CN115548386B - Method for determining hydrogen metering ratio of fuel cell system and fuel cell system - Google Patents
Method for determining hydrogen metering ratio of fuel cell system and fuel cell system Download PDFInfo
- Publication number
- CN115548386B CN115548386B CN202211358083.2A CN202211358083A CN115548386B CN 115548386 B CN115548386 B CN 115548386B CN 202211358083 A CN202211358083 A CN 202211358083A CN 115548386 B CN115548386 B CN 115548386B
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- fuel cell
- cell system
- inlet
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 323
- 239000001257 hydrogen Substances 0.000 title claims abstract description 308
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 308
- 239000000446 fuel Substances 0.000 title claims abstract description 180
- 238000000034 method Methods 0.000 title claims abstract description 56
- 239000007789 gas Substances 0.000 claims abstract description 113
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 238000004590 computer program Methods 0.000 claims description 14
- 229920006395 saturated elastomer Polymers 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 abstract description 7
- 238000004364 calculation method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04425—Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本申请属于燃料电池技术领域,尤其涉及一种燃料电池系统的氢气计量比确定方法和燃料电池系统。The present application belongs to the technical field of fuel cells, and in particular relates to a hydrogen metering ratio determination method of a fuel cell system and a fuel cell system.
背景技术Background technique
燃料电池是一种可以把燃料所具有的化学能直接转换成电能的一种发电装置,具有能量转换效率高、清洁无污染等优点,其商业化应用存在着广阔的发展前景。Fuel cell is a kind of power generation device that can directly convert the chemical energy of fuel into electrical energy. It has the advantages of high energy conversion efficiency, clean and pollution-free, and its commercial application has broad development prospects.
燃料电池系统工作时往往需要将过量的氢气通过循环的方式通入阳极,提高氢气利用率以及满足燃料电池的水管理平衡。但经过燃料电池内部循环的氢气,其相对湿度较高且含有部分从阴极渗透到阳极的氮气,一般的气体流量计只能测试某种特定干气体的流量,对于存在湿气体以及湿度变化气体的流量测量存在较大误差,导致燃料电池系统氢气计量比的计算精度较低。When the fuel cell system is working, it is often necessary to pass excess hydrogen into the anode through circulation to improve the utilization rate of hydrogen and meet the water management balance of the fuel cell. However, the hydrogen gas circulating inside the fuel cell has a high relative humidity and contains part of the nitrogen gas that penetrates from the cathode to the anode. The general gas flowmeter can only test the flow rate of a specific dry gas. For the gas with wet gas and humidity change There is a large error in flow measurement, which leads to low calculation accuracy of hydrogen gas metering ratio in fuel cell system.
目前,通过氢气减压阀后端增加气体流量计,并在氢气循环回路和氢气进堆回路中各安装一只温湿度传感器,测量干燥气体的流量、循环回路和进堆回路的相对湿度,根据质量守恒原理,计算出循环回路中气体的流量,再根据循环气体湿度,计算出循环氢气流量,最终确定出氢气的计量比,该类方法需要额外安装气体流量计和两只温湿度传感器,改变管路结构,增加燃料电池系统的成本,实用性受限。At present, a gas flow meter is added through the back end of the hydrogen pressure reducing valve, and a temperature and humidity sensor is installed in the hydrogen circulation loop and the hydrogen feed loop to measure the flow rate of the dry gas, the relative humidity of the loop loop and the stack loop, according to Based on the principle of mass conservation, the gas flow in the circulation loop is calculated, and then the circulating hydrogen flow is calculated according to the humidity of the circulating gas, and the metering ratio of hydrogen is finally determined. This type of method requires additional installation of a gas flow meter and two temperature and humidity sensors. The pipeline structure increases the cost of the fuel cell system and limits the practicality.
发明内容Contents of the invention
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种燃料电池系统的氢气计量比确定方法和燃料电池系统,实现氢气计量比的准确测量,结构简单、成本低,且实用性强。This application aims to solve at least one of the technical problems existing in the prior art. For this reason, the present application proposes a method for determining the metering ratio of hydrogen in a fuel cell system and a fuel cell system to realize accurate measurement of the metering ratio of hydrogen, which has a simple structure, low cost, and strong practicability.
第一方面,本申请提供了一种燃料电池系统的氢气计量比确定方法,该方法包括:In a first aspect, the present application provides a method for determining a hydrogen metering ratio of a fuel cell system, the method comprising:
获取燃料电池系统的氢气循环装置的入口温度、入口压力和出口压力,并获取所述燃料电池系统的燃料电池电堆的电堆电流;Obtain the inlet temperature, inlet pressure and outlet pressure of the hydrogen circulation device of the fuel cell system, and obtain the stack current of the fuel cell stack of the fuel cell system;
基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数;determining a gas state influencing factor of the fuel cell system based on the inlet temperature, the inlet pressure, and the outlet pressure;
基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,所述气体利用率基于所述燃料电池系统的运行工况确定;Determine the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system, the gas utilization rate is based on the fuel cell system Determination of operating conditions;
基于所述电堆电流,确定所述燃料电池系统的氢气消耗量;determining the hydrogen consumption of the fuel cell system based on the stack current;
基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比。A hydrogen metering ratio of the fuel cell system is determined based on the hydrogen circulation flow rate and the hydrogen consumption.
根据本申请的燃料电池系统的氢气计量比确定方法,通过测量氢气循环装置入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。According to the hydrogen metering ratio determination method of the fuel cell system of the present application, the hydrogen circulation flow rate is calculated by measuring the temperature and pressure data at the inlet and outlet of the hydrogen circulation device, combined with the hydrogen consumption, the hydrogen metering ratio is determined, the response speed is fast, and the calculation result is accurate High degree, no need to change the pipeline structure of the fuel cell system, which can effectively reduce the system cost.
根据本申请的一个实施例,所述基于所述入口温度、所述入口压力和所述出口压力,确定所述燃料电池系统的气体状态影响因数,包括:According to an embodiment of the present application, the determining the gas state influencing factor of the fuel cell system based on the inlet temperature, the inlet pressure and the outlet pressure includes:
基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;Based on the inlet temperature and the inlet pressure, determining the water vapor volume fraction at the inlet of the hydrogen circulation device;
基于所述入口压力和所述出口压力,确定所述氢气循环装置的进出口压差;determining the pressure difference between the inlet and outlet of the hydrogen circulation device based on the inlet pressure and the outlet pressure;
基于所述入口压力、所述进出口压差、所述入口温度和所述水蒸气体积分数,确定所述气体状态影响因数。The gas state influencing factor is determined based on the inlet pressure, the inlet and outlet pressure difference, the inlet temperature and the water vapor volume fraction.
根据本申请的一个实施例,所述基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数,包括:According to an embodiment of the present application, the determination of the water vapor volume fraction at the inlet of the hydrogen circulation device based on the inlet temperature and the inlet pressure includes:
基于所述入口温度,确定所述入口温度对应的饱和蒸汽压;Based on the inlet temperature, determining the saturated vapor pressure corresponding to the inlet temperature;
基于所述入口压力和所述饱和蒸汽压,确定所述水蒸气体积分数。Based on the inlet pressure and the saturation vapor pressure, the water vapor volume fraction is determined.
根据本申请的一个实施例,所述基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量,包括:According to an embodiment of the present application, the determining the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system includes :
基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量;Based on the gas state influencing factor and the gas utilization rate, determine the outlet hydrogen flow rate of the hydrogen circulation device;
基于所述入口温度和所述入口压力,确定所述氢气循环装置入口的水蒸气体积分数;Based on the inlet temperature and the inlet pressure, determining the water vapor volume fraction at the inlet of the hydrogen circulation device;
基于所述出口氢气流量和所述水蒸气体积分数,确定所述氢气循环流量。The hydrogen circulation flow rate is determined based on the outlet hydrogen flow rate and the water vapor volume fraction.
根据本申请的一个实施例,所述基于所述气体状态影响因数和所述气体利用率,确定所述氢气循环装置的出口氢气流量,包括:According to an embodiment of the present application, the determination of the outlet hydrogen flow rate of the hydrogen circulation device based on the gas state influencing factor and the gas utilization rate includes:
应用公式Apply the formula
Q=K*η*λ*nQ=K*η*λ*n
确定所述出口氢气流量;Determine the outlet hydrogen flow;
其中,Q为所述出口氢气流量,K为所述氢气循环装置的容积,η为所述气体利用率,λ为所述气体状态影响因数,n为所述氢气循环装置的转速。Wherein, Q is the hydrogen flow rate at the outlet, K is the volume of the hydrogen circulation device, n is the gas utilization rate, λ is the gas state influencing factor, and n is the speed of the hydrogen circulation device.
根据本申请的一个实施例,在所述基于所述入口温度、所述入口压力、所述气体状态影响因数和所述燃料电池系统的气体利用率,确定所述燃料电池系统的氢气循环流量之后,在所述基于所述氢气循环流量和所述氢气消耗量,确定所述燃料电池系统的氢气计量比之前,所述方法还包括:According to an embodiment of the present application, after the hydrogen circulation flow rate of the fuel cell system is determined based on the inlet temperature, the inlet pressure, the gas state influencing factor and the gas utilization rate of the fuel cell system , before determining the hydrogen metering ratio of the fuel cell system based on the hydrogen circulation flow rate and the hydrogen consumption, the method further includes:
根据理想气体状态方程,将所述氢气循环流量转换为标况下的所述氢气循环流量。According to the ideal gas state equation, the hydrogen circulation flow rate is converted into the hydrogen circulation flow rate under standard conditions.
第二方面,本申请提供了一种燃料电池系统,该系统包括:In a second aspect, the present application provides a fuel cell system, which includes:
氢气源;Hydrogen source;
气水分离器,所述氢气源与所述气水分离器的第一入口连接;A gas-water separator, the hydrogen source is connected to the first inlet of the gas-water separator;
氢气循环装置,所述氢气循环装置的入口与所述气水分离器的第一出口连接,所述氢气循环装置的入口设有温压传感器,所述氢气循环装置的出口设有压力传感器,所述温压传感器用于采集所述氢气循环装置的入口温度和入口压力,所述压力传感器用于采集所述氢气循环装置的出口压力;A hydrogen circulation device, the inlet of the hydrogen circulation device is connected to the first outlet of the gas-water separator, the inlet of the hydrogen circulation device is provided with a temperature and pressure sensor, and the outlet of the hydrogen circulation device is provided with a pressure sensor, so The temperature and pressure sensor is used to collect the inlet temperature and inlet pressure of the hydrogen circulation device, and the pressure sensor is used to collect the outlet pressure of the hydrogen circulation device;
燃料电池电堆,所述燃料电池电堆与所述氢气循环装置的出口连接,所述燃料电池电堆的电堆负极设有电流传感器,所述电流传感器用于采集电堆电流;A fuel cell stack, the fuel cell stack is connected to the outlet of the hydrogen circulation device, and the stack negative electrode of the fuel cell stack is provided with a current sensor, and the current sensor is used to collect the stack current;
控制器,所述控制器与所述氢气循环装置、所述温压传感器、所述压力传感器和所述电流传感器电连接,用于基于上述的燃料电池系统的氢气计量比确定方法,确定所述燃料电池系统的氢气计量比。a controller, the controller is electrically connected to the hydrogen circulation device, the temperature and pressure sensor, the pressure sensor and the current sensor, and is used to determine the Hydrogen Dosing Ratio for Fuel Cell Systems.
根据本申请的燃料电池系统,通过测量氢气循环装置入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。According to the fuel cell system of the present application, by measuring the temperature and pressure data at the inlet and outlet of the hydrogen circulation device, the hydrogen circulation flow rate is calculated, combined with the hydrogen consumption, the hydrogen metering ratio is determined, the response speed is fast, the calculation result is highly accurate, and there is no need to change the fuel The pipeline structure of the battery system can effectively reduce the system cost.
根据本申请的一个实施例,还包括与所述控制器电连接的第一开关阀和第二开关阀,所述第一开关阀设置于所述氢气源和所述第一入口之间,所述第二开关阀设置于所述氢气源和所述燃料电池电堆之间。According to an embodiment of the present application, it further includes a first on-off valve and a second on-off valve electrically connected to the controller, the first on-off valve is arranged between the hydrogen source and the first inlet, the The second switching valve is arranged between the hydrogen source and the fuel cell stack.
根据本申请的一个实施例,所述氢气源与所述气水分离器之间依次设有减压阀和比例调压阀。According to an embodiment of the present application, a pressure reducing valve and a proportional pressure regulating valve are sequentially provided between the hydrogen source and the gas-water separator.
第三方面,本申请提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的燃料电池系统的氢气计量比确定方法。In a third aspect, the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. When the processor executes the computer program, the following The method for determining the hydrogen metering ratio of the fuel cell system described in the first aspect above.
第四方面,本申请提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的燃料电池系统的氢气计量比确定方法。In a fourth aspect, the present application provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the hydrogen metering of the fuel cell system as described in the first aspect above is realized Than to determine the method.
第五方面,本申请提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的燃料电池系统的氢气计量比确定方法。In a fifth aspect, the present application provides a computer program product, including a computer program. When the computer program is executed by a processor, the method for determining the hydrogen gas metering ratio of the fuel cell system as described in the first aspect above is realized.
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the application will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the application.
附图说明Description of drawings
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings, wherein:
图1是本申请实施例提供的燃料电池系统的氢气计量比确定方法的流程示意图之一;Fig. 1 is one of the schematic flow charts of the method for determining the hydrogen metering ratio of the fuel cell system provided by the embodiment of the present application;
图2是本申请实施例提供的燃料电池系统的结构示意图;Fig. 2 is a schematic structural diagram of a fuel cell system provided by an embodiment of the present application;
图3是本申请实施例提供的燃料电池系统的氢气计量比确定方法的流程示意图之二;Fig. 3 is the second schematic flow diagram of the method for determining the hydrogen metering ratio of the fuel cell system provided by the embodiment of the present application;
图4是本申请实施例提供的燃料电池系统的氢气计量比确定装置的结构示意图;Fig. 4 is a schematic structural diagram of a device for determining a hydrogen metering ratio of a fuel cell system provided in an embodiment of the present application;
图5是本申请实施例提供的电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
附图标记:Reference signs:
氢气源10,减压阀20,比例调压阀30,第一开关阀41,第二开关阀42,燃料电池电堆50,气水分离器60,温压传感器70,氢气循环装置80,压力传感器90。
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。The following will clearly describe the technical solutions in the embodiments of the present application with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, but not all of them. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments in this application belong to the protection scope of this application.
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first", "second" and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application can be practiced in sequences other than those illustrated or described herein, and that references to "first," "second," etc. distinguish Objects are generally of one type, and the number of objects is not limited. For example, there may be one or more first objects. In addition, "and/or" in the specification and claims means at least one of the connected objects, and the character "/" generally means that the related objects are an "or" relationship.
相关技术中,氢气计量比的计算,主要通过氢气减压阀后端增加气体流量计,并在氢气循环回路和氢气进堆回路中各安装一只温湿度传感器,测量干燥气体的流量、循环回路和进堆回路的相对湿度,根据质量守恒原理,计算出循环回路中气体的流量,再根据循环气体湿度,计算出循环氢气流量,最终确定出氢气的计量比。In the related technology, the calculation of the hydrogen metering ratio is mainly through adding a gas flowmeter at the back end of the hydrogen pressure reducing valve, and installing a temperature and humidity sensor in the hydrogen circulation loop and the hydrogen feeding loop to measure the flow rate of the dry gas and the circulation loop. According to the principle of mass conservation and the relative humidity of the stacking loop, the gas flow in the loop is calculated, and then the circulating hydrogen flow is calculated according to the humidity of the circulating gas, and the metering ratio of hydrogen is finally determined.
该类方法需要额外安装气体流量计和两只温湿度传感器,改变管路结构,增加燃料电池系统的成本,实用性受限。This type of method requires additional installation of a gas flow meter and two temperature and humidity sensors, changes in the pipeline structure, increases the cost of the fuel cell system, and has limited practicability.
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的燃料电池系统的氢气计量比确定方法、燃料电池系统的氢气计量比确定装置、燃料电池系统、电子设备和可读存储介质进行详细地说明。The method for determining the hydrogen metering ratio of the fuel cell system, the device for determining the hydrogen metering ratio of the fuel cell system, the fuel cell system, electronic equipment, and readable storage provided by the embodiments of the present application will be described below in conjunction with the accompanying drawings through specific embodiments and application scenarios. The medium is described in detail.
其中,燃料电池系统的氢气计量比确定方法可应用于终端,具体可由,终端中的硬件或软件执行。Wherein, the method for determining the hydrogen metering ratio of the fuel cell system can be applied to the terminal, and specifically can be executed by hardware or software in the terminal.
该终端包括但不限于具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话或平板电脑等便携式通信设备。还应当理解的是,在某些实施例中,该终端可以不是便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。Such terminals include, but are not limited to, portable communication devices such as mobile phones or tablets with touch-sensitive surfaces (eg, touch screen displays and/or touch pads). It should also be appreciated that in some embodiments, the terminal may not be a portable communication device, but a desktop computer with a touch-sensitive surface (eg, a touchscreen display and/or a touchpad).
以下各个实施例中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和控制杆的一个或多个其它物理用户接口设备。In each of the following embodiments, a terminal including a display and a touch-sensitive surface is described. It should be understood, however, that a terminal may include one or more other physical user interface devices such as a physical keyboard, mouse, and joystick.
本申请实施例提供的燃料电池系统的氢气计量比确定方法,该燃料电池系统的氢气计量比确定方法的执行主体可以为电子设备或者电子设备中能够实现该燃料电池系统的氢气计量比确定方法的功能模块或功能实体,本申请实施例提及的电子设备包括但不限于手机、平板电脑、电脑、相机和可穿戴设备等,下面以电子设备作为执行主体为例对本申请实施例提供的燃料电池系统的氢气计量比确定方法进行说明。In the method for determining the hydrogen stoichiometric ratio of the fuel cell system provided in the embodiment of the present application, the execution subject of the method for determining the hydrogen gas stoichiometric ratio of the fuel cell system may be an electronic device or an electronic device capable of implementing the method for determining the hydrogen gas stoichiometric ratio of the fuel cell system Functional modules or functional entities, the electronic devices mentioned in the embodiments of this application include but are not limited to mobile phones, tablet computers, computers, cameras, and wearable devices. The method for determining the stoichiometric ratio of hydrogen in the system will be described.
如图1所示,该燃料电池系统的氢气计量比确定方法包括:步骤110至步骤150。As shown in FIG. 1 , the method for determining the hydrogen metering ratio of the fuel cell system includes: Step 110 to Step 150 .
步骤110、获取燃料电池系统的氢气循环装置80的入口温度、入口压力和出口压力,并获取燃料电池系统的燃料电池电堆50的电堆电流。
燃料电池电堆50输出的气体流入氢气循环装置80的入口,从氢气循环装置80的出口返回燃料电池电堆50。The gas output from the
氢气循环装置80的入口温度指氢气循环装置80入口处的温度,氢气循环装置80入口处为燃料电池电堆50输出的具有一定湿度的气体;氢气循环装置80的入口压力和出口压力分别为氢气循环装置80入口处和出口处的压力。The inlet temperature of the
在该实施例中,如图2所示,可以在氢气循环装置80入口设置温压传感器70,采集入口温度和入口压力,温压传感器70可以为两个单独的传感器,也可以为二合一式的传感器;可以在燃料电池电堆50设置电流传感器,采集燃料电池电堆50的电堆电流。In this embodiment, as shown in FIG. 2, a temperature and
步骤120、基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数。
其中,气体状态影响因数指循环氢气的压力、温度等物理量的变量群中所提取的具有共性因数。Among them, the gas state influencing factor refers to the common factor extracted from the variable group of physical quantities such as the pressure and temperature of the circulating hydrogen.
例如,在实际执行中,可以通过收集循环氢气的压力、温度等物理量,通过数学建模拟合,得到压力、温度等物理量变化的曲线,以曲线的斜率或相应数学函数的参数作为气体状态影响因数,该气体状态影响因数可以反映循环氢气的气体状态。For example, in actual implementation, it is possible to collect the physical quantities such as pressure and temperature of circulating hydrogen, and obtain the curves of changes in physical quantities such as pressure and temperature through mathematical modeling and simulation, and use the slope of the curve or the parameters of the corresponding mathematical functions as the influence of the gas state Factor, the gas state influencing factor can reflect the gas state of circulating hydrogen.
在该实施例中,根据氢气循环装置80的入口温度、入口压力和出口压力,确定燃料电池系统内循环氢气的气体状态影响因数。In this embodiment, according to the inlet temperature, inlet pressure and outlet pressure of the
步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量。Step 130: Determine the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, inlet pressure, gas state influencing factors and gas utilization rate of the fuel cell system.
其中,气体利用率基于燃料电池系统的运行工况确定。Wherein, the gas utilization rate is determined based on the operating conditions of the fuel cell system.
在实际执行中,可以在燃料电池的实验阶段,测得燃料电池在不同运行工况的气体利用率,在确定当前氢气计量比时,根据运行工况,确定出气体利用率。In actual implementation, the gas utilization rate of the fuel cell under different operating conditions can be measured during the experimental stage of the fuel cell, and the gas utilization rate can be determined according to the operating conditions when determining the current hydrogen metering ratio.
在该实施例中,根据入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,可以得到氢气循环装置80出口的氢气流量,也即可以确定出燃料电池系统的氢气循环流量。In this embodiment, according to the inlet temperature, inlet pressure, gas state influencing factors and gas utilization rate of the fuel cell system, the hydrogen gas flow at the outlet of the
步骤140、基于电堆电流,确定燃料电池系统的氢气消耗量。
在该实施例中,可以在燃料电池电堆50的电堆负极设置电流传感器,使用电流传感器采集电堆电流,根据电堆电流,确定燃料电池系统中燃料电池电堆50的氢气消耗量。In this embodiment, a current sensor can be installed at the negative pole of the
步骤150、基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比。
可以理解的是,燃料电池中的化学计量比指的是供气量和消耗量的比值。It can be understood that the stoichiometric ratio in a fuel cell refers to the ratio of gas supply to consumption.
在该实施例中,氢气的供气量为氢气循环流量和氢气消耗量的和,氢气循环流量和氢气消耗量的和与氢气消耗量的比值,即为燃料电池系统的氢气计量比。In this embodiment, the hydrogen gas supply is the sum of the hydrogen circulation flow and hydrogen consumption, and the ratio of the hydrogen circulation flow and hydrogen consumption to the hydrogen consumption is the hydrogen metering ratio of the fuel cell system.
本申请实施例,通过测量氢气循环装置80入口和出口的温度压力数据,确定气体状态影响因数,在已知气体状态影响因数和气体利用率的情况下,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,降低系统成本。In the embodiment of the present application, by measuring the temperature and pressure data at the inlet and outlet of the
在实际执行中,通过实时计算氢气计量比,根据氢气计量比和需求计量比,快速进行氢气循环量的控制,提升燃料电池电堆50的发电效率。In actual implementation, by calculating the hydrogen metering ratio in real time, the hydrogen circulation amount is quickly controlled according to the hydrogen metering ratio and the demand metering ratio, so as to improve the power generation efficiency of the
根据本申请实施例提供的燃料电池系统的氢气计量比确定方法,通过测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。According to the hydrogen metering ratio determination method of the fuel cell system provided by the embodiment of the present application, the hydrogen circulation flow rate is calculated by measuring the temperature and pressure data at the inlet and outlet of the
在一些实施例中,步骤120、基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数,可以包括:In some embodiments,
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;Based on the inlet temperature and the inlet pressure, determine the water vapor volume fraction at the inlet of the
基于入口压力和出口压力,确定氢气循环装置80的进出口压差;Determine the pressure difference between the inlet and outlet of the
基于入口压力、进出口压差、入口温度和水蒸气体积分数,确定气体状态影响因数。Based on the inlet pressure, inlet and outlet pressure difference, inlet temperature and water vapor volume fraction, the gas state influencing factor is determined.
压力-体积-温度关系一般是指气体的压力、体积和温度之间的关系,其数学表示式亦称状态方程。The pressure-volume-temperature relationship generally refers to the relationship between the pressure, volume and temperature of a gas, and its mathematical expression is also called the equation of state.
在该实施例中,通过确定水蒸气体积分数以及进出口压差,可以确定气体状态影响因数,反映循环氢气的气体状态。In this embodiment, by determining the water vapor volume fraction and the pressure difference between the inlet and outlet, the gas state influencing factor can be determined to reflect the gas state of the circulating hydrogen.
在实际执行中,可以汇总不同入口压力、进出口压差、入口温度和水蒸气体积分数下的气体状态影响因数制表,计算氢气计量比时,根据当前的入口压力、进出口压差、入口温度和水蒸气体积分数等参数,查表当前循环氢气所对应的气体状态影响因数。In actual implementation, the gas state influencing factors under different inlet pressures, inlet and outlet pressure differences, inlet temperatures and water vapor volume fractions can be tabulated. When calculating the hydrogen metering ratio, the current inlet pressure, inlet and outlet pressure differences, inlet Parameters such as temperature and water vapor volume fraction, look up the gas state influencing factors corresponding to the current circulating hydrogen.
在一些实施例中,基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数,可以包括:In some embodiments, based on the inlet temperature and the inlet pressure, determining the water vapor volume fraction at the inlet of the
基于入口温度,确定入口温度对应的饱和蒸汽压;Based on the inlet temperature, determine the saturated vapor pressure corresponding to the inlet temperature;
基于入口压力和饱和蒸汽压,确定水蒸气体积分数。Based on the inlet pressure and saturation vapor pressure, the water vapor volume fraction is determined.
在一些实施例中,步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量,可以包括:In some embodiments, step 130, determining the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, inlet pressure, gas state influence factor and gas utilization rate of the fuel cell system, may include:
基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量;Determine the outlet hydrogen flow rate of the
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;Based on the inlet temperature and the inlet pressure, determine the water vapor volume fraction at the inlet of the
基于出口氢气流量和水蒸气体积分数,确定氢气循环流量。Based on the outlet hydrogen flow rate and the water vapor volume fraction, the hydrogen circulation flow rate is determined.
在该实施例中,根据气体状态影响因数和气体利用率,可以确定出氢气循环装置80的出口氢气流量,出口氢气流量需要进行修正,采用水蒸气体积分数对出口氢气流量进行修正,从而得到氢气循环流量。In this embodiment, the outlet hydrogen flow rate of the
在一些实施例中,基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量,包括:In some embodiments, the outlet hydrogen flow rate of the
应用公式Apply the formula
Q=K*η*λ*nQ=K*η*λ*n
确定出口氢气流量;Determine the outlet hydrogen flow;
其中,Q为出口氢气流量,K为氢气循环装置80的容积,η为气体利用率,λ为气体状态影响因数,n为氢气循环装置80的转速。Wherein, Q is the outlet hydrogen flow rate, K is the volume of the
在一些实施例中,在步骤130、基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量之后,在步骤150、基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比之前,燃料电池系统的氢气计量比确定方法还可以包括:In some embodiments, in step 130, after determining the hydrogen circulation flow rate of the fuel cell system based on the inlet temperature, inlet pressure, gas state influence factor and gas utilization rate of the fuel cell system, in
根据理想气体状态方程,将氢气循环流量转换为标况下的氢气循环流量。According to the ideal gas state equation, the hydrogen circulation flow rate is converted to the hydrogen circulation flow rate under standard conditions.
下面介绍一个具体的实施例。A specific embodiment is introduced below.
如图3所示,通过温压传感器70采集氢气循环装置80的入口温度T。As shown in FIG. 3 , the inlet temperature T of the
根据温压传感器70采集的入口温度T,通过查表或计算得到此温度下水的饱和蒸汽压P1。According to the inlet temperature T collected by the temperature and
温压传感器70还采集氢气循环装置80的入口压力P2。The temperature and
根据饱和蒸汽压P1和入口压力P2,计算得到氢气循环装置80的回路中水蒸气体积分数ɑ=P1/P2。According to the saturated vapor pressure P1 and the inlet pressure P2, the volume fraction of water vapor in the loop of the
通过压力传感器90采集氢气循环装置80的出口压力P3。The outlet pressure P3 of the
计算氢气循环装置80的进出口压差ΔP=P3-P2。Calculate the inlet and outlet pressure difference ΔP=P3−P2 of the
根据燃料电池电堆50的当前运行工况,获取气体利用率η。According to the current operating condition of the
根据进出口压差ΔP、水蒸气体积分数ɑ、入口压力P2和入口温度T,查表读取气体状态影响因数λ。According to the inlet and outlet pressure difference ΔP, water vapor volume fraction α, inlet pressure P2 and inlet temperature T, check the table to read the gas state influence factor λ.
读取氢气循环装置80反馈的转速n。The rotational speed n fed back by the
计算氢气循环装置80的出口氢气流量Q=K*η*λ*n,K为氢气循环装置80的容积。Calculate the outlet hydrogen flow rate Q=K*η*λ*n of the
根据水蒸气体积分数ɑ,修正得到出口氢气流量Q1,其中,Q1=Q*(1-ɑ)。According to the water vapor volume fraction ɑ, the outlet hydrogen flow rate Q1 is corrected, where Q1 = Q*(1-ɑ).
再根据理想气体状态方程Pa*Va/Ta=Pb*Vb/Tb,将Q1转换为标况下的氢气循环流量Q2,Q2=P2*Ta*Q1/(T*Pa),其中,Pa、Ta为标准状态下的压力和温度。According to the ideal gas state equation Pa*Va/Ta=Pb*Vb/Tb, Q1 is converted into the hydrogen circulation flow Q2 under the standard condition, Q2=P2*Ta*Q1/(T*Pa), wherein, Pa, Ta is the pressure and temperature under standard conditions.
获取燃料电池电堆50的电流传感器的电流I,计算得到氢气消耗量Q3,计算得到燃料电池系统的氢气计量比S=(Q2+Q3)/Q3。Acquire the current I of the current sensor of the
本申请实施例提供的燃料电池系统的氢气计量比确定方法,执行主体可以为燃料电池系统的氢气计量比确定装置。本申请实施例中以燃料电池系统的氢气计量比确定装置执行燃料电池系统的氢气计量比确定方法为例,说明本申请实施例提供的燃料电池系统的氢气计量比确定装置。The method for determining the hydrogen metering ratio of the fuel cell system provided in the embodiment of the present application may be executed by a device for determining the hydrogen metering ratio of the fuel cell system. In the embodiment of the present application, the method for determining the hydrogen gas stoichiometric ratio of the fuel cell system executed by the device for determining the hydrogen gas stoichiometric ratio of the fuel cell system is taken as an example to illustrate the device for determining the hydrogen gas stoichiometric ratio of the fuel cell system provided in the embodiment of the present application.
本申请实施例还提供一种燃料电池系统的氢气计量比确定装置。The embodiment of the present application also provides a device for determining the metering ratio of hydrogen in a fuel cell system.
如图4所示,该燃料电池系统的氢气计量比确定装置包括:As shown in Figure 4, the device for determining the hydrogen metering ratio of the fuel cell system includes:
获取模块410,用于获取燃料电池系统的氢气循环装置80的入口温度、入口压力和出口压力,并获取燃料电池系统的燃料电池电堆50的电堆电流;The obtaining module 410 is used to obtain the inlet temperature, inlet pressure and outlet pressure of the
第一处理模块420,用于基于入口温度、入口压力和出口压力,确定燃料电池系统的气体状态影响因数;The
第二处理模块430,用于基于入口温度、入口压力、气体状态影响因数和燃料电池系统的气体利用率,确定燃料电池系统的氢气循环流量,气体利用率基于燃料电池系统的运行工况确定;The
第三处理模块440,用于基于电堆电流,确定燃料电池系统的氢气消耗量;The
第四处理模块450,用于基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比。The
根据本申请实施例提供的燃料电池系统的氢气计量比确定装置,通过测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。According to the hydrogen metering ratio determination device of the fuel cell system provided in the embodiment of the present application, the hydrogen circulation flow rate is calculated by measuring the temperature and pressure data at the inlet and outlet of the
在一些实施例中,第一处理模块420用于基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;In some embodiments, the
基于入口压力和出口压力,确定氢气循环装置80的进出口压差;Determine the pressure difference between the inlet and outlet of the
基于入口压力、进出口压差、入口温度和水蒸气体积分数,确定气体状态影响因数。Based on the inlet pressure, inlet and outlet pressure difference, inlet temperature and water vapor volume fraction, the gas state influencing factor is determined.
在一些实施例中,第一处理模块420用于基于入口温度,确定入口温度对应的饱和蒸汽压;In some embodiments, the
基于入口压力和饱和蒸汽压,确定水蒸气体积分数。Based on the inlet pressure and saturation vapor pressure, the water vapor volume fraction is determined.
在一些实施例中,第二处理模块430用于基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量;In some embodiments, the
基于入口温度和入口压力,确定氢气循环装置80入口的水蒸气体积分数;Based on the inlet temperature and the inlet pressure, determine the water vapor volume fraction at the inlet of the
基于出口氢气流量和水蒸气体积分数,确定氢气循环流量。Based on the outlet hydrogen flow rate and the water vapor volume fraction, the hydrogen circulation flow rate is determined.
在一些实施例中,第二处理模块430用于基于气体状态影响因数和气体利用率,确定氢气循环装置80的出口氢气流量,包括:In some embodiments, the
应用公式Apply the formula
Q=K*η*λ*nQ=K*η*λ*n
确定出口氢气流量;Determine the outlet hydrogen flow;
其中,Q为出口氢气流量,K为氢气循环装置80的容积,η为气体利用率,λ为气体状态影响因数,n为氢气循环装置80的转速。Wherein, Q is the outlet hydrogen flow rate, K is the volume of the
在一些实施例中,第四处理模块450还用于在基于氢气循环流量和氢气消耗量,确定燃料电池系统的氢气计量比之前,根据理想气体状态方程,将氢气循环流量转换为标况下的氢气循环流量。In some embodiments, the
本申请实施例中的燃料电池系统的氢气计量比确定装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digitalassistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。The device for determining the hydrogen gas metering ratio of the fuel cell system in the embodiment of the present application may be an electronic device, or a component in the electronic device, such as an integrated circuit or a chip. The electronic device may be a terminal, or other devices other than the terminal. Exemplarily, the electronic device can be a mobile phone, a tablet computer, a notebook computer, a handheld computer, a vehicle electronic device, a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) ) equipment, robots, wearable devices, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), netbook or personal digital assistant (personal digital assistant, PDA), etc., can also serve as server, network attached storage (Network Attached Storage, NAS ), a personal computer (personal computer, PC), a television (television, TV), a teller machine or a self-service machine, etc., are not specifically limited in this embodiment of the present application.
本申请实施例中的燃料电池系统的氢气计量比确定装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为IOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。The device for determining the hydrogen gas metering ratio of the fuel cell system in the embodiment of the present application may be a device with an operating system. The operating system may be an Android operating system, an IOS operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
本申请实施例提供的燃料电池系统的氢气计量比确定装置能够实现图1至图3的方法实施例实现的各个过程,为避免重复,这里不再赘述。The device for determining the hydrogen gas metering ratio of the fuel cell system provided by the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 1 to FIG. 3 , and details are not repeated here to avoid repetition.
本申请实施例还提供一种燃料电池系统,包括:The embodiment of the present application also provides a fuel cell system, including:
如图2所示,燃料电池系统包括氢气源10、气水分离器60、氢气循环装置80、燃料电池电堆50和控制器。As shown in FIG. 2 , the fuel cell system includes a
其中,氢气源10与气水分离器60的第一入口连接,气水分离器60可以是集成预热器功能的集成式气水分路器,可以分离气体和液体,并对气体进行预热。Wherein, the
氢气循环装置80的入口与气水分离器60的第一出口连接,氢气循环装置80的入口设有温压传感器70,氢气循环装置80的出口设有压力传感器90,温压传感器70用于采集氢气循环装置80的入口温度和入口压力,压力传感器90用于采集氢气循环装置80的出口压力。The inlet of the
在实际执行中,温压传感器70可以为两个单独的传感器,也可以为二合一式的传感器;氢气循环装置80可以为循环泵。In actual implementation, the temperature and
燃料电池电堆50与氢气循环装置80的出口连接,燃料电池电堆50的电堆负极设有电流传感器,电流传感器用于采集电堆电流。The
控制器与氢气循环装置80、温压传感器70、压力传感器90和电流传感器电连接,用于基于上述燃料电池系统的氢气计量比确定方法,确定燃料电池系统的氢气计量比。The controller is electrically connected with the
在该实施例中,只需在氢气循环装置80内设置温压传感器70和压力传感器90,即可实现燃料电池系统的氢气计量比的计算。In this embodiment, only the temperature and
根据本申请实施例提供的燃料电池系统,通过设置温压传感器70和压力传感器90,测量氢气循环装置80入口和出口的温度压力数据,计算出氢气循环流量,结合氢气消耗量,确定氢气计量比,响应速度快,计算结果准确度高,无需改变燃料电池系统的管路结构,可以有效降低系统成本。According to the fuel cell system provided in the embodiment of the present application, by setting the temperature and
下面介绍一个具体的实施例。A specific embodiment is introduced below.
通过温压传感器70采集氢气循环装置80的入口温度T。The inlet temperature T of the
根据温压传感器70采集的入口温度T,通过查表或计算得到此温度下水的饱和蒸汽压P1。According to the inlet temperature T collected by the temperature and
温压传感器70还采集氢气循环装置80的入口压力P2。The temperature and
根据饱和蒸汽压P1和入口压力P2,计算得到氢气循环装置80的回路中水蒸气体积分数ɑ=P1/P2。According to the saturated vapor pressure P1 and the inlet pressure P2, the volume fraction of water vapor in the loop of the
通过压力传感器90采集氢气循环装置80的出口压力P3。The outlet pressure P3 of the
计算氢气循环装置80的进出口压差ΔP=P3-P2。Calculate the inlet and outlet pressure difference ΔP=P3−P2 of the
根据燃料电池电堆50的当前运行工况,获取气体利用率η。According to the current operating condition of the
根据进出口压差ΔP、水蒸气体积分数ɑ、入口压力P2和入口温度T,查表读取气体状态影响因数λ。According to the inlet and outlet pressure difference ΔP, water vapor volume fraction α, inlet pressure P2 and inlet temperature T, check the table to read the gas state influence factor λ.
读取氢气循环装置80反馈的转速n。The rotational speed n fed back by the
计算氢气循环装置80的出口氢气流量Q=K*η*λ*n,K为氢气循环装置80的容积。Calculate the outlet hydrogen flow rate Q=K*η*λ*n of the
根据水蒸气体积分数ɑ,修正得到出口氢气流量Q1,其中,Q1=Q*(1-ɑ)。According to the water vapor volume fraction ɑ, the outlet hydrogen flow rate Q1 is corrected, where Q1 = Q*(1-ɑ).
再根据理想气体状态方程Pa*Va/Ta=Pb*Vb/Tb,将Q1转换为标况下的氢气循环流量Q2,Q2=P2*Ta*Q1/(T*Pa),其中,Pa、Ta为标准状态下的压力和温度。According to the ideal gas state equation Pa*Va/Ta=Pb*Vb/Tb, Q1 is converted into the hydrogen circulation flow Q2 under the standard condition, Q2=P2*Ta*Q1/(T*Pa), wherein, Pa, Ta is the pressure and temperature under standard conditions.
获取燃料电池电堆50的电流传感器的电流I,计算得到氢气消耗量Q3,计算得到燃料电池系统的氢气计量比S=(Q2+Q3)/Q3。Acquire the current I of the current sensor of the
在该实施例中,通过设置温压传感器70和压力传感器90,实现氢气循环流量和氢气计量比的准确测量,系统结构简单,成本低,实用性强。In this embodiment, by setting the temperature and
在一些实施例中,燃料电池系统还可以包括与控制器电连接的第一开关阀41和第二开关阀42,第一开关阀41设置于氢气源10和第一入口之间,第二开关阀42设置于氢气源10和燃料电池电堆50之间。In some embodiments, the fuel cell system may further include a first on-off
在该实施例中,第一开关阀41用于控制氢气源10向气水分离器60内输入氢气的量,第二开关阀42用于控制氢气源10向燃料电池电堆50输入氢气的量。In this embodiment, the
经过第一开关阀41的氢气先进入气水分离器60,再进入氢气循环装置80,再进入燃料电池电堆50,气水分离器60可以起到预热和分离气液的作用;经过第二开关阀42的氢气直接进入燃料电池电堆50。The hydrogen passing through the
在实际执行中,第一开关阀41和第二开关阀42均为电磁开关阀,受到控制器控制打开和关闭,通过控制第一开关阀41和第二开关阀42的开闭,实现进入燃料电池电堆50的氢气预热与湿度调节的作用。In actual implementation, both the first on-off
在该实施例中,气水分离器60可以预热气体,通过控制第一开关阀41和第二开关阀42,控制氢气循环装置80的入口温度大于或等于第一温度阈值。In this embodiment, the gas-
当入口温度小于第一温度阈值,打开第一开关阀41,关闭第二开关阀42,增加氢气循环装置80入口处的温度湿度。When the inlet temperature is lower than the first temperature threshold, the first on-off
当入口温度大于或等于第一温度阈值,打开第二开关阀42,关闭第一开关阀41,利用集成气水分离器60的余热,对氢气进行预热,调节氢气的湿度。When the inlet temperature is greater than or equal to the first temperature threshold, the second on-off
干燥温度较低的氢气,经过气水分离器60预热氢气入堆的温度,此时,气水分离器60中的循环氢气温度降低,使液态水更多的分离到水分离器中,可实现氢气入堆的湿度的控制。The hydrogen with a lower drying temperature is preheated by the gas-
在该实施例中,通过第一开关阀41和第二开关阀42的控制,实现干氢气预热和调节氢气循环回路的湿度。In this embodiment, through the control of the first on-off
在一些实施例中,氢气源10与气水分离器60之间依次设有减压阀20和比例调压阀30。In some embodiments, a
减压阀20是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。The
比例调压阀30属于控制阀系列,主要作用是调节介质的压力、流量、温度等参数。The proportional
在一些实施例中,如图5所示,本申请实施例还提供一种电子设备500,包括处理器501、存储器502及存储在存储器502上并可在处理器501上运行的计算机程序,该程序被处理器501执行时实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。In some embodiments, as shown in FIG. 5 , the embodiment of the present application also provides an
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。It should be noted that the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
本申请实施例还提供一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。The embodiment of the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the hydrogen metering ratio determination of the above-mentioned fuel cell system is realized. Each process of the method embodiment can achieve the same technical effect, and will not be repeated here to avoid repetition.
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。Wherein, the processor is the processor in the electronic device described in the above embodiments. The readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述燃料电池系统的氢气计量比确定方法。An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the above-mentioned method for determining the hydrogen metering ratio of the fuel cell system is implemented.
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。Wherein, the processor is the processor in the electronic device described in the above embodiments. The readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述燃料电池系统的氢气计量比确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。The embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the hydrogen metering of the above-mentioned fuel cell system The various processes in the embodiment of the method are compared and can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。It should be understood that the chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , optical disc), including several instructions to enable a terminal (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present application.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Under the inspiration of this application, without departing from the purpose of this application and the scope of protection of the claims, many forms can also be made, all of which belong to the protection of this application.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。Although the embodiments of the present application have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and variations can be made to these embodiments without departing from the principle and spirit of the present application. The scope of the application is defined by the claims and their equivalents.
Claims (8)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211358083.2A CN115548386B (en) | 2022-11-01 | 2022-11-01 | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system |
| PCT/CN2023/094820 WO2024093197A1 (en) | 2022-11-01 | 2023-05-17 | Method for determining hydrogen stoichiometric ratio of fuel cell system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211358083.2A CN115548386B (en) | 2022-11-01 | 2022-11-01 | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115548386A CN115548386A (en) | 2022-12-30 |
| CN115548386B true CN115548386B (en) | 2023-05-12 |
Family
ID=84720287
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211358083.2A Active CN115548386B (en) | 2022-11-01 | 2022-11-01 | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN115548386B (en) |
| WO (1) | WO2024093197A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115548386B (en) * | 2022-11-01 | 2023-05-12 | 上海氢晨新能源科技有限公司 | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system |
| CN116525890A (en) * | 2023-04-12 | 2023-08-01 | 中车唐山机车车辆有限公司 | Off-line calibration device and off-line calibration method for hydrogen circulation system for fuel cell |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006310046A (en) * | 2005-04-27 | 2006-11-09 | Nissan Motor Co Ltd | Hydrogen circulation amount control device for fuel cell and hydrogen circulation amount control method for fuel cell |
| CN101577339A (en) * | 2008-05-06 | 2009-11-11 | 通用汽车环球科技运作公司 | Anode loop observer for fuel cell systems |
| CN111952643A (en) * | 2020-08-19 | 2020-11-17 | 上海捷氢科技有限公司 | Method for controlling humidity of anode inlet and related device |
| CN114204081A (en) * | 2021-12-08 | 2022-03-18 | 上海澄朴科技有限公司 | Hydrogen circulation flow detection device of fuel cell system |
| CN114267852A (en) * | 2021-11-30 | 2022-04-01 | 上海氢晨新能源科技有限公司 | A device for real-time nitrogen and water management of batteries |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101240981B1 (en) * | 2010-11-19 | 2013-03-11 | 현대자동차주식회사 | Method for estimating hydrogen recirculation flow rate of fuel cell system |
| CN112510229B (en) * | 2020-12-04 | 2022-07-22 | 上海捷氢科技股份有限公司 | Fuel cell system and method and device for calculating hydrogen metering ratio of fuel cell system |
| CN113067018A (en) * | 2021-03-02 | 2021-07-02 | 中国重汽集团济南动力有限公司 | A fuel cell hydrogen cycle test system |
| CN113594508A (en) * | 2021-06-10 | 2021-11-02 | 东风汽车集团股份有限公司 | Control method and control device for fuel cell system, and fuel cell system |
| CN114243064B (en) * | 2021-12-08 | 2024-02-13 | 中国科学院大连化学物理研究所 | Fuel cell anode hydrogen control method and device |
| CN115548386B (en) * | 2022-11-01 | 2023-05-12 | 上海氢晨新能源科技有限公司 | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system |
-
2022
- 2022-11-01 CN CN202211358083.2A patent/CN115548386B/en active Active
-
2023
- 2023-05-17 WO PCT/CN2023/094820 patent/WO2024093197A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006310046A (en) * | 2005-04-27 | 2006-11-09 | Nissan Motor Co Ltd | Hydrogen circulation amount control device for fuel cell and hydrogen circulation amount control method for fuel cell |
| CN101577339A (en) * | 2008-05-06 | 2009-11-11 | 通用汽车环球科技运作公司 | Anode loop observer for fuel cell systems |
| CN111952643A (en) * | 2020-08-19 | 2020-11-17 | 上海捷氢科技有限公司 | Method for controlling humidity of anode inlet and related device |
| CN114267852A (en) * | 2021-11-30 | 2022-04-01 | 上海氢晨新能源科技有限公司 | A device for real-time nitrogen and water management of batteries |
| CN114204081A (en) * | 2021-12-08 | 2022-03-18 | 上海澄朴科技有限公司 | Hydrogen circulation flow detection device of fuel cell system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024093197A1 (en) | 2024-05-10 |
| CN115548386A (en) | 2022-12-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115548386B (en) | Method for determining hydrogen metering ratio of fuel cell system and fuel cell system | |
| CN106848351B (en) | Method for establishing proton exchange membrane fuel cell performance prediction model | |
| Zhu et al. | New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system | |
| Meng | A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations | |
| Cao et al. | Numerical investigation of the coupled water and thermal management in PEM fuel cell | |
| CN109902435B (en) | Proton exchange membrane fuel cell modeling method, storage medium and computer equipment | |
| CN108241128B (en) | A State Estimation Method for Proton Exchange Membrane Fuel Cell System | |
| Meng | Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model | |
| Ismail et al. | An efficient mathematical model for air-breathing PEM fuel cells | |
| Wang et al. | Determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs | |
| Wang et al. | Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs | |
| CN110413941A (en) | Similarity Principle Analysis Method of Fuel Cell Input and Output Characteristics | |
| Hao et al. | Effects of temperature, inlet gas pressure and humidity on PEM water contents and current density distribution | |
| Ni | 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell | |
| CN102663219A (en) | Fuel cell output prediction method and system based on mixing model | |
| CN111914414A (en) | A method for establishing a three-dimensional full-cell model of a proton exchange membrane electrolyzer | |
| Shimpalee et al. | Investigation of gas diffusion media inside PEMFC using CFD modeling | |
| Liu et al. | A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring | |
| CN112510229B (en) | Fuel cell system and method and device for calculating hydrogen metering ratio of fuel cell system | |
| Karpenko-Jereb et al. | Theoretical study of the influence of material parameters on the performance of a polymer electrolyte fuel cell | |
| CN114357806B (en) | Dual-mode simulation method and device of fuel cell stack based on material flow interface | |
| Le et al. | Validation of a solid oxide fuel cell model on the international energy agency benchmark case with hydrogen fuel | |
| CN106898797A (en) | A kind of DMFC pile feeds control method | |
| Hao et al. | An alternative standard thermal impedance-based approach for the dynamic modeling and characteristic analysis of the solid oxide fuel cell system | |
| WO2025060364A1 (en) | Ammonia synthesis system, ammonia synthesis control method and control apparatus, and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |