CN115597488A - Pose detection method for mechanical equipment, pose detection system and actuator - Google Patents
Pose detection method for mechanical equipment, pose detection system and actuator Download PDFInfo
- Publication number
- CN115597488A CN115597488A CN202211303360.XA CN202211303360A CN115597488A CN 115597488 A CN115597488 A CN 115597488A CN 202211303360 A CN202211303360 A CN 202211303360A CN 115597488 A CN115597488 A CN 115597488A
- Authority
- CN
- China
- Prior art keywords
- light
- longitudinal
- distance
- detection
- pose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及机械设备技术领域,具体涉及一种机械设备、位姿检测系统和执行机构的位姿检测方法。The invention relates to the technical field of mechanical equipment, in particular to a mechanical equipment, a posture detection system and a posture detection method of an actuator.
背景技术Background technique
在工业生产和加工制造技术中,存在大量执行机构相对于平面作业的情况,例如,平板焊接、平板切割以及机械手平面抓取、机械手平面搬运等。此时,需要获得执行机构相对于平面的位姿,以便实现对执行机构的自动控制。In industrial production and processing and manufacturing technology, there are a large number of situations where actuators operate relative to planes, such as flat plate welding, flat plate cutting, and manipulator plane grabbing and manipulator plane handling. At this time, it is necessary to obtain the pose of the actuator relative to the plane in order to realize the automatic control of the actuator.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。The present invention aims to solve one of the technical problems in the related art at least to a certain extent.
为此,本发明的实施例提出一种位姿检测系统,以实现对执行机构位姿的自动检测。For this reason, an embodiment of the present invention proposes a pose detection system to realize automatic detection of the pose of the actuator.
本发明实施例的位姿检测系统包括激光发射器、检测相机和图像处理系统,所述激光发射器能够向检测平面发射出网格形光斑,所述网格形光斑包括m个横向光斑和n个纵向光斑,m个所述横向光斑和n个所述纵向光斑交错布置形成(m-1)(n-1)个矩形光格,其中,m和n均为大于等于2的正整数;所述检测相机用于获取所述网格形光斑照射在检测平面上的光斑图像;所述图像处理系统与所述检测相机信号连接,以根据所述光斑图像得到所述激光发射器的位姿;其中,所述激光发射器能够相对所述检测相机移动。The pose detection system of the embodiment of the present invention includes a laser emitter, a detection camera and an image processing system. The laser emitter can emit grid-shaped light spots to the detection plane, and the grid-shaped light spots include m transverse light spots and n The vertical light spots, the m horizontal light spots and the n vertical light spots are staggered to form (m-1)(n-1) rectangular light grids, wherein m and n are both positive integers greater than or equal to 2; The detection camera is used to obtain the spot image of the grid-shaped spot irradiated on the detection plane; the image processing system is connected to the detection camera signal to obtain the pose of the laser emitter according to the spot image; Wherein, the laser emitter can move relative to the detection camera.
在一些实施例中,所述检测相机包括镜头,所述镜头的物侧设有滤光片,所述滤光片供与所述激光发射器发射的波长相等的光线通过。In some embodiments, the detection camera includes a lens, and an optical filter is provided on the object side of the lens, and the optical filter allows light having a wavelength equal to that emitted by the laser emitter to pass through.
在一些实施例中,所述位姿检测系统还包括防护壳体,所述防护壳体具有防护腔,所述检测相机设在所述防护腔内。In some embodiments, the posture detection system further includes a protective casing, the protective casing has a protective cavity, and the detection camera is arranged in the protective cavity.
在一些实施例中,所述防护壳体包括金属罩体和透光板,所述金属罩体具有透光孔,所述透光板封堵所述透光孔,所述金属罩体和所述透光板形成封闭的防护腔,所述检测相机对应所述透光板设置。In some embodiments, the protective housing includes a metal cover and a light-transmitting plate, the metal cover has a light-transmitting hole, the light-transmitting plate blocks the light-transmitting hole, the metal cover and the light-transmitting plate The light-transmitting plate forms a closed protective cavity, and the detection camera is arranged corresponding to the light-transmitting plate.
本发明的实施例还提供一种具有上述位姿检测系统的机械设备。An embodiment of the present invention also provides a mechanical device having the above pose detection system.
本发明实施例的机械设备包括机架和上述任一实施例所述的位姿检测系统,所述机架上设有执行机构,所述执行机构相对所述机架可移动;所述激光发射器设在所述执行机构上,所述检测相机设在所述机架上。The mechanical equipment in the embodiment of the present invention includes a frame and the pose detection system described in any of the above embodiments, the frame is provided with an actuator, and the actuator is movable relative to the frame; the laser emits The detector is arranged on the actuator, and the detection camera is arranged on the frame.
本发明的实施例还提供一种具有执行机构的位姿检测方法。The embodiment of the present invention also provides a pose detection method with an actuator.
本发明实施例的执行机构的位姿检测方法包括:The pose detection method of the executive mechanism of the embodiment of the present invention comprises:
利用所述激光发射器向检测平面发射网格形光斑;using the laser emitter to emit grid-shaped light spots to the detection plane;
利用所述检测相机获取所述检测平面上的光斑图像;Using the detection camera to acquire a spot image on the detection plane;
利用所述图像处理系统对所述光斑图像进行处理,得到所述执行机构的位姿;Using the image processing system to process the spot image to obtain the pose of the actuator;
其中,所述执行机构的位姿包括所述执行机构与所述检测平面之间的距离、所述执行机构与所述检测平面之间的夹角。Wherein, the pose of the actuator includes the distance between the actuator and the detection plane, and the angle between the actuator and the detection plane.
在一些实施例中,得到所述执行机构的位姿的步骤,包括:In some embodiments, the step of obtaining the pose of the actuator includes:
预先对所述激光发射器进行标定,并将标定数据存储在数据库中,其中,对所述激光发射器进行标定包括:所述激光发射器发射出的网格形光斑照射在标定平面上,使得所述标定平面上呈现标定光斑,获取包括标定光斑的图像信息、所述激光发射器和标定平面之间的距离、所述激光发射器的激光发射方向与所述标定平面之间的夹角的所述标定数据;The laser transmitter is calibrated in advance, and the calibration data is stored in the database, wherein the calibration of the laser transmitter includes: the grid-shaped light spots emitted by the laser transmitter are irradiated on the calibration plane, so that A calibration spot appears on the calibration plane, and the image information including the calibration spot, the distance between the laser emitter and the calibration plane, and the angle between the laser emission direction of the laser transmitter and the calibration plane are acquired. said calibration data;
对所述光斑图像进行处理,获取所述光斑图像的图像信息;Processing the spot image to obtain image information of the spot image;
将获取的所述光斑图像的图像信息与所述数据库中的所述标定数据进行比对,得到所述激光发射器的位姿。Comparing the acquired image information of the spot image with the calibration data in the database to obtain the pose of the laser emitter.
在一些实施例中,所述标定光斑包括由m个所述横向光斑形成的m个横向光形以及由n个所述纵向光斑形成的n个纵向光形,获取所述标定数据包括:In some embodiments, the calibration light spots include m horizontal light shapes formed by m horizontal light spots and n vertical light shapes formed by n vertical light spots, and obtaining the calibration data includes:
获取至少一个横向间距和至少一个纵向间距,其中,所述横向间距为任意两个所述纵向光形之间的间距,所述纵向间距为任意两个所述横向光形之间的间距;Acquiring at least one horizontal distance and at least one vertical distance, wherein the horizontal distance is the distance between any two of the vertical light shapes, and the vertical distance is the distance between any two of the horizontal light shapes;
所述光斑图像包括由m个所述横向光斑形成的m个横向光条以及由n个所述纵向光斑形成的n个纵向光条,获取所述光斑图像的图像信息包括:The spot image includes m horizontal light stripes formed by m horizontal light spots and n vertical light stripes formed by n vertical light spots, and acquiring image information of the spot image includes:
获取至少一个横向距离和至少一个纵向距离,其中,所述横向距离为任意两个所述纵向光条之间的距离,所述纵向距离为任意两个所述横向光条之间的距离;Acquiring at least one horizontal distance and at least one vertical distance, wherein the horizontal distance is the distance between any two vertical light bars, and the vertical distance is the distance between any two horizontal light bars;
其中,所述两个所述纵向光形以及所述两个所述纵向光条均由相同的两个所述纵向光斑形成,所述两个所述横向光形以及所述两个所述横向光条均由相同的两个所述横向光斑形成。Wherein, the two vertical light shapes and the two vertical light bars are formed by the same two vertical light spots, and the two horizontal light shapes and the two horizontal light bars are formed by the same two vertical light spots. The light bars are all formed by the same two transverse light spots.
在一些实施例中,m和n均为大于等于3的正整数;In some embodiments, both m and n are positive integers greater than or equal to 3;
获取所述标定数据包括:获取至少两个所述横向间距和至少两个所述纵向间距,获取所述至少两个所述横向间距的比值以及所述至少两个所述纵向间距的比值;Acquiring the calibration data includes: obtaining at least two of the horizontal intervals and at least two of the longitudinal intervals, obtaining a ratio of the at least two lateral intervals and a ratio of the at least two longitudinal intervals;
获取所述光斑图像的图像信息包括:Acquiring the image information of the spot image includes:
获取至少两个横向距离和至少两个纵向距离,获取所述至少两个所述横向距离的比值以及所述至少两个所述纵向距离的比值。Obtaining at least two lateral distances and at least two longitudinal distances, obtaining a ratio of the at least two lateral distances and a ratio of the at least two longitudinal distances.
在一些实施例中,所述至少两个横向间距包括位于最外侧的所述纵向光形与其余至少一个所述纵向光形之间的间距,以及位于中部的所述纵向光形与其余至少一个所述纵向光形之间的间距;所述至少两个纵向间距包括位于最外侧的所述横向光形与其余至少一个所述横向光形之间的间距,以及位于中部的所述横向光形与其余至少一个所述横向光形之间的间距;In some embodiments, the at least two transverse distances include the distance between the outermost longitudinal light shape and at least one of the remaining longitudinal light shapes, and the distance between the middle longitudinal light shape and the remaining at least one vertical light shape. The distance between the longitudinal light shapes; the at least two vertical distances include the distance between the outermost horizontal light shape and the remaining at least one horizontal light shape, and the middle horizontal light shape spacing from the remaining at least one of said transverse light shapes;
所述至少两个横向距离包括位于最外侧的所述纵向光条与其余至少一个所述纵向光条之间的距离,以及位于中部的所述纵向光条与其余至少一个所述纵向光条之间的距离;所述至少两个纵向距离包括位于最外侧的所述横向光条与其余至少一个所述横向光条之间的距离,以及位于中部的所述横向光条与其余至少一个所述横向光条之间的距离。The at least two transverse distances include the distance between the outermost longitudinal light bar and the remaining at least one longitudinal light bar, and the distance between the middle longitudinal light bar and the remaining at least one longitudinal light bar. The distance between; the at least two longitudinal distances include the distance between the outermost horizontal light bar and the remaining at least one horizontal light bar, and the distance between the middle horizontal light bar and the remaining at least one horizontal light bar Distance between horizontal light bars.
本发明实施例的机械设备进行作业时,可以利用激光发射器向检测平面发射网格形光斑、利用检测相机获取检测平面上的光斑图像;利用图像处理系统对获取的光斑图像进行处理,便可以得到执行机构的位姿,以便实现执行机构位姿的自动调整,利于提高机械设备的自动化。因此,本发明实施例的机械设备具有自动化程度高等优点。When the mechanical equipment in the embodiment of the present invention is working, the laser emitter can be used to emit grid-shaped light spots to the detection plane, and the detection camera can be used to obtain the light spot images on the detection plane; the image processing system can be used to process the acquired light spot images, and then the The pose of the actuator is obtained so as to realize the automatic adjustment of the pose of the actuator, which is beneficial to improve the automation of mechanical equipment. Therefore, the mechanical equipment of the embodiment of the present invention has the advantages of a high degree of automation.
附图说明Description of drawings
图1是本发明一个实施例的机械设备的局部结构示意图。Fig. 1 is a schematic diagram of a partial structure of a mechanical device according to an embodiment of the present invention.
图2是图1中检测相机的第一视角的结构示意图。FIG. 2 is a schematic structural diagram of a first viewing angle of the detection camera in FIG. 1 .
图3是图1中检测相机的第二视角的结构示意图。FIG. 3 is a schematic structural diagram of a second viewing angle of the detection camera in FIG. 1 .
图4是本发明一个实施例的执行机构的位姿检测方法的流程图。Fig. 4 is a flow chart of a pose detection method of an actuator according to an embodiment of the present invention.
图5是本发明一个实施例的机械设备处于第一使用状态时执行机构、检测相机的视场和检测平面的局部结构示意图。Fig. 5 is a partial structural schematic diagram of the actuator, the field of view of the detection camera and the detection plane when the mechanical equipment is in the first use state according to an embodiment of the present invention.
图6是图5中光斑图像的示意图。FIG. 6 is a schematic diagram of the spot image in FIG. 5 .
图7是本发明一个实施例的机械设备处于第二使用状态时执行机构、检测相机的视场和检测平面的局部结构示意图。Fig. 7 is a partial structural schematic diagram of the actuator, the field of view of the detection camera and the detection plane when the mechanical equipment is in the second use state according to an embodiment of the present invention.
图8是图7中光斑图像的示意图。FIG. 8 is a schematic diagram of the spot image in FIG. 7 .
图9是本发明一个实施例的机械设备处于第三使用状态时执行机构、检测相机的视场和检测平面的局部结构示意图。Fig. 9 is a partial structural schematic diagram of the actuator, the field of view of the detection camera and the detection plane when the mechanical equipment is in the third use state according to an embodiment of the present invention.
图10是图9中光斑图像的示意图。FIG. 10 is a schematic diagram of the spot image in FIG. 9 .
图11是本发明一个实施例的机械设备处于第四使用状态时执行机构、检测相机的视场和检测平面的局部结构示意图。Fig. 11 is a partial structural schematic diagram of the actuator, the field of view of the detection camera and the detection plane when the mechanical equipment is in the fourth use state according to an embodiment of the present invention.
图12是图11中光斑图像的示意图。FIG. 12 is a schematic diagram of the spot image in FIG. 11 .
附图标记:Reference signs:
机械设备100;
机架1;
执行机构2;
激光发射器3;
检测相机4;防护壳体401;金属罩体4011;透光板4012;镜头402;滤光片403;
检测平面10;
视场20;field of
光斑图像30。Spot image30.
具体实施方式detailed description
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the invention are described in detail below, examples of which are illustrated in the accompanying drawings. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
如图1至图12所示,本发明实施例的机械设备100包括机架1和位姿检测系统,机架1上设有执行机构2,执行机构2相对机架1可移动,以便执行机构2相对检测平面10移动。位姿检测系统包括激光发射器3、检测相机4和图像处理系统(图中未示出),激光发射器3能够向检测平面10发射出网格形光斑,网格形光斑包括m个横向光斑和n个纵向光斑,m个横向光斑和n个纵向光斑交错布置形成(m-1)(n-1)个矩形光格,其中,m和n均为大于等于2的正整数。检测相机4用于获取网格形光斑照射在检测平面10上的光斑图像30,图像处理系统与检测相机4信号连接,以根据光斑图像30得到激光发射器3的位姿。其中,激光发射器3设在执行机构2上,检测相机4设在机架1上。As shown in Figures 1 to 12, the
本领域技术人员已知的是,激光发射器3发射出的网格形光斑固定的,当激光发射器3的激光发射方向垂直于检测平面10,且激光发射器3与检测平面10之间的距离变远时,激光发射器3发射出的网格形光斑照射在检测平面10上时,由网格形光斑中的矩形光格形成的矩形框光斑的尺寸会变大;反之,当激光发射器3与检测平面10之间的距离变近时,激光发射器3发射出的网格形光斑照射在检测平面10上时,由网格形光斑中的矩形光格形成的矩形框光斑的尺寸会变小。Those skilled in the art know that the grid-shaped spot emitted by the
当激光发射器3的激光发射方向与检测平面10之间的夹角为锐角,且激光发射器3与检测平面10之间的夹角发生变化时,激光发射器3发射出的网格形光斑照射在检测平面10上时,由网格形光斑中的矩形光格形成的矩形框光斑的形状和尺寸都会发生变化,例如,激光发射器3发射出的网格形光斑中的矩形光格为正方形光格,则检测平面10上由矩形光格形成的矩形框光斑为包括长边和短边的长方形。并且,当激光发射器3与检测平面10之间的距离不变,激光发射器3的激光发射方向与检测平面10之间的夹角变化时,上述长方形的长边和短边中至少一个会发生变化。When the angle between the laser emitting direction of the
此外,可以理解的是,同一激光发射器3以与检测平面10之间的距离相等,且激光发射器3的激光发射方向与检测平面10之间的夹角相同的情况下,多次向检测平面10照射时,检测平面10上每次形成的光斑的形状和尺寸均相同。其中,光斑的尺寸包括由网格形光斑中的矩形光格照射在检测平面10上形成的矩形框光斑的面积和边长。其中,光斑的形状和尺寸即为光斑的图像信息。In addition, it can be understood that when the distance between the
综上所述,激光发射器3与检测平面10之间的距离、激光发射器3的激光发射方向与检测平面10之间的夹角、检测平面10上形成的光斑的形状以及检测平面10上形成的光斑的尺寸四者存在唯一且确定的对应关系。为方便描述,下面以激光发射器3与检测平面10之间的距离为标定距离、以激光发射器3的激光发射方向与检测平面10之间的夹角为标定夹角、以检测平面10上形成的光斑的形状为标定形状、以检测平面10上形成的光斑的尺寸为标定尺寸,则标定距离、标定夹角、标定形状和标定尺寸存在唯一且确定的对应关系。即,当标定距离和标定夹角确定时,标定形状和标定尺寸也是唯一确定的;反之,当标定形状和标定尺寸确定时,标定距离和标定夹角也是唯一确定的。In summary, the distance between the
为方便描述,以在检测平面10上形成的光斑的形状为检测形状、检测平面10上形成的光斑的尺寸为检测尺寸、激光发射器3与检测平面10之间的距离为检测距离、激光发射器3的激光发射方向与检测平面10之间的夹角为检测夹角。其中,检测相机4获取的光斑图像30即为检测平面10上形成的光斑的图像,检测形状和检测尺寸即为光斑图像30的图像信息。在已知标定距离、标定夹角、标定形状和标定尺寸的对应关系的情况下,若在机械设备100工作的现场,得到检测形状和检测尺寸,便可以得到检测距离和检测夹角。其中,标定距离、标定夹角、标定形状和标定尺寸的对应关系形成数据库,该数据库包括多组数据组,每组数据组均包括标定距离、标定夹角、标定形状和标定尺寸,不同数据组之间标定距离和标定夹角中的至少一个不相同。For convenience of description, the shape of the light spot formed on the
具体地,将该检测形状、检测尺寸与上述数据库进行比对,在数据库上找到标定形状等于该检测形状且标定尺寸等于该检测尺寸的数据组,则该数据组中对应的标定距离即为检测距离、标定夹角即为检测夹角。从而在使用机械设备100时,只需要获得检测形状和检测尺寸,便可以得到激光发射器3与检测平面10之间的距离,以及激光发射器3的激光发射方向与检测平面10之间的夹角。Specifically, compare the detected shape and detected size with the above-mentioned database, and find a data group whose calibration shape is equal to the detected shape and whose calibration size is equal to the detection size on the database, then the corresponding calibration distance in the data group is the detection distance. The distance and the calibration angle are the detection angle. Therefore, when using the
由于激光发射器3固定在执行机构2上,使得激光发射器3与执行机构2之间的相对位置固定,激光发射器3的位姿随执行机构2的位姿变化而变化,可以根据得到激光发射器3与检测平面10之间的距离,以及激光发射器3的激光发射方向与检测平面10之间的夹角,得到执行机构2的位姿。Since the
可以预先利用激光发射器3以不同距离、不同角度向标定平面(检测平面10或其他表面为平面的表面)照射,并获得每次照射时标定平面上形成的光斑的图像信息(包括形状和尺寸),从而得到激光发射器3与标定平面之间的距离、激光发射器3的激光发射方向与标定平面之间的夹角、标定平面上形成的光斑的形状以及标定平面上形成的光斑的尺寸的多组数据组,并将该数据组作为标定数据存储在数据库中。在实际使用机械设备100时,利用激光发射器3向检测平面10照射,并利用检测相机4获取检测平面10上的光斑图像30,通过将获取的光斑图像30的图像信息与数据库中的数据组进行比对,便可以得到此时激光发射器3与检测平面10之间的距离以及激光发射器3的激光发射方向与检测平面10之间的夹角。根据激光发射器3与执行机构2的位置关系,可以进一步通过计算得到执行机构2与检测平面10之间的距离,以及执行机构2与检测平面10之间的夹角,即得到执行机构2的位姿。The
本发明实施例的机械设备100进行作业时,可以利用激光发射器3向检测平面10发射网格形光斑、利用检测相机4获取检测平面10上的光斑图像30;利用图像处理系统对获取的光斑图像30进行处理,便可以得到执行机构2的位姿,以便实现执行机构2位姿的自动调整,利于提高机械设备100的自动化。When the
因此,本发明实施例的机械设备100具有自动化程度高等优点。Therefore, the
可选地,机械设备100可以为锚杆钻车,机架1可以为锚杆钻车的车身,执行机构2可以为锚杆钻车的锚杆钻机,例如,执行机构2包括钻架和钻箱,钻箱可移动地设在钻架上,激光发射器3的激光发射方向平行于钻箱的移动方向。检测相机4的光轴垂直于煤壁,煤壁形成上述检测平面10。其中,钻架通过机械臂与钻车的车身相连,钻箱用于安装锚杆或锚索。Optionally, the
例如,钻架上设有滑轨,钻箱上设有滑块,滑块沿滑轨的延伸方向可移动,利用滑块与滑轨的配合,使得钻箱沿预设方向相对钻架移动,激光发射器3的激光发射方向平行于滑轨的延伸方向。当激光发射器3向检测平面发射网格形光斑时,检测相机4的光轴垂直于煤壁,以便检测相机4获取网格形光斑照射在煤壁上的光斑图像30。For example, a slide rail is provided on the drill frame, and a slide block is provided on the drill box, and the slide block is movable along the extending direction of the slide rail, and the drill box moves relative to the drill frame along a preset direction by utilizing the cooperation between the slide block and the slide rail. The laser emitting direction of the
通过将激光发射器3的激光发射方向平行于钻箱的移动方向设置,使得激光发射器3的激光发射方向与煤壁之间的夹角,等于锚杆钻机与煤壁之间的夹角,由此,得到激光发射器3的激光发射方向与煤壁之间的夹角,即得到了锚杆钻机与煤壁之间的夹角。通过将检测相机4的光轴垂直于煤壁,使得利用检测相机4获取的光斑图像30与煤壁上形成的光斑一致。由此,图像处理系统的处理过程更简单,可以缩短处理时间,有利于进一步提高锚杆钻机的位姿调整效率,以及提高锚杆钻机的位姿调整精度。By setting the laser emission direction of the
可选地,执行机构2可以为机械手。Optionally, the
可选地,激光发射器3与执行机构2可以粘接或通过紧固件相连,该紧固件可以是螺栓、螺钉等。Optionally, the
在一些实施例中,如图2和图3所示,位姿检测系统还包括防护壳体401,防护壳体401具有防护腔,检测相机4设在防护腔内。In some embodiments, as shown in FIG. 2 and FIG. 3 , the pose detection system further includes a
其中,防护壳体401与机架1可以焊接或通过紧固件相连,检测相机4与防护壳体401之间可以通过粘接或紧固件相连,上述紧固件可以是螺栓、螺钉等。Wherein, the
通过将检测相机4设在防护壳体401形成的防护腔内,可以防止外界粉尘及液体等影响检测相机4的工作。By arranging the
可选地,防护壳体401包括金属罩体4011和透光板4012,金属罩体4011具有供光线进入检测相机4的透光孔。检测相机4与金属罩体4011相连,透光板4012封堵透光孔,金属罩体4011和透光板4012限定出封闭的防护腔。其中,透光板4012可以为亚克力材质、钢化玻璃材质等其他透光材质。Optionally, the
通过将防护壳体401进行上述设计,使得防护腔为封闭的防护腔,可以更有效地防止外界粉尘及液体等影响检测相机4的工作。Through the above-mentioned design of the
可选地,金属罩体4011上设有过线孔,过线孔供检测相机4的电源线和信号线穿过。Optionally, a wire hole is provided on the
可选地,金属罩体4011的材质为金属材质。Optionally, the
可选地,如图2和图3所示,检测相机4包括镜头402,镜头402的物侧设有滤光片403,滤光片403供与激光发射器3发射的波长相等的光线通过。Optionally, as shown in FIG. 2 and FIG. 3 , the
通过在镜头402的物侧设置滤光片403,通过滤光片403可以过滤干扰光线,只有激光发射器3发射的光线才可以通过滤光片403、进入检测相机4的镜头402,从而使得利用检测相机4获取的光斑图像30精度更高,有利于提高位姿检测系统的位姿调整精度。By setting the
可选地,滤光片403外部套设有连接筒,滤光片403通过连接筒与检测相机4的镜头402相连。Optionally, the
如图4至图12所示,本发明实施例执行机构的位姿检测方法包括:As shown in Figures 4 to 12, the pose detection method of the actuator in the embodiment of the present invention includes:
S01,利用激光发射器3向检测平面10发射网格形光斑;S01, using the
S02,利用检测相机4获取检测平面10上的光斑图像30;S02, using the
S03,利用图像处理系统对光斑图像30进行处理,得到激光发射器3的位姿;S03, using the image processing system to process the
其中,激光发射器3的位姿包括激光发射器3与检测平面10之间的距离、激光发射器3与检测平面10之间的夹角。Wherein, the pose of the
由此,本发明实施例执行机构的位姿检测方法,可以实现执行机构2位姿的自动检测,从而便于实现执行机构2的自动化控制。Thus, the method for detecting the pose of the actuator in the embodiment of the present invention can realize automatic detection of the pose of the
可选地,激光发射器3的位姿与执行机构2的位姿相同。Optionally, the pose of the
在一些实施例中,得到激光发射器3的位姿的步骤,包括:In some embodiments, the step of obtaining the pose of the
预先对激光发射器3进行标定,并将标定数据存储在数据库中,其中,对激光发射器3进行标定包括:激光发射器3发射出的网格形光斑照射在标定平面上,使得标定平面上呈现标定光斑,获取包括标定光斑的图像信息、激光发射器和标定平面之间的距离、激光发射器的激光发射方向与标定平面之间的夹角的标定数据;Calibrate the
对光斑图像30进行处理,获取光斑图像30的图像信息;Processing the
将获取的光斑图像30的图像信息与数据库中的标定数据进行比对,得到激光发射器3的位姿;Comparing the image information of the acquired
根据激光发射器3和执行机构2的相对位置,得到执行机构2的位姿。According to the relative position of the
通过预先对激光发射器3进行标定,得到包括标定数据的数据库,在实际使用时将获取的光斑图像30的图像信息与数据库中的标定数据进行比对,方便得到激光发射器3的位姿。By pre-calibrating the
其中,标定光斑包括由m个横向光斑形成的m个横向光形以及由n个纵向光斑形成的n个纵向光形。光斑图像30包括由m个横向光斑形成的m个横向光条3001以及由n个纵向光斑形成的n个纵向光条3002。Wherein, the calibration light spots include m horizontal light shapes formed by m horizontal light spots and n vertical light shapes formed by n vertical light spots. The
获取标定数据包括:获取至少一个横向间距和至少一个纵向间距,其中,横向间距为任意“两个纵向光形”之间的间距,纵向间距为任意“两个横向光形”之间的间距。Acquiring the calibration data includes: obtaining at least one horizontal distance and at least one vertical distance, wherein the horizontal distance is the distance between any "two vertical light shapes", and the vertical distance is the distance between any "two horizontal light shapes".
获取光斑图像30的图像信息包括:获取至少一个横向距离和至少一个纵向距离,其中,横向距离为任意“两个纵向光条3002”之间的距离,纵向距离为任意“两个横向光条3001”之间的距离。Obtaining the image information of the
其中,上述“两个纵向光形”以及上述“两个纵向光条3002”均由相同的两个纵向光斑形成,上述“两个横向光形”以及上述“两个横向光条3001”均由相同的而两个横向光斑形成。Wherein, the above-mentioned "two vertical light shapes" and the above-mentioned "two
可以理解的是,当m和n均等于2时,横向间距即为相邻两个纵向光形之间的间距;纵向间距即为相邻两个横向光形之间的间距;横向距离即为相邻两个纵向光条3002之间的距离;纵向距离即为相邻两个横向光条3001之间的距离。上两个纵向光形、两个纵向光条3002均由相同的两个纵向光斑形成,上两个横向光形、两个横向光条3001均由相同的两个横向光斑形成。It can be understood that when m and n are both equal to 2, the horizontal distance is the distance between two adjacent vertical light shapes; the vertical distance is the distance between two adjacent horizontal light shapes; the horizontal distance is The distance between two adjacent
当m为大于等于3的正整数时,纵向间距可以为相邻两个横向光形之间的间距,也可以为中间间隔p个横向光形的两个横向光形之间的间距;纵向距离可以为相邻两个横向光条3001之间的距离,也可以为中间间隔p个横向光条3001的两个横向光条3001之间的间距。其中,p为小于等于(m-2)的正整数。需要说明的是,纵向间距与纵向距离相对应,具体地,网格形光斑中的至少两条横向光斑为横向标定光斑,纵向间距指网格形光斑照射在标定平面上时,由横向标定光斑在标定平面上形成的横向光形之间的间距,纵向距离指网格形光斑照射在检测平面10上时,由横向标定光斑在检测平面10上形成的横向光条3001之间的距离。When m is a positive integer greater than or equal to 3, the vertical distance can be the distance between two adjacent horizontal light shapes, or the distance between two horizontal light shapes separated by p horizontal light shapes; the vertical distance It may be the distance between two adjacent
例如,m等于15,即网格形光斑包括十五条横向光斑,十五条横向光斑沿上下方向间隔均布。沿自下而上的方向共有六条横向标定光斑,六条横向标定光斑分别为第一条、第三条、第九条、第十一条、第十三条和第十五条横向光斑。当包括上述六条横向标定光斑的网格形光斑照射在标定平面上时,由第一条横向标定光斑形成的横向光形与由第三条横向标定光斑形成的横向光形之间的间距为第一个纵向间距Y01;由第十三条横向标定光斑形成的横向光形与由第十五条横向标定光斑形成的横向光形之间的间距为第二个纵向间距Y02;由第九条横向标定光斑形成的横向光形与由第十一条横向标定光斑形成的横向光形之间的间距为第三个纵向间距Y03。如图6所示,当包括上述六条横向标定光斑的网格形光斑照射在检测平面10上时,由第一条横向标定光斑形成的横向光条3001与由第三条横向标定光斑形成的横向光条3001之间的间距为第一个纵向距离Y1;由第十三条横向标定光斑形成的横向光条3001与由第十五条横向标定光斑形成的横向光条3001之间的间距为第二个纵向距离Y2;由第九条横向标定光斑形成的横向光条3001与由第十一条横向标定光斑形成的横向光条3001之间的间距为第三个纵向距离Y3。上述第一个纵向间距Y01与第一个纵向距离Y1相对应,上述第二个纵向间距Y02与第二个纵向距离Y2相对应,上述第三个纵向间距Y03与第三个纵向距离Y3相对应。数据库中的标定数据包括上述第一个纵向间距Y01、第二个纵向间距Y02和第三个纵向间距Y03;获取的光斑图像30的图像信息包括上述第一个纵向距离Y1、第二个纵向距离Y2和第三个纵向距离Y3。在实际进行执行机构2的位姿检测时,可以将第一个纵向距离Y1与第一个纵向间距Y01、第二个纵向距离Y2与第二个纵向间距Y02、第三个纵向距离Y3与第三个纵向间距Y03比对。For example, m is equal to 15, that is, the grid-shaped light spots include fifteen horizontal light spots, and the fifteen horizontal light spots are evenly spaced along the vertical direction. There are six horizontal calibration spots along the bottom-up direction, and the six horizontal calibration spots are the first, third, ninth, eleventh, thirteenth and fifteenth horizontal spots respectively. When the grid-shaped light spot including the above six horizontal calibration spots is irradiated on the calibration plane, the distance between the horizontal light shape formed by the first horizontal calibration light spot and the horizontal light shape formed by the third horizontal calibration light spot is A vertical spacing Y 01 ; the distance between the horizontal light shape formed by the thirteenth horizontal calibration spot and the horizontal light shape formed by the fifteenth horizontal calibration spot is the second vertical spacing Y 02 ; by the ninth The distance between the horizontal light shape formed by the horizontal calibration light spots and the horizontal light shape formed by the eleventh horizontal calibration light spot is the third vertical distance Y 03 . As shown in Figure 6, when the grid-shaped light spot including the above-mentioned six horizontal marking spots is irradiated on the
当n为大于等于3的正整数时,横向间距可以为相邻两个纵向光形之间的间距,也可以为中间间隔q个纵向光形的两个纵向光形之间的间距;横向距离为相邻两个纵向光条3002之间的距离,也可以为中间间隔q个纵向光条3002的两个纵向光条3002之间的间距;其中,q为小于等于(n-2)的正整数。When n is a positive integer greater than or equal to 3, the horizontal distance can be the distance between two adjacent vertical light shapes, or the distance between two vertical light shapes separated by q vertical light shapes; the horizontal distance is the distance between two adjacent
当n为大于等于3的正整数时,横向间距可以为相邻两个纵向光形之间的间距,也可以为中间间隔q个纵向光形的两个纵向光形之间的间距;横向距离可以为相邻两个纵向光条3002之间的距离,也可以为中间间隔p个纵向光条3002的两个纵向光条3002之间的间距。其中,q为小于等于(n-2)的正整数。需要说明的是,横向间距与横向距离相对应,具体地,网格形光斑中的至少两条纵向光斑为纵向标定光斑,横向间距指网格形光斑照射在标定平面上时,由纵向标定光斑在标定平面上形成的纵向光形之间的间距,横向距离指网格形光斑照射在检测平面10上时,由纵向标定光斑在检测平面10上形成的纵向光条3002之间的距离。When n is a positive integer greater than or equal to 3, the horizontal distance can be the distance between two adjacent vertical light shapes, or the distance between two vertical light shapes separated by q vertical light shapes; the horizontal distance It may be the distance between two adjacent
例如,n等于21,即网格形光斑包括二十一条纵向光斑,二十一条纵向光斑沿左右方向间隔均布。沿自左至右的方向共有六条纵向标定光斑,六条纵向标定光斑分别为第一条、第三条、第十条、第十二条、第十九条和第二十一条纵向光斑。当包括上述六条纵向标定光斑的网格形光斑照射在标定平面上时,由第一条纵向标定光斑形成的纵向光形与由第三条纵向标定光斑形成的纵向光形之间的间距为第一个横向间距X01;由第十九条纵向标定光斑形成的纵向光形与由第二十一条纵向标定光斑形成的纵向光形之间的间距为第二个横向间距X02;由第十条纵向标定光斑形成的纵向光形与由第十二条纵向标定光斑形成的纵向光形之间的间距为第三个横向间距X03。如图6所示,当包括上述六条纵向标定光斑的网格形光斑照射在检测平面10上时,由第一条纵向标定光斑形成的纵向光条3002与由第三条纵向标定光斑形成的纵向光条3002之间的间距为第一个横向距离X1;由第十九条纵向标定光斑形成的纵向光条3002与由第二十一条纵向标定光斑形成的纵向光条3002之间的间距为第二个横向距离X2;由第十条纵向标定光斑形成的纵向光条3002与由第十二条纵向标定光斑形成的纵向光条3002之间的间距为第三个横向距离X3。上述第一个横向间距X01与第一个横向距离X1相对应,上述第二个横向间距X02与第二个横向距离X2相对应,上述第三个横向间距X03与第三个横向距离X3相对应。数据库中的标定数据包括上述第一个横向间距X01、第二个横向间距X02和第三个横向间距X03;获取的光斑图像30的图像信息包括上述第一个横向距离X1、第二个横向距离X2和第三个横向距离X3。在实际进行执行机构2的位姿检测时,可以将第一个横向距离X1与第一个横向间距X01、第二个横向距离X2与第二个横向间距X02、第三个横向距离X3与第三个横向间距X03比对。For example, n is equal to 21, that is, the grid-shaped light spots include 21 vertical light spots, and the 21 vertical light spots are evenly spaced along the left and right directions. There are six vertical calibration spots along the direction from left to right, and the six vertical calibration spots are respectively the first, third, tenth, twelfth, nineteenth and twenty-first longitudinal spots. When the grid-shaped light spot including the above-mentioned six longitudinal calibration spots is irradiated on the calibration plane, the distance between the longitudinal light shape formed by the first vertical calibration light spot and the longitudinal light shape formed by the third vertical calibration light spot is One horizontal spacing X 01 ; the spacing between the longitudinal light shape formed by the nineteenth vertical calibration spot and the longitudinal light shape formed by the twenty-first vertical calibration spot is the second horizontal spacing X 02 ; The distance between the longitudinal light shape formed by the ten vertical calibration light spots and the longitudinal light shape formed by the twelfth vertical calibration light spot is the third horizontal distance X 03 . As shown in Figure 6, when the grid-shaped light spot including the above-mentioned six vertical marking spots is irradiated on the
可以理解的是,激光发射器3的激光发射方向垂直于检测平面10时,激光发射器3发射的网格形光斑照射在检测平面10上时,检测平面10上形成的光斑相当于网格形光斑的放大版,即检测平面10上形成的光斑的形状与网格形光斑的形状相同,且检测平面10上形成的光斑的尺寸大于网格形光斑的尺寸。且激光发射器3与检测平面10之间的距离不同时,检测平面10上形成的横向光条3001的长度、纵向光条3002的长度不同,相应的横向距离、纵向距离、每个矩形框光斑的边长也不同,通过将获取的横向距离、纵向距离和矩形框光斑的面积中的一者与数据库中的标定数据进行比对,便可以得到激光发射器3与检测平面10之间的距离d。It can be understood that when the laser emission direction of the
以激光发射器3的激光发射方向垂直于检测平面10时,检测平面10上形成的矩形框光斑的边长为初始边长。如图7和图8所示,当检测平面10为竖直平面时,以平行于竖直方向且垂直于检测平面10的平面为竖直基准面。当激光发射器3与检测平面10之间的距离保持不变、激光发射器3的激光发射方向平行于上述竖直基准面、激光发射器3发射的横向光斑平行于水平方向、激光发射器3发射的纵向光斑平行于竖直方向、且激光发射器3的激光发射方向沿竖直方向倾斜,使得激光发射器3的激光发射方向与检测平面10呈锐角时。检测平面10上由纵向光斑形成的纵向光条3002的长度会随激光发射器3的激光发射方向与检测平面10之间夹角的变化而变化,且检测平面10上由横向光斑形成的横向光条3001的长度始终不变。因此,由矩形光格形成的矩形框光斑的、与水平方向平行的边长始终不变;而由矩形光格形成的矩形框光斑的、与竖直方向平行的边长,会随激光发射器3的激光发射方向与检测平面10之间夹角的变化而变化,并且,在竖直方向上位置不同的矩形框光斑的边长变化量不同。When the laser emission direction of the
若要通过纵向距离与纵向间距比对,获得激光发射器3的激光发射方向与检测平面10之间的夹角,则需要将多个纵向距离与对应的纵向间距比对。并且,当即使激光发射器3的激光发射方向与检测平面10之间的夹角相同,但是当激光发射器3与检测平面10之间的距离不同,纵向距离以及纵向间距也会发生变化。因此,若想仅通过将纵向距离与纵向间距比对,获得激光发射器3的激光发射方向与检测平面10之间的夹角,则需要预先标定多组纵向间距数据。可以理解的是,当激光发射器3的激光发射方向与检测平面10之间的夹角相同,但是当激光发射器3与检测平面10之间的距离不同时,两个纵向距离的比值相同。因此,可以预先获取至少两个纵向间距的比值,同时在对光斑图像30进行处理时,获取至少两个纵向距离的比值,通过将至少两个纵向距离的比值与至少两个纵向间距的比值比对,便可以得到激光发射器3的激光发射方向与检测平面10之间的夹角α。此外,通过将获取的横向距离与数据库中的标定数据进行比对,便可以得到激光发射器3与检测平面10之间的距离d。To obtain the angle between the laser emitting direction of the
相似的,如图9和图10所示,当检测平面10为竖直平面时,以平行于水平方向且垂直于检测平面10的平面为水平基准面。当激光发射器3与检测平面10之间的距离保持不变、激光发射器3的激光发射方向平行于上述水平基准面、激光发射器3发射的横向光斑平行于水平方向、激光发射器3发射的纵向光斑平行于竖直方向、且激光发射器3的激光发射方向沿水平方向倾斜,使得激光发射器3的激光发射方向与检测平面10呈锐角时。由矩形光格形成的矩形框光斑的、与竖直方向平行的边长始终不变,而由矩形光格形成的矩形框光斑的、与水平方向平行的边长,会随激光发射器3的激光发射方向与检测平面10之间夹角的变化而变化,并且,在水平方向上位置不同的矩形框光斑的边长变化量不同。Similarly, as shown in FIGS. 9 and 10 , when the
可以预先获取至少两个横向间距的比值,同时在对光斑图像30进行处理时,获取至少两个横向距离的比值,通过将至少两个横向距离的比值与至少两个横向间距的比值比对,便可以得到激光发射器3的激光发射方向与检测平面10之间的夹角β。此外,通过将获取的纵向距离与数据库中的标定数据进行比对,便可以得到激光发射器3与检测平面10之间的距离d。The ratio of at least two lateral distances can be obtained in advance, and at the same time, when processing the
可选地,m和n均为大于等于3的正整数。获取标定数据包括:获取至少两个横向间距和至少两个纵向间距,获取至少两个横向间距的比值以及至少两个纵向间距的比值。获取光斑图像30的图像信息包括:获取至少两个横向距离和至少两个纵向距离,获取至少两个横向距离的比值以及至少两个纵向距离的比值。Optionally, both m and n are positive integers greater than or equal to 3. Acquiring calibration data includes: obtaining at least two horizontal intervals and at least two longitudinal intervals, obtaining a ratio of at least two horizontal intervals and a ratio of at least two longitudinal intervals. Acquiring the image information of the
例如,标定数据包括三个横向间距、三个纵向间距以及至少两个横向间距的比值、至少两个纵向间距的比值,三个横向间距分别为X01、X02和X03,三个纵向间距分别为Y01、Y02和Y03。如图6、图8、图10和图12所示,光斑图像30的图像信息包括三个横向距离、三个纵向距离以及至少两个横向距离的比值、至少两个纵向距离的比值,三个横向距离分别为X1、X2和X3,三个纵向距离分别为Y1、Y2和Y3。其中,X1、X2和X3分别与X01、X02和X03相对应;Y1、Y2和Y3分别与Y01、Y02和Y03相对应,横向间距的比值可以包括X02与X01的比值、X03与X02的比值,纵向间距的比值可以包括Y02与Y01的比值、Y03与Y02的比值;横向距离的比值可以包括X2与X1的比值、X3与X2的比值,纵向距离的比值可以包括Y2与Y1的比值、Y3与Y2的比值。For example, the calibration data includes three horizontal intervals, three vertical intervals and the ratio of at least two horizontal intervals, the ratio of at least two longitudinal intervals, the three horizontal intervals are X 01 , X 02 and X 03 , and the three vertical intervals They are Y 01 , Y 02 and Y 03 respectively. As shown in Fig. 6, Fig. 8, Fig. 10 and Fig. 12, the image information of the
如图5和图6所示,通过将X2与X1的比值同X02与X01的比值,或者将X3与X2的比值同X03与X02的比值比对,以及将Y2与Y1的比值同Y02与Y01的比值,或者将Y3与Y2的比值同Y03与Y02的比值比对,可以得到激光发射器3的激光发射方向与检测平面10之间的夹角为90°。通过将X2与X1的比值同X02与X01的比值,或者将X3与X2的比值同X03与X02的比值,或者将Y2与Y1的比值同Y02与Y01的比值,或者将Y3与Y2的比值同Y03与Y02的比值比对,可以得到激光发射器3与检测平面10之间的距离d。As shown in Figure 5 and Figure 6, by comparing the ratio of X 2 to X 1 with the ratio of X 02 to X 01 , or comparing the ratio of X 3 to X 2 with the ratio of X 03 to X 02 , and comparing Y The ratio of 2 to Y 1 is the same as the ratio of Y 02 to Y 01 , or the ratio of Y 3 to Y 2 is compared with the ratio of Y 03 to Y 02 , the distance between the laser emission direction of the
相似的,如图7和图8所示,通过将X2与X1的比值同X02与X01的比值,或者将X3与X2的比值同X03与X02的比值比对,以及将Y2与Y1的比值同Y02与Y01的比值,或者将Y3与Y2的比值同Y03与Y02的比值比对,可以得到激光发射器3的激光发射方向与检测平面10之间的夹角α。通过将X1与X01比对,或者将X2与X02比值,或者将X3与X03比对,可以得到激光发射器3与检测平面10之间的距离d。如图9和图10所示,通过将X2与X1的比值同X02与X01的比值,或者将X3与X2的比值同X03与X02的比值比对,以及将Y2与Y1的比值同Y02与Y01的比值,或者将Y3与Y2的比值同Y03与Y02的比值比对,可以得到激光发射器3的激光发射方向与检测平面10之间的夹角β。通过将Y1与Y01比对,或者将Y2与Y02比值,或者将Y3与Y03比对,可以得到激光发射器3与检测平面10之间的距离d。Similarly, as shown in Figure 7 and Figure 8, by comparing the ratio of X 2 to X 1 with the ratio of X 02 to X 01 , or comparing the ratio of X 3 to X 2 with the ratio of X 03 to X 02 , And the ratio of Y 2 and Y 1 is the same as the ratio of Y 02 and Y 01 , or the ratio of Y 3 and Y 2 is compared with the ratio of Y 03 and Y 02 , the laser emission direction and detection of the
相似的,如图11和图12所示,通过将X2与X1的比值同X02与X01的比值,或者将X3与X2的比值同X03与X02的比值比对,以及将Y2与Y1的比值同Y02与Y01的比值,或者将Y3与Y2的比值同Y03与Y02的比值比对,可以得到激光发射器3的激光发射方向与检测平面10之间,在竖直方向上的夹角α以及在水平方向上的夹角β。之后,可以将执行机构2沿竖直方向和水平方向中的一个方向移动,使得α和β中的一个等于90°,然后再获取光斑图像30,并根据获取的光斑图像30的图像信息得到激光发射器3与检测平面10之间的距离d。例如,将执行机构2沿竖直方向移动,使得α等于90°,然后再获取光斑图像30的图像信息,通过将Y1与Y01比对,或者将Y2与Y02比值,或者将Y3与Y03比对,可以得到激光发射器3与检测平面10之间的距离d。Similarly, as shown in Figure 11 and Figure 12, by comparing the ratio of X 2 to X 1 with the ratio of X 02 to X 01 , or comparing the ratio of X 3 to X 2 with the ratio of X 03 to X 02 , And the ratio of Y 2 and Y 1 is the same as the ratio of Y 02 and Y 01 , or the ratio of Y 3 and Y 2 is compared with the ratio of Y 03 and Y 02 , the laser emission direction and detection of the
可选地,网格形光斑中的多个矩形光格均为边长相等的正方形光格。Optionally, the plurality of rectangular cells in the grid-shaped light spot are all square cells with equal side lengths.
可选地,至少两个横向间距包括位于最外侧的纵向光形与其余至少一个纵向光形之间的间距,以及位于中部的纵向光形与其余至少一个纵向光形之间的间距。至少两个纵向间距包括位于最外侧的横向光形与其余至少一个横向光形之间的间距,以及位于中部的横向光形与其余至少一个横向光形之间的间距。Optionally, the at least two horizontal distances include a distance between the outermost vertical light shape and the remaining at least one vertical light shape, and a distance between the middle vertical light shape and the remaining at least one vertical light shape. The at least two longitudinal distances include the distance between the outermost horizontal light shape and the remaining at least one horizontal light shape, and the distance between the middle horizontal light shape and the remaining at least one horizontal light shape.
其中,位于最外侧的纵向光形可以理解为:在横向方向上靠近两侧的纵向光形,位于中部的纵向光形可以理解为:在横向方向上靠近中心位置的纵向光形。位于最外侧的横向光形可以理解为:在纵向方向上靠近两侧的横向光形,位于中部的横向光形可以理解为:在纵向方向上靠近中心位置的横向光形。Wherein, the outermost vertical light shape can be understood as: the vertical light shape close to both sides in the horizontal direction, and the vertical light shape in the middle can be understood as: the vertical light shape close to the center in the horizontal direction. The outermost horizontal light shape can be understood as: the horizontal light shape near the two sides in the longitudinal direction, and the horizontal light shape in the middle can be understood as: the horizontal light shape near the center in the longitudinal direction.
例如,n等于21时,二十一条纵向光斑沿左右方向间隔均布。在左右方向上的第一条纵向光斑和第二十一条纵向光斑为最外侧的纵向光斑,第十一条纵向光斑为中部的纵向光斑。相应的,当该网格形光斑照射的标定平面上时,标定平面上形成的第一条纵向光形和第二十一条纵向光形为位于最外侧的纵向光形,标定平面上形成的第十一条纵向光形为中部的纵向光形。横向间距可以包括第一条纵向光形与第三条纵向光形、第二十一条纵向光形与第十九条纵向光形、第十条纵向光形与第十二条纵向光形之间的间距。其中,第三条、第十九条、第十条和第十二条纵向光形为分别为第三条、第十九条、第十条和第十二条纵向光斑在标定平面上形成的光形。For example, when n is equal to 21, twenty-one longitudinal light spots are evenly spaced along the left and right directions. The first vertical light spot and the twenty-first vertical light spot in the left and right directions are the outermost vertical light spots, and the eleventh vertical light spot is the middle longitudinal light spot. Correspondingly, when the grid-shaped spot is irradiated on the calibration plane, the first longitudinal light shape and the twenty-first longitudinal light shape formed on the calibration plane are the outermost longitudinal light shapes, and the The eleventh vertical light shape is the vertical light shape in the middle. The horizontal distance can include the difference between the first vertical light shape and the third vertical light shape, the twenty-first vertical light shape and the nineteenth vertical light shape, and the tenth vertical light shape and the twelfth vertical light shape. spacing between. Among them, the 3rd, 19th, 10th and 12th vertical light shapes are respectively the 3rd, 19th, 10th and 12th longitudinal light spots formed on the calibration plane light shape.
m等于15时,十五条横向光斑沿上下方向间隔均布。在上下方向上的第一条横向光斑和第十五条横向光斑为最外侧的横向光斑,第十条横向光斑为中部的纵向光斑。相应的,当该网格形光斑照射的标定平面上时,标定平面上形成的第一条横向光形和第十五条横向光形为位于最外侧的横向光形,标定平面上形成的第十条横向光形为中部的横向光形。纵向间距可以包括第一条横向光形与第三条横向光形、第十五条横向光形与第十三条横向光形、第九条横向光形与第十一条横向光形之间的间距。其中,第三条、第十三条、第九条和第十一条横向光形为分别为第三条、第十三条、第九条和第十一条横向光斑在标定平面上形成的光形。When m is equal to 15, fifteen horizontal light spots are evenly spaced along the vertical direction. The first horizontal light spot and the fifteenth horizontal light spot in the up and down direction are the outermost horizontal light spots, and the tenth horizontal light spot is the middle longitudinal light spot. Correspondingly, when the grid-shaped spot is irradiated on the calibration plane, the first horizontal light shape and the fifteenth horizontal light shape formed on the calibration plane are the outermost horizontal light shapes, and the first horizontal light shape formed on the calibration plane The ten horizontal light shapes are the horizontal light shapes in the middle. The vertical distance can include between the first horizontal light shape and the third horizontal light shape, between the fifteenth horizontal light shape and the thirteenth horizontal light shape, between the ninth horizontal light shape and the eleventh horizontal light shape Pitch. Among them, the third, thirteenth, ninth and eleventh horizontal light shapes are respectively the third, thirteenth, ninth and eleventh horizontal light spots formed on the calibration plane light shape.
至少两个横向距离包括位于最外侧的纵向光条3002与其余至少一个纵向光条3002之间的距离,以及位于中部的纵向光条3002与其余至少一个纵向光条3002之间的距离。至少两个纵向距离包括位于最外侧的横向光条3001与其余至少一个横向光条3001之间的距离,以及位于中部的纵向光条3002与其余至少一个横向光条3001之间的距离。The at least two horizontal distances include the distance between the outermost
其中,位于最外侧的纵向光条3002可以理解为:在横向方向上靠近两侧的纵向光条3002,位于中部的纵向光条可以理解为:在横向方向上靠近中心位置的纵向光条3002。位于最外侧的横向光条3001可以理解为:在纵向方向上靠近两侧的横向光条3001,位于中部的横向光条3001可以理解为:在纵向方向上靠近中心位置的横向光条3001。Wherein, the outermost
例如,n等于21时,二十一条纵向光斑沿左右方向间隔均布。在左右方向上的第一条纵向光斑和第二十一条纵向光斑为最外侧的纵向光斑,第十一条纵向光斑为中部的纵向光斑。相应的,当该网格形光斑照射的检测平面10上时,检测平面10上形成的第一条纵向光条3002和第二十一条纵向光条3002为位于最外侧的纵向光条3002,检测平面10上形成的第十一条纵向光条3002为中部的纵向光条3002。横向距离可以包括第一条纵向光条3002与第三条纵向光条3002、第二十一条纵向光条3002与第十九条纵向光条3002、第十条纵向光条3002与第十二条纵向光条3002之间的距离。其中,第三条、第十九条、第十条和第十二条纵向光条3002为分别为第三条、第十九条、第十条和第十二条纵向光斑在检测平面10上形成的光形。For example, when n is equal to 21, twenty-one longitudinal light spots are evenly spaced along the left and right directions. The first vertical light spot and the twenty-first vertical light spot in the left and right directions are the outermost vertical light spots, and the eleventh vertical light spot is the middle longitudinal light spot. Correspondingly, when the grid-shaped light spot is irradiated on the
m等于15时,十五条横向光斑沿上下方向间隔均布。在上下方向上的第一条横向光斑和第十五条横向光斑为最外侧的横向光斑,第十条横向光斑为中部的纵向光斑。相应的,当该网格形光斑照射的检测平面10上时,检测平面10上形成的第一条横向光条3001和第十五条横向光条3001为位于最外侧的横向光条3001,检测平面10上形成的第十条横向光条3001为中部的横向光条3001。纵向距离可以包括第一条横向光条3001与第三条横向光条3001、第十五条横向光条3001与第十三条横向光条3001、第九条横向光条3001与第十一条横向光条3001之间的距离。其中,第三条、第十三条、第九条和第十一条横向光条3001为分别为第三条、第十三条、第九条和第十一条横向光斑在检测平面10上形成的光形。When m is equal to 15, fifteen horizontal light spots are evenly spaced along the vertical direction. The first horizontal light spot and the fifteenth horizontal light spot in the up and down direction are the outermost horizontal light spots, and the tenth horizontal light spot is the middle longitudinal light spot. Correspondingly, when the grid-shaped spot is irradiated on the
通过上述方式获取的横向间距、纵向间距、横向距离和纵向距离更具有代表性,得到的执行机构2的位姿精度更高,有利于提高机械设备100的可靠性。The horizontal spacing, vertical spacing, horizontal distance and longitudinal distance obtained in the above manner are more representative, and the obtained
本发明实施例执行机构的位姿检测方法,通过激光发射器3、检测相机4和图像处理系统,实现执行机构2作业中执行机构2的位姿检测,方便实现执行机构2位姿的自动调整,有利于提高机械设备100的自动化程度。The pose detection method of the actuator in the embodiment of the present invention, through the
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial", The orientation or positional relationship indicated by "radial", "circumferential", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device or element Must be in a particular orientation, be constructed in a particular orientation, and operate in a particular orientation, and therefore should not be construed as limiting the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; can be mechanically connected, can also be electrically connected or can communicate with each other; can be directly connected, can also be indirectly connected through an intermediary, can be the internal communication of two components or the interaction relationship between two components, Unless expressly defined otherwise. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。As used herein, the terms "one embodiment," "some embodiments," "example," "specific examples," or "some examples" mean specific features, structures, materials, or features described in connection with the embodiment or example. A feature is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本发明的保护范围内。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limitations on the present invention. Those skilled in the art can make changes, modifications, and changes to the above embodiments. Alternatives and modifications are within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211303360.XA CN115597488A (en) | 2022-10-24 | 2022-10-24 | Pose detection method for mechanical equipment, pose detection system and actuator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211303360.XA CN115597488A (en) | 2022-10-24 | 2022-10-24 | Pose detection method for mechanical equipment, pose detection system and actuator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115597488A true CN115597488A (en) | 2023-01-13 |
Family
ID=84849675
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211303360.XA Pending CN115597488A (en) | 2022-10-24 | 2022-10-24 | Pose detection method for mechanical equipment, pose detection system and actuator |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115597488A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1939638A (en) * | 2005-09-30 | 2007-04-04 | 日产自动车株式会社 | Display method for laser irradiations state and display system of laser irradiation state |
| CN108857152A (en) * | 2018-06-14 | 2018-11-23 | 清华大学 | Total space pose based on recombination laser structure light detects visual sensor device |
| CN109696126A (en) * | 2019-02-27 | 2019-04-30 | 中国矿业大学(北京) | The system for measuring heading machine pose |
| CN113204004A (en) * | 2021-04-30 | 2021-08-03 | 北京航迹科技有限公司 | Laser radar calibration device and method |
-
2022
- 2022-10-24 CN CN202211303360.XA patent/CN115597488A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1939638A (en) * | 2005-09-30 | 2007-04-04 | 日产自动车株式会社 | Display method for laser irradiations state and display system of laser irradiation state |
| CN108857152A (en) * | 2018-06-14 | 2018-11-23 | 清华大学 | Total space pose based on recombination laser structure light detects visual sensor device |
| CN109696126A (en) * | 2019-02-27 | 2019-04-30 | 中国矿业大学(北京) | The system for measuring heading machine pose |
| CN113204004A (en) * | 2021-04-30 | 2021-08-03 | 北京航迹科技有限公司 | Laser radar calibration device and method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7018970B2 (en) | Hybrid overlay target design for imaging-based overlays and scatter measurement-based overlays | |
| US3936645A (en) | Cellularized Luminescent structures | |
| CN111750798B (en) | Real-time automatic monitoring device for tunnel deformation | |
| JP6196227B2 (en) | X-ray detector | |
| US4831263A (en) | Position-sensitive radiation detector | |
| US4238828A (en) | Position detecting apparatus | |
| CN100412503C (en) | Multi-view laser measuring head and its calibration method | |
| CN111964589B (en) | A laser displacement sensor calibration device and calibration method for normal detection | |
| CN106770402B (en) | A three-dimensional calibration measurement device for neutron diffraction stress analysis | |
| CN115597488A (en) | Pose detection method for mechanical equipment, pose detection system and actuator | |
| CN210573939U (en) | Calibration plate and calibration device | |
| JPH07274068A (en) | Matrix screen and method for manufacturing the screen | |
| JPS58159992A (en) | Method and device for manufacturing space grating of reactor through pulse laser welding | |
| US5219258A (en) | Illumination apparatus for a robotic object handling system | |
| EP3716417B1 (en) | Substrate for mounting light-emitting element, array substrate, and light-emitting device | |
| CN212779123U (en) | Real-time automatic monitoring device for tunnel deformation | |
| US4128762A (en) | Apparatus for measuring mechanical stress using white X-rays | |
| JP2007512075A (en) | Radiation detector module | |
| DE4340204A1 (en) | Displacement sensor using semiconductor laser light source - has thermal insulator between laser light source and optical grating measuring scale | |
| CN115451928A (en) | A three-dimensional laser scanning detection device for building verticality detection | |
| CN1236277C (en) | Overall calibrating method for multi-vision sensor detecting system | |
| CN115680732A (en) | Roadway supporting method of anchor rod drill carriage and anchor rod drill carriage | |
| CN212989651U (en) | Distance measuring instrument with marking function | |
| WO2005122184A2 (en) | Anti-scatter-grid | |
| JP2918901B2 (en) | Perforated collimator and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |