CN115557789A - Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film - Google Patents
Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film Download PDFInfo
- Publication number
- CN115557789A CN115557789A CN202211310300.0A CN202211310300A CN115557789A CN 115557789 A CN115557789 A CN 115557789A CN 202211310300 A CN202211310300 A CN 202211310300A CN 115557789 A CN115557789 A CN 115557789A
- Authority
- CN
- China
- Prior art keywords
- thick film
- metal oxide
- powder
- mno
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000314 transition metal oxide Inorganic materials 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title abstract description 29
- 230000005291 magnetic effect Effects 0.000 title abstract description 4
- CXHVKYVHZQUWCY-UHFFFAOYSA-N [O-2].[Fe+2].[Mn+2].[Sr+2].[La+3] Chemical compound [O-2].[Fe+2].[Mn+2].[Sr+2].[La+3] CXHVKYVHZQUWCY-UHFFFAOYSA-N 0.000 title 1
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 57
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 49
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 49
- 230000005307 ferromagnetism Effects 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims description 103
- 229910002182 La0.7Sr0.3MnO3 Inorganic materials 0.000 claims description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- 239000002002 slurry Substances 0.000 claims description 43
- 238000000498 ball milling Methods 0.000 claims description 41
- 238000001035 drying Methods 0.000 claims description 40
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002270 dispersing agent Substances 0.000 claims description 18
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 17
- 239000002202 Polyethylene glycol Substances 0.000 claims description 16
- 229920001223 polyethylene glycol Polymers 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 15
- 239000003960 organic solvent Substances 0.000 claims description 13
- 239000011812 mixed powder Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 claims description 9
- NJSUFZNXBBXAAC-UHFFFAOYSA-N ethanol;toluene Chemical group CCO.CC1=CC=CC=C1 NJSUFZNXBBXAAC-UHFFFAOYSA-N 0.000 claims description 9
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 claims description 9
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 9
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical group CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 claims description 9
- 229940117972 triolein Drugs 0.000 claims description 9
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical group CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 3
- 229960002380 dibutyl phthalate Drugs 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- PIRUAZLFEUQMTG-UHFFFAOYSA-N lanthanum;oxomanganese;strontium Chemical compound [Sr].[La].[Mn]=O PIRUAZLFEUQMTG-UHFFFAOYSA-N 0.000 claims 7
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 1
- -1 Oxygen ions Chemical class 0.000 abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 239000001301 oxygen Substances 0.000 abstract description 12
- XGPJPLXOIJRLJN-UHFFFAOYSA-N [Mn].[Sr].[La] Chemical compound [Mn].[Sr].[La] XGPJPLXOIJRLJN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910002075 lanthanum strontium manganite Inorganic materials 0.000 abstract description 7
- 239000003302 ferromagnetic material Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 230000005684 electric field Effects 0.000 abstract description 3
- 229910001428 transition metal ion Inorganic materials 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 16
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- BMTAFVWTTFSTOG-UHFFFAOYSA-N Butylate Chemical compound CCSC(=O)N(CC(C)C)CC(C)C BMTAFVWTTFSTOG-UHFFFAOYSA-N 0.000 description 7
- 229910002578 La0.2Sr0.8MnO3 Inorganic materials 0.000 description 7
- 229910003367 La0.5Sr0.5MnO3 Inorganic materials 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 7
- 229910002113 barium titanate Inorganic materials 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000004408 titanium dioxide Substances 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- 238000010304 firing Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000001354 calcination Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6026—Computer aided shaping, e.g. rapid prototyping
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thin Magnetic Films (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及铁磁材料技术领域,具体涉及一种柔性过渡金属氧化物镧锶锰氧铁磁性厚膜、制备方法及其应用,本制备出来的厚膜因LSMO中自旋,电荷,轨道,晶格之间相互耦合,具有良好的铁磁性,庞磁阻效应,导电性等,同时具有能耗低,读取速度快,寿命高的优点。LSMO厚膜也是钙钛矿型氧化物,氧离子与过渡金属离子相互作用,导致其电子行为具有了很多的特性,特别是良好的导电性,可以为金属氧化物电极的潜在应用提供一种新思路,同时膜又会因为电场,磁场,界面等影响,对其应用产生了更多的可能。
The invention relates to the technical field of ferromagnetic materials, in particular to a flexible transition metal oxide lanthanum strontium manganese ferromagnetic thick film, a preparation method and its application. The lattices are coupled to each other, have good ferromagnetism, huge magnetoresistance effect, conductivity, etc., and have the advantages of low energy consumption, fast reading speed, and long life. The LSMO thick film is also a perovskite oxide. Oxygen ions interact with transition metal ions, resulting in many characteristics of its electronic behavior, especially good conductivity, which can provide a new potential application for metal oxide electrodes. At the same time, due to the influence of electric field, magnetic field, interface, etc., the film has more possibilities for its application.
Description
技术领域technical field
本发明涉及铁磁材料技术领域,具体涉及一种柔性过渡金属氧化物镧锶锰氧铁磁性厚膜、制备方法及其应用。The invention relates to the technical field of ferromagnetic materials, in particular to a flexible transition metal oxide lanthanum strontium manganese ferromagnetic thick film, a preparation method and an application thereof.
背景技术Background technique
在这个日益发展的社会,计算机发展迅速,信息传播速度变得越快,传播范围越广,人类也由此进入了信息时代,这就进一步的要求我们的器件跟上时代的发展。自从半导体晶体管出现以来,由于其独特的特性,使其出现在各种各样的工业产品中。我们在日常生活中常见的电视,汽车,空调等等,特别是在存储器中半导体器件都有着大量的使用。传统的大型的信息工业已满足不了当前时代的要求,其中微电子器件已在逐步向着小型化,集成化发展。但如今半导体技术工艺提升得很缓慢,这就需要一种新的材料或者新工艺满足当代人们的要求。而过渡金属氧化物因其性质优异,被认为是能够取代硅下一代半导体器件的新型材料。In this ever-growing society, computers are developing rapidly, the speed of information dissemination becomes faster and the scope of dissemination is wider, and human beings have thus entered the information age, which further requires our devices to keep up with the development of the times. Since the advent of semiconductor transistors, they have appeared in a wide variety of industrial products due to their unique characteristics. In our daily life, TVs, cars, air conditioners, etc., especially semiconductor devices in memory, are widely used. The traditional large-scale information industry can no longer meet the requirements of the current era, and microelectronic devices are gradually developing towards miniaturization and integration. But nowadays semiconductor technology is improving very slowly, which requires a new material or new process to meet the requirements of contemporary people. Due to their excellent properties, transition metal oxides are considered to be new materials that can replace silicon in next-generation semiconductor devices.
过渡金属氧化物是一种钙钛矿型氧化物,因其氧离子与过渡金属离子之间相互作用,使其电荷、自旋、轨道、晶格之间相互耦合,这就会诱导出铁磁性。其中,电子的自旋具有两个取向,分别为向上和向下,这可以作为铁磁材料中信息存储和处理的介质。铁磁材料也是因为其独特的物理性质受到广泛关注,为磁电耦合和电场调控磁化动力学带来新的研究方向,无论是基础研究还是实际应用都具有重要意义。Transition metal oxides are perovskite-type oxides. Because of the interaction between oxygen ions and transition metal ions, the charges, spins, orbits, and lattices are coupled to each other, which induces ferromagnetism. . Among them, the spin of electrons has two orientations, up and down, which can be used as a medium for information storage and processing in ferromagnetic materials. Ferromagnetic materials are also widely concerned because of their unique physical properties, which bring new research directions for magnetoelectric coupling and electric field-regulated magnetization dynamics, which are of great significance for both basic research and practical applications.
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。In view of the above-mentioned defects, the creator of the present invention has finally obtained the present invention through long-term research and practice.
发明内容Contents of the invention
本发明的目的在于解决如何得到具有良好铁磁性和导电性、性能优异的铁磁性材料的问题,提供了一种柔性过渡金属氧化物镧锶锰氧铁磁性厚膜、制备方法及其应用。The purpose of the present invention is to solve the problem of how to obtain a ferromagnetic material with good ferromagnetism, conductivity and excellent performance, and provides a flexible transition metal oxide lanthanum strontium manganese ferromagnetic thick film, a preparation method and its application.
为了实现上述目的,本发明公开了一种柔性过渡金属氧化物镧锶锰氧铁磁性厚膜,所述柔性过渡铁磁金属氧化物镧锶锰氧铁磁性厚膜的化学通式为La0.7Sr0.3MnO3。In order to achieve the above object, the present invention discloses a flexible transition metal oxide lanthanum strontium manganese ferromagnetic thick film, the chemical general formula of the flexible transition ferromagnetic metal oxide lanthanum strontium manganese ferromagnetic thick film is La 0.7 Sr 0.3 MnO 3 .
所述柔性过渡铁磁金属氧化物镧锶锰氧铁磁性厚膜的厚度为10~20μm。The thickness of the flexible transition ferromagnetic metal oxide lanthanum strontium manganese ferromagnetic thick film is 10-20 μm.
本发明还公开了上述柔性过渡铁磁金属氧化物镧锶锰氧铁磁性厚膜的制备方法,包括以下步骤:The present invention also discloses a preparation method of the flexible transition ferromagnetic metal oxide lanthanum strontium manganese ferromagnetic thick film, which includes the following steps:
S1,将氧化镧、碳酸锶、氧化锰按照所述的柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的化学通式量取,将其混合粉末、球磨介质、酒精混合进行球磨;S1, measure lanthanum oxide, strontium carbonate, and manganese oxide according to the general chemical formula of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, mix the mixed powder, ball milling medium, and alcohol for ball milling;
S2,将步骤S1中得到的球磨后的粉末进行烘干,烘干后的粉末进行预烧和保温,再将粉末进行研磨,干燥后得到柔性铁磁金属氧化物La0.7Sr0.3MnO3粉体;S2, drying the ball-milled powder obtained in step S1, pre-calcining and heat-preserving the dried powder, then grinding the powder, and obtaining a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 powder after drying ;
S3,将柔性铁磁金属氧化物La0.7Sr0.3MnO3粉体与有机溶剂进行充分混匀,得到柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的浆料;S3, fully mixing the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 powder with an organic solvent to obtain a slurry of a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film;
S4,将步骤S3中得到的浆料进行除泡,之后将其流延成膜,干燥后得到柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜。S4, defoaming the slurry obtained in step S3, then casting it into a film, and obtaining a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film after drying.
所述步骤S1中的球磨介质为玛瑙球,所述玛瑙球的直径为2~10mm。The ball milling medium in the step S1 is agate balls, and the diameter of the agate balls is 2-10 mm.
所述步骤S1中球磨时,混合粉末、球磨介质、酒精的质量比为1:1.5:1,球磨时间为24h。During the ball milling in the step S1, the mass ratio of the mixed powder, the ball milling medium, and the alcohol is 1:1.5:1, and the ball milling time is 24 hours.
所述步骤S2中烘干温度为60~100℃,烘干时间为6~12h。In the step S2, the drying temperature is 60-100° C., and the drying time is 6-12 hours.
所述步骤S2中预烧温度为650~1050℃,保温时间为2~8h,球磨时间为24h,干燥时间为6~12h。In the step S2, the calcining temperature is 650-1050° C., the holding time is 2-8 hours, the ball milling time is 24 hours, and the drying time is 6-12 hours.
所述步骤S3中首先将柔性铁磁金属氧化物La0.7Sr0.3MnO3粉体与有机溶剂、分散剂以及氧化锆球混合,混匀200~300min,得到初步的浆料,在与粘结剂、均质剂混合,混匀200~300min,得到最后的浆料,所述有机溶剂为甲苯-乙醇,分散剂为三油酸甘油酯,粘结剂为聚乙二醇,均质剂为邻苯二甲酸丁酯。In the step S3, the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 powder is first mixed with an organic solvent, a dispersant and zirconia balls, and mixed for 200-300 minutes to obtain a preliminary slurry, which is mixed with a binder , homogenizer, and mix for 200 to 300 minutes to obtain the final slurry. The organic solvent is toluene-ethanol, the dispersant is glyceryl trioleate, the binder is polyethylene glycol, and the homogenizer is o- Butyl phthalate.
所述步骤S4中除泡通过真空除泡机除泡,除泡时间为25~60min。In the step S4, the defoaming is carried out by a vacuum defoaming machine, and the defoaming time is 25-60 minutes.
本发明还公开了上述柔性过渡金属氧化物镧锶锰氧铁磁性厚膜在半导体器件中的应用。The invention also discloses the application of the flexible transition metal oxide lanthanum strontium manganese ferrite thick magnetic film in semiconductor devices.
与现有技术比较本发明的有益效果在于:本发明由流延法制备得到的LSMO厚膜致密性,延展性好,可塑性比较强。本发明制备工艺简单,制备出来的厚膜因LSMO中自旋,电荷,轨道,晶格之间相互耦合,具有良好的铁磁性,庞磁阻效应,导电性等,由此制备得到器件会具有能耗低,读取速度快,寿命高的优点。制备出来的厚膜因LSMO中自旋,电荷,轨道,晶格之间相互耦合,具有良好的铁磁性,庞磁阻效应,导电性等。本发明制备的柔性铁磁金属氧化物LSMO厚膜同时也是钙钛矿型氧化物,因氧离子的加入,与过渡金属离子相互作用,导致其电子行为具有了很多的特性。特别是其具有良好的导电性,可以为金属氧化物电极的潜在应用提供一种新思路,同时膜又会因为电场,磁场,界面等影响,对其应用产生了更多的可能。Compared with the prior art, the beneficial effect of the present invention lies in: the LSMO thick film prepared by the casting method of the present invention has high density, good ductility and relatively strong plasticity. The preparation process of the present invention is simple, and the prepared thick film has good ferromagnetism, huge magnetoresistance effect, conductivity, etc. due to the mutual coupling between spin, charge, orbit and lattice in LSMO, and the device thus prepared will have The advantages of low energy consumption, fast reading speed and long life. The prepared thick film has good ferromagnetism, huge magnetoresistance effect, conductivity, etc. due to the mutual coupling between spin, charge, orbit, and lattice in LSMO. The flexible ferromagnetic metal oxide LSMO thick film prepared by the present invention is also a perovskite oxide, and due to the addition of oxygen ions, it interacts with transition metal ions, causing its electronic behavior to have many characteristics. In particular, it has good electrical conductivity, which can provide a new idea for the potential application of metal oxide electrodes. At the same time, the film will have more possibilities for its application due to the influence of electric field, magnetic field, interface, etc.
附图说明Description of drawings
图1为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜在不同预烧温度下的XRD图;Figure 1 is the XRD pattern of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film at different pre-firing temperatures;
图2为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜在不同预烧温度下以及对比例3的SEM图;Fig. 2 is the SEM image of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film at different pre-firing temperatures and Comparative Example 3;
图3为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜在不同预烧温度下以及对比例3的能谱图;Fig. 3 is the energy spectrum of flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film at different pre-firing temperatures and comparative example 3;
图4为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜以及对比例1,2,3在10K下的磁滞曲线;Fig. 4 is the hysteresis curve of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film and comparative examples 1, 2, and 3 at 10K;
图5为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜以及对比例1,2的M-T曲线。Figure 5 shows the MT curves of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film and Comparative Examples 1 and 2.
具体实施方式detailed description
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。The above and other technical features and advantages of the present invention will be described in more detail below in conjunction with the accompanying drawings.
实施例1Example 1
本实施例提供了一种柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜,其中,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, wherein the preparation method of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film is as follows:
S1:制备La0.7Sr0.3MnO3粉体。S1: Preparation of La 0.7 Sr 0.3 MnO 3 powder.
S2:制备La0.7Sr0.3MnO3厚膜。S2: Preparation of La 0.7 Sr 0.3 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到650℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 650°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.7Sr0.3MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.7 Sr 0.3 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.7Sr0.3MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.7 Sr 0.3 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,随室温干燥4h后即可得到La0.7Sr0.3MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , after drying at room temperature for 4 hours, a La 0.7 Sr 0.3 MnO 3 thick film can be obtained.
实施例2Example 2
本实施例提供了一种柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜,其中,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, wherein the preparation method of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film is as follows:
S1:制备La0.7Sr0.3MnO3粉体。S1: Preparation of La 0.7 Sr 0.3 MnO 3 powder.
S2:制备La0.7Sr0.3MnO3厚膜。S2: Preparation of La 0.7 Sr 0.3 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到750℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then place it in a tube furnace, supply oxygen, set the temperature from room temperature to 750°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.7Sr0.3MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.7 Sr 0.3 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.7Sr0.3MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.7 Sr 0.3 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,随室温干燥4h后即可得到La0.7Sr0.3MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , after drying at room temperature for 4 hours, a La 0.7 Sr 0.3 MnO 3 thick film can be obtained.
实施例3Example 3
本实施例提供了一种柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜,其中,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, wherein the preparation method of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film is as follows:
S1:制备La0.7Sr0.3MnO3粉体。S1: Preparation of La 0.7 Sr 0.3 MnO 3 powder.
S2:制备La0.7Sr0.3MnO3厚膜。S2: Preparation of La 0.7 Sr 0.3 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到850℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 850°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.7Sr0.3MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.7 Sr 0.3 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.7Sr0.3MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.7 Sr 0.3 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,随室温干燥4h后即可得到La0.7Sr0.3MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , after drying at room temperature for 4 hours, a La 0.7 Sr 0.3 MnO 3 thick film can be obtained.
实施例4Example 4
本实施例提供了一种柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜,其中,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, wherein the preparation method of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film is as follows:
S1:制备La0.7Sr0.3MnO3粉体。S1: Preparation of La 0.7 Sr 0.3 MnO 3 powder.
S2:制备La0.7Sr0.3MnO3厚膜。S2: Preparation of La 0.7 Sr 0.3 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到950℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 950°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.7Sr0.3MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.7 Sr 0.3 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.7Sr0.3MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.7 Sr 0.3 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,随室温干燥4h后即可得到La0.7Sr0.3MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , after drying at room temperature for 4 hours, a La 0.7 Sr 0.3 MnO 3 thick film can be obtained.
实施例5Example 5
本实施例提供了一种柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜,其中,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film, wherein the preparation method of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film is as follows:
S1:制备La0.7Sr0.3MnO3粉体。S1: Preparation of La 0.7 Sr 0.3 MnO 3 powder.
S2:制备La0.7Sr0.3MnO3厚膜。S2: Preparation of La 0.7 Sr 0.3 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到1050℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 1050°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.7Sr0.3MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.7 Sr 0.3 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.7Sr0.3MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.7 Sr 0.3 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,随室温干燥4h后即可得到La0.7Sr0.3MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , after drying at room temperature for 4 hours, a La 0.7 Sr 0.3 MnO 3 thick film can be obtained.
对比例1Comparative example 1
本实施例提供了一种铁磁金属氧化物La0.5Sr0.5MnO3厚膜,其中,铁磁金属氧化物La0.5Sr0.5MnO3厚膜的制备方法如下:This embodiment provides a ferromagnetic metal oxide La 0.5 Sr 0.5 MnO 3 thick film, wherein, the preparation method of the ferromagnetic metal oxide La 0.5 Sr 0.5 MnO 3 thick film is as follows:
S1:制备La0.5Sr0.5MnO3粉体。S1: Preparation of La 0.5 Sr 0.5 MnO 3 powder.
S2:制备La0.5Sr0.5MnO3厚膜。S2: Preparation of La 0.5 Sr 0.5 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到850℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 850°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.5Sr0.5MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.5 Sr 0.5 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.5Sr0.5MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.5 Sr 0.5 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,干燥4h后即可得到La0.5Sr0.5MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , La 0.5 Sr 0.5 MnO 3 thick film can be obtained after drying for 4h.
对比例2Comparative example 2
本实施例提供了一种柔性铁磁金属氧化物La0.2Sr0.8MnO3厚膜,其中,铁磁金属氧化物La0.2Sr0.8MnO3厚膜的制备方法如下:This embodiment provides a flexible ferromagnetic metal oxide La 0.2 Sr 0.8 MnO 3 thick film, wherein the preparation method of the ferromagnetic metal oxide La 0.2 Sr 0.8 MnO 3 thick film is as follows:
S1:制备La0.2Sr0.8MnO3粉体。S1: Preparation of La 0.2 Sr 0.8 MnO 3 powder.
S2:制备La0.2Sr0.8MnO3厚膜。S2: Preparation of La 0.2 Sr 0.8 MnO 3 thick film.
根据本发明的一个示例,S1的具体操作如下:According to an example of the present invention, the specific operation of S1 is as follows:
S101:按照其化学通式,分别称取氧化镧(99.99%)、碳酸锶(99%)、二氧化锰(99.8%)、钛酸钡(99%)、二氧化钛粉末(100%),称量好之后按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中,设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S101: According to their general chemical formula, weigh lanthanum oxide (99.99%), strontium carbonate (99%), manganese dioxide (99.8%), barium titanate (99%), titanium dioxide powder (100%) respectively, weigh After it is ready, put it in the ball mill pot according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1, set the speed of the planetary ball mill to 400rpm, and the ball milling time is 24h. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S102:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。S102: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C.
S103:将干燥好的混合粉末进行预烧,将其放在氧化铝坩埚中,之后,置于管式炉中,通上氧气,设置温度为室温到850℃,保温4h,升温速率为3℃/min,降温速率为5℃/min,当降温到500℃时,随炉降温至室温。S103: Pre-fire the dried mixed powder, put it in an alumina crucible, then put it in a tube furnace, supply oxygen, set the temperature from room temperature to 850°C, keep it warm for 4 hours, and the heating rate is 3°C /min, the cooling rate is 5°C/min, when the temperature drops to 500°C, it will be cooled to room temperature with the furnace.
S104:将预烧好的La0.2Sr0.8MnO3粉末取出,利用玛瑙研钵将其捣碎,按照粉末:球磨介质(玛瑙球):酒精=1:1.5:1的质量比置于球磨罐中。设置行星式球磨机的转速为转速400rpm,其中球磨时间为24h。其中,所用的玛瑙球的直径为2-10mm,大小不等。S104: Take out the pre-burned La 0.2 Sr 0.8 MnO 3 powder, crush it with an agate mortar, and place it in a ball mill jar according to the mass ratio of powder: ball milling medium (agate ball): alcohol = 1:1.5:1 . The rotation speed of the planetary ball mill is set to 400 rpm, and the ball milling time is 24 hours. Wherein, the diameter of the used agate ball is 2-10mm, and the size varies.
S105:球磨好后,将其取出置于烘箱中干燥9h,烘干温度为80℃。干燥好后即可得到干燥的La0.2Sr0.8MnO3粉末。S105: After the balls are milled, take them out and place them in an oven to dry for 9 hours at a drying temperature of 80°C. After drying, dry La 0.2 Sr 0.8 MnO 3 powder can be obtained.
根据本发明的一个示例,S2的具体操作如下:According to an example of the present invention, the specific operation of S2 is as follows:
S201:将干燥好的粉末与有机溶剂甲苯-乙醇,分散剂三油酸甘油酯相混合,加入氧化锆球,放入三维混粉机中混粉,其中,粉体质量:氧化锆球质量:溶剂质量:分散剂质量=18:27:25:2。混粉时间为240min,得到了初步浆料S201: Mix the dried powder with the organic solvent toluene-ethanol and the dispersant triolein, add zirconia balls, and put them into a three-dimensional powder mixer to mix the powder, wherein, the powder mass: zirconia ball mass: Solvent mass: dispersant mass = 18:27:25:2. The powder mixing time is 240min, and the preliminary slurry is obtained
S202:向初步浆料中加入聚乙二醇,邻苯二甲酸二酯以及聚乙烯醇缩丁酯,其中质量比为,原始粉体:聚乙二醇:邻苯二甲酸二酯:聚乙烯醇缩丁酯=18:10:3:5。然后再混粉360min可得到最终浆料。S202: Add polyethylene glycol, phthalate diester and polyvinyl butylate to the preliminary slurry, wherein the mass ratio is, original powder: polyethylene glycol: phthalate diester: polyethylene Butyl alcohol = 18:10:3:5. Then mix the powder for 360 minutes to get the final slurry.
S203:利用真空除泡机,对浆料进行除泡处理,其时间为40min,之后将除泡好的浆料通过流延机流延成膜,调刀为200,流延速率为20cm/min,干燥12h后即可得到La0.2Sr0.8MnO3厚膜。S203: Use a vacuum defoaming machine to perform defoaming treatment on the slurry for 40 minutes, and then cast the defoamed slurry into a film through a casting machine with a knife adjustment of 200 and a casting rate of 20cm/min , La 0.2 Sr 0.8 MnO 3 thick film can be obtained after drying for 12h.
对比例3Comparative example 3
本对比例提供了一种铁磁金属氧化物La0.7Sr0.3MnO3陶瓷,其中,铁磁金属氧化物La0.7Sr0.3MnO3陶瓷的制备方法如下:This comparative example provides a kind of ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 ceramics, wherein, the preparation method of ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 ceramics is as follows:
S1:将上述实施例1中制备得到的La0.7Sr0.3MnO3厚膜切割成5*5mm大小,其特征在于所述基底为氧化锆板,可通过热压的方式将膜压在基底上,压力为80MPa,时间为40min,温度为65℃。S1: Cut the La 0.7 Sr 0.3 MnO 3 thick film prepared in the above example 1 into a size of 5*5mm, which is characterized in that the substrate is a zirconia plate, and the film can be pressed on the substrate by hot pressing, The pressure is 80MPa, the time is 40min, and the temperature is 65°C.
S2:将压制好的膜放在管式炉中,通氧,在600℃下保温300min,升温速率为3℃/min,降温速率为5℃/min。S2: Put the pressed film in a tube furnace, pass oxygen, and keep warm at 600°C for 300min, with a heating rate of 3°C/min and a cooling rate of 5°C/min.
S3:将排完胶的膜在通氧的情况下,在管式炉在进行烧结,设置从室温到1200℃,升温速度为3℃/min,保温时间为500min,降温速度为5℃/min,等降到500℃时,就随炉冷却到室温。即得到柔性铁磁金属氧化物La0.7Sr0.3MnO3陶瓷片。S3: Sinter the film with glue discharged in the tube furnace under the condition of oxygen flow, set from room temperature to 1200°C, the heating rate is 3°C/min, the holding time is 500min, and the cooling rate is 5°C/min , and when it drops to 500°C, it is cooled to room temperature with the furnace. That is, a flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 ceramic sheet is obtained.
图1为柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜在不同预烧温度下的XRD图,由图1可知,本发明制备的柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜是钙钛矿型氧化物且无明显杂质生成。Fig. 1 is the XRD pattern of flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film under different calcining temperatures, as can be seen from Fig. 1, the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film prepared by the present invention It is a perovskite oxide and has no obvious impurities.
图2为柔性铁磁金属氧化物La0.7Sr0.3MnO3在不同预烧温度下的厚膜与对比例La0.7Sr0.3MnO3陶瓷片的SEM图,由图2可知,柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜在不断提高预烧温度时,颗粒越来紧密排列,致密性好。在850℃下形貌最好,之后随着温度的升高,样品出现孔隙,致密性变差。而La0.7Sr0.3MnO3陶瓷的SEM则是由在850℃预烧下的厚膜烧结而成。可以看到陶瓷片致密性良好,由此也可体现出本发明制备的柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜具有良好的加工性能,以及良好的可塑性。Figure 2 is the SEM image of the thick film of the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 at different pre-firing temperatures and the comparative La 0.7 Sr 0.3 MnO 3 ceramic sheet. It can be seen from Figure 2 that the flexible ferromagnetic metal oxide When the La 0.7 Sr 0.3 MnO 3 thick film is continuously increased in the calcining temperature, the particles are arranged more and more closely, and the compactness is good. The morphology is the best at 850 °C, and then as the temperature increases, pores appear in the sample and the compactness becomes poor. The SEM of La 0.7 Sr 0.3 MnO 3 ceramics is formed by thick film sintering at 850 °C pre-fired. It can be seen that the compactness of the ceramic sheet is good, which also shows that the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film prepared by the present invention has good processability and good plasticity.
图3(a)~(e)为柔性铁磁金属氧化物La0.7Sr0.3MnO3在不同预烧温度下的厚膜与图3(f)对比例La0.7Sr0.3MnO3陶瓷片的能谱图,两者均未失真,代表数据具有可靠性。Figure 3(a)~(e) are the energy spectra of the thick film of flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 at different pre-firing temperatures and the comparative example La 0.7 Sr 0.3 MnO 3 ceramic sheet in Figure 3(f) Both are undistorted, which means the data is reliable.
如图4,图5所示,本发明制备的柔性铁磁金属氧化物LSMO厚膜有着很好的铁磁性,在一个较宽的温度范围内,其稳定性好。同时可以看到在常温下其表现出一个明显的磁滞曲线。对比例1,2不同组分下的LSMO厚膜,可以明显看到实施例3所制备的厚膜所表现出来的磁滞曲线相比与对比例1,2具有更好的铁磁性,而由实施例3所制备的陶瓷也表现出良好的铁磁性。从另一个方面来说,也体现本发明制备的铁磁金属氧化物La0.7Sr0.3MnO3厚膜的可加工性强,具有一定的柔性。由图5可知,实施例3具有更高的居里温度,说明了本发明制备的柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜有着更好的铁磁性,同时也体现了本发明制备的柔性铁磁金属氧化物La0.7Sr0.3MnO3厚膜很好的研究前景,为铁磁材料的制备与研究提供了一种新的思路。As shown in Fig. 4 and Fig. 5, the flexible ferromagnetic metal oxide LSMO thick film prepared by the present invention has good ferromagnetism, and its stability is good in a wide temperature range. At the same time, it can be seen that it exhibits an obvious hysteresis curve at room temperature. Comparing the LSMO thick films with different components in Example 1 and 2, it can be clearly seen that the hysteresis curve of the thick film prepared in Example 3 has better ferromagnetism than that of Comparative Examples 1 and 2, while The ceramic prepared in Example 3 also exhibits good ferromagnetism. From another aspect, it also shows that the ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film prepared by the present invention has strong processability and certain flexibility. It can be seen from Figure 5 that Example 3 has a higher Curie temperature, which shows that the flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film prepared by the present invention has better ferromagnetism, and also reflects the present invention. The flexible ferromagnetic metal oxide La 0.7 Sr 0.3 MnO 3 thick film has a good research prospect, which provides a new idea for the preparation and research of ferromagnetic materials.
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are only illustrative rather than restrictive to the present invention. Those skilled in the art understand that many changes, modifications, and even equivalents can be made within the spirit and scope defined by the claims of the present invention, but all will fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211310300.0A CN115557789A (en) | 2022-10-25 | 2022-10-25 | Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211310300.0A CN115557789A (en) | 2022-10-25 | 2022-10-25 | Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115557789A true CN115557789A (en) | 2023-01-03 |
Family
ID=84767445
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211310300.0A Pending CN115557789A (en) | 2022-10-25 | 2022-10-25 | Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115557789A (en) |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040021397A1 (en) * | 2002-02-04 | 2004-02-05 | Oakland University | Magnetoelectric effects of magnetostrictive and piezoelectric layered composites |
| CN1872794A (en) * | 2006-06-27 | 2006-12-06 | 哈尔滨工业大学 | Improved coating method for preparing membrane of oxide ceramics |
| JP2009164496A (en) * | 2008-01-10 | 2009-07-23 | Nagoya Institute Of Technology | Conductive material, thick film resistor paste and manufacturing method thereof |
| CN101734915A (en) * | 2008-11-25 | 2010-06-16 | 北京有色金属研究总院 | Lanthanum strontium manganate (LSMO) -based intelligent thermal-radiating material and preparation method thereof |
| CN102509763A (en) * | 2011-11-02 | 2012-06-20 | 西南交通大学 | A method for preparing high-temperature superconducting coating conductor LaSrMnO3 buffer layer film |
| CN105732034A (en) * | 2016-02-22 | 2016-07-06 | 电子科技大学 | Ultra-low-specific-resistance low-B-value NTC thermosensitive resistance material and preparation method thereof |
| CN106242567A (en) * | 2016-07-13 | 2016-12-21 | 西安科技大学 | A kind of lanthanum molybdate-based thick-film material of high oxide ion conduction and preparation method thereof |
| CN107141021A (en) * | 2016-03-01 | 2017-09-08 | 中国人民解放军军械工程学院 | A kind of X-band resistive film type high temperature Meta Materials wave-absorber |
| CN109273255A (en) * | 2018-09-18 | 2019-01-25 | 陕西科技大学 | High ferromagnetic LSMO film and preparation method thereof |
| CN110981527A (en) * | 2019-11-28 | 2020-04-10 | 中国矿业大学(北京) | A flexible ceramic current collector film green body |
| CN113061313A (en) * | 2021-03-31 | 2021-07-02 | 华中科技大学 | A kind of flexible perovskite scintillator thick film and preparation method thereof |
| CN113150554A (en) * | 2021-05-25 | 2021-07-23 | 南京邮电大学 | PDMS-based flexible energy storage composite membrane and preparation method thereof |
-
2022
- 2022-10-25 CN CN202211310300.0A patent/CN115557789A/en active Pending
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040021397A1 (en) * | 2002-02-04 | 2004-02-05 | Oakland University | Magnetoelectric effects of magnetostrictive and piezoelectric layered composites |
| CN1872794A (en) * | 2006-06-27 | 2006-12-06 | 哈尔滨工业大学 | Improved coating method for preparing membrane of oxide ceramics |
| JP2009164496A (en) * | 2008-01-10 | 2009-07-23 | Nagoya Institute Of Technology | Conductive material, thick film resistor paste and manufacturing method thereof |
| CN101734915A (en) * | 2008-11-25 | 2010-06-16 | 北京有色金属研究总院 | Lanthanum strontium manganate (LSMO) -based intelligent thermal-radiating material and preparation method thereof |
| CN102509763A (en) * | 2011-11-02 | 2012-06-20 | 西南交通大学 | A method for preparing high-temperature superconducting coating conductor LaSrMnO3 buffer layer film |
| CN105732034A (en) * | 2016-02-22 | 2016-07-06 | 电子科技大学 | Ultra-low-specific-resistance low-B-value NTC thermosensitive resistance material and preparation method thereof |
| CN107141021A (en) * | 2016-03-01 | 2017-09-08 | 中国人民解放军军械工程学院 | A kind of X-band resistive film type high temperature Meta Materials wave-absorber |
| CN106242567A (en) * | 2016-07-13 | 2016-12-21 | 西安科技大学 | A kind of lanthanum molybdate-based thick-film material of high oxide ion conduction and preparation method thereof |
| CN109273255A (en) * | 2018-09-18 | 2019-01-25 | 陕西科技大学 | High ferromagnetic LSMO film and preparation method thereof |
| CN110981527A (en) * | 2019-11-28 | 2020-04-10 | 中国矿业大学(北京) | A flexible ceramic current collector film green body |
| CN113061313A (en) * | 2021-03-31 | 2021-07-02 | 华中科技大学 | A kind of flexible perovskite scintillator thick film and preparation method thereof |
| CN113150554A (en) * | 2021-05-25 | 2021-07-23 | 南京邮电大学 | PDMS-based flexible energy storage composite membrane and preparation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| 黄宇阳: "掺杂钙钛矿锰氧化物La1-xAExMnO3(AE=Ca,Sr,Pb)的微结构、磁性及电输运性能研究" * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114249593B (en) | High-entropy perovskite structure cathode material and preparation method and application thereof | |
| CN110540423A (en) | Sodium bismuth titanate-based ceramics with high energy storage density and power density, preparation method and application | |
| CN107200576A (en) | A kind of high-k europium and niobium are co-doped with titanium dioxide ceramic and preparation method thereof | |
| CN108178626A (en) | A kind of low-loss high-k X9R ceramic capacitor dielectric materials and preparation method thereof | |
| CN111320468A (en) | Preparation method of doped bismuth ferrite-barium titanate lead-free piezoelectric ceramic material | |
| CN116425537B (en) | Zr-doped strontium barium gadolinium niobate-zirconium dioxide composite ceramic material and preparation method thereof | |
| CN103708828A (en) | Preparation method of bismuth sodium titanate-barium titanate lead-free composite piezoelectric thick film | |
| CN111747740B (en) | Samarium ion doped lead zirconate titanate based high-performance piezoelectric ceramic and preparation method thereof | |
| CN114478006A (en) | A KNNS-BNZ+CuO piezoelectric ceramic material and its preparation method and application | |
| CN116063074B (en) | Ceramic material with high energy storage density and preparation method and use thereof | |
| CN116477944A (en) | Potassium sodium niobate-based leadless piezoelectric ceramic and preparation method and application thereof | |
| CN109650873B (en) | A kind of preparation method of Ca-W mixed doped Bi2O3 solid electrolyte | |
| CN114591082A (en) | A kind of PZT-PNN-PSN-PMN piezoelectric ceramic and preparation method thereof | |
| CN112876240B (en) | Ceramic material and preparation method and application thereof | |
| CN103044027B (en) | La2Ti2O7:Mn<4+> multiferroic ceramic and preparation method thereof | |
| CN115557789A (en) | Preparation method and application of a flexible transition metal oxide lanthanum strontium manganese iron oxide magnetic thick film | |
| CN118754659A (en) | A KNN-based lead-free piezoelectric ceramic material | |
| CN100347123C (en) | High dielectric contant flexible piezoelectric ceramic material and preparation process thereof | |
| CN116003106B (en) | High-dielectric pure-phase high-entropy oxide material and preparation method thereof | |
| CN112374888A (en) | Method for improving energy storage property of potassium-sodium niobate-based lead-free ceramic by water-based coating method | |
| CN103724005B (en) | A kind of holmium, manganese possessing room temperature multiferroic mixes bismuth ferrite pottery and preparation method thereof altogether | |
| CN102509601B (en) | Preparation method of barium titanate PTC (positive temperature coefficient) ceramic | |
| CN112521144B (en) | Low-temperature giant dielectric antiferromagnetic ceramic material and preparation and application thereof | |
| CN107892572A (en) | A kind of method for preparing tungsten bronze structure SCNN leadless piezoelectric ceramics | |
| CN107253859A (en) | Luminous ferroelectric ceramic material of the Eu Bi codopes tungsten bronze structure of photo and thermal stability occurred frequently and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230103 |
|
| RJ01 | Rejection of invention patent application after publication |