CN115529795A - Method, device and storage medium for assessing closedness of server channel in computer room - Google Patents
Method, device and storage medium for assessing closedness of server channel in computer room Download PDFInfo
- Publication number
- CN115529795A CN115529795A CN202211150491.9A CN202211150491A CN115529795A CN 115529795 A CN115529795 A CN 115529795A CN 202211150491 A CN202211150491 A CN 202211150491A CN 115529795 A CN115529795 A CN 115529795A
- Authority
- CN
- China
- Prior art keywords
- channel
- data
- server
- temperature data
- evaluated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20836—Thermal management, e.g. server temperature control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
技术领域technical field
本公开涉及数据中心能耗优化领域,尤其涉及一种评估机房服务器通道封闭情况的方法、装置和存储介质。The present disclosure relates to the field of data center energy consumption optimization, and in particular, to a method, device and storage medium for evaluating the closed condition of a server channel in a computer room.
背景技术Background technique
数据中心的电子设备散热问题一直是其发展的关键,机房的散热冷却是确保数据中心安全可靠运行的基本条件之一,通常需在机房内安装精密空调。对于数据中心而言,当机房的设备“满载”运行时,会有较大的发热量,冷热通道隔离封闭是机房节能减排的措施之一,而在机房服务器的冷热通道中存在封闭与漏风问题,进而形成逆压差,影响制冷设备工作的效率。The heat dissipation of electronic equipment in the data center has always been the key to its development. The heat dissipation and cooling of the computer room is one of the basic conditions to ensure the safe and reliable operation of the data center. It is usually necessary to install precision air conditioners in the computer room. For the data center, when the equipment in the computer room is running at "full load", there will be a large amount of heat generated. Isolation and sealing of cold and hot aisles is one of the measures for energy saving and emission reduction in the computer room. And air leakage problems, and then form a reverse pressure difference, affecting the efficiency of refrigeration equipment.
发明内容Contents of the invention
本公开要解决的一个技术问题是,提供一种评估机房服务器通道封闭情况的方法、装置和存储介质,能够及时识别导致机房制冷能耗的工程性故障,避免由于通道封闭情况造成能量消耗。A technical problem to be solved in the present disclosure is to provide a method, device and storage medium for evaluating the closedness of server channels in a computer room, which can timely identify engineering failures that cause cooling energy consumption in the computer room, and avoid energy consumption caused by closed channels.
根据本公开一方面,提出一种评估机房服务器通道封闭情况的方法,包括:获取待评估服务器通道对应的冷通道温度数据;根据热通道温度预测模型,预测冷通道温度数据对应的热通道温度数据,其中,热通道温度预测模型根据已知封闭情况的通道对应的热通道数据和冷通道数据进行回归函数拟合得到;以及根据预测的热通道温度数据,评估待评估服务器通道的封闭情况。According to one aspect of the present disclosure, a method for evaluating the closure of a server channel in a computer room is proposed, including: obtaining the cold channel temperature data corresponding to the server channel to be evaluated; predicting the hot channel temperature data corresponding to the cold channel temperature data according to the hot channel temperature prediction model , wherein, the hot aisle temperature prediction model is obtained by performing regression function fitting on the hot aisle data and cold aisle data corresponding to the aisle known to be closed;
在一些实施例中,评估待评估服务器通道的封闭情况包括:若预测的热通道温度数据大于或等于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道存在漏风情况;以及若预测的热通道温度数据小于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道不存在漏风情况。In some embodiments, evaluating the closure of the server channel to be evaluated includes: if the predicted hot aisle temperature data is greater than or equal to the actual measured hot channel temperature data of the server channel to be evaluated, then determining that there is an air leakage situation in the server channel to be evaluated; and If the predicted hot aisle temperature data is smaller than the actually measured hot aisle temperature data of the server aisle to be evaluated, it is determined that there is no air leakage in the server aisle to be evaluated.
在一些实施例中,回归函数基于逆压差数据、压强波动数据、冷通道数据、热通道数据以及服务器功率数据构建。In some embodiments, the regression function is constructed based on inverse differential pressure data, pressure fluctuation data, cold aisle data, hot aisle data, and server power data.
在一些实施例中,回归函数的参数包括湍流速度系数、压强波动系数以及机柜发热量系数。In some embodiments, the parameters of the regression function include a turbulent velocity coefficient, a pressure fluctuation coefficient, and a cabinet heat generation coefficient.
在一些实施例中,根据预测的热通道温度数据,控制机房空调的输出参数。In some embodiments, the output parameters of the computer room air conditioner are controlled based on the predicted hot aisle temperature data.
根据本公开的另一方面,还提出一种评估机房服务器通道封闭情况的装置,包括:数据采集模块,被配置为获取待评估服务器通道对应的冷通道温度数据;温度预测模块,被配置为根据热通道温度预测模型,预测冷通道温度数据对应的热通道温度数据,其中,热通道温度预测模型根据已知封闭情况的通道对应的热通道数据和冷通道数据进行回归函数拟合得到;以及封闭评估模块,被配置为根据预测的热通道温度数据,评估待评估服务器通道的封闭情况。According to another aspect of the present disclosure, a device for evaluating the closedness of a server channel in a computer room is also proposed, including: a data acquisition module configured to obtain cold aisle temperature data corresponding to the server channel to be evaluated; a temperature prediction module configured to The hot aisle temperature prediction model predicts the hot aisle temperature data corresponding to the cold aisle temperature data, wherein the hot aisle temperature prediction model is obtained by performing regression function fitting on the hot aisle data and cold aisle data corresponding to the aisle known to be closed; and the closed aisle The evaluation module is configured to evaluate the sealing condition of the server aisle to be evaluated according to the predicted temperature data of the hot aisle.
在一些实施例中,封闭评估模块被配置为若预测的热通道温度数据大于或等于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道存在漏风情况;以及若预测的热通道温度数据小于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道不存在漏风情况。In some embodiments, the closed evaluation module is configured to determine that there is air leakage in the server channel to be evaluated if the predicted hot channel temperature data is greater than or equal to the actual measured hot channel temperature data of the server channel to be evaluated; and if the predicted thermal channel If the aisle temperature data is smaller than the actual measured hot aisle temperature data of the server aisle to be evaluated, it is determined that there is no air leakage in the server aisle to be evaluated.
在一些实施例中,回归函数基于逆压差数据、压强波动数据、冷通道数据、热通道数据以及服务器功率数据构建。In some embodiments, the regression function is constructed based on inverse differential pressure data, pressure fluctuation data, cold aisle data, hot aisle data, and server power data.
在一些实施例中,回归函数的参数包括湍流速度系数、压强波动系数以及机柜发热量系数。In some embodiments, the parameters of the regression function include a turbulent velocity coefficient, a pressure fluctuation coefficient, and a cabinet heat generation coefficient.
在一些实施例中,空调控制模块,被配置为根据预测的热通道温度数据,控制机房空调的输出参数。In some embodiments, the air conditioner control module is configured to control output parameters of the computer room air conditioner according to the predicted hot aisle temperature data.
根据本公开的另一方面,还提出一种评估机房服务器通道封闭情况的装置,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行如上述的评估机房服务器通道封闭情况的方法。According to another aspect of the present disclosure, there is also proposed a device for evaluating the channel closure of a server in a computer room, including: a memory; and a processor coupled to the memory, the processor is configured to perform the above-mentioned evaluation based on instructions stored in the memory The method for the closed situation of the server channel in the computer room.
根据本公开的另一方面,还提出一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现如上的评估机房服务器通道封闭情况的方法。According to another aspect of the present disclosure, a non-transitory computer-readable storage medium is also proposed, on which computer program instructions are stored, and when the instructions are executed by a processor, the above method for evaluating channel closure of a server in a computer room is realized.
本公开实施例中,利用热通道温度预测模型预测待评估服务器热通道的温度,其中,该热通道温度预测模型利用已知封闭情况良好的冷热通道数据拟合归回函数确定,进而根据预测的温度待评估服务器通道的封闭情况,能够及时识别导致机房制冷能耗的工程性故障,避免由于通道封闭情况造成能量消耗,提高制冷设备的工作效率。In the embodiment of the present disclosure, the hot aisle temperature prediction model is used to predict the temperature of the hot aisle of the server to be evaluated. The closed condition of the server channel whose temperature is to be evaluated can timely identify the engineering faults that lead to the cooling energy consumption of the computer room, avoid energy consumption caused by the closed channel, and improve the working efficiency of the refrigeration equipment.
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。Other features of the present disclosure and advantages thereof will become apparent through the following detailed description of exemplary embodiments of the present disclosure with reference to the accompanying drawings.
附图说明Description of drawings
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。The accompanying drawings, which constitute a part of this specification, illustrate the embodiments of the disclosure and together with the description serve to explain the principles of the disclosure.
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:The present disclosure can be more clearly understood from the following detailed description with reference to the accompanying drawings, in which:
图1为本公开的评估机房服务器通道封闭情况的方法的一些实施例的流程示意图;FIG. 1 is a schematic flow diagram of some embodiments of the method for evaluating the channel closure of a server room in a computer room according to the present disclosure;
图2为本公开的评估机房服务器通道封闭情况的方法的另一些实施例的流程示意图;FIG. 2 is a schematic flowchart of another embodiment of the method for evaluating the channel closure of a server room in a computer room according to the present disclosure;
图3为本公开的评估机房服务器通道封闭情况的装置的一些实施例的结构示意图;Fig. 3 is a structural schematic diagram of some embodiments of the device for evaluating the closed condition of the server channel in the computer room of the present disclosure;
图4为本公开的评估机房服务器通道封闭情况的装置的另一些实施例的结构示意图;以及FIG. 4 is a schematic structural diagram of another embodiment of the device for evaluating the closedness of the channel of the server in the computer room of the present disclosure; and
图5为本公开的评估机房服务器通道封闭情况的装置的另一些实施例的结构示意图。Fig. 5 is a schematic structural diagram of other embodiments of the device for evaluating the closed condition of a server channel in a computer room according to the present disclosure.
具体实施方式detailed description
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。Various exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. It should be noted that relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present disclosure unless specifically stated otherwise.
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。At the same time, it should be understood that, for the convenience of description, the sizes of the various parts shown in the drawings are not drawn according to the actual proportional relationship.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way intended as any limitation of the disclosure, its application or uses.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the description.
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other examples of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。In order to make the purpose, technical solutions and advantages of the present disclosure clearer, the present disclosure will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
真实机房空调共同对机房机柜进行冷却作用,由于机房内气流为湍流模型,分析复杂,很难从空气动力学分析的层面预测服务器冷热通道的温度,所以需要必要的高效的方法确定服务器冷热通道的封闭情况,充分利用每一台空调,也要避免由于通道封闭情况造成的能量消耗。The air conditioners in the real computer room jointly cool the cabinets in the computer room. Since the airflow in the computer room is a turbulent flow model, the analysis is complicated, and it is difficult to predict the temperature of the hot and cold aisles of the server from the perspective of aerodynamic analysis. Therefore, necessary and efficient methods are needed to determine the temperature of the server. In order to make full use of each air conditioner and avoid the energy consumption caused by the closed passage.
图1为本公开的评估机房服务器通道封闭情况的方法的一些实施例的流程示意图。Fig. 1 is a schematic flow chart of some embodiments of the method for evaluating the channel closure of a server in a computer room according to the present disclosure.
在步骤110,获取待评估服务器通道对应的冷通道温度数据。In
在一些实施例中,可以分别获取机柜前后门三个温度测点的数据。In some embodiments, the data of three temperature measurement points on the front and rear doors of the cabinet may be acquired respectively.
在步骤120,根据热通道温度预测模型,预测冷通道温度数据对应的热通道温度数据,其中,热通道温度预测模型根据已知封闭情况的通道对应的热通道数据和冷通道数据进行回归函数拟合得到。In
在一些实施例中,获取已知的封闭情况良好的通道对应的冷通道数据与热通道数据,其中,封闭情况良好即漏风量小于阈值。利用该冷通道数据与热通道数据训练热通道温度预测模型。In some embodiments, cold aisle data and hot aisle data corresponding to known aisles with good sealing conditions are obtained, wherein the sealing conditions are good, that is, the air leakage is less than a threshold. Use the cold aisle data and hot aisle data to train the hot aisle temperature prediction model.
在一些实施例中,回归函数基于逆压差数据、压强波动数据、冷通道数据、热通道数据以及服务器功率数据构建。该回归函数的参数包括湍流速度系数、压强波动系数以及机柜发热量系数。In some embodiments, the regression function is constructed based on inverse differential pressure data, pressure fluctuation data, cold aisle data, hot aisle data, and server power data. The parameters of the regression function include the turbulent velocity coefficient, the pressure fluctuation coefficient and the cabinet heating coefficient.
在一些实施例中,可以参考流体三大基本定律方程以及气流流动控制方程,构建该回归函数。流体三大基本定律方程包括质量守恒方程、动量守恒方程和能量守恒方程,气流流动控制方程包括湍流动能方程和扩散方程。该模型由于遵循了流体三大基本定律与湍流传输方程,从理论上解释了热区温度变化的规律,为回归函数的构造提供了科学参考。In some embodiments, the regression function can be constructed with reference to the three basic law equations of the fluid and the air flow control equation. The three basic law equations of fluid include mass conservation equation, momentum conservation equation and energy conservation equation, and the air flow control equations include turbulent kinetic energy equation and diffusion equation. Since the model follows the three basic laws of fluid and the turbulent transport equation, it theoretically explains the law of temperature change in the hot zone and provides a scientific reference for the construction of the regression function.
在步骤130,基于预测的热通道温度数据,评估待评估服务器通道的封闭情况。In
在一些实施例中,若预测的热通道温度数据大于或等于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道存在漏风情况;以及若预测的热通道温度数据小于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道不存在漏风情况。即若发现热通道真实温度偏高,则说明通道没有问题,若发现热通道真实温度偏低,则说明该通道存在漏风情况,从而排查出存在冷热通道封闭问题。In some embodiments, if the predicted hot aisle temperature data is greater than or equal to the actual measured hot aisle temperature data of the server aisle to be evaluated, it is determined that there is air leakage in the server aisle to be evaluated; and if the predicted hot aisle temperature data is smaller than the actual measurement If the hot aisle temperature data of the server aisle to be evaluated is used, it is determined that there is no air leakage in the server aisle to be evaluated. That is, if the real temperature of the hot aisle is found to be high, it means that there is no problem with the aisle. If the real temperature of the hot aisle is found to be low, it means that there is air leakage in the aisle, so that the hot and cold aisle is closed.
在上述实施例中,利用热通道温度预测模型预测待评估服务器热通道的温度,其中,该热通道温度预测模型利用已知封闭情况良好的冷热通道数据拟合归回函数确定,进而根据预测的温度待评估服务器通道的封闭情况,能够及时识别导致机房制冷能耗的工程性故障,避免由于通道封闭情况造成能量消耗。In the above-mentioned embodiment, the hot aisle temperature prediction model is used to predict the temperature of the hot aisle of the server to be evaluated, wherein the hot aisle temperature prediction model is determined by fitting the regression function with the data of the hot and cold aisles known to be well closed, and then according to the predicted The temperature is subject to evaluation of the closure of the server channel, which can promptly identify engineering failures that lead to cooling energy consumption in the computer room, and avoid energy consumption due to channel closure.
图2为本公开的评估机房服务器通道封闭情况的方法的另一些实施例的流程示意图。Fig. 2 is a schematic flowchart of another embodiment of the method for evaluating the channel closure of a server in a computer room according to the present disclosure.
在步骤210,基于逆压差数据、压强波动数据、冷通道数据、热通道数据以及服务器功率数据构建热通道温度预测模型的回归函数。In
在一些实施例中,该回归函数例如为 其中,Thot(t)为热通道数据,Tcold(t-1)为冷通道数据,μ为速度矢量,P为流体压强,Ym为在可压缩湍流中,过度的扩散产生的波动,Gb为浮力产生的湍流动能,为逆压差数据的湍流速度,Power为服务器功率,反映服务器的发热量。α为压强波动系数、β为湍流速度系数、γ为机柜发热量系数,其中,α、β、γ为未知量。In some embodiments, the regression function is, for example, Among them, T hot (t) is the hot channel data, T cold (t-1) is the cold channel data, μ is the velocity vector, P is the fluid pressure, Ym is the fluctuation caused by excessive diffusion in the compressible turbulent flow, G b is the turbulent kinetic energy generated by buoyancy, is the turbulent velocity of the inverse pressure difference data, and Power is the power of the server, which reflects the calorific value of the server. α is the pressure fluctuation coefficient, β is the turbulent velocity coefficient, and γ is the cabinet heating coefficient, among which α, β, and γ are unknown quantities.
由于数据中心一般采取封闭冷热通道的形式,送风方式为下送风,冷风流经电子设备时对设备进行冷却,热风通过布置在室内的回风口排出室外。冷风直接与设备散出的热量混合,并送到室外。采集逆压差数据并获得湍流速度其中&μ为常量。Since the data center generally adopts the form of closed cold and hot aisles, the air supply method is downward air supply. When the cold air flows through the electronic equipment, it cools the equipment, and the hot air is discharged outside through the return air outlet arranged indoors. The cold air mixes directly with the heat from the equipment and is sent outside. Acquire inverse differential pressure data and obtain turbulent velocity Where & μ is a constant.
在步骤220,获取已知通道封闭情况良好的通道对应的冷通道数据和热通道数据。In
在一些实施例中,通过实时监测的方式获取同一时刻下的温度数据。In some embodiments, the temperature data at the same time is acquired through real-time monitoring.
在步骤230,利用获取的冷通道数据和热通道数据,对回归函数进行拟合,得到热通道温度预测模型。In
在一些实施例中,不同服务器冷热通道的热通道温度预测模型可能存在不一致性,因此,需要对该模型进行验证,使得该模型能够应用于待评估服务器通道。在运行过程中通过比较数据来不断迭代更新,增强实际的可操作性。In some embodiments, there may be inconsistencies in the hot aisle temperature prediction models of the hot and cold aisles of different servers. Therefore, the model needs to be verified so that the model can be applied to the server aisle to be evaluated. During the running process, iteratively updates by comparing data to enhance the actual operability.
在步骤240,采集待评估服务器通道对应的冷通道温度数据。In
在步骤250,根据热通道温度预测模型,预测该冷通道温度数据对应的热通道温度数据。At
在步骤260,判断预测的热通道温度数据是否小于实际测量数据,若是,则执行步骤270,否则,执行步骤280。In
在步骤270,确定待评估服务器通道不存在漏风情况。In
在步骤280,确定待评估服务器通道存在漏风情况。In
在上述实施例中,通过构建回归函数,利用已知封闭情况良好的通道对应的冷热通道数据进行线性拟合,得到热通道温度预测模型,利用该热通道温度预测模型预测热通道温度,根据热通道温度评估通道是否存在漏风情况,充分利用每一台空调,避免由于通道封闭情况造成能量消耗,达到资源高效利用的目的。In the above-mentioned embodiment, by constructing a regression function, using the cold and hot aisle data corresponding to the well-closed aisle for linear fitting, the hot aisle temperature prediction model is obtained, and the hot aisle temperature prediction model is used to predict the temperature of the hot aisle, according to The temperature of the hot aisle evaluates whether there is air leakage in the aisle, makes full use of each air conditioner, avoids energy consumption due to the closed aisle, and achieves the purpose of efficient use of resources.
在一些实施例中,根据预测的热通道温度数据,控制机房空调的输出参数,例如控制空调压缩机的运行频率、风速大小。通过指导加以修正,从而达到数据中心机房空调优化节能的目的。In some embodiments, the output parameters of the computer room air conditioner are controlled according to the predicted temperature data of the hot aisle, for example, the operating frequency and wind speed of the air conditioner compressor are controlled. It is corrected through guidance, so as to achieve the goal of optimizing energy saving of data center computer room air conditioners.
图3为本公开的评估机房服务器通道封闭情况的装置的一些实施例的结构示意图,该装置包括数据采集模块310、温度预测模块320和封闭评估模块330。FIG. 3 is a schematic structural diagram of some embodiments of the device for evaluating the closedness of server channel in a computer room according to the present disclosure, the device includes a
数据采集模块310被配置为获取待评估服务器通道对应的冷通道温度数据。The
在一些实施例中,该数据采集模块310还被配置为获取已知通道封闭情况良好的通道对应的冷通道数据和热通道数据,以及逆压差数据、压强波动数据和服务器功率数据。In some embodiments, the
温度预测模块320被配置为根据热通道温度预测模型,预测冷通道温度数据对应的热通道温度数据,其中,热通道温度预测模型根据已知封闭情况的通道对应的热通道数据和冷通道数据进行回归函数拟合得到。The
在一些实施例中,如图4所示,该装置还包括模型训练模块410,被配置为基于逆压差数据、压强波动数据、冷通道数据、热通道数据以及服务器功率数据构建热通道温度预测模型的回归函数,该回归函数的参数包括湍流速度系数、压强波动系数以及机柜发热量系数,并利用已知封闭情况的通道对应的热通道数据和冷通道数据训练该热通道温度预测模型。In some embodiments, as shown in FIG. 4 , the device further includes a
在一些实施例中,该回归函数例如为 In some embodiments, the regression function is, for example,
封闭评估模块330被配置为根据预测的热通道温度数据,评估待评估服务器通道的封闭情况。The
若预测的热通道温度数据大于或等于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道存在漏风情况;以及若预测的热通道温度数据小于实际测量的待评估服务器通道的热通道温度数据,则确定待评估服务器通道不存在漏风情况。If the predicted hot aisle temperature data is greater than or equal to the actual measured hot aisle temperature data of the server channel to be evaluated, it is determined that there is air leakage in the server channel to be evaluated; If the hot aisle temperature data is used, it is determined that there is no air leakage in the server aisle to be evaluated.
在上述实施例中,利用热通道温度预测模型预测待评估服务器热通道的温度,进而根据预测的温度待评估服务器通道的封闭情况,能够及时识别导致机房制冷能耗的工程性故障,避免由于通道封闭情况造成能量消耗。In the above embodiment, the hot aisle temperature prediction model is used to predict the temperature of the hot aisle of the server to be evaluated, and then according to the predicted temperature. The closed situation causes energy consumption.
在本公开的另一些实施例中,还包括空调控制模块420,被配置为根据预测的热通道温度数据,控制机房空调的输出参数。充分利用空调资源,有效去除因忽视服务器冷热通道封闭问题而造成的能耗损失,达到资源最大化。In some other embodiments of the present disclosure, an air
图5为本公开的评估机房服务器通道封闭情况的装置的另一些实施例的结构示意图。该装置500包括存储器510和处理器520。其中:存储器510可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储上述实施例中的指令。处理器520耦接至存储器510,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器520用于执行存储器中存储的指令。Fig. 5 is a schematic structural diagram of other embodiments of the device for evaluating the closed condition of a server channel in a computer room according to the present disclosure. The
在一些实施例中,处理器520通过BUS总线530耦合至存储器510。该装置500还可以通过存储接口540连接至外部存储系统550以便调用外部数据,还可以通过网络接口560连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。In some embodiments, the
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够及时发现通道封闭情况,避免由于通道封闭情况造成能量消耗。In this embodiment, the data instruction is stored in the memory, and the instruction is processed by the processor, so that the channel closure can be detected in time, and energy consumption caused by the channel closure can be avoided.
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。In some other embodiments, a computer-readable storage medium stores computer program instructions thereon, and when the instructions are executed by a processor, the steps of the methods in the above-mentioned embodiments are implemented. Those skilled in the art should understand that the embodiments of the present disclosure may be provided as methods, apparatuses, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present disclosure is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the present disclosure. It should be understood that each procedure and/or block in the flowchart and/or block diagram and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。So far, the present disclosure has been described in detail. Certain details known in the art have not been described in order to avoid obscuring the concept of the present disclosure. Based on the above description, those skilled in the art can fully understand how to implement the technical solutions disclosed herein.
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。Although some specific embodiments of the present disclosure have been described in detail through examples, those skilled in the art should understand that the above examples are for illustration only, rather than limiting the scope of the present disclosure. It will be appreciated by those skilled in the art that modifications may be made to the above embodiments without departing from the scope and spirit of the present disclosure. The scope of the present disclosure is defined by the appended claims.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211150491.9A CN115529795A (en) | 2022-09-21 | 2022-09-21 | Method, device and storage medium for assessing closedness of server channel in computer room |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211150491.9A CN115529795A (en) | 2022-09-21 | 2022-09-21 | Method, device and storage medium for assessing closedness of server channel in computer room |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115529795A true CN115529795A (en) | 2022-12-27 |
Family
ID=84699811
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211150491.9A Pending CN115529795A (en) | 2022-09-21 | 2022-09-21 | Method, device and storage medium for assessing closedness of server channel in computer room |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115529795A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118524686A (en) * | 2024-07-22 | 2024-08-20 | 深圳市精致网络设备有限公司 | Chimney type hot channel sealing evaluation method and system |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110190951A1 (en) * | 2010-02-01 | 2011-08-04 | International Business Machines Corporation | Assessing, forecasting and simulating energy consumption of buildings using energy efficiency coefficients |
| CN104456847A (en) * | 2014-11-21 | 2015-03-25 | 北京百度网讯科技有限公司 | Method for closing cold passage |
| CN106843103A (en) * | 2016-12-30 | 2017-06-13 | 成都誉华科技有限公司 | A kind of computer room air leak judgment method and system |
| CN206260192U (en) * | 2016-11-09 | 2017-06-16 | 上海允登信息科技有限公司 | The refrigeration capacity assessment system of computer room rack |
| CN112393390A (en) * | 2020-07-15 | 2021-02-23 | 上海有孚智数云创数字科技有限公司 | Cloud computing data center precision air conditioner energy-saving control method based on data analysis |
| CN112460775A (en) * | 2020-03-12 | 2021-03-09 | 平安科技(深圳)有限公司 | Method, device and equipment for controlling cooling capacity of machine room and storage medium |
| CN113065293A (en) * | 2021-04-30 | 2021-07-02 | 中国工商银行股份有限公司 | Data center environment monitoring method and system, electronic equipment and storage medium |
| CN113806171A (en) * | 2021-09-12 | 2021-12-17 | 济南浪潮数据技术有限公司 | Server health assessment method, system, equipment and medium |
| CN113891624A (en) * | 2021-09-30 | 2022-01-04 | 广东南方通信建设有限公司 | Data center refrigerating system |
| CN114491943A (en) * | 2021-12-23 | 2022-05-13 | 北京达佳互联信息技术有限公司 | Information processing method, temperature prediction model training method, device and electronic equipment |
| CN114559775A (en) * | 2022-03-31 | 2022-05-31 | 中国第一汽车股份有限公司 | Automobile tire abnormity identification system and identification method |
| CN114997304A (en) * | 2022-05-30 | 2022-09-02 | 中国石油天然气集团有限公司 | Lost circulation type analysis method, device, equipment and medium |
-
2022
- 2022-09-21 CN CN202211150491.9A patent/CN115529795A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110190951A1 (en) * | 2010-02-01 | 2011-08-04 | International Business Machines Corporation | Assessing, forecasting and simulating energy consumption of buildings using energy efficiency coefficients |
| CN104456847A (en) * | 2014-11-21 | 2015-03-25 | 北京百度网讯科技有限公司 | Method for closing cold passage |
| CN206260192U (en) * | 2016-11-09 | 2017-06-16 | 上海允登信息科技有限公司 | The refrigeration capacity assessment system of computer room rack |
| CN106843103A (en) * | 2016-12-30 | 2017-06-13 | 成都誉华科技有限公司 | A kind of computer room air leak judgment method and system |
| CN112460775A (en) * | 2020-03-12 | 2021-03-09 | 平安科技(深圳)有限公司 | Method, device and equipment for controlling cooling capacity of machine room and storage medium |
| CN112393390A (en) * | 2020-07-15 | 2021-02-23 | 上海有孚智数云创数字科技有限公司 | Cloud computing data center precision air conditioner energy-saving control method based on data analysis |
| CN113065293A (en) * | 2021-04-30 | 2021-07-02 | 中国工商银行股份有限公司 | Data center environment monitoring method and system, electronic equipment and storage medium |
| CN113806171A (en) * | 2021-09-12 | 2021-12-17 | 济南浪潮数据技术有限公司 | Server health assessment method, system, equipment and medium |
| CN113891624A (en) * | 2021-09-30 | 2022-01-04 | 广东南方通信建设有限公司 | Data center refrigerating system |
| CN114491943A (en) * | 2021-12-23 | 2022-05-13 | 北京达佳互联信息技术有限公司 | Information processing method, temperature prediction model training method, device and electronic equipment |
| CN114559775A (en) * | 2022-03-31 | 2022-05-31 | 中国第一汽车股份有限公司 | Automobile tire abnormity identification system and identification method |
| CN114997304A (en) * | 2022-05-30 | 2022-09-02 | 中国石油天然气集团有限公司 | Lost circulation type analysis method, device, equipment and medium |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118524686A (en) * | 2024-07-22 | 2024-08-20 | 深圳市精致网络设备有限公司 | Chimney type hot channel sealing evaluation method and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109800066B (en) | A data center energy-saving scheduling method and system | |
| US9664400B2 (en) | Automated technique of measuring room air change rates in HVAC system | |
| US8744818B2 (en) | Thermal-fluid-simulation analyzing apparatus | |
| US10157245B2 (en) | System and method for fluid dynamics prediction with an enhanced potential flow model | |
| CN103370712B (en) | Systems and methods for rack cooling analysis | |
| CN117413147A (en) | Dynamic predictive control method, device and system for precision air conditioning | |
| US9952103B2 (en) | Analysis of effect of transient events on temperature in a data center | |
| US9727064B2 (en) | Dropped ceiling system cooling prediction | |
| US20200348993A1 (en) | Machine-learning based optimization of data center designs and risks | |
| US11102083B2 (en) | Machine-learning based optimization of data centers using supplemental indicators | |
| CA2808161A1 (en) | System and method for predicting transient cooling performance for a data center | |
| Ibrahim et al. | Thermal mass characterization of a server at different fan speeds | |
| CN105959975A (en) | Automatic assessment method for energy saving quantity of large-scale base station energy saving project | |
| CN115529795A (en) | Method, device and storage medium for assessing closedness of server channel in computer room | |
| Chen et al. | Hot spot temperature prediction and operating parameter estimation of racks in data center using machine learning algorithms based on simulation data | |
| Varsamopoulos et al. | Using transient thermal models to predict cyberphysical phenomena in data centers | |
| Conficoni et al. | Hpc cooling: A flexible modeling tool for effective design and management | |
| Zhang et al. | Real time thermal management controller for data center | |
| CN112989642A (en) | Non-transitory computer readable medium, system, and method for generating a display | |
| Gao et al. | A dynamic model of failure scenarios of the dry cooler in a liquid cooled chiller-less data center | |
| Gao et al. | Experimentally verified transient models of data center crossflow heat exchangers | |
| Parekh | Comparative rack level cfd analysis of air to hybrid cooling data center | |
| Billet et al. | Data Center Cooling Efficiency With Simulation-Based Optimization | |
| CN119167830B (en) | A CFD-based mechanical ventilation analysis method and device | |
| Grüter et al. | Eod designer: A computation tool for energy optimization of data centers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |