, and the pixel point is stored in the new set, wherein the new set is used to generate a plurality of first pixel sets; the density value corresponding to the pixel point is not the maximum density value In some cases, the pixel point is stored in the set in which the maximum density value is stored among the plurality of first pixel sets.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:确定树状结构中父节点对应的密度值和子节点对应的密度值,其中,子节点为树状结构中父节点的后代节点;对父节点对应的密度值和子节点对应的密度值进行聚合,得到父节点的质量;确定树状结构中父节点的质量为每个第一像素集合对应的质量。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: determining the density value corresponding to the parent node in the tree structure and the density value corresponding to the child node, wherein the child node is the parent node in the tree structure descendant nodes; aggregate the density value corresponding to the parent node and the density value corresponding to the child node to obtain the quality of the parent node; determine the quality of the parent node in the tree structure as the quality corresponding to each first pixel set.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:步骤A,获取预设像素集合的辐射范围,其中,辐射范围用于表征预设像素集合中的所有像素点的坐标范围;步骤B,确定辐射范围内最大密度值对应的像素点,得到候选像素;步骤C,基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,其中,分裂后的第一集合包含候选像素和与候选像素具有关联关系的关联像素,分裂后的第二集合包含预设像素集合中除分裂后的第一集合中的像素点之外的其他像素点;步骤D,在分裂后的第二集合对应的质量大于第二预设值时,将辐射范围更新为分裂后的第二集合中的所有像素点的坐标范围,并重复执行上述步骤B和步骤C,直至分裂后的第二集合对应的质量小于或等于第二预设值,得到多个第二像素集合,其中,第二预设值小于第一预设值。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: Step A, obtaining the radiation range of the preset pixel set, wherein the radiation range is used to characterize all pixel points in the preset pixel set Coordinate range; step B, determine the pixel point corresponding to the maximum density value in the radiation range, and obtain candidate pixels; step C, perform splitting operation on the preset pixel set based on the candidate pixels, and obtain the first set and the second set after splitting, wherein , the first set after splitting contains candidate pixels and associated pixels that have an association relationship with the candidate pixels, and the second set after splitting contains other pixels in the preset pixel set except for the pixels in the first set after splitting ; Step D, when the quality corresponding to the split second set is greater than the second preset value, update the radiation range to the coordinate range of all pixels in the split second set, and repeat the above step B and step C. Obtain a plurality of second pixel sets until the quality corresponding to the split second set is less than or equal to a second preset value, wherein the second preset value is smaller than the first preset value.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:以候选像素为中心进行多次扩散,将预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,其中,第一次扩散位置的累加结果通过将第一次扩散位置上像素点对应的密度值与候选像素点对应的密度值进行累加得到,每次扩散位置为监测图像中与前一次扩散位置上像素点相邻,且远离候选像素点的像素点所在的位置,第一次扩散位置为与候选像素相邻的像素点所在的位置;在该扩散位置的累加结果大于第一预设值的情况下,基于候选像素和该扩散位置之前所有扩散位置上的像素点,得到分裂后的第一集合;将分裂后的第一集合中的像素点从预设像素集合中删除,得到分裂后的第二集合。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: performing multiple diffusions with the candidate pixel as the center, and comparing the density value corresponding to the pixel point at each diffusion position in the preset pixel set with the previous Accumulate the accumulation results of the first diffusion position to obtain the accumulation result of the diffusion position, wherein the accumulation result of the first diffusion position is calculated by comparing the density value corresponding to the pixel point on the first diffusion position with the density value corresponding to the candidate pixel point Accumulated, each diffusion position is the position of the pixel adjacent to the pixel on the previous diffusion position in the monitoring image and far away from the candidate pixel, and the first diffusion position is the pixel adjacent to the candidate pixel. position; in the case where the cumulative result of the diffusion position is greater than the first preset value, based on the candidate pixel and the pixels on all diffusion positions before the diffusion position, the first set after splitting is obtained; the first set after splitting The pixels in are deleted from the preset pixel set to obtain the second set after splitting.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:每个第一像素集合采用树状结构,在基于候选像素对预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将候选像素点对应的节点的质量设定为第三预设值。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: each first set of pixels adopts a tree structure, and performs a split operation on the preset set of pixels based on the candidate pixels to obtain the split first set of pixels. After the first set and the second set, the quality of the node corresponding to the candidate pixel is set to a third preset value.

可选地,上述存储介质还被设置为存储用于执行以下步骤的程序代码:按照多个第二像素集合对应的质量对多个第二像素集合进行排序,得到排序结果;获取排序结果中预设数量的第二像素集合,得到目标像素集合,其中,预设数量为目标对象的数量;从目标像素集合中的像素点中确定最大密度值对应的像素点为目标像素点。Optionally, the above-mentioned storage medium is also configured to store program codes for performing the following steps: sort the multiple second pixel sets according to the quality corresponding to the multiple second pixel sets to obtain the sorting result; obtain the preset Set the number of second pixel sets to obtain the target pixel set, wherein the preset number is the number of target objects; determine the pixel point corresponding to the maximum density value from the pixel points in the target pixel set as the target pixel point.

可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:通过监测设备监测活动区域得到监测图像,其中,监测图像包含目标人群;对监测图像进行密度估计,得到目标人群的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标人群的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标人群;基于目标像素点在监测图像中的位置,得到目标人群在活动区域中的目标定位结果。Optionally, in this embodiment, the storage medium is configured to store program codes for performing the following steps: monitoring the active area through monitoring equipment to obtain a monitoring image, wherein the monitoring image contains target groups of people; performing density estimation on the monitoring image, Obtain the density estimation result of the target population, wherein the multiple density values contained in the density estimation result are used to represent the probability of the target population being present in multiple pixels in the monitoring image; based on the density estimation result, determine the target pixel from the multiple pixels , where there is a target crowd in the target pixel; based on the position of the target pixel in the monitoring image, the target positioning result of the target crowd in the active area is obtained.

可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:响应作用于操作界面上的输入指令,在操作界面上显示待监测区域的监测图像,其中,监测图像包含目标对象;响应作用于操作界面上的定位指令,在操作界面上显示目标对象在待监测区域中的目标定位结果,其中,目标定位结果通过从监测图像中多个像素点中确定的目标像素点在监测图像中的位置确定,目标像素点基于目标对象的密度估计结果确定,密度估计结果通过对监测图像进行密度估计得到,密度估计结果包含的多个密度值用于表征多个像素点存在目标对象的概率。Optionally, in this embodiment, the storage medium is configured to store program codes for performing the following steps: responding to an input instruction acting on the operation interface, displaying a monitoring image of the area to be monitored on the operation interface, wherein the monitoring The image contains the target object; in response to the positioning instruction acting on the operation interface, the target positioning result of the target object in the area to be monitored is displayed on the operation interface, wherein the target positioning result is determined by the target from multiple pixels in the monitoring image The position of the pixel point in the monitoring image is determined, and the target pixel point is determined based on the density estimation result of the target object. The density estimation result is obtained by performing density estimation on the monitoring image, and the multiple density values contained in the density estimation result are used to represent multiple pixel points The probability that the target object exists.

可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:通过监测设备监测待监测区域的监测图像,其中,监测图像包含目标对象;在虚拟现实VR设备或增强现实AR设备的呈现画面上展示监测图像;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;驱动VR设备或AR设备渲染展示目标定位结果。Optionally, in this embodiment, the storage medium is set to store program codes for performing the following steps: monitor the monitoring image of the area to be monitored through the monitoring device, wherein the monitoring image contains the target object; in the virtual reality VR device or The monitoring image is displayed on the presentation screen of the augmented reality AR device; the density estimation of the monitoring image is performed to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the presence of targets in multiple pixel points in the monitoring image The probability of the object; based on the density estimation result, determine the target pixel point from multiple pixels, wherein the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, the target object in the area to be monitored is obtained Positioning results; drive VR devices or AR devices to render and display target positioning results.

可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:通过调用第一接口获取待监测区域的监测图像,其中,第一接口包括第一参数,第一参数的参数值为监测图像,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果;通过调用第二接口输出目标定位结果,其中,第二接口包括第二参数,第二参数的参数值为目标定位结果。Optionally, in this embodiment, the storage medium is configured to store program codes for performing the following steps: acquiring a monitoring image of the area to be monitored by calling a first interface, wherein the first interface includes a first parameter, the first The parameter value of the parameter is the monitoring image, and the monitoring image contains the target object; the density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent multiple pixel points in the monitoring image The probability of the existence of the target object; based on the density estimation result, determine the target pixel point from multiple pixel points, wherein the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, obtain the target object in the area to be monitored the target positioning result; output the target positioning result by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the target positioning result.

采用本申请实施例,首先待监测区域的监测图像,其中,监测图像包含目标对象;对监测图像进行密度估计,得到目标对象的密度估计结果,其中,密度估计结果包含的多个密度值用于表征监测图像中多个像素点存在目标对象的概率;基于密度估计结果,从多个像素点中确定目标像素点,其中,目标像素点存在目标对象;基于目标像素点在监测图像中的位置,得到目标对象在待监测区域中的目标定位结果,实现了对监测图像中对象的定位。容易注意到的是,可以对监测图像进行密度估计,得到目标对象的密度估计结果,可以基于密度估计结果从多个像素点中确定出存在目标对象的像素点,避免对未包含目标对象的像素点进行定位,以便提高目标对象的定位结果的准确度,通过获取目标对象的定位结果,可以实现增加目标对象的输出信息的效果,进而解决了相关技术的算法难以输出监测图像中目标对象的更多信息的技术问题。Using the embodiment of the present application, firstly, the monitoring image of the area to be monitored, wherein the monitoring image contains the target object; density estimation is performed on the monitoring image to obtain the density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used for Characterize the probability of the target object existing in multiple pixels in the monitoring image; based on the density estimation result, determine the target pixel point from multiple pixel points, wherein, the target pixel point has the target object; based on the position of the target pixel point in the monitoring image, The target positioning result of the target object in the area to be monitored is obtained, and the positioning of the object in the monitoring image is realized. It is easy to notice that the density estimation of the monitoring image can be performed to obtain the density estimation result of the target object, and the pixel points with the target object can be determined from multiple pixel points based on the density estimation result, avoiding the detection of pixels that do not contain the target object. In order to improve the accuracy of the positioning result of the target object, by obtaining the positioning result of the target object, the effect of increasing the output information of the target object can be achieved, thereby solving the problem that the algorithm of the related technology is difficult to output more accurate information of the target object in the monitoring image. Multi-information technical issues.

上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.

在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments of the present application, the descriptions of each embodiment have their own emphases, and for parts not described in detail in a certain embodiment, reference may be made to relevant descriptions of other embodiments.

在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed technical content can be realized in other ways. Wherein, the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for enabling a computer device (which may be a personal computer, server or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes. .

以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above description is only the preferred embodiment of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present application, some improvements and modifications can also be made. These improvements and modifications are also It should be regarded as the protection scope of this application.

Claims (14)

1.一种图像处理方法,其特征在于,包括:1. An image processing method, characterized in that, comprising: 获取待监测区域的监测图像,其中,所述监测图像包含目标对象;Acquiring a monitoring image of the area to be monitored, wherein the monitoring image includes a target object; 对所述监测图像进行密度估计,得到所述目标对象的密度估计结果,其中,所述密度估计结果包含的多个密度值用于表征所述监测图像中多个像素点存在所述目标对象的概率;performing density estimation on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the existence of the target object at multiple pixel points in the monitoring image probability; 基于所述密度估计结果,从所述多个像素点中确定目标像素点,其中,所述目标像素点存在所述目标对象;determining a target pixel point from the plurality of pixel points based on the density estimation result, wherein the target pixel point has the target object; 基于所述目标像素点在所述监测图像中的位置,得到所述目标对象在所述待监测区域中的目标定位结果。Based on the position of the target pixel in the monitoring image, a target positioning result of the target object in the area to be monitored is obtained. 2.根据权利要求1所述的方法,其特征在于,基于所述密度估计结果,从所述多个像素点中确定目标像素点,包括:2. The method according to claim 1, wherein, based on the density estimation result, determining the target pixel from the plurality of pixels comprises: 基于所述密度估计结果,将所述多个像素点划分为多个第一像素集合,其中,不同第一像素集合中的像素点存在不同对象;Based on the density estimation result, divide the plurality of pixel points into a plurality of first pixel sets, wherein different objects exist in the pixel points in different first pixel sets; 对每个第一像素集合中像素点对应的密度值进行聚合,得到所述每个第一像素集合对应的质量;Aggregating the density values corresponding to the pixel points in each first pixel set to obtain the quality corresponding to each first pixel set; 基于所述多个第一像素集合对应的质量对所述多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,其中,所述预设像素集合对应的质量大于第一预设质量;Based on the qualities corresponding to the plurality of first pixel sets, the preset pixel sets in the plurality of first pixel sets are split to obtain a plurality of second pixel sets, wherein the quality corresponding to the preset pixel sets is greater than the first preset quality; 基于所述多个第二像素集合对应的质量,从所述多个第二像素集合中确定所述目标像素点。Based on the quality corresponding to the multiple second pixel sets, determine the target pixel point from the multiple second pixel sets. 3.根据权利要求2所述的方法,其特征在于,基于所述密度估计结果,将所述多个像素点划分为多个第一像素集合,包括:3. The method according to claim 2, wherein, based on the density estimation result, dividing the plurality of pixel points into a plurality of first pixel sets comprises: 遍历所述监测图像中每个像素点,确定所述密度估计结果中该像素点对应的密度值是否为预设区域内所有像素点对应的密度值中的最大密度值,其中,所述预设区域用于表征所述监测图像中以该像素点为中心,与该像素点相邻的像素点组成的区域;traverse each pixel in the monitoring image, and determine whether the density value corresponding to the pixel in the density estimation result is the maximum density value among the density values corresponding to all pixels in the preset area, wherein the preset The area is used to characterize the area composed of pixels adjacent to the pixel with the pixel as the center in the monitoring image; 在该像素点对应的密度值为所述最大密度值的情况下,建立新集合,并将该像素点存储至所述新集合,其中,所述新集合用于生成所述多个第一像素集合;In the case that the density value corresponding to the pixel point is the maximum density value, a new set is established, and the pixel point is stored in the new set, wherein the new set is used to generate the plurality of first pixels gather; 在该像素点对应的密度值不为所述最大密度值的情况下,将该像素点存储至所述多个第一像素集合中存储有所述最大密度值的集合。If the density value corresponding to the pixel point is not the maximum density value, the pixel point is stored in a set in which the maximum density value is stored among the plurality of first pixel sets. 4.根据权利要求2所述的方法,其特征在于,所述每个第一像素集合采用树状结构,所述每个第一像素集合中的像素点对应于所述树状结构中的节点,所述每个第一像素集合中像素点之间的相邻关系对应于所述树状结构中节点之间的连接关系,其中,对每个第一像素集合中像素点对应的密度值进行聚合,得到所述每个第一像素集合对应的质量,包括:4. The method according to claim 2, wherein each first pixel set adopts a tree structure, and the pixels in each first pixel set correspond to nodes in the tree structure , the adjacency relationship between pixels in each first pixel set corresponds to the connection relationship between nodes in the tree structure, wherein the density value corresponding to the pixel point in each first pixel set is performed Aggregate to obtain the quality corresponding to each first pixel set, including: 确定所述树状结构中父节点对应的密度值和子节点对应的密度值,其中,所述子节点为所述树状结构中所述父节点的后代节点;determining a density value corresponding to a parent node in the tree structure and a density value corresponding to a child node, wherein the child node is a descendant node of the parent node in the tree structure; 对所述父节点对应的密度值和所述子节点对应的密度值进行聚合,得到所述父节点的质量;Aggregating the density value corresponding to the parent node and the density value corresponding to the child node to obtain the quality of the parent node; 确定所述树状结构中父节点的质量为所述每个第一像素集合对应的质量。Determine the quality of the parent node in the tree structure as the quality corresponding to each first pixel set. 5.根据权利要求2所述的方法,其特征在于,基于所述多个第一像素集合对应的质量对所述多个第一像素集合中预设像素集合进行分裂操作,得到多个第二像素集合,包括:5. The method according to claim 2, characterized in that, based on the quality corresponding to the plurality of first pixel sets, the preset pixel set in the plurality of first pixel sets is split to obtain a plurality of second Pixel collection, including: 步骤A,获取所述预设像素集合的辐射范围,其中,所述辐射范围用于表征所述预设像素集合中的所有像素点的坐标范围;Step A, obtaining the radiation range of the preset pixel set, wherein the radiation range is used to characterize the coordinate range of all pixel points in the preset pixel set; 步骤B,确定所述辐射范围内最大密度值对应的像素点,得到候选像素;Step B, determining the pixel point corresponding to the maximum density value within the radiation range to obtain a candidate pixel; 步骤C,基于所述候选像素对所述预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,其中,所述分裂后的第一集合包含所述候选像素和与所述候选像素具有关联关系的关联像素,所述分裂后的第二集合包含所述预设像素集合中除所述分裂后的第一集合中的像素点之外的其他像素点;Step C, performing a split operation on the preset pixel set based on the candidate pixels to obtain a split first set and a second set, wherein the split first set includes the candidate pixels and the The candidate pixels are associated pixels having an association relationship, and the second set after splitting includes other pixel points in the preset pixel set except the pixels in the first set after splitting; 步骤D,在所述分裂后的第二集合对应的质量大于第二预设值时,将所述辐射范围更新为所述分裂后的第二集合中的所有像素点的坐标范围,并重复执行上述步骤B和步骤C,直至所述分裂后的第二集合对应的质量小于或等于所述第二预设值,得到所述多个第二像素集合,其中,所述第二预设值小于所述第一预设值。Step D, when the quality corresponding to the split second set is greater than a second preset value, update the radiation range to the coordinate range of all pixels in the split second set, and execute repeatedly Steps B and C described above, until the quality corresponding to the second set after splitting is less than or equal to the second preset value, to obtain the plurality of second pixel sets, wherein the second preset value is less than the first preset value. 6.根据权利要求5所述的方法,其特征在于,基于所述候选像素对所述预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合,包括:6. The method according to claim 5, characterized in that, performing a split operation on the preset pixel set based on the candidate pixels to obtain a split first set and a second set, comprising: 以所述候选像素为中心进行多次扩散,将所述预设像素集合中每次扩散位置上像素点对应的密度值与前一次扩散位置的累加结果进行累加,得到该扩散位置的累加结果,其中,第一次扩散位置的累加结果通过将第一次扩散位置上像素点对应的密度值与所述候选像素点对应的密度值进行累加得到,所述每次扩散位置为所述监测图像中与前一次扩散位置上像素点相邻,且远离所述候选像素点的像素点所在的位置,第一次扩散位置为与所述候选像素相邻的像素点所在的位置;performing multiple diffusions with the candidate pixel as the center, accumulating the density value corresponding to the pixel point at each diffusion position in the preset pixel set and the cumulative result of the previous diffusion position to obtain the cumulative result of the diffusion position, Wherein, the accumulation result of the first diffusion position is obtained by accumulating the density value corresponding to the pixel point at the first diffusion position and the density value corresponding to the candidate pixel point, and each diffusion position is The position of the pixel adjacent to the pixel on the previous diffusion position and away from the candidate pixel, the first diffusion position is the position of the pixel adjacent to the candidate pixel; 在该扩散位置的累加结果大于所述第一预设值的情况下,基于所述候选像素和该扩散位置之前所有扩散位置上的像素点,得到所述分裂后的第一集合;In the case where the cumulative result of the diffusion position is greater than the first preset value, based on the candidate pixel and pixels at all diffusion positions before the diffusion position, the first set after splitting is obtained; 将所述分裂后的第一集合中的像素点从所述预设像素集合中删除,得到所述分裂后的第二集合。The pixel points in the first split set are deleted from the preset pixel set to obtain the second split set. 7.根据权利要求5所述的方法,其特征在于,所述每个第一像素集合采用树状结构,在基于所述候选像素对所述预设像素集合进行分裂操作,得到分裂后的第一集合和第二集合之后,将所述候选像素点对应的节点的质量设定为第三预设值。7. The method according to claim 5, wherein each first pixel set adopts a tree structure, and the preset pixel set is split based on the candidate pixels to obtain the split first pixel set After the first set and the second set, the quality of the node corresponding to the candidate pixel is set to a third preset value. 8.根据权利要求2所述的方法,其特征在于,基于所述多个第二像素集合对应的质量,从所述多个第二像素集合中确定所述目标像素点,包括:8. The method according to claim 2, wherein, based on the quality corresponding to the plurality of second pixel sets, determining the target pixel point from the plurality of second pixel sets comprises: 按照所述多个第二像素集合对应的质量对所述多个第二像素集合进行排序,得到排序结果;sorting the multiple second pixel sets according to the quality corresponding to the multiple second pixel sets, to obtain a sorting result; 获取所述排序结果中预设数量的第二像素集合,得到目标像素集合,其中,所述预设数量为所述目标对象的数量;Acquiring a preset number of second pixel sets in the sorting result to obtain a target pixel set, wherein the preset number is the number of the target object; 从所述目标像素集合中的像素点中确定最大密度值对应的像素点为所述目标像素点。Determine the pixel point corresponding to the maximum density value from the pixel points in the target pixel set as the target pixel point. 9.一种图像处理方法,其特征在于,包括:9. An image processing method, characterized in that, comprising: 通过监测设备监测活动区域得到监测图像,其中,所述监测图像包含目标人群;Obtaining a monitoring image by monitoring an active area with a monitoring device, wherein the monitoring image includes a target group of people; 对所述监测图像进行密度估计,得到所述目标人群的密度估计结果,其中,所述密度估计结果包含的多个密度值用于表征所述监测图像中多个像素点存在所述目标人群的概率;performing density estimation on the monitoring image to obtain a density estimation result of the target population, wherein the multiple density values contained in the density estimation result are used to represent the presence of the target population in multiple pixel points in the monitoring image probability; 基于所述密度估计结果,从所述多个像素点中确定目标像素点,其中,所述目标像素点存在所述目标人群;Determining a target pixel point from the plurality of pixel points based on the density estimation result, wherein the target population exists in the target pixel point; 基于所述目标像素点在所述监测图像中的位置,得到所述目标人群在所述活动区域中的目标定位结果。Based on the position of the target pixel in the monitoring image, a target positioning result of the target crowd in the activity area is obtained. 10.一种图像处理方法,其特征在于,包括:10. An image processing method, characterized in that, comprising: 响应作用于操作界面上的输入指令,在所述操作界面上显示待监测区域的监测图像,其中,所述监测图像包含目标对象;Responding to an input instruction acting on the operation interface, displaying a monitoring image of the area to be monitored on the operation interface, wherein the monitoring image includes a target object; 响应作用于所述操作界面上的定位指令,在所述操作界面上显示所述目标对象在所述待监测区域中的目标定位结果,其中,所述目标定位结果通过从所述监测图像中多个像素点中确定的目标像素点在所述监测图像中的位置确定,所述目标像素点基于所述目标对象的密度估计结果确定,所述密度估计结果通过对所述监测图像进行密度估计得到,所述密度估计结果包含的多个密度值用于表征所述多个像素点存在所述目标对象的概率。In response to a positioning instruction acting on the operation interface, a target positioning result of the target object in the area to be monitored is displayed on the operation interface, wherein the target positioning result is obtained by multiple The position of the target pixel determined among the pixels in the monitoring image is determined, the target pixel is determined based on the density estimation result of the target object, and the density estimation result is obtained by performing density estimation on the monitoring image , the multiple density values contained in the density estimation result are used to represent the probability that the target object exists in the multiple pixel points. 11.一种图像处理方法,其特征在于,包括:11. An image processing method, characterized in that, comprising: 通过监测设备监测待监测区域的监测图像,其中,所述监测图像包含目标对象;monitoring a monitoring image of the area to be monitored by monitoring equipment, wherein the monitoring image includes a target object; 在虚拟现实VR设备或增强现实AR设备的呈现画面上展示所述监测图像;displaying the monitoring image on a presentation screen of a virtual reality VR device or an augmented reality AR device; 对所述监测图像进行密度估计,得到所述目标对象的密度估计结果,其中,所述密度估计结果包含的多个密度值用于表征所述监测图像中多个像素点存在所述目标对象的概率;performing density estimation on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the existence of the target object at multiple pixel points in the monitoring image probability; 基于所述密度估计结果,从所述多个像素点中确定目标像素点,其中,所述目标像素点存在所述目标对象;determining a target pixel point from the plurality of pixel points based on the density estimation result, wherein the target pixel point has the target object; 基于所述目标像素点在所述监测图像中的位置,得到所述目标对象在所述待监测区域中的目标定位结果;Obtaining a target positioning result of the target object in the area to be monitored based on the position of the target pixel in the monitoring image; 驱动所述VR设备或所述AR设备渲染展示所述目标定位结果。Driving the VR device or the AR device to render and display the target positioning result. 12.一种图像处理方法,其特征在于,包括:12. An image processing method, characterized in that, comprising: 通过调用第一接口获取待监测区域的监测图像,其中,所述第一接口包括第一参数,所述第一参数的参数值为所述监测图像,所述监测图像包含目标对象;Obtaining a monitoring image of an area to be monitored by calling a first interface, wherein the first interface includes a first parameter, the parameter value of the first parameter is the monitoring image, and the monitoring image includes a target object; 对所述监测图像进行密度估计,得到所述目标对象的密度估计结果,其中,所述密度估计结果包含的多个密度值用于表征所述监测图像中多个像素点存在所述目标对象的概率;performing density estimation on the monitoring image to obtain a density estimation result of the target object, wherein the multiple density values contained in the density estimation result are used to represent the existence of the target object at multiple pixel points in the monitoring image probability; 基于所述密度估计结果,从所述多个像素点中确定目标像素点,其中,所述目标像素点存在所述目标对象;determining a target pixel point from the plurality of pixel points based on the density estimation result, wherein the target pixel point has the target object; 基于所述目标像素点在所述监测图像中的位置,得到所述目标对象在所述待监测区域中的目标定位结果;Obtaining a target positioning result of the target object in the area to be monitored based on the position of the target pixel in the monitoring image; 通过调用第二接口输出所述目标定位结果,其中,所述第二接口包括第二参数,所述第二参数的参数值为所述目标定位结果。Outputting the target positioning result by calling a second interface, wherein the second interface includes a second parameter, and a parameter value of the second parameter is the target positioning result. 13.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至12中任意一项所述的图像处理方法。13. A computer-readable storage medium, characterized in that the computer-readable storage medium includes a stored program, wherein when the program is running, the device where the computer-readable storage medium is located is controlled to execute claims 1 to 12 The image processing method described in any one. 14.一种电子设备,其特征在于,包括:14. An electronic device, characterized in that it comprises: 处理器;processor; 存储器,与所述处理器相连接,用于为所述处理器提供处理权利要求1至12中任意一项所述的图像处理方法的指令。A memory, connected to the processor, for providing the processor with instructions for processing the image processing method described in any one of claims 1-12.
CN202211182408.6A 2022-09-27 2022-09-27 Image processing method, computer-readable storage medium, and electronic device Pending CN115527166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211182408.6A CN115527166A (en) 2022-09-27 2022-09-27 Image processing method, computer-readable storage medium, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211182408.6A CN115527166A (en) 2022-09-27 2022-09-27 Image processing method, computer-readable storage medium, and electronic device

Publications (1)

Publication Number Publication Date
CN115527166A true CN115527166A (en) 2022-12-27

Family

ID=84699712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211182408.6A Pending CN115527166A (en) 2022-09-27 2022-09-27 Image processing method, computer-readable storage medium, and electronic device

Country Status (1)

Country Link
CN (1) CN115527166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116311262A (en) * 2023-05-23 2023-06-23 济南大陆机电股份有限公司 A method, system, device and storage medium for identifying instrumentation information

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343619A1 (en) * 2012-06-21 2013-12-26 Microsoft Corporation Density estimation and/or manifold learning
CN103839065A (en) * 2014-02-14 2014-06-04 南京航空航天大学 Extraction method for dynamic crowd gathering characteristics
CN111178235A (en) * 2019-12-27 2020-05-19 卓尔智联(武汉)研究院有限公司 Target quantity determination method, device, equipment and storage medium
CN111563447A (en) * 2020-04-30 2020-08-21 南京邮电大学 Crowd density analysis and detection positioning method based on density map
CN112883768A (en) * 2019-11-29 2021-06-01 华为技术有限公司 Object counting method and device, equipment and storage medium
CN114005085A (en) * 2021-10-28 2022-02-01 武汉大学 Dense crowd distribution detection and counting method in video
WO2022188030A1 (en) * 2021-03-09 2022-09-15 中国科学院深圳先进技术研究院 Crowd density estimation method, electronic device and storage medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343619A1 (en) * 2012-06-21 2013-12-26 Microsoft Corporation Density estimation and/or manifold learning
CN103839065A (en) * 2014-02-14 2014-06-04 南京航空航天大学 Extraction method for dynamic crowd gathering characteristics
CN112883768A (en) * 2019-11-29 2021-06-01 华为技术有限公司 Object counting method and device, equipment and storage medium
CN111178235A (en) * 2019-12-27 2020-05-19 卓尔智联(武汉)研究院有限公司 Target quantity determination method, device, equipment and storage medium
CN111563447A (en) * 2020-04-30 2020-08-21 南京邮电大学 Crowd density analysis and detection positioning method based on density map
WO2022188030A1 (en) * 2021-03-09 2022-09-15 中国科学院深圳先进技术研究院 Crowd density estimation method, electronic device and storage medium
CN114005085A (en) * 2021-10-28 2022-02-01 武汉大学 Dense crowd distribution detection and counting method in video

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAS, S.S.S 等: "CCCNet: An Attention Based Deep Learning Framework for Categorized Crowd Counting", ARXIV, 11 December 2019 (2019-12-11) *
麻文华 等: "基于置信度分析的人群密度等级分类模型", 模式识别与人工智能, no. 01, 15 February 2011 (2011-02-15) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116311262A (en) * 2023-05-23 2023-06-23 济南大陆机电股份有限公司 A method, system, device and storage medium for identifying instrumentation information
CN116311262B (en) * 2023-05-23 2023-08-01 济南大陆机电股份有限公司 A method, system, device and storage medium for identifying instrumentation information

Similar Documents

Publication Publication Date Title
US12199846B2 (en) Network security monitoring and correlation system and method of using
CN112805750B (en) Cross-reality systems
JP7525603B2 (en) Cross-reality system with location services and shared location-based content
CN115427758B (en) Cross-reality system with precisely shared maps
US10839196B2 (en) Surveillance and monitoring system that employs automated methods and subsystems that identify and characterize face tracks in video
CN114600064A (en) Cross-reality system with location services
CN114616534A (en) Cross-reality system with wireless fingerprints
CN114586071A (en) Cross-reality system supporting multiple device types
CN114762008A (en) Simplified virtual content programmed cross reality system
JP2021507403A (en) Cache and update dense 3D reconstruction data
US20210407125A1 (en) Object recognition neural network for amodal center prediction
CN115398314A (en) Cross reality system for map processing using multi-resolution frame descriptors
JP7711263B2 (en) Cross Reality System
CN115176285B (en) Cross-reality system using buffering for positioning accuracy
CN114079801B (en) Superimposing metadata on-demand onto video streams for intelligent video analytics
CN110248165B (en) Label display method, device, equipment and storage medium
CN113313832A (en) Semantic generation method and device of three-dimensional model, storage medium and electronic equipment
CN111915713A (en) A method for creating a three-dimensional dynamic scene, a computer device, and a storage medium
CN115527166A (en) Image processing method, computer-readable storage medium, and electronic device
CN111652831A (en) Object fusion method and device, computer-readable storage medium and electronic equipment
JP7667866B2 (en) Scene Understanding Using Occupancy Grids
CN116958406A (en) A three-dimensional face reconstruction method, device, electronic equipment and storage medium
CN116977392A (en) Image generation method, device, electronic equipment and storage medium
CN116543105B (en) Processing method and system of three-dimensional object, electronic equipment and storage medium
Meng et al. Viewpoint quality evaluation for augmented virtual environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination