[go: up one dir, main page]

CN115549610A - DCOC calibration circuit and method of XGS-PON BM-LA - Google Patents

DCOC calibration circuit and method of XGS-PON BM-LA Download PDF

Info

Publication number
CN115549610A
CN115549610A CN202211273531.9A CN202211273531A CN115549610A CN 115549610 A CN115549610 A CN 115549610A CN 202211273531 A CN202211273531 A CN 202211273531A CN 115549610 A CN115549610 A CN 115549610A
Authority
CN
China
Prior art keywords
dcoc
amplifier
calibration
burst mode
digital controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211273531.9A
Other languages
Chinese (zh)
Inventor
王志亮
豆飞娟
朱鸿章
陈旭
高强
谭庶欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202211273531.9A priority Critical patent/CN115549610A/en
Publication of CN115549610A publication Critical patent/CN115549610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供适用于XGS‑PON OLT BM‑LA的共模恢复的低成本设计方案。其中DCOC模块校准电路由低通滤波器、放大器、比较器、数字控制器和电流差分DAC组成。其中低通滤波器与放大器分别将直流失调进行提取与缩放;比较器对直流失调的极性进行判别;数字控制器根据CMP的比较结果,增加或减小电流差分DAC的输出值,直到完成直流失调校准。

Figure 202211273531

The invention provides a low-cost design solution for common mode recovery of XGS-PON OLT BM-LA. Among them, the calibration circuit of the DCOC module is composed of a low-pass filter, an amplifier, a comparator, a digital controller and a current differential DAC. Among them, the low-pass filter and the amplifier extract and scale the DC offset respectively; the comparator judges the polarity of the DC offset; the digital controller increases or decreases the output value of the current differential DAC according to the comparison result of the CMP until the DC offset is completed. offset calibration.

Figure 202211273531

Description

XGS-PON BM-LA的DCOC校准电路及方法DCOC calibration circuit and method of XGS-PON BM-LA

技术领域technical field

本发明涉及一种10G无源光网络接收机(XGS-PON)突发模式限幅放大器(BM-LA)的直流失调(DCOC)校准电路与方法。The invention relates to a DC offset (DCOC) calibration circuit and method for a burst mode limiting amplifier (BM-LA) of a 10G passive optical network receiver (XGS-PON).

背景技术Background technique

本发明专利申请是CN2022108300371的延续申请,基于CN2022108300371进一步提出一种10G无源光网络接收机突发模式限幅放大器的直流失调校准电路与方法。The patent application of the present invention is a continuation application of CN2022108300371. Based on CN2022108300371, a DC offset calibration circuit and method for a burst mode limiting amplifier of a 10G passive optical network receiver are further proposed.

声明:为避免内容重复、节约篇幅,CN2022108300371中的内容视为本申请说明书的一部分,部分内容在本申请中不再复述,发明人/申请人保留将CN2022108300371中全部或部分内容援引加入本申请文件中的权利。Statement: In order to avoid duplication of content and save space, the content in CN2022108300371 is regarded as a part of the specification of this application, and part of the content will not be repeated in this application. The inventor/applicant reserves the right to quote all or part of the content in CN2022108300371 into this application document rights in.

现有技术中的吉比特无源光网络10G无源光网络(GPON/XGS-PON)OLT接收机主要由雪崩光电二极管(APD)、突发模式跨阻放大器(BM-TIA)、突发模式限幅放大器(BM-LA)等模块构成。传统简单的交流(AC)耦合中,BM-LA接收机的共模恢复时间与信号低频能量损失是一对相互制约的指标;传统直流失调校准(Direct current offset calibration,DCOC)反馈环路,环路带宽通常为MHz甚至KHz级别,对应的校准时间通常为几十至几百微秒,而XGS-PON协议对信号的共模恢复时间的远期目标是小于25.6ns。因此,对BM-LA设计中的高速共模恢复与高速失调校准提出了巨大挑战。The gigabit passive optical network 10G passive optical network (GPON/XGS-PON) OLT receiver in the prior art is mainly composed of an avalanche photodiode (APD), a burst mode transimpedance amplifier (BM-TIA), a burst mode Limiting amplifier (BM-LA) and other modules. In the traditional simple AC (AC) coupling, the common-mode recovery time of the BM-LA receiver and the low-frequency energy loss of the signal are a pair of mutually restrictive indicators; the traditional DC offset calibration (Direct current offset calibration, DCOC) feedback loop, the loop The channel bandwidth is usually at the level of MHz or even KHz, and the corresponding calibration time is usually tens to hundreds of microseconds, while the long-term goal of the XGS-PON protocol for the common mode recovery time of the signal is less than 25.6ns. Therefore, great challenges are posed to high-speed common-mode recovery and high-speed offset calibration in BM-LA design.

现有技术中的DCOC环路,需要一个高达6.25GHz时钟源,且DCOC环路中的数字电路与数模转换器(DAC)均需工作在6.25GHz的速率,设计难度极大,工艺要求高,成本高,不适合低成本XGS-PON接收机的设计。在文献Chen K C,Emami A.A 25-gb/s avalanchephotodetector-based burst-mode optical receiver with 2.24-ns reconfigurationtime in 28-nm cmos[J].IEEE Journal of Solid-State Circuits,vol.54,pp.1–12,032019中的高速数字DCOC环路则需要先进的工艺,成本高。The DCOC loop in the prior art requires a clock source up to 6.25GHz, and both the digital circuit and the digital-to-analog converter (DAC) in the DCOC loop need to work at a rate of 6.25GHz. The design is extremely difficult and the process requirements are high. , high cost, not suitable for low-cost XGS-PON receiver design. In the paper Chen K C, Emami A.A 25-gb/s avalanche photodetector-based burst-mode optical receiver with 2.24-ns reconfigurationtime in 28-nm cmos[J].IEEE Journal of Solid-State Circuits,vol.54,pp.1– The high-speed digital DCOC loop in 12,032019 requires advanced technology and high cost.

发明内容Contents of the invention

声明:本发明专利申请是基于CN2022108300371的延续申请,为避免内容重复,部分内容在本申请中不再复述,CN2022108300371中的内容视为本申请说明书的一部分,发明人/申请人保留将CN2022108300371中全部或部分内容援引加入本申请文件中的权利。Statement: The patent application for this invention is a continuation application based on CN2022108300371. In order to avoid duplication of content, part of the content will not be repeated in this application. The content in CN2022108300371 is regarded as a part of the specification of this application. Or part of the content is quoted and added to the right of this application document.

本发明的目的在于提供适用于XGS-PON OLT BM-LA的直流失调(DCOC)校准电路的低成本设计方案。本发明提出的DCOC校准电路采用单次数控校准方式,直流失调校准仅在芯片上电或系统空闲的时候进行。单次校准结束后将电流型DAC锁定,同时关闭校准环路中的其余电路以降低芯片功耗。The purpose of the present invention is to provide a low-cost design solution for a DC offset (DCOC) calibration circuit suitable for XGS-PON OLT BM-LA. The DCOC calibration circuit proposed by the present invention adopts a single digital control calibration method, and the DC offset calibration is only performed when the chip is powered on or the system is idle. After a single calibration, the current-mode DAC is locked, and at the same time, other circuits in the calibration loop are closed to reduce power consumption of the chip.

实现本发明目的的具体技术方案是:The concrete technical scheme that realizes the object of the invention is:

一种适用于10G无源光网络(XG-PON)接收机突发模式限幅放大器(BM-LA)的直流失调校准(DCOC)反馈回路,所述10G无源光网络接收机突发模式限幅放大器的快速共模恢复电路包括:动态时间常数控制单元(RC_CONTROL)、突发模式限幅放大器(BM-LA)和直流失调校准电路(DCOC)三个部分。A DC Offset Calibration (DCOC) Feedback Loop for a Burst Mode Limiting Amplifier (BM-LA) of a 10G Passive Optical Network (XG-PON) Receiver, the 10G Passive Optical Network Receiver Burst Mode Limit The fast common-mode recovery circuit of the amplitude amplifier includes three parts: dynamic time constant control unit (RC_CONTROL), burst mode limiting amplifier (BM-LA) and DC offset calibration circuit (DCOC).

动态时间常数控制单元(RC_CONTROL)具有信号输入端In+、In-,信号输入端In+、In-分别通过两个相同的电容C连接至突发模式限幅放大器(BM-LA)的信号输入端,其中,动态时间常数控制单元(RC_CONTROL)的信号输入端In+通过电容C后与输入共模电压端之间并联连接有第一电阻R和第一可控制开关,动态时间常数控制单元(RC_CONTROL)的信号输入端In-通过电容C后与输入共模电压端之间并联连接有第二电阻R和第二可控制开关;第一可控制开关和第二可控制开关的控制端均连接至或门(OR)电路,或门(OR)电路的两个输入端分别连接至复位端(RST,Reset)和直流失调校准(DCOC)反馈回路的DOC_ON信号端。The dynamic time constant control unit (RC_CONTROL) has signal input terminals In+, In-, and the signal input terminals In+, In- are respectively connected to the signal input terminals of the burst mode limiting amplifier (BM-LA) through two identical capacitors C, Wherein, the signal input terminal In+ of the dynamic time constant control unit (RC_CONTROL) is connected in parallel with the input common mode voltage terminal after passing through the capacitor C, and the first resistor R and the first controllable switch are connected in parallel, and the dynamic time constant control unit (RC_CONTROL) After the signal input terminal In- passes through the capacitor C, a second resistor R and a second controllable switch are connected in parallel between the input common mode voltage terminal; the control terminals of the first controllable switch and the second controllable switch are connected to the OR gate (OR) circuit, and the two input terminals of the OR gate (OR) circuit are respectively connected to the reset terminal (RST, Reset) and the DOC_ON signal terminal of the DC offset calibration (DCOC) feedback loop.

DCOC模块校准电路由低通滤波器、放大器、比较器、数字控制器和电流差分DAC组成。其中低通滤波器与放大器分别将直流失调进行提取与缩放;比较器对直流失调的极性进行判别;数字控制器根据比较器的比较结果,增加或减小电流差分DAC的输出值,直到完成直流失调校准。The DCOC module calibration circuit consists of a low-pass filter, amplifier, comparator, digital controller and current differential DAC. Among them, the low-pass filter and the amplifier extract and scale the DC offset respectively; the comparator judges the polarity of the DC offset; the digital controller increases or decreases the output value of the current differential DAC according to the comparison result of the comparator until the completion DC offset calibration.

动态时间常数控制单元(RC_CONTROL)的输出信号传输至突发模式限幅放大器,突发模式限幅放大器由依次连接的第一运算放大器、第二运算放大器、第三运算放大器、第四运算放大器构成。The output signal of the dynamic time constant control unit (RC_CONTROL) is transmitted to the burst mode limiting amplifier, and the burst mode limiting amplifier is composed of a first operational amplifier, a second operational amplifier, a third operational amplifier, and a fourth operational amplifier connected in sequence .

突发模式限幅放大器(BM-LA)的输出信号输出至直流失调校准电路(DCOC)的低通滤波器输入端,经过低通滤波后依次输出至放大器、比较器,比较器的输出信号传输至数字控制器的输入端。The output signal of the burst mode limiting amplifier (BM-LA) is output to the input terminal of the low-pass filter of the DC offset calibration circuit (DCOC), and then output to the amplifier and comparator in turn after low-pass filtering, and the output signal of the comparator is transmitted to to the input of the digital controller.

电流差分DAC的输入端信号来自于突发模式限幅放大器(BM-LA)的第一运算放大器的输出端。电流差分DAC的输出端信号也传输至数字控制器。数字控制器通过或门电路控制动态时间常数控制单元(RC_CONTROL)的工作状态。The input signal of the current differential DAC comes from the output terminal of the first operational amplifier of the Burst Mode Limiting Amplifier (BM-LA). The output signal of the current differential DAC is also transmitted to the digital controller. The digital controller controls the working state of the dynamic time constant control unit (RC_CONTROL) through an OR gate circuit.

数字控制器具有DOC_ON端口,连接至动态时间常数控制单元(RC_CONTROL)的或门的其中一个输入端。结合突发系统的特点,校准启动时将DOC_ON置1,RC_CONTROL中的电阻短接。该操作会使得突发模式限幅放大器(BM-LA)的输入信号大幅衰减,从而大大减小了输入信号对直流失调校准环路的干扰,简化了LPF的设计。校准结束后,数字控制器Dig将DAC的值锁定同时将DOC_ON置0,并关闭DCOC环路除DAC之外的电路。The digital controller has a DOC_ON port connected to one of the inputs of the OR gate of the dynamic time constant control unit (RC_CONTROL). Combined with the characteristics of the burst system, DOC_ON is set to 1 when the calibration starts, and the resistors in RC_CONTROL are shorted. This operation will greatly attenuate the input signal of the burst mode limiting amplifier (BM-LA), thereby greatly reducing the interference of the input signal to the DC offset calibration loop, and simplifying the design of the LPF. After the calibration, the digital controller Dig locks the value of the DAC and sets DOC_ON to 0, and closes the DCOC loop except the DAC.

至此,发明人已经详细阐述了本发明的工作原理及技术方案、技术效果。本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术,不得视为本发明的说明书未对发明内容充分公开。So far, the inventor has elaborated on the working principle, technical solutions and technical effects of the present invention. The content that is not described in detail in this specification belongs to the prior art known to those skilled in the art, and shall not be regarded as not fully disclosing the content of the invention in the specification of the present invention.

另外,在本申请中未作具体说明的缩略写术语,均为光通信及电子科学领域的通用缩写。In addition, abbreviations that are not specifically described in this application are general abbreviations in the fields of optical communication and electronic science.

附图说明Description of drawings

图1:本发明的BM-LA DCOC框图。Figure 1: Block diagram of the BM-LA DCOC of the present invention.

图2:本发明的BM-LA DCOC具体电路图。Figure 2: The specific circuit diagram of the BM-LA DCOC of the present invention.

图3:不同条件下输入信号传递至DCOC比较器的小信号响应。Figure 3: Small-signal response of an input signal passed to a DCOC comparator under different conditions.

具体实施方式detailed description

为便于理解本发明,下面结合实例来具体介绍本发明的技术方案。In order to facilitate the understanding of the present invention, the technical solution of the present invention will be specifically introduced below in conjunction with examples.

一种适用于10G无源光网络(XGS-PON)接收机突发模式限幅放大器(BM-LA)的直流失调校准(DCOC)反馈回路,所述10G无源光网络接收机突发模式限幅放大器的快速共模恢复电路包括:动态时间常数控制单元(RC_CONTROL)、突发模式限幅放大器(BM-LA)和直流失调校准电路(DCOC)三个部分。A DC Offset Calibration (DCOC) Feedback Loop for a 10G Passive Optical Network (XGS-PON) Receiver Burst Mode Limiting Amplifier (BM-LA), the 10G Passive Optical Network Receiver Burst Mode Limiting The fast common-mode recovery circuit of the amplitude amplifier includes three parts: dynamic time constant control unit (RC_CONTROL), burst mode limiting amplifier (BM-LA) and DC offset calibration circuit (DCOC).

动态时间常数控制单元(RC_CONTROL)具有信号输入端In+、In-,信号输入端In+、In-分别通过两个相同的电容C连接至突发模式限幅放大器(BM-LA)的信号输入端,其中,动态时间常数控制单元(RC_CONTROL)的信号输入端In+通过电容C后与输入共模电压端之间并联连接有第一电阻R和第一可控制开关,动态时间常数控制单元(RC_CONTROL)的信号输入端In-通过电容C后与输入共模电压端之间并联连接有第二电阻R和第二可控制开关;第一可控制开关和第二可控制开关的控制端均连接至或门(OR)电路,或门(OR)电路的两个信号输入端分别连接至复位端(RST,Reset)和直流失调校准(DCOC)反馈回路的DOC_ON端。RC电路的时间常数的极度缩短,由复位端(RST,Reset)的高电平信号(即RST=1)来实现。The dynamic time constant control unit (RC_CONTROL) has signal input terminals In+, In-, and the signal input terminals In+, In- are respectively connected to the signal input terminals of the burst mode limiting amplifier (BM-LA) through two identical capacitors C, Wherein, the signal input terminal In+ of the dynamic time constant control unit (RC_CONTROL) is connected in parallel with the input common mode voltage terminal after passing through the capacitor C, and the first resistor R and the first controllable switch are connected in parallel, and the dynamic time constant control unit (RC_CONTROL) After the signal input terminal In- passes through the capacitor C, a second resistor R and a second controllable switch are connected in parallel between the input common mode voltage terminal; the control terminals of the first controllable switch and the second controllable switch are connected to the OR gate (OR) circuit, and the two signal input terminals of the OR gate (OR) circuit are respectively connected to the reset terminal (RST, Reset) and the DOC_ON terminal of the DC offset calibration (DCOC) feedback loop. The extreme shortening of the time constant of the RC circuit is realized by a high-level signal (that is, RST=1) of the reset terminal (RST, Reset).

如图1所示,DCOC模块校准电路由低通滤波器LPF、放大器F、比较器CMP、数字控制器DIG和电流差分DAC组成。其中低通滤波器LPF与放大器F分别将直流失调进行提取与缩放;比较器CMP对直流失调的极性进行判别;数字控制器DIG根据比较器CMP的比较结果,增加或减小电流差分DAC的输出值,直到完成直流失调校准。As shown in Figure 1, the DCOC module calibration circuit consists of a low-pass filter LPF, amplifier F, comparator CMP, digital controller DIG and current differential DAC. Among them, the low-pass filter LPF and the amplifier F extract and scale the DC offset respectively; the comparator CMP judges the polarity of the DC offset; the digital controller DIG increases or decreases the current differential DAC according to the comparison result of the comparator CMP Output value until DC offset calibration is complete.

在本发明中,数字控制器DIG具体选择数字2分法状态机来实现上述功能,数字2分法状态机属于本领域技术人员熟知的内容。In the present invention, the digital controller DIG specifically selects the digital dichotomy state machine to realize the above functions, and the digital dichotomy state machine belongs to the contents well known to those skilled in the art.

动态时间常数控制单元(RC_CONTROL)的输出信号传输至突发模式限幅放大器。The output signal of the dynamic time constant control unit (RC_CONTROL) is sent to the burst mode limiting amplifier.

图1中的具体直流失调校准电路(DCOC)如图2所示,突发模式限幅放大器由依次连接的第一运算放大器1st、第二运算放大器2st、第三运算放大器3st、第四运算放大器4st构成。第一运算放大器1st的输出信号还传输至电流差分DAC的输入端,电流差分DAC的输出信号传输至数字控制器DIG。电流差分DAC的结构为本领域公知的DAC。The specific DC offset calibration circuit (DCOC) in Figure 1 is shown in Figure 2. The burst mode limiting amplifier is composed of the first operational amplifier 1st, the second operational amplifier 2st, the third operational amplifier 3st, and the fourth operational amplifier connected in sequence. 4st composition. The output signal of the first operational amplifier 1st is also transmitted to the input terminal of the current differential DAC, and the output signal of the current differential DAC is transmitted to the digital controller DIG. The structure of the current differential DAC is a well-known DAC in the art.

其中的低通滤波器LPF为RC结构的低通滤波器,输入端IN+和IN-均串接有电阻R,电阻R之后并联有电容C,作为优选,R=40KΩ,C=10pF。低通滤波器LPF的输入端IN+和IN-信号来自于突发模式限幅放大器(BM-LA)的第四运算放大器4st的输出端。The low-pass filter LPF is a low-pass filter of RC structure, and the input terminals IN+ and IN- are connected in series with a resistor R, and a capacitor C is connected in parallel after the resistor R, preferably, R=40KΩ, C=10pF. The input IN+ and IN− signals of the low pass filter LPF come from the output of the fourth operational amplifier 4st of the burst mode limiting amplifier (BM-LA).

突发模式限幅放大器(BM-LA)的输出信号输出至直流失调校准电路(DCOC)的低通滤波器LPF输入端,经过低通滤波后依次输出至放大器F、比较器CMP,比较器CMP的输出信号传输至数字控制器DIG的输入端。The output signal of the burst mode limiting amplifier (BM-LA) is output to the input terminal of the low-pass filter LPF of the DC offset calibration circuit (DCOC), and after low-pass filtering, it is output to the amplifier F, the comparator CMP, and the comparator CMP The output signal is transmitted to the input terminal of the digital controller DIG.

电流差分DAC的输入端信号来自于突发模式限幅放大器(BM-LA)的第一运算放大器1st的输出端。电流差分DAC的输出端信号也传输至数字控制器DIG。数字控制器DIG通过或门(OR)电路控制动态时间常数控制单元(RC_CONTROL)的工作状态。The input terminal signal of the current differential DAC comes from the output terminal of the first operational amplifier 1st of the burst mode limiting amplifier (BM-LA). The output signal of the current differential DAC is also transmitted to the digital controller DIG. The digital controller DIG controls the working state of the dynamic time constant control unit (RC_CONTROL) through an OR gate (OR) circuit.

DCOC电路主要设计参数如表1所示。The main design parameters of the DCOC circuit are shown in Table 1.

表1 DCOC电路主要设计参数Table 1 Main design parameters of DCOC circuit

模块module 参数或指标parameter or indicator LPF带宽LPF bandwidth f<sub>LPF</sub>=200kHzf<sub>LPF</sub>=200kHz 放大器amplifier F=2,等效输入失调<2mVF=2, equivalent input offset<2mV 比较器Comparators 等效输入失调<4mVEquivalent input offset <4mV Digdig 数字2分法状态机Digital Divide by 2 State Machine DACDAC 6-bit电流DAC6-bit current DAC 工作频率working frequency 2MHz2MHz

结合突发系统的特点,校准启动时将DOC_ON置1,RC_CONTROL中的电阻短接。该操作会使得突发模式限幅放大器(BM-LA)的输入信号大幅衰减,从而大大减小了输入信号对直流失调校准环路的干扰,简化了LPF的设计。校准结束后,数字控制器Dig将DAC的值锁定同时将DOC_ON置0,并关闭DCOC环路除DAC之外的电路,以降低整体电路功耗。Combined with the characteristics of the burst system, DOC_ON is set to 1 when the calibration starts, and the resistors in RC_CONTROL are shorted. This operation will greatly attenuate the input signal of the burst mode limiting amplifier (BM-LA), thereby greatly reducing the interference of the input signal to the DC offset calibration loop, and simplifying the design of the LPF. After the calibration, the digital controller Dig locks the value of the DAC while setting DOC_ON to 0, and closes the DCOC loop circuit except the DAC to reduce the overall circuit power consumption.

传统连续模式DCOC反馈环路,环路工作速度无法满足25.6ns的指标要求。为了降低芯成本,本发明中DCOC校准电路采用单次数控校准方式,直流失调校准仅在芯片上电或系统空闲的时候进行。单次校准结束后将电流型DAC锁定,同时关闭校准环路中的其余电路以降低芯片功耗。In the traditional continuous mode DCOC feedback loop, the loop working speed cannot meet the 25.6ns index requirement. In order to reduce the core cost, the DCOC calibration circuit in the present invention adopts a single digital control calibration method, and the DC offset calibration is only performed when the chip is powered on or the system is idle. After a single calibration, the current-mode DAC is locked, and at the same time, other circuits in the calibration loop are closed to reduce power consumption of the chip.

图3为不同条件下输入信号传递至DCOC比较器的小信号响应,具体说明如下:Figure 3 shows the small-signal response of the input signal transmitted to the DCOC comparator under different conditions. The details are as follows:

1)DCOC启动时,DOC_ON始终为0,即DCOC不参与时间常数控制。若使输入信号对比较器影响小于0dB,低通滤波器LPF的带宽需低至1KHz;1) When DCOC starts, DOC_ON is always 0, that is, DCOC does not participate in time constant control. If the influence of the input signal on the comparator is less than 0dB, the bandwidth of the low-pass filter LPF needs to be as low as 1KHz;

2)DCOC启动时,DOC_ON设置为1,该信号控制RC_CONTROL进入复位状态,此时即使LPF带宽增大至200倍(200KHz),输入信号到达比较器时仍有20dB以上的衰减。因此采用协同设计,可将LPF带宽指标由1KHz放宽至200KHz,低通滤波器LPF电路占用的芯片面积缩小200倍,降低了芯片成本。2) When DCOC starts, DOC_ON is set to 1, and this signal controls RC_CONTROL to enter the reset state. At this time, even if the LPF bandwidth is increased to 200 times (200KHz), the input signal still has an attenuation of more than 20dB when it reaches the comparator. Therefore, by adopting collaborative design, the LPF bandwidth index can be relaxed from 1KHz to 200KHz, and the chip area occupied by the low-pass filter LPF circuit is reduced by 200 times, which reduces the chip cost.

仿真结果表明了快速共模恢复与失调校准电路的有效性,仅需14ns即可将输入共模电平恢复至99.99%,且DCOC环路简单极易实现。The simulation results show the effectiveness of the fast common-mode recovery and offset calibration circuit. It only takes 14ns to restore the input common-mode level to 99.99%, and the DCOC loop is simple and easy to implement.

如上所述,在本发明中,鉴于由于或门(OR)电路的工作机制,直流失调校准(DCOC)反馈回路的DOC_ON端的电平高低不会影响到动态时间常数控制单元(RC_CONTROL)关于快速共模恢复的工作机制、性能。同样的,RST端的电平高低也不会影响DCOC校准电路的关于直流失调校准的工作机制、性能As mentioned above, in the present invention, due to the working mechanism of the OR gate (OR) circuit, the level of the DOC_ON terminal of the DC offset calibration (DCOC) feedback loop will not affect the dynamic time constant control unit (RC_CONTROL) on the fast common The working mechanism and performance of mode recovery. Similarly, the level of the RST terminal will not affect the working mechanism and performance of the DCOC calibration circuit for DC offset calibration

表2给出了已发表的BM-LA设计参数对比。从表2中可以看出文献[1]采用直流耦合及高速数模转换方式将突发信号的共模恢复时间缩短至了2.24ns,该方案中的DCOC环路需要一个6.25GHz时钟源,且DCOC环路中的数字电路与DAC均需工作在6.25GHz速率,电路结构复杂,对工艺要求高,成本高。本文提出的设计方案,突发信号共模恢复时间是14ns,且DCOC电路结构简单,成本低。Table 2 presents a comparison of published BM-LA design parameters. It can be seen from Table 2 that literature [1] uses DC coupling and high-speed digital-to-analog conversion to shorten the common-mode recovery time of burst signals to 2.24ns. The DCOC loop in this scheme requires a 6.25GHz clock source, and Both the digital circuit and the DAC in the DCOC loop need to work at a rate of 6.25 GHz, the circuit structure is complex, the process requirements are high, and the cost is high. In the design scheme proposed in this paper, the common mode recovery time of the burst signal is 14ns, and the DCOC circuit has a simple structure and low cost.

表2 BM-LA相关共模恢复时间与失调校准的最新设计汇总Table 2 Summary of the latest design for BM-LA related common-mode recovery time and offset calibration

Figure BDA0003895597440000051
Figure BDA0003895597440000051

表2中涉及的相关文献列出如下:The relevant literature involved in Table 2 is listed as follows:

[1]Chen K C,Emami A.A 25-gb/s avalanche photodetector-based burst-mode optical receiver with 2.24-ns reconfiguration time in 28-nm cmos[J].IEEEJournal of Solid-State Circuits,vol.54,pp.1–12,03 2019.[1]Chen K C,Emami A.A 25-gb/s avalanche photodetector-based burst-mode optical receiver with 2.24-ns reconfiguration time in 28-nm cmos[J].IEEEJournal of Solid-State Circuits,vol.54,pp. 1–12,03 2019.

[2]Coudyzer G,Ossieur P,Bauwelinck J,et al.A 25gbaud pam-4linearburst-mode receiver with analog gain-and offset control in 0.25m sige:cbicmos,IEEE Journal of Solid-State Circuits,vol.55,pp.1–1,04 2020.[2] Coudyzer G, Ossieur P, Bauwelinck J, et al.A 25gbaud pam-4linearburst-mode receiver with analog gain-and offset control in 0.25m sige:cbicmos,IEEE Journal of Solid-State Circuits,vol.55,pp .1–1,04 2020.

[3]Lee S H,Kim J,Le Q,et al.A single chip 2.5-gb/s burst-mode opticalreceiver with wide dynamic range.IEEE Photonics Technology Letters,vol.23,pp.85–87,02 2011.[3]Lee S H, Kim J, Le Q, et al. A single chip 2.5-gb/s burst-mode optical receiver with wide dynamic range. IEEE Photonics Technology Letters, vol.23, pp.85–87, 02 2011.

综上所述,本发明提出的设计方案是少数满足XGS-PON协议标准规定的25.6ns恢复时间需求中DCOC电路结构最简单的方案。该方案降低了芯片成本,适用于XGS-PON接收机。To sum up, the design scheme proposed by the present invention is the simplest scheme of the DCOC circuit structure among the few that meet the 25.6 ns recovery time requirement stipulated in the XGS-PON protocol standard. The solution reduces chip cost and is suitable for XGS-PON receivers.

说明:在本发明中,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。Explanation: In the present invention, the word "comprising" does not exclude the presence of elements or steps not listed in the claims. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.

说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。Words such as "first", "second", "third" and the like used in the description and claims to modify the corresponding elements do not in themselves mean that the elements have any ordinal numbers, nor The use of these ordinal numbers to represent the sequence of an element with respect to another element, or the order of manufacturing methods, is only used to clearly distinguish one element with a certain designation from another element with the same designation.

Claims (10)

1.一种适用于XGS-PON突发模式限幅放大器的DCOC校准电路,其特征在于:所述XGS-PON突发模式限幅放大器的快速共模恢复电路包括:动态时间常数控制单元(RC_CONTROL)、突发模式限幅放大器(BM-LA)和直流失调(DCOC)校准电路三部分;1. A DCOC calibration circuit suitable for XGS-PON burst mode limiting amplifier, characterized in that: the fast common mode recovery circuit of the XGS-PON burst mode limiting amplifier comprises: dynamic time constant control unit (RC_CONTROL ), burst mode limiting amplifier (BM-LA) and DC offset (DCOC) calibration circuit; DCOC校准电路(直流失调校准电路)由低通滤波器、放大器、比较器、数字控制器和电流差分DAC组成;The DCOC calibration circuit (DC offset calibration circuit) consists of a low-pass filter, amplifier, comparator, digital controller and current differential DAC; 动态时间常数控制单元(RC_CONTROL)的输出信号传输至突发模式限幅放大器;The output signal of the dynamic time constant control unit (RC_CONTROL) is transmitted to the burst mode limiting amplifier; 突发模式限幅放大器(BM-LA)的输出信号输出至直流失调校准电路(DCOC)的低通滤波器输入端,经过低通滤波后依次输出至放大器、比较器,比较器的输出信号传输至数字控制器的输入端;The output signal of the burst mode limiting amplifier (BM-LA) is output to the input terminal of the low-pass filter of the DC offset calibration circuit (DCOC), and then output to the amplifier and comparator in turn after low-pass filtering, and the output signal of the comparator is transmitted to the input of the digital controller; 突发模式限幅放大器(BM-LA)的输出信号输出至直流失调(DCOC)校准电路的低通滤波器输入端,经过低通滤波后依次输出至放大器、比较器,比较器的输出信号传输至数字控制器的输入端;The output signal of the burst mode limiting amplifier (BM-LA) is output to the input terminal of the low-pass filter of the DC offset (DCOC) calibration circuit, and then output to the amplifier and comparator in turn after low-pass filtering, and the output signal of the comparator is transmitted to the input of the digital controller; 数字控制器具有DOC_ON端口,连接至动态时间常数控制单元(RC_CONTROL)中的或门的其中一个输入端;The digital controller has a DOC_ON port connected to one of the inputs of the OR gate in the dynamic time constant control unit (RC_CONTROL); 其中低通滤波器与放大器分别将直流失调进行提取与缩放; 比较器对直流失调的极性进行判别;数字控制器根据比较器的比较结果,增加或减小电流差分DAC的输出值,直到完成直流失调校准。Among them, the low-pass filter and the amplifier extract and scale the DC offset respectively; the comparator judges the polarity of the DC offset; the digital controller increases or decreases the output value of the current differential DAC according to the comparison result of the comparator until the completion DC offset calibration. 2.如权利要求1所述的DCOC校准电路,其特征在于:突发模式限幅放大器(BM-LA)由依次连接的第一运算放大器、第二运算放大器、第三运算放大器、第四运算放大器构成;第一运算放大器的输出信号还传输至电流差分DAC的输入端,电流差分DAC的输出信号传输至数字控制器DIG。2. The DCOC calibration circuit as claimed in claim 1, characterized in that: the burst mode limiting amplifier (BM-LA) consists of sequentially connected first operational amplifier, second operational amplifier, third operational amplifier, fourth operational amplifier The amplifier is formed; the output signal of the first operational amplifier is also transmitted to the input terminal of the current differential DAC, and the output signal of the current differential DAC is transmitted to the digital controller DIG. 3.如权利要求1所述的DCOC校准电路,其特征在于:突发模式限幅放大器(BM-LA)的输出信号输出至直流失调校准电路(DCOC)的低通滤波器输入端,经过低通滤波后依次输出至放大器、比较器,比较器的输出信号传输至数字控制器的输入端。3. The DCOC calibration circuit according to claim 1, characterized in that: the output signal of the burst mode limiting amplifier (BM-LA) is output to the input terminal of the low-pass filter of the DC offset calibration circuit (DCOC), and passes through the low-pass filter After filtering, it is output to the amplifier and the comparator in turn, and the output signal of the comparator is transmitted to the input terminal of the digital controller. 4.如权利要求1所述的DCOC校准电路,其特征在于:电流差分DAC的输入端信号来自于突发模式限幅放大器(BM-LA)的第一运算放大器的输出端;电流差分DAC的输出端信号也传输至数字控制器;4. The DCOC calibration circuit as claimed in claim 1, characterized in that: the input signal of the current differential DAC is from the output terminal of the first operational amplifier of the burst mode limiting amplifier (BM-LA); the current differential DAC The output signal is also transmitted to the digital controller; 数字控制器通过或门电路控制动态时间常数控制单元(RC_CONTROL)的工作状态。The digital controller controls the working state of the dynamic time constant control unit (RC_CONTROL) through an OR gate circuit. 5.如权利要求4所述的DCOC校准电路,其特征在于:电流差分DAC的输出端信号也传输至数字控制器;数字控制器通过或门电路控制动态时间常数控制单元(RC_CONTROL)的工作状态。5. The DCOC calibration circuit according to claim 4, characterized in that: the output signal of the current differential DAC is also transmitted to the digital controller; the digital controller controls the working state of the dynamic time constant control unit (RC_CONTROL) through the OR gate circuit . 6.如权利要求1所述的DCOC校准电路,其特征在于:低通滤波器LPF为RC结构的低通滤波器,输入端IN+和IN-均串接有电阻R,电阻R之后并联有电容C,低通滤波器LPF的输入端IN+和IN-信号来自于突发模式限幅放大器(BM-LA)中的第四运算放大器4st的输出端。6. The DCOC calibration circuit as claimed in claim 1, wherein the low-pass filter LPF is a low-pass filter of RC structure, and the input terminals IN+ and IN- are connected in series with a resistor R, and a capacitor is connected in parallel after the resistor R C, the input terminals IN+ and IN- of the low-pass filter LPF come from the output terminal of the fourth operational amplifier 4st in the burst mode limiting amplifier (BM-LA). 7.如权利要求6所述的DCOC校准电路,其特征在于:R=40KΩ,C=10pF。7. The DCOC calibration circuit according to claim 6, characterized in that: R=40KΩ, C=10pF. 8.如权利要求1所述的DCOC校准电路,其特征在于:校准启动时将DOC_ON置1,RC_CONTROL中的电阻短接,使得突发模式限幅放大器(BM-LA)的输入信号大幅衰减,从而大大减小了输入信号对直流失调校准环路的干扰,简化了低通滤波器的设计;校准结束后,数字控制器Dig将DAC的值锁定同时将DOC_ON置0,并关闭DCOC环路除DAC之外的电路,以降低XGS-PON突发模式限幅放大器的功耗。8. The DCOC calibration circuit according to claim 1, characterized in that: DOC_ON is set to 1 when the calibration is started, and the resistor in RC_CONTROL is short-circuited, so that the input signal of the burst mode limiting amplifier (BM-LA) is greatly attenuated, Therefore, the interference of the input signal to the DC offset calibration loop is greatly reduced, and the design of the low-pass filter is simplified; after the calibration, the digital controller Dig locks the value of the DAC and sets DOC_ON to 0, and closes the DCOC loop except Circuitry outside the DAC to reduce power consumption of the XGS-PON burst mode limiting amplifier. 9.如权利要求1所述的DCOC校准电路,其特征在于:动态时间常数控制单元(RC_CONTROL)具有信号输入端In+、In-,信号输入端In+、In-分别通过两个相同的电容C连接至突发模式限幅放大器(BM-LA)的信号输入端,其中,动态时间常数控制单元(RC_CONTROL)的信号输入端In+通过电容C后与输入共模电压端之间并联连接有第一电阻R和第一可控制开关,动态时间常数控制单元(RC_CONTROL)的信号输入端In-通过电容C后与输入共模电压端之间并联连接有第二电阻R和第二可控制开关;第一可控制开关和第二可控制开关的控制端均连接至或门(OR)电路,或门(OR)电路的两个输入端分别连接至复位端(RST,Reset)和直流失调校准(DCOC)反馈回路的DOC_ON信号端。9. The DCOC calibration circuit according to claim 1, characterized in that: the dynamic time constant control unit (RC_CONTROL) has signal input terminals In+, In-, and the signal input terminals In+, In- are respectively connected through two identical capacitors C To the signal input terminal of the burst mode limiting amplifier (BM-LA), where the signal input terminal In+ of the dynamic time constant control unit (RC_CONTROL) is connected in parallel with the first resistor after passing through the capacitor C and the input common mode voltage terminal R and the first controllable switch, the signal input terminal In- of the dynamic time constant control unit (RC_CONTROL) passes through the capacitor C and is connected in parallel with the input common mode voltage terminal and the second resistor R and the second controllable switch; the first Both the control terminals of the controllable switch and the second controllable switch are connected to an OR gate (OR) circuit, and the two input terminals of the OR gate (OR) circuit are respectively connected to the reset terminal (RST, Reset) and DC offset calibration (DCOC) The DOC_ON signal terminal of the feedback loop. 10.一种适用于XGS-PON突发模式限幅放大器的DCOC校准方法,该方法基于如权利要求1-9任一项所述的DCOC校准电路来实现,其特征在于:10. A DCOC calibration method applicable to XGS-PON burst mode limiting amplifier, the method is realized based on the DCOC calibration circuit according to any one of claims 1-9, characterized in that: 数字控制器具有DOC_ON端口,连接至动态时间常数控制单元(RC_CONTROL)中的或门的其中一个输入端;The digital controller has a DOC_ON port connected to one of the inputs of the OR gate in the dynamic time constant control unit (RC_CONTROL); 校准启动时将DOC_ON置1,RC_CONTROL中的电阻短接,使得突发模式限幅放大器(BM-LA)的输入信号大幅衰减,从而大大减小了输入信号对直流失调校准环路的干扰,简化了低通滤波器的设计;校准结束后,数字控制器Dig将DAC的值锁定同时将DOC_ON置0,并关闭DCOC环路除DAC之外的电路,以降低XGS-PON突发模式限幅放大器的功耗。When the calibration starts, set DOC_ON to 1, and short the resistor in RC_CONTROL, so that the input signal of the burst mode limiting amplifier (BM-LA) is greatly attenuated, thereby greatly reducing the interference of the input signal to the DC offset calibration loop, simplifying the After the calibration, the digital controller Dig locks the value of DAC and sets DOC_ON to 0, and closes the DCOC loop circuit except DAC to reduce the XGS-PON burst mode limiting amplifier. power consumption.
CN202211273531.9A 2022-10-18 2022-10-18 DCOC calibration circuit and method of XGS-PON BM-LA Pending CN115549610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211273531.9A CN115549610A (en) 2022-10-18 2022-10-18 DCOC calibration circuit and method of XGS-PON BM-LA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211273531.9A CN115549610A (en) 2022-10-18 2022-10-18 DCOC calibration circuit and method of XGS-PON BM-LA

Publications (1)

Publication Number Publication Date
CN115549610A true CN115549610A (en) 2022-12-30

Family

ID=84735986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211273531.9A Pending CN115549610A (en) 2022-10-18 2022-10-18 DCOC calibration circuit and method of XGS-PON BM-LA

Country Status (1)

Country Link
CN (1) CN115549610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116032283A (en) * 2023-01-09 2023-04-28 合肥工业大学 Programmable gain amplifying circuit with DCOC calibration and implementation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088390A1 (en) * 1998-06-19 2001-04-04 Datum Telegraphic Inc. Circuit and methods for compensating for imperfections in amplification chains in a linc or other amplification system
US20090010310A1 (en) * 1999-10-21 2009-01-08 Broadcom Corporation Adaptive radio transceiver
CN103607209A (en) * 2013-11-11 2014-02-26 清华大学 DC imbalance calibration system and DC imbalance calibration method
CN205921593U (en) * 2016-07-04 2017-02-01 厦门优迅高速芯片有限公司 Asymmetric PON optical module of 10G based on UX3328S and UX3260
CN108390727A (en) * 2018-03-06 2018-08-10 厦门优迅高速芯片有限公司 DC maladjustment eliminates circuit and DC maladjustment removing method
CN115225042A (en) * 2022-07-15 2022-10-21 南通大学 Rapid common mode recovery circuit and method of burst mode limiting amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1088390A1 (en) * 1998-06-19 2001-04-04 Datum Telegraphic Inc. Circuit and methods for compensating for imperfections in amplification chains in a linc or other amplification system
US20090010310A1 (en) * 1999-10-21 2009-01-08 Broadcom Corporation Adaptive radio transceiver
CN103607209A (en) * 2013-11-11 2014-02-26 清华大学 DC imbalance calibration system and DC imbalance calibration method
CN205921593U (en) * 2016-07-04 2017-02-01 厦门优迅高速芯片有限公司 Asymmetric PON optical module of 10G based on UX3328S and UX3260
CN108390727A (en) * 2018-03-06 2018-08-10 厦门优迅高速芯片有限公司 DC maladjustment eliminates circuit and DC maladjustment removing method
CN115225042A (en) * 2022-07-15 2022-10-21 南通大学 Rapid common mode recovery circuit and method of burst mode limiting amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANG, G, ET., AL.: "A 25Gb/s Burst Mode Optical Receiver Front-End in 0.13μm BiCMOS Technology", 2020 THE 5TH INTERNATIONAL CONFERENCE ON INTEGRATED CIRCUITS AND MICROSYSTEMS, 1 January 2020 (2020-01-01) *
豆飞娟;王志亮;姜亚伟;谭庶欣: "10G 突发模式限幅放大器的快速共模恢复与失调校准方法", 电子器件, 20 October 2023 (2023-10-20) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116032283A (en) * 2023-01-09 2023-04-28 合肥工业大学 Programmable gain amplifying circuit with DCOC calibration and implementation method
CN116032283B (en) * 2023-01-09 2023-09-22 合肥工业大学 A programmable gain amplifier circuit with DCOC calibration and its implementation method

Similar Documents

Publication Publication Date Title
US7327298B2 (en) Gigabit ethernet line driver and hybrid architecture
US20160070123A1 (en) Optical modulator driver
CN206564603U (en) A kind of photelectric receiver for being used to improve visible light communication medium-high frequency gain
RU2421879C1 (en) Differential amplifier with high-frequency compensation
CN115549610A (en) DCOC calibration circuit and method of XGS-PON BM-LA
CN114389550A (en) Transimpedance amplification circuit for receiving burst optical signal
Pan et al. A 30-Gb/s 1.37-pJ/b CMOS receiver for optical interconnects
US10944599B2 (en) Systems and methods for communicating high speed signals in a communication device
Cheng et al. A 5-Gb/s inductorless CMOS adaptive equalizer for PCI express generation II applications
CN111162740B (en) Radio frequency general communication interface difference and common mode decoupling device
CN111431618B (en) BiCMOS (Bipolar complementary Metal oxide semiconductor) optical transmitter driving circuit based on PAM4 modulation mode
CN101847973B (en) Automatic gain control circuit for receiving end of power-line carrier communication system
CN108111229A (en) A kind of optical module receiving circuit and optical module
CN102065039B (en) A high-speed interface circuit adaptive equalization method and circuit
Inoue et al. A burst-mode TIA with adaptive response and stable operation for in-vehicle optical networks
CN104022832B (en) A kind of difference A-C coupled modes optical signal receiving circuit
CN209928302U (en) Voltage source
Güngördü et al. A noise-canceling tia topology compatible with large-area photodetectors in 40 nm cmos process
JP2017220822A (en) Equalizer circuit and optical module
CN114487534A (en) Voltage digital conversion circuit based on capacitance isolation
CN103457633A (en) Echo noise elimination full mixed line interface
US7408994B1 (en) AC coupling system for wide band digital data with dynamic AC load
CN107241144A (en) A kind of optical module receiving circuit and optical module
CN106941377B (en) Optoelectronic Receiver Design Methodology for Improving High-Frequency Gain in Visible Light Communications
CN117081576B (en) High-speed steady-state optocoupler

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination