CN115605976A - Charge state determination for single ion detection events - Google Patents
Charge state determination for single ion detection events Download PDFInfo
- Publication number
- CN115605976A CN115605976A CN202180035275.7A CN202180035275A CN115605976A CN 115605976 A CN115605976 A CN 115605976A CN 202180035275 A CN202180035275 A CN 202180035275A CN 115605976 A CN115605976 A CN 115605976A
- Authority
- CN
- China
- Prior art keywords
- pulse
- ions
- peak
- charge
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
相关案例的交叉引用Cross References to Related Cases
本申请于2021年5月14日作为PCT国际专利申请提交,并要求2020年5月14日提交的美国专利申请序列No.63/024,987的优先权,其全部公开内容通过引用整体并入本文。This application was filed as a PCT International Patent Application on May 14, 2021, and claims priority to U.S. Patent Application Serial No. 63/024,987, filed May 14, 2020, the entire disclosure of which is incorporated herein by reference in its entirety.
背景技术Background technique
作为一般概述,质谱法(MS)是一种基于对由化合物形成的离子进行质荷比(m/z)值的分析来检测和定量那些化合物的分析技术。MS涉及从样本中电离一种或多种感兴趣的化合物,产生前体离子,以及前体离子的质量分析。串联质谱法或质谱/质谱法(MS/MS)涉及从样本中电离一种或多种感兴趣的化合物,选择一种或多种化合物的一种或多种前体离子,将一种或多种前体离子碎裂成产物离子,以及产物离子的质量分析。As a general overview, mass spectrometry (MS) is an analytical technique for the detection and quantification of compounds based on the analysis of the mass-to-charge (m/z) values of the ions formed by those compounds. MS involves ionization of one or more compounds of interest from a sample, generation of precursor ions, and mass analysis of the precursor ions. Tandem mass spectrometry or mass spectrometry/mass spectrometry (MS/MS) involves ionizing one or more compounds of interest from a sample, selecting one or more precursor ions of one or more compounds, Fragmentation of precursor ions into product ions, and mass analysis of product ions.
MS和MS/MS都可以提供定性和定量信息。测得的前体或产物离子光谱可以被用于识别感兴趣的分子。前体离子和产物离子的强度也可以被用于定量样本中存在的化合物的量。Both MS and MS/MS can provide qualitative and quantitative information. The measured precursor or product ion spectra can be used to identify molecules of interest. The intensities of precursor ions and product ions can also be used to quantify the amount of compound present in a sample.
质谱法技术常常利用检测到的离子的质荷比(m/z)生成质谱数据。但是,检测到的离子的实际电荷或质量的知识(knowledge)常常不能直接测量。因此,在某些场景中会发生检测到的离子的某种重叠。例如,具有质量的单电荷离子可以在质谱中看起来与具有双倍质量的双电荷离子具有相同的质荷比。这个问题一般可以被称为峰重叠问题。Mass spectrometry techniques often utilize the mass-to-charge ratio (m/z) of detected ions to generate mass spectral data. However, knowledge of the actual charge or mass of the detected ions is often not directly measurable. Therefore, some overlap of detected ions occurs in some scenarios. For example, a singly charged ion with a mass can appear in a mass spectrum to have the same mass-to-charge ratio as a doubly charged ion with twice the mass. This problem may generally be referred to as the peak overlapping problem.
在自顶向下质谱法(MS)蛋白质分析中,例如,质谱中质量或质荷(m/z)峰的重叠是个显著的问题。在这种类型的分析中,产生非常广泛的不同片段或产物离子,包括具有1-200个氨基酸长度并具有1-50种不同电荷状态的产物离子。产物离子峰在单个谱中彼此严重重叠。此外,重叠可以非常广泛,以至于即使具有最高质量分辨率的质谱仪(傅立叶变换离子回旋加速器共振(FT-ICR)或轨道阱)也无法对这些重叠峰进行去卷积。因此,大的产物离子在自顶向下的蛋白质分析中常常丢失,从而限制了大蛋白质的序列覆盖。2020年8月6日出版的国际出版物WO2020/157720和2019年10月17日出版的国际出版物WO2019/197983都对自顶向下的MS蛋白质分析和相关挑战提供了附加的讨论。In top-down mass spectrometry (MS) protein analysis, for example, overlapping of mass or mass-charge (m/z) peaks in mass spectra is a significant problem. In this type of analysis, a very wide range of different fragments or product ions are produced, including product ions that are 1-200 amino acids in length and have 1-50 different charge states. Product ion peaks heavily overlap each other in a single spectrum. Furthermore, the overlap can be so extensive that even mass spectrometers with the highest mass resolution (Fourier transform ion cyclotron resonance (FT-ICR) or orbitrap) cannot deconvolute these overlapping peaks. Consequently, large product ions are often lost in top-down protein analysis, limiting sequence coverage of large proteins. International publications WO2020/157720, published 6 August 2020, and WO2019/197983, published 17 October 2019, both provide additional discussion of top-down MS protein analysis and related challenges.
发明内容Contents of the invention
在一方面,本技术涉及一种对检测到的离子的电荷状态进行分类的方法,该方法包括:为检测器检测到的多个离子中的每个离子生成脉冲,其中每个脉冲具有脉冲特点;为所生成的脉冲生成脉冲-特点分布;以及基于脉冲-特点分布,生成多个离子中的一个或多个离子的电荷状态的标识。In one aspect, the technology relates to a method of classifying the charge state of detected ions, the method comprising: generating a pulse for each of a plurality of ions detected by a detector, wherein each pulse has a pulse characteristic ; generating a pulse-characteristic distribution for the generated pulse; and generating an identification of a charge state of one or more ions of the plurality of ions based on the pulse-characteristic distribution.
在示例中,脉冲-特点分布是概率对脉冲特点的图。在另一个示例中,脉冲特点是脉冲高度、脉冲宽度或脉冲面积中的至少一个。在又一个示例中,脉冲特点是脉冲高度,并且脉冲高度是脉冲的最大电压。在又一个示例中,检测器是电子倍增器检测器并且检测器被配置为主要检测单离子事件。在又一个示例中,生成电荷状态的标识包括将脉冲-特点分布与参考脉冲-特点分布进行比较。在又一个示例中,由检测器检测到的离子由样本的电离生成,并且参考脉冲-特点分布基于样本的已知特点来识别。In an example, the impulse-characteristic distribution is a plot of probability versus impulse characteristic. In another example, the pulse characteristic is at least one of pulse height, pulse width, or pulse area. In yet another example, the pulse characteristic is the pulse height, and the pulse height is the maximum voltage of the pulse. In yet another example, the detector is an electron multiplier detector and the detector is configured to detect primarily single ion events. In yet another example, generating the signature of the state of charge includes comparing the pulse-characteristic distribution to a reference pulse-characteristic distribution. In yet another example, the ions detected by the detector are generated by ionization of the sample, and the reference pulse-characteristic distribution is identified based on known characteristics of the sample.
在另一个示例中,生成的标识包括电荷状态的概率。在另一个示例中,该方法还包括基于电荷状态的标识,为检测到的离子生成去卷积的质谱,其中质谱的一个轴是质量而不是每电荷质量(m/z)。在又一个示例中,使用m/z域将多个离子分组为不同的组,并且针对每个组执行基于脉冲-特点分布的电荷状态的标识。在又一个示例中,分组步骤包括基于多个检测到的离子生成质谱;识别质谱中的第一峰,其中第一峰具有每电荷质量(m/z)值;以及基于第一峰的m/z值,在每电荷质量(m/z)范围内对离子进行分组。在又一个示例中,分组步骤包括将多个离子的第一子集选择到第一强度带中并且将多个离子的第二子集选择到第二强度带中;生成用于第一强度带的第一质谱;生成用于第二强度带的第二质谱;识别质谱中的至少一个质谱中的第一峰,其中第一峰具有每电荷质量(m/z)值;以及基于第一峰的m/z值,在每电荷质量(m/z)范围内对离子进行分组。In another example, the generated identification includes a probability of state of charge. In another example, the method further includes generating a deconvoluted mass spectrum for the detected ions based on the identification of the charge state, wherein one axis of the mass spectrum is mass rather than mass per charge (m/z). In yet another example, the m/z domain is used to group multiple ions into different groups, and for each group an identification of charge states based on pulse-characteristic distributions is performed. In yet another example, the step of grouping includes generating a mass spectrum based on a plurality of detected ions; identifying a first peak in the mass spectrum, wherein the first peak has a mass per charge (m/z) value; and based on the m/z value of the first peak The z value, which groups ions in the mass per charge (m/z) range. In yet another example, the step of grouping includes selecting a first subset of the plurality of ions into a first intensity band and selecting a second subset of the plurality of ions into a second intensity band; generating a second mass spectrum for a second intensity band; identifying a first peak in at least one of the mass spectra, wherein the first peak has a mass per charge (m/z) value; and based on the first peak The m/z value of , groups ions in each charge mass (m/z) range.
在另一个示例中,该方法还包括为m/z范围内的离子生成第二脉冲-特点分布,并且生成标识包括:确定形成第一脉冲-特点分布的离子具有第一电荷状态;以及确定形成第二脉冲-特点分布的离子具有第二电荷状态。在另一个示例中,该方法还包括基于电荷状态的标识,确定与形成第一峰的一个或多个离子对应的一个或多个同位素。在又一个示例中,生成电荷状态的标识包括将第一脉冲-特点分布与参考脉冲-特点分布进行比较。在又一个示例中,由检测器检测到的离子通过样本的电离生成,并且参考脉冲-特点分布基于样本的已知特点来识别。在又一个示例中,生成的标识包括电荷状态的概率。在另一个示例中,该方法作为自顶向下蛋白质分析的一部分被执行。In another example, the method further includes generating a second pulse-characteristic distribution for ions in the m/z range, and generating the signature includes: determining that ions forming the first pulse-characteristic distribution have a first charge state; The ions of the second pulse-characteristic distribution have a second charge state. In another example, the method further includes determining one or more isotopes corresponding to the one or more ions forming the first peak based on the identification of the charge state. In yet another example, generating the signature of the state of charge includes comparing the first pulse-characteristic distribution to a reference pulse-characteristic distribution. In yet another example, ions detected by the detector are generated by ionization of the sample, and a reference pulse-characteristic distribution is identified based on known characteristics of the sample. In yet another example, the generated identification includes a probability of state of charge. In another example, the method is performed as part of a top-down protein analysis.
在另一个示例中,该方法还包括识别第二峰;至少基于第一峰和第二峰,确定一致m/z距离;识别第一峰和第二峰形成特征;并且其中生成电荷状态的标识是基于一致距离。在另一个示例中,识别峰形成特征的步骤包括比较所述峰的脉冲-特点分布并选择具有基本相同的脉冲-特点分布的峰。在又一个示例中,通过计算所述脉冲-特点分布之间的欧几里得距离并将其与预定阈值进行比较来执行脉冲-特点分布的比较。在又一个示例中,该方法还包括基于一致距离识别与特征对应的缺失峰。在又一个示例中,该方法还包括基于离子的电荷状态的标识为检测到的离子生成去卷积的质谱,其中质谱的一个轴是质量而不是m/z。在另一个示例中,脉冲特点是脉冲的最大电压。In another example, the method further includes identifying a second peak; determining a consistent m/z distance based at least on the first peak and the second peak; identifying the first peak and the second peak forming a signature; and wherein generating an identification of the charge state is based on consistent distances. In another example, the step of identifying peak-forming characteristics includes comparing impulse-characteristic distributions of said peaks and selecting peaks having substantially the same impulse-characteristic distribution. In yet another example, the comparison of pulse-characteristic distributions is performed by calculating a Euclidean distance between said pulse-characteristic distributions and comparing it to a predetermined threshold. In yet another example, the method further includes identifying missing peaks corresponding to the features based on the consistent distance. In yet another example, the method further includes generating a deconvoluted mass spectrum for the detected ion based on the identification of the ion's charge state, wherein one axis of the mass spectrum is mass rather than m/z. In another example, the pulse characteristic is the maximum voltage of the pulse.
在另一方面,本技术涉及质量分析系统。质量分析系统包括检测器,被配置为为检测器检测到的每个离子生成脉冲;处理器;以及存储指令的存储器,指令被配置为在由处理器执行时使系统执行操作的集合。操作包括为撞击电子倍增器检测器的多个离子中的每个离子生成脉冲,其中每个脉冲具有脉冲特点;为所生成的脉冲生成脉冲-特点分布;以及基于脉冲-特点分布,生成多个离子中的一个或多个离子的电荷状态的标识。在示例中,检测器是电子倍增器检测器。在另一个示例中,质量分析系统还包括离子源设备、解离设备和质量分析器。In another aspect, the technology relates to mass analysis systems. The mass analysis system includes a detector configured to generate a pulse for each ion detected by the detector; a processor; and a memory storing instructions configured to cause the system to perform a set of operations when executed by the processor. The operations include generating a pulse for each of the plurality of ions striking the electron multiplier detector, wherein each pulse has a pulse characteristic; generating a pulse-characteristic distribution for the generated pulses; and based on the pulse-characteristic distribution, generating a plurality of An identification of the charge state of one or more ions in an ion. In an example, the detector is an electron multiplier detector. In another example, the mass analysis system also includes an ion source device, a dissociation device, and a mass analyzer.
在另一方面,本技术涉及一种用于对检测到的离子的电荷状态进行分类的方法,该方法包括使用处理器检测由于多个离子在质量分析器中的振荡而在质量分析器的图像-电荷检测器上感应出的瞬态时域信号;将瞬态时域信号转换成与多个离子中的离子对应的多个频域(FD)峰;为所生成的脉冲生成FD-峰-特点分布;以及基于FD-峰-特点分布,生成多个离子中的一个或多个离子的电荷状态的标识。In another aspect, the technology relates to a method for classifying the charge state of detected ions, the method comprising detecting, using a processor, an image of - transient time domain signal induced on a charge detector; converting the transient time domain signal into a plurality of frequency domain (FD) peaks corresponding to ions of the plurality of ions; generating FD-peaks for the generated pulses - a characteristic distribution; and, based on the FD-peak-characteristic distribution, generating an identification of the charge state of one or more ions of the plurality of ions.
在示例中,FD-峰-特点分布是概率对FD-峰-特点的图。在另一个示例中,FD-峰-特点是峰强度。在又一个示例中,生成电荷状态的标识包括将FD-峰-特点分布与参考FD-峰-特点分布进行比较。在另一个示例中,由检测器检测到的离子是通过样本的电离生成的,并且参考FD-峰-特点分布基于样本的已知特点来识别。在又一个示例中,生成的标识包括电荷状态的概率。在又一个示例中,该方法还包括基于电荷状态的标识为检测到的离子生成去卷积的质谱,其中质谱的一个轴是质量而不是每电荷质量(m/z)。In an example, the FD-peak-characteristic distribution is a plot of probability versus FD-peak-characteristic. In another example, the FD-peak-characteristic is peak intensity. In yet another example, generating the signature of the charge state includes comparing the FD-peak-characteristic distribution to a reference FD-peak-characteristic distribution. In another example, ions detected by the detector are generated by ionization of the sample, and a reference FD-peak-characteristic distribution is identified based on known characteristics of the sample. In yet another example, the generated identification includes a probability of state of charge. In yet another example, the method further includes generating a deconvoluted mass spectrum for the detected ion based on the identity of the charge state, wherein one axis of the mass spectrum is mass rather than mass per charge (m/z).
在另一方面,本技术涉及一种用于对检测到的离子的电荷状态进行分类的方法。该方法包括为检测器检测到的多个离子中的每个离子生成脉冲,其中每个脉冲具有脉冲特点;为所生成的脉冲生成脉冲-特点分布;以及基于脉冲-特点分布,识别粗略的电荷状态;识别第一离子峰和第二离子峰的峰对,使得所述峰具有相邻的电荷状态;以及基于第一离子峰的m/z值、第二离子峰的m/z值和电荷载流子的质量,确定第二离子峰的细化的电荷状态。In another aspect, the technology relates to a method for classifying the charge state of detected ions. The method includes generating a pulse for each of a plurality of ions detected by a detector, where each pulse has a pulse signature; generating a pulse-characteristic distribution for the generated pulses; and based on the pulse-characteristic distribution, identifying a coarse charge state; identifying a peak pair of a first ion peak and a second ion peak such that the peaks have adjacent charge states; and based on the m/z value of the first ion peak, the m/z value of the second ion peak, and the charge state The mass of the charge carrier determines the refined charge state of the second ion peak.
在示例中,粗略的电荷状态标识对于形成一对的至少一个峰的可能电荷状态的范围是准确的,并且来自该范围的至少一个电荷状态与为第二峰识别出的电荷状态相邻。在另一个示例中,该方法还包括如果细化的识别出的电荷状态是某个阈值内的整数,那么接受细化的电荷状态标识。在又一个示例中,识别具有相邻电荷状态的第三峰,并且第三峰与峰中的至少一个形成一对,并且用于所述共同峰的电荷状态标识在两对中匹配。在又一个示例中,该方法还包括基于所确定的第二离子峰的电荷状态来确定第一离子峰的电荷状态。在又一个示例中,该方法还包括基于被电离以生成多个离子的样本的已知特点来获得电荷载流子的质量。In an example, the coarse charge state identification is accurate to a range of possible charge states for at least one peak forming a pair, and at least one charge state from the range is adjacent to the charge state identified for the second peak. In another example, the method further includes accepting the refined state of charge identification if the refined identified state of charge is an integer within a certain threshold. In yet another example, a third peak having an adjacent charge state is identified and forms a pair with at least one of the peaks, and the charge state identifications for the common peak match in both pairs. In yet another example, the method further includes determining the charge state of the first ion peak based on the determined charge state of the second ion peak. In yet another example, the method further includes obtaining the mass of the charge carriers based on known characteristics of the sample that was ionized to generate the plurality of ions.
提供本发明内容是为了以简化形式介绍概念的选择,这些概念将在下面的详细描述中进一步描述。本发明内容并非旨在识别所要求保护的主题的关键特征或基本特征,也不旨在用于限制所要求保护的主题的范围。示例的附加方面、特征和/或优点将部分地在随后的描述中阐述,并且部分地将从描述中显而易见,或者可以通过本公开的实践来了解。This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Additional aspects, features and/or advantages of the examples will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the disclosure.
附图说明Description of drawings
参考以下附图描述非限制性和非穷举性示例。Non-limiting and non-exhaustive examples are described with reference to the following figures.
图1A描绘了用于执行质谱法的示例系统。Figure 1A depicts an example system for performing mass spectrometry.
图1B描绘了离子脉冲的示例图。Figure 1B depicts an example diagram of ion pulses.
图1C描绘了基于离子脉冲强度被分离成不同带或通道的示例质谱。Figure 1C depicts an example mass spectrum separated into different bands or channels based on ion pulse strength.
图2描绘了示例脉冲-高度分布的图。Figure 2 depicts a graph of an example pulse-height distribution.
图3A描绘了用于电荷状态指派的示例方法。FIG. 3A depicts an example method for charge state assignment.
图3B描绘了用于电荷状态指派的另一个示例方法。FIG. 3B depicts another example method for charge state assignment.
图3C描绘了用于电荷状态指派的另一个示例方法。FIG. 3C depicts another example method for charge state assignment.
图3D描绘了用于电荷状态指派的另一个示例方法。FIG. 3D depicts another example method for charge state assignment.
图3E描绘了用于电荷状态指派的另一个示例方法。FIG. 3E depicts another example method for charge state assignment.
图3F描绘了用于电荷状态指派的另一个示例方法。FIG. 3F depicts another example method for charge state assignment.
图4描绘了用于电荷状态指派的另一个示例方法。FIG. 4 depicts another example method for charge state assignment.
图5描绘了示例放大质谱。Figure 5 depicts an example zoom-in mass spectrum.
图6描绘了用于带状质谱的示例峰检测操作。Figure 6 depicts an example peak detection operation for strip mass spectrometry.
图7描绘了来自图6的用于选择的峰的示例脉冲-高度分布。FIG. 7 depicts example pulse-height distributions from FIG. 6 for selected peaks.
图8描绘了示例成对相似性矩阵。Figure 8 depicts an example pairwise similarity matrix.
图9描绘了用于最合理的电荷状态的示例计算。Figure 9 depicts an example calculation for the most plausible state of charge.
图10描绘了用于执行用于特征属性的计算的示例图。10 depicts an example diagram for performing calculations for feature attributes.
图11描绘了用于相邻电荷状态峰的示例图。Figure 11 depicts example plots for adjacent charge state peaks.
图12描绘了由图像-电荷检测器测得的瞬态时域信号的示例图。Figure 12 depicts an example graph of a transient time-domain signal measured by an image-charge detector.
图13描绘了包括图像-电荷检测器的示例系统。Figure 13 depicts an example system including an image-charge detector.
具体实施方式detailed description
如上面简要讨论的,检测到的离子的峰重叠对于MS结果的分析是有问题的。为了解决这个峰重叠问题,一种解决方案是确定或推断形成峰的离子的电荷状态。通过确定电荷状态,于是可以解决离子的质量并且可以将来自不同种类的离子彼此区分开来。此外,质谱中的多个峰可以表示同位素集群或特征。但是,在一些情况下,可能不清楚哪些峰属于哪个集群。电荷状态标识技术还可以解决此类集群的正确峰的标识。As discussed briefly above, peak overlap of detected ions is problematic for analysis of MS results. To address this peak overlap problem, one solution is to determine or infer the charge states of the ions that form the peaks. By determining the state of charge, the mass of the ions can then be resolved and ions from different species can be distinguished from each other. Additionally, multiple peaks in a mass spectrum can represent isotopic clusters or signatures. However, in some cases it may not be clear which peaks belong to which cluster. Charge state identification techniques can also address identification of the correct peaks for such clusters.
先前已经提出了模数转换(ADC)条带方法用于基于离子的强度分离离子。在通过引用整体并入本文的2020年8月6日公布的国际出版物W02020/157720('720出版物)中公开了条带方法的一个这样的示例。这种基于离子强度的分离有助于电荷状态分离,从而提高峰容量。但是,所描述的方法没有教导如何基于它们的电荷状态来分离离子。这导致两个问题:首先,来自同一种类的信号在多个数据通道之间被稀释,其次,没有提出构造便于后续数据解释的反卷积的质谱的方式。因此,期望一种改进的方法,该方法可以将电荷状态指派给各个离子检测事件。Analog-to-digital conversion (ADC) strip methods have previously been proposed for separating ions based on their intensity. One such example of the striping approach is disclosed in International Publication WO 2020/157720 published on August 6, 2020 (the '720 publication), which is incorporated herein by reference in its entirety. This ionic strength-based separation facilitates charge state separation, which increases peak capacity. However, the described method does not teach how to separate ions based on their charge state. This leads to two problems: firstly, the signal from the same species is diluted between multiple data channels, and secondly, there is no proposed way to construct a deconvoluted mass spectrum that facilitates subsequent data interpretation. Therefore, an improved method that can assign charge states to individual ion detection events is desired.
此类方法中的一种最近已发表在以下论文中:Kafader等人,Multiplexed massspectrometry of individual ions improves measurement of proteoforms and theircomplexes,Nature Methods,Nature Methods第17卷,第391-394页(2020)。但是,该论文中描述的方法仅限于具有如下检测系统的质谱仪,其中检测到的信号与测得的电荷具有确定性关系(例如,图像-电荷感应的检测器)。因而,除其它外,该论文中描述的方法没有教导如何为基于如下检测系统的质谱仪的每个个体离子测量事件设置电荷指派,其中测得的信号与测得的电荷具有概率关系(例如,基于电子倍增器的检测系统)。One such method has recently been published in Kafader et al., Multiplexed massspectrometry of individual ions improves measurement of proteoforms and their complexes, Nature Methods, Nature Methods Vol. 17, pp. 391-394 (2020). However, the method described in this paper is limited to mass spectrometers with detection systems in which the detected signal has a deterministic relationship to the measured charge (eg image-charge-sensitive detectors). Thus, among other things, the method described in this paper does not teach how to set up charge assignments for each individual ion measurement event of a mass spectrometer based detection system in which the measured signal has a probabilistic relationship to the measured charge (e.g., Electron multiplier based detection system).
在一些此类新类别的获取策略中,在将对应信号共同添加到质谱之前尝试直接识别电荷状态(参见Kafader等人)。但是,此类策略不适用于电子倍增器检测系统中的电荷状态指派。对于基于电子倍增器检测系统的系统,在许多情况下,每个电荷状态没有独特的检测器响应,而是具有特定于每个电荷状态和m/z值的独特脉冲高度分布(更一般地是强度分布)。In some of these new classes of acquisition strategies, direct identification of charge states is attempted before the corresponding signals are collectively added to the mass spectrum (see Kafader et al.). However, such strategies are not suitable for charge state assignment in electron multiplier detection systems. For systems based on electron multiplier detection systems, in many cases each charge state does not have a unique detector response, but instead has a unique pulse height distribution specific to each charge state and m/z value (more generally intensity distribution).
本技术允许根据由检测器在检测到离子时生成的脉冲的特点来确定或推断离子的电荷状态。为此,本技术为多个检测到的离子生成脉冲特点的分布。脉冲特点可以包括脉冲高度、脉冲宽度或脉冲面积,以及其它可能的特点。根据检测到的离子的电荷状态,脉冲特点的分布形成独特的剖面。因此,电荷状态可以由脉冲-特点分布确定。一旦确定了离子的电荷状态,就可以基于离子的m/z来确定离子的质量,并且可以将离子与其它离子区分开来。最终,通过MS技术分析的化合物可以基于检测到的离子的确定的电荷状态来识别。因此,通过识别和/或指派离子的电荷状态,提高了质量分析仪器的测量能力。质量分析仪器的准确度也可以类似地提高。The present technique allows the charge state of ions to be determined or inferred from the characteristics of the pulses generated by the detector when the ions are detected. To this end, the present technique generates a distribution of pulse characteristics for multiple detected ions. Pulse characteristics may include pulse height, pulse width, or pulse area, among other possible characteristics. Depending on the charge state of the detected ions, the distribution of pulse characteristics forms a unique profile. Thus, the state of charge can be determined from the pulse-characteristic distribution. Once the charge state of an ion is determined, the mass of the ion can be determined based on its m/z and the ion can be distinguished from other ions. Ultimately, compounds analyzed by MS techniques can be identified based on the determined charge states of the detected ions. Thus, by identifying and/or assigning charge states of ions, the measurement capabilities of mass analytical instruments are improved. The accuracy of mass analysis instruments can be similarly improved.
图1A描绘了用于执行质谱技术的示例质量分析系统100。在一些示例中,系统100可以是质谱仪。示例系统100包括离子源设备101、解离设备102、质量分析器103、检测器104和计算元件,诸如处理器105和存储器106。例如,离子源设备101可以是电喷雾离子源(ESI)设备。离子源设备101被示为质谱仪的一部分或者可以是分离的设备。例如,解离设备102可以是基于电子的解离(ExD)设备或碰撞诱导解离(CID)设备。基于电子的解离(ExD)、紫外光解离(UVPD)、红外光解离(IRMPD)和碰撞诱导解离(CID)常常被用作串联质谱(MS/MS)的碎裂技术。ExD可以包括但不限于电子捕获解离(ECD)或电子转移解离(ETD)。CID是串联质谱仪中最常规的解离技术。如上所述,在自顶向下和自中向下蛋白质组学中,完整或消化的蛋白质被电离并进行串联质谱分析。例如,ECD是一种优先解离肽和蛋白质骨架的解离技术。因此,这种技术是使用自顶向下和自中向下蛋白质组学方法分析肽或蛋白质序列的理想工具。FIG. 1A depicts an example
质量分析器103可以是用于期望技术的任何类型的质量分析器,诸如飞行时间(TOF)、离子阱或四极质量分析器。检测器104可以是用于检测离子和生成本文讨论的信号的合适检测器。例如,检测器104可以包括电子倍增检测器,该检测器可以包括模数转换(ADC)电路系统。检测器104也可以是图像电荷感应的检测器。检测器104产生用于检测到的离子的检测脉冲。The
系统100的计算元件(诸如处理器105和存储器106)可以包括在质谱仪本身中,位于质谱仪附近,或远离质谱仪定位。一般而言,系统的计算元件可以与检测器104电子通信,使得计算元件能够接收从检测器104生成的信号。处理器105可以包括多个处理器并且可以包括用于处理信号并生成本文讨论的结果的任何类型的合适的处理组件。取决于确切的配置,存储器106(尤其是存储质量分析程序和指令以执行本文公开的操作)可以是易失性的(诸如RAM)、非易失性的(诸如ROM、闪存等),或两者的某种组合。其它计算元件也可以包括在系统100中。例如,系统100可以包括存储设备(可移动和/或不可移动),包括但不限于固态设备、磁盘或光盘或带。系统100还可以具有诸如触摸屏、键盘、鼠标、笔、语音输入等的(一个或多个)输入设备,和/或诸如显示器、扬声器、打印机等的(一个或多个)输出设备。诸如局域网(LAN)、广域网(WAN)、点对点、蓝牙、RF等的一个或多个通信连接也可以结合到系统100中。Computing elements of
图1B描绘了从诸如电子倍增器检测器之类的检测器生成的离子脉冲的示例图110。y轴表示强度,并且x轴表示时间。强度可以以电压为单位。例如,对于电子倍增器检测器,检测器的输出可以是基于检测到的电子的电压(常常以毫伏(mV)表示)。FIG. 1B depicts an
在图1B中,描绘了三个脉冲—第一脉冲111、第二脉冲112和第三脉冲113。脉冲111-113中的每一个表示不同的单个离子到达检测器。脉冲111-113可以被数字化,并且可以从每个数字化脉冲中找到峰。可以为每个脉冲计算和存储强度(或峰高度)和到达时间对。矩形131、132和133表示相应脉冲的强度或脉冲高度。In FIG. 1B three pulses are depicted - a
每个脉冲可以由脉冲特点来表征。脉冲特点可以包括诸如脉冲高度、脉冲宽度和/或脉冲曲线下的面积之类的特点。每个脉冲的脉冲高度由矩形131、132和132指示。脉冲高度可以是用于相应脉冲的最大脉冲高度,并且脉冲高度可以具有电压的单位。脉冲宽度可以在脉冲的任何点处,但脉冲宽度的一个测量可以是半峰全宽(FWHM)。脉冲宽度可以具有时间的单位。可以通过对每个脉冲的相应脉冲信号下的面积进行积分来生成脉冲曲线下的面积。Each pulse can be characterized by a pulse characteristic. Pulse characteristics may include characteristics such as pulse height, pulse width, and/or area under the pulse curve. The pulse height of each pulse is indicated by
脉冲特点可以被用于将检测到的离子分离成不同的带。图1C描绘了示例质谱150,其基于离子脉冲特点——具体而言是最大脉冲高度——被分离到不同的带或通道中。为检测到的具有10-20mV之间的最大脉冲高度的离子生成第一质谱160。为检测到的具有20-30mV之间的最大脉冲高度的离子生成第二质谱170。为检测到的最大脉冲高度在20-30mV之间的离子生成第三质谱180。关于这种分离和条带的更多细节在'720出版物中进一步讨论。如上面所讨论的,虽然将离子分离到不同的带中有好处,但这种分离不允许识别特定离子的电荷状态。如本文进一步讨论的,脉冲特点可以被用于生成允许离子的电荷状态分类的分布剖面。The pulse feature can be used to separate the detected ions into different bands. Figure 1C depicts an
图2描绘了示例脉冲-特点分布的图200。图200中的脉冲-特点分布基于脉冲高度的特点。因而,脉冲-特点分布可以被称为脉冲-高度分布或强度分布。在图中,x轴表示脉冲高度,并且y轴表示检测的概率或频率。例如,越高的概率值指示具有对应脉冲高度的离子被越频繁地检测到。FIG. 2 depicts a
第一脉冲-高度分布202和第二脉冲-高度分布204在图200中被描绘。如从图200可以看出的,脉冲-高度分布重叠,但是第一脉冲-高度分布202具有与第二脉冲-高度分布204的剖面不同的剖面。剖面形状的不同主要是由于形成相应脉冲-高度分布的检测到的离子的电荷状态的不同。例如,形成第一脉冲-高度分布202的检测到的离子与3+电荷离子对应,而形成第二脉冲-高度分布204的检测到的离子与7+电荷离子对应。因而,一旦已经建立或生成了各种脉冲-高度分布,就可以有可能通过确定对应的离子脉冲适合哪个脉冲-高度分布剖面来确定任何单个检测到的离子的电荷状态。A first pulse-
作为某个附加细节,脉冲-高度分布202、204是针对在大约517处具有非常相似的m/z值的产物离子生成的。产物离子由碳酸酐酶2(CA2)自顶向下的ECD分析生成。如上面所讨论的,如在图200中所看到的,源自不同电荷状态的脉冲-高度分布可以显著重叠。在这种重叠的情况下,单个强度数据点是不够的,并且基于单个强度数据点的任何电荷状态确定将有很大的机会不正确。As some additional detail, the pulse-
但是,对于源自同一样本的单离子检测事件的集合,有时有可能推断电荷状态。这可以或者通过将此类集合的脉冲高度分布与具有相似m/z和电荷状态的已知化合物的脉冲高度分布进行比较来实现,或者使用通常基于被分析样本的性质可获得的额外信息来实现。这种额外信息的示例可以是独特的同位素模式,如果通过质谱仪解析,那么将电荷状态信息编码到它们在m/z空间中的相对位置中。可替代地,可以为这个目的使用电荷状态分布,其也在m/z空间中的相对位置中对电荷状态信息进行编码。在本公开中,描述了一类用于基于集合中的相似检测事件的分组、将电荷状态指派给集合以及随后为各个事件指派电荷状态信息的单检测事件的电荷状态标识的方法。However, for a collection of single-ion detection events originating from the same sample, it is sometimes possible to infer the charge state. This can be achieved either by comparing the pulse height distribution of such ensembles to that of known compounds of similar m/z and charge state, or using additional information usually available based on the properties of the sample being analyzed . An example of such additional information could be unique isotopic patterns that, if resolved by a mass spectrometer, encode charge state information into their relative positions in m/z space. Alternatively, charge state distributions can be used for this purpose, which also encode charge state information in relative positions in m/z space. In this disclosure, a method is described for charge state identification of a single detection event based on grouping of similar detection events in a set, assigning charge states to the set, and then assigning charge state information to individual events.
在示例中,收集包含不同电荷状态和m/z的脉冲高度分布的数据集。用于离子组的脉冲-高度分布可以被用于为各个检测事件指派电荷状态。对于与未知种类对应的检测事件,可以基于它们在m/z空间中的相对接近性来选择检测事件的集合。可以为这种集合计算脉冲-高度分布。然后可以将这个脉冲-高度分布与来自相似m/z的已知脉冲-高度分布进行匹配,并选择“最佳”匹配。如将认识到的,在给定所获取的数据和所应用的确定努力的情况下,术语“最佳”可以被用于识别相对确定的最优状态。然后为每个检测事件和/或来自集合的对应离子推断最佳匹配的电荷状态。可替代地或附加地,可以基于针对不同m/z的强度分布的良好表征的数据来构建模型,并且可以基于这个模型来预测电荷状态。这可以例如使用机器学习技术来实现,其中训练数据集可以包含先验收集的注释的数据。In an example, a data set containing pulse height distributions for different charge states and m/z is collected. Pulse-height distributions for groups of ions can be used to assign charge states to individual detection events. For detection events corresponding to unknown species, the set of detection events may be selected based on their relative proximity in m/z space. Pulse-height distributions can be calculated for such sets. This pulse-height distribution can then be matched against known pulse-height distributions from similar m/z and the "best" match selected. As will be appreciated, the term "best" may be used to identify a relatively determined optimal state, given the data acquired and the determination effort applied. The best matching charge state is then inferred for each detection event and/or corresponding ion from the collection. Alternatively or additionally, a model can be constructed based on well-characterized data of the intensity distribution for different m/z, and the charge state can be predicted based on this model. This can be achieved, for example, using machine learning techniques, where the training dataset can contain a priori collected annotated data.
在另一个示例中,在第一步中,可以将收集的各个检测事件的数据求和以形成常规质谱或可替代地基于其强度的多个质谱。在第二步中,采用算法进行特征提取和特征电荷态指派,其中特征是与同一个分子对应的同位素集群或电荷状态集群。在第三步中,执行与那些特征对应的离子检测事件的集合的确定以及随后的电荷状态的推断。In another example, in a first step, the data collected for the individual detection events may be summed to form a conventional mass spectrum or alternatively multiple mass spectra based on their intensities. In the second step, algorithms are employed for feature extraction and feature charge state assignment, where features are isotope clusters or charge state clusters corresponding to the same molecule. In a third step, the determination of the set of ion detection events corresponding to those features and subsequent inference of the charge state is performed.
在另一个示例中,提出了一种数据获取和处理策略,它结合了关于各个离子组的脉冲-高度分布的信息和关于样本性质的额外信息,例如,同位素模式或电荷状态分布,以识别源自相似离子的检测事件的集合,并随后将电荷状态指派给各个离子。In another example, a data acquisition and processing strategy is presented that combines information about the pulse-height distribution of individual ion groups with additional information about sample properties, such as isotope patterns or charge state distributions, to identify source A collection of detection events for self-similar ions and then assign charge states to individual ions.
图3A描绘了用于电荷状态指派的示例方法300。在操作301处,为检测器检测到的多个离子中的每个离子生成脉冲。例如,当离子撞击电子倍增器检测器时,生成脉冲。生成的脉冲可以与图1B中描绘且在上面讨论的脉冲相似。每个脉冲可以具有它们相应的脉冲特点或由其描述。检测到的离子可以是来自通过质量分析技术研究或分析的样本电离的离子。在操作302处,基于脉冲的特点生成一个或多个脉冲-特点分布。例如,生成的脉冲-特点分布可以针对特定的脉冲特点(诸如脉冲高度)生成。因而,在操作302中生成的(一个或多个)脉冲-特点分布可以是与图2中描绘且在上面讨论的脉冲-高度分布相似的脉冲-高度分布。FIG. 3A depicts an
基于在操作302中生成的(一个或多个)脉冲-特点分布,可以在操作303处生成多个离子中的一个或多个离子的电荷状态的标识。例如,可以将生成的脉冲-特点分布与具有已知电荷状态的参考脉冲-特点分布的集合进行比较,以确定与生成的脉冲-特点分布最接近的匹配。然后可以为形成所生成的脉冲-特点分布的离子的电荷状态指派与参考脉冲-特点分布相关联的电荷状态。基于外部信息或关于被分析样本的已知特点和/或形成所生成的脉冲-特点分布的离子的m/z值,可以限制或减少与所生成的脉冲-特点分布进行比较的参考脉冲-特点分布的数量。例如,对于特定的m/z值或范围,参考脉冲-特点分布的子集可以存在,和/或参考脉冲-特点分布的子集可以与特定的同位素、化合物和/或样本对应。Based on the pulse-characteristic distribution(s) generated in
在其它示例中,可以基于具有已知电荷状态的参考脉冲-特点分布来训练机器学习模型(例如,神经网络)。生成的脉冲-特点分布可以作为输入提供给经训练的机器学习模型。经训练的机器学习模型处理输入生成的脉冲-特点分布,并且经训练的机器学习模型的输出指示与生成的脉冲-特点分布对应的电荷状态或可能的电荷状态。例如,机器学习模型的输出可以是电荷状态指示和/或与生成的脉冲-特点分布最接近匹配的参考脉冲-特点分布的指示。在一些示例中,到经训练的机器学习模型的输入还可以包括形成所生成的脉冲-特点分布的离子的m/z值或m/z范围。附加地或可替代地,输入还可以包括关于样本的外部数据,诸如预期的化合物或同位素类型。在其它示例中,可以针对不同类型的样本训练不同的机器学习模型,并且可以选择用于正被分析的样本的机器学习模型以用于分析所生成的脉冲-特点分布。In other examples, a machine learning model (eg, a neural network) can be trained based on a reference pulse-signature distribution with known charge states. The resulting impulse-characteristic distribution can be provided as input to a trained machine learning model. The trained machine learning model processes the pulse-characteristic distribution generated by the input, and the output of the trained machine learning model indicates the charge state or possible charge states corresponding to the generated pulse-characteristic distribution. For example, the output of the machine learning model may be an indication of the state of charge and/or an indication of a reference pulse-characteristic distribution that most closely matches the generated pulse-characteristic distribution. In some examples, the input to the trained machine learning model may also include m/z values or m/z ranges of ions forming the generated pulse-characteristic distribution. Additionally or alternatively, the input may also include external data about the sample, such as expected compounds or isotope types. In other examples, different machine learning models can be trained for different types of samples, and the machine learning model for the sample being analyzed can be selected for use in analyzing the generated impulse-characteristic distribution.
电荷状态的标识或指派还可以或可替代地基于将峰分组在一起作为特征,然后分析分组的峰之间的相对距离。关于这种电荷指派过程的附加细节在下面关于图3D中的方法3000更详细地讨论。The identification or assignment of charge states may also or alternatively be based on grouping peaks together as features and then analyzing the relative distance between the grouped peaks. Additional details regarding this charge assignment process are discussed in more detail below with respect to
返回到图3A中的方法300,在操作304处,为检测到的离子生成质谱。可以基于在操作303中识别出的(一个或多个)电荷状态生成质谱。例如,基于已知的电荷状态,重叠峰可以被解析或以其它方式在质谱中指示。例如,因为用于形成质谱的离子的电荷状态是已知的或在操作303中被识别,所以可以生成用于检测到的离子的去卷积的质谱。对于去卷积的质谱,质谱的一个轴可以是质量而不是每电荷质量(m/z)。在操作305处,可以识别样本中与检测到的离子对应的化合物或化合物的量。可以从操作304中生成的质谱和/或从操作303中识别出的(一个或多个)电荷状态识别化合物或化合物量。Returning to
图3B描绘了用于电荷状态指派的另一个示例方法310。在操作311处,为检测器检测到的多个离子中的每个离子生成脉冲。操作311可以与上面讨论的操作301基本相同或相似。生成的脉冲可以存储在存储器中以供后续分析。在操作312处,基于检测到的离子的m/z值生成质谱。在操作313处,可以选择和/或识别质谱中的峰。例如,可以通过寻峰算法自动识别峰。在其它示例中,可以基于从用户接收的手动输入来识别和/或选择峰。识别出的峰具有相关联的m/z位置或值。m/z位置可以是峰的中心位置和/或峰上的质心或加权平均m/z位置。FIG. 3B depicts another
在操作314处,为形成在操作313中识别出的峰的离子生成一个或多个脉冲-特点分布。形成峰的离子可以是经由寻峰算法识别出的离子。离子也可以是在所识别出的峰的m/z值的特定m/z范围内的离子。例如,m/z范围可以基于峰的特点来选择和/或可以是预设范围(例如,固定的m/z值)。作为示例,m/z范围可以是从峰的开始m/z值(即,峰开始的地方)到峰的结束m/z值(即,峰结束的地方)。At
对于形成峰和/或在m/z范围内的每个离子,可以访问那些离子的对应脉冲。可以以指示概率或频率对(versus)脉冲特点(例如,脉冲高度)的方式绘制或存储脉冲。例如,该图可以与图2中的图相似,或者可以生成和/或存储脉冲特点和概率/频率对的阵列。然后可以为脉冲识别或生成一个或多个脉冲-特点分布。例如,如果峰由具有不同电荷状态的离子形成,那么可以生成多个脉冲-特点分布。For each ion forming a peak and/or in the m/z range, the corresponding pulses for those ions can be accessed. Pulses may be plotted or stored in a manner indicative of probability or frequency versus pulse characteristics (eg, pulse height). For example, the map can be similar to the map in Figure 2, or an array of pulse signatures and probability/frequency pairs can be generated and/or stored. One or more pulse-characteristic distributions can then be identified or generated for the pulse. For example, multiple pulse-characteristic distributions can be generated if peaks are formed by ions with different charge states.
在操作315处,基于在操作314中生成的脉冲-特点分布,识别和/或指派形成识别出的峰的一个或多个离子的电荷状态。操作315可以与图3A中并如上讨论的操作303相似,并且识别电荷状态可以以与上面讨论的相似方式来识别。基于识别出的和/或指派的电荷状态,可以生成质谱和/或可以识别化合物或化合物量,如上文参考操作304和305所讨论的。At an
图3C描绘了用于电荷状态指派的另一个示例方法320。在操作321处,为检测器检测到的多个离子中的每个离子生成脉冲。操作321可以与上面讨论的操作301相同或相似。在操作322处,检测到的离子根据它们各自的脉冲特点进行分组。作为示例,可以使用脉冲高度的脉冲特点,可以基于离子各自的脉冲高度将离子分组到强度带中。例如,基于每个离子的脉冲特点,可以将多个离子的第一子集分组到第一强度带中,并且可以将多个离子的第二子集分组到第二强度带中。FIG. 3C depicts another
在操作323处,可以生成用于每个强度带的质谱。例如,在使用两个强度带的情况下,可以生成用于第一强度带的第一质谱,并且可以生成来自第二强度带的第二质谱。质谱可以与图1C中描绘并在上面讨论的质谱类似。At
在操作324处,从在操作323中生成的质谱中识别一个或多个峰。可以以与上面讨论的操作313中相同或相似的方式执行峰标识和/或选择。通过在识别(一个或多个)峰之前生成质谱,可以减少或移除背景噪声。例如,与用于所有离子的单个聚合质谱相比,强度带中的一个或多个可以呈现更清晰的信号和/或更明确定义的峰。照此,可以更准确地识别峰。At
在操作325处,可以为形成在操作323中识别出的(一个或多个)峰和/或在识别出的(一个或多个)峰的m/z值的m/z范围内的离子生成一个或多个脉冲-特点分布。例如,可以在操作314中生成与具有第一电荷状态的离子对应的第一脉冲-特点分布和与具有第二电荷状态的离子对应的第二脉冲-特点分布。脉冲-特点分布可以如上面例如参考操作315和303讨论的那样生成。At
在操作326处,基于在操作325中生成的(一个或多个)脉冲-特点分布中的至少一个,生成形成识别出的(一个或多个)峰的离子的电荷状态的标识。从(一个或多个)脉冲-特点分布识别电荷状态可以如上面讨论的那样执行。例如,操作326可以与图3A中并且如上面讨论的操作303相似,并且识别电荷状态可以以与上面讨论的相似方式来识别。基于识别出的和/或指派的电荷状态,可以生成质谱和/或可以识别化合物,如上面参考操作304和305所讨论的。At an
图3D描绘了用于电荷状态指派的另一个示例方法3000。图3D和下面的方法3000的描述是对可以为每个任务采用的示例逐步操作集的描述以及对于示例选择的数据集的相应步骤的结果。在这个示例中,使用来自自顶向下的碳酸酐酶2(CA2)的ECD实验的数据。图5描绘了用于实验的数据的质谱500的示例缩放或数据片段。更具体而言,图5描绘了用于CA2的自顶向下ECD实验的m/z范围517-520的缩放的质谱500。FIG. 3D depicts another
返回到图3D,在步骤3010中,来自检测器的数据以如下方式被记录,即,对于每个检测事件,一对强度和对应的m/z值被记录和存储。例如,对于检测器生成的每个脉冲(由于检测到的离子),用于对应检测到的离子的至少一个脉冲特点(例如,脉冲高度、脉冲宽度、脉冲面积)和对应的m/z值可以被存储为一对。可以如上面讨论的那样和/或根据'720出版物中描述的方法生成或记录数据。Returning to Figure 3D, in
在步骤3020中,如上文和/或'720出版物中所述,基于峰强度将记录的数据求和为单个谱或多个质谱。在这个示例中,将数据求和以形成与不同强度带对应的多个质谱。图6描绘了这种带状质谱的示例。例如,图6描绘了多个带状质谱600,包括:(1)针对具有在20-30mV之间的对应脉冲高度的离子的第一质谱602;(2)针对具有在30-40mV之间的对应脉冲高度的离子的第二质谱604;(3)针对具有在40-50mV之间的对应脉冲高度的离子的第三质谱606;以及(4)针对具有在50-60mV之间的对应脉冲高度的离子的第四质谱608。In
返回到图3D,在步骤3030中,执行峰检测操作。如本领域技术人员将认识到的,对于这个步骤可以采用各种算法。例如,可以使用连续小波变换(CWT)算法。图6中的高亮/阴影示出了基于连续小波变换算法的峰检测过程的结果。例如,由峰检测算法检测到的每个峰都被高亮/阴影显示。穿过图6中描绘的每个峰的线指示相应峰的m/z值。阴影/高亮的外边界可以指示上述峰的m/z范围。Returning to Figure 3D, in
在步骤3040中,使用通过它们与峰值顶点的接近性过滤的检测事件来计算用于每个峰的脉冲-特点分布。例如,与图6中特定峰的高亮区域中的离子对应的所有脉冲都可以被用于生成脉冲-特点分布。虽然可以生成多个带状质谱并将其用于峰标识(以提高峰检测过程的准确性),但用于生成脉冲-特点分布的脉冲取自所有带状质谱。例如,如果被选择用于生成脉冲-特点分布的峰是位于图6中30-40mV质谱604中大约518.0处的峰,那么用于生成脉冲-特点分布的脉冲包括与来自其m/z值接近峰的m/z值的所有带状质谱602-608的离子对应的脉冲。In
生成的脉冲-特点分布可以是脉冲-高度分布。图6中用于多个峰的计算出的脉冲-高度分布的示例在图7中示出。如图7中可以看到的,形成脉冲-高度分布的两个集群——第一集群702和第二集群704。第一集群702与具有第一电荷状态的离子对应,并且第二集群704与具有第二电荷状态的离子对应。虽然每个集群中的脉冲-高度分布不完全相同,但从图7中的图中可以清楚地看到剖面或分布的两个独特分组。The generated pulse-characteristic distribution may be a pulse-height distribution. An example of the calculated pulse-height distribution for multiple peaks in FIG. 6 is shown in FIG. 7 . As can be seen in Figure 7, two clusters of the pulse-height distribution are formed - a
返回到图3D,在步骤3050中,可以将在操作3040中生成的脉冲-特点分布彼此比较。可以执行比较以将脉冲-特点分布彼此分组或聚类。基于分组或聚类,可以将属于不同同位素的离子和/或峰分组在一起。执行这种比较的一种方式是计算脉冲-特点分布之间的相对距离。为此,可以采用适当的合并(binning),并且可以将脉冲-特点分布表示为包含用于每个强度范围的概率的向量。可以为表示强度分布的每对向量计算欧几里得距离或任何其它适当的范数。计算出的成对欧几里得距离的示例在图8中描绘的表800中示出。可以将具有相对距离小于预定义阈值的对应脉冲-特点分布的峰分组在一起以形成特征。在示例性分析中,如果这种组内的每个脉冲-特点分布之间的相对距离小于0.1,那么将峰分组为特征,从而形成与两个独特特征对应的两个分离的峰组。例如,质谱中识别出的两个峰可以具有彼此非常相似的对应脉冲-特点分布(即,在同一集群中)。这种脉冲-特点分布相似性指示峰很可能由具有相同电荷状态的离子形成。因而,峰可以作为特征分组在一起并被认为是同位素集群的一部分。Returning to FIG. 3D, in
返回到图3D,在步骤3060中,特征的电荷状态在假设峰正在形成同位素集群的情况下被识别。为了实现这一点,首先,在操作3050中,与特征对应或分组到特征中的峰可以按升序或降序排序。可以在m/z空间中计算与特征对应的相邻峰之间的距离(例如,第一峰与第二峰之间的m/z距离)。然后可以基于特定特征的最丰富(因此最可能的)距离或者基于最小距离来选择一致距离,如果该最小距离可以适当地解释其它观察到的距离(例如,其它距离是该一致距离的倍数)的话。同位素集群中相邻同位素之间的距离与特征电荷成反比,因此可以从那些距离推断特征电荷。Returning to Figure 3D, in
这种计算的示例在图9中示出。图9描绘了两个特征,其中峰已基于其对应脉冲-特点分布的相似性进行分组。例如,对于第一特征,四个峰已被分组在一起。对于第二特征,三个峰已被分组在一起。为每个相应的峰示出了峰位置和峰之间的m/z距离。基于距离,可以基于距离的倒数生成预测的电荷状态。例如,0.142的倒数是7.04(即,1/0.142=7.04),而0.334的倒数是2.99(即,1/0.334=2.99)。然后可以使用最频繁预测的电荷或距离来识别或指派电荷状态。例如,对于第一特征,由于m/z距离,最常见的预测电荷状态约为7。因为电荷状态必须是整数,所以一致电荷状态被确定为7。对第二特征执行相似的计算以确定一致电荷状态为3。值得注意的是,第一特征的峰2和3之间的距离不同于一致距离,并且该差异的处置在下面进一步讨论。An example of such a calculation is shown in FIG. 9 . Figure 9 depicts two signatures where peaks have been grouped based on the similarity of their corresponding pulse-feature distributions. For example, for the first feature, four peaks have been grouped together. For the second feature, three peaks have been grouped together. Peak positions and m/z distances between peaks are shown for each corresponding peak. Based on the distance, a predicted state of charge may be generated based on the inverse of the distance. For example, the reciprocal of 0.142 is 7.04 (ie, 1/0.142=7.04), and the reciprocal of 0.334 is 2.99 (ie, 1/0.334=2.99). The most frequently predicted charge or distance can then be used to identify or assign a charge state. For example, for the first feature, the most common predicted charge state is around 7 due to the m/z distance. Since the state of charge must be an integer, the consistent state of charge was determined to be 7. A similar calculation is performed on the second feature to determine a consistent charge state of 3. Notably, the distance between
返回到图3D,方法3000可以继续步骤3070,其中可以计算缺失的峰。可以使用多种策略来执行这个步骤。例如,为了找到缺失的内部峰,算法首先找到相邻峰之间的距离,该距离大于一致距离并且基本上是一致距离的倍数。然后将乘法因子N计算为N=(测得的距离)/(一致距离)。额外的N-1个峰可以在它们各自位置的那些峰之间插入,以形成完整的同位素集群。Returning to Figure 3D,
可以参考图9演示使用这种算法的示例。在图9中,第一特征中的峰2和3之间的距离为0.286,这大于第一特征中其它峰之间的距离。第一特征的一致距离约为0.143。使用上面的计算,N=0.286/0.143=2。因此,可以在峰2和3之间插入1(即,N-1)个峰。在这个步骤之后提供额外的峰来解释同位素集群。峰被放置在517.994m/z的m/z位置处(这是通过将标注为2和3的峰的m/z求平均来计算的)。An example of using this algorithm can be demonstrated with reference to FIG. 9 . In Figure 9, the distance between
也可以可替代地或附加地采用另一种算法来搜索缺失的峰,其不限于仅寻找内部峰。这种算法计算可能的相邻峰值的位置,然后提取与这些位置对应的记录的信号。这个信号被进一步处理以形成脉冲-特点分布,然后可以将其与使用步骤3050-3060中描述的相似方法为组中的峰值计算的脉冲-特点分布中的一个(或可替代地平均值)进行比较。然后将确认的峰值添加到特征的峰列表。Another algorithm may alternatively or additionally be used to search for missing peaks, which is not limited to finding only internal peaks. This algorithm calculates the positions of possible adjacent peaks and then extracts the recorded signal corresponding to these positions. This signal is further processed to form a pulse-characteristic distribution, which can then be compared with one of the pulse-characteristic distributions (or alternatively averaged) calculated for the peaks in the group using a similar method as described in steps 3050-3060 Compare. The confirmed peaks are then added to the peak list of the feature.
步骤3080可以包括执行分析以找到多个特征中的重叠峰。这个步骤可以通过比较每个特征中的峰位置并在基本相同的位置寻址峰来完成。例如,来自先前步骤3070的具有517.994的m/z的新找到的峰与来自具有质量518.003的特征2(参见图9)的峰0处于基本相同的位置。可以通过寻找峰之间的m/z差异或距离并将其与重叠阈值进行比较来识别重叠峰。如果m/z距离低于阈值,那么可以认为峰重叠。
一旦已经识别出重叠峰,就可以执行寻找每个特征对重叠峰的贡献的额外步骤。为此,可以编写线性方程组并在有约束或无约束的情况下近似求解。此类约束可以包括要求每个贡献都是非负的。这个步骤可以例如使用非负最小二乘近似算法来完成。Once the overlapping peaks have been identified, an additional step of finding the contribution of each feature to the overlapping peaks can be performed. To do this, systems of linear equations can be written and approximately solved with or without constraints. Such constraints can include requiring each contribution to be non-negative. This step can be done, for example, using a non-negative least squares approximation algorithm.
在步骤3090处,可以将检测事件(例如,与脉冲对应的离子)指派给特征。例如可以使用以下算法来执行步骤3090。首先,使用来自步骤3070的一致距离和一个或多个附加仪器参数(诸如仪器分辨率),可以为特征的每个峰建模m/z分布。其次,使用用于所述特征的一致脉冲-特点分布(其可以被计算为所有非重叠峰的脉冲-特点分布的平均值)和来自这个步骤的第一部分的m/z分布,可以计算反映特征具有这种检测事件的概率的两个值。这些值是m/z位置与计算出的m/z分布的交叉点,以及检测事件强度与归因于特征的一致强度分布的相似交叉点。那些值的乘积是分数,其可以被用于使用阈值将检测事件归因于特征。At
可以参考图10提供计算这种分数的示例,图10描绘了建模的峰1000和一致脉冲-特点分布1050。待指派的检测到的离子具有517.994的m/z值和34的脉冲高度。那些值由图中的垂直线指示。517.994的m/z值在强度0.31处与建模的峰相交(注意的是,对于建模的峰,强度已归一化为1)。34的脉冲高度与一致脉冲-特点分布相交于0.25处。因此,分数可以被计算为0.0775(即,0.31*0.25=0.0775)。An example of calculating such a score may be provided with reference to FIG. 10 , which depicts a modeled
在多个重叠特征的情况下,选择产生最高分数的特征。还可以设置和实现平衡所述特征对重叠峰的总贡献的附加约束。也可以针对这个步骤实现附加的或替代的算法以确定为其指派与检测到的离子对应的检测事件的最适当的特征。此类算法可以估计属于某个特征的检测事件的概率,诸如通过使用贝叶斯框架。在步骤3010中,将特征电荷状态指派给检测事件。In the case of multiple overlapping features, the feature yielding the highest score is chosen. Additional constraints that balance the total contribution of the features to overlapping peaks can also be set and implemented. Additional or alternative algorithms may also be implemented for this step to determine the most appropriate signatures to assign detection events corresponding to detected ions. Such algorithms can estimate the probability of a detected event belonging to a certain feature, such as by using a Bayesian framework. In
图3E描绘了用于电荷状态指派的另一个示例方法3200。在操作3202处,为检测器检测到的多个离子中的每个离子生成脉冲。例如,当离子撞击电子倍增器检测器时,生成脉冲。生成的脉冲可以与图1B中描绘且在上面讨论的脉冲相似。每个脉冲可以具有它们各自的脉冲特点或由其描述。检测到的离子可以是来自通过质量分析技术研究或分析的样本电离的离子。在操作3204处,基于脉冲的特点生成一个或多个脉冲-特点分布。例如,生成的脉冲-特点分布可以针对特定的脉冲特点(诸如脉冲高度)生成。因而,在操作3204中生成的(一个或多个)脉冲-特点分布可以是与图2中描绘并在上面讨论的脉冲-高度分布相似的脉冲高度分布。FIG. 3E depicts another
在操作3206处,基于脉冲-特点分布,识别具有相邻电荷状态的离子峰。识别具有相邻电荷状态的峰可以包括基于脉冲-特点分布确定估计或粗略的电荷状态。粗略的电荷状态标识可以仅对形成一对的至少一个峰的可能电荷状态的范围是准确的,并且来自这个范围的至少一个电荷状态与为第二峰识别出的电荷状态相邻。At
具有相邻电荷状态的离子峰的示例在图11中的示例图1100中示出。第一峰位于(m/z)1的m/z位置处并且第二峰具有(m/z)2的m/z位置处。可以基于在操作3204中生成的脉冲-特点分布来估计那些峰的电荷状态。An example of ion peaks with adjacent charge states is shown in the example graph 1100 in FIG. 11 . The first peak is located at an m/z position of (m/z) 1 and the second peak has an m/z position of (m/z) 2 . The state of charge of those peaks may be estimated based on the pulse-characteristic distribution generated in
在操作3208处,形成峰的离子的电荷状态中的电荷状态可以进一步基于以下等式确定:At
等式(1): Equation (1):
等式(2): Equation (2):
等式(3): Equation (3):
等式1表达第二峰的m/z位置((m/z)2)与离子的非电荷载流子质量(M)、第二峰的电荷状态(z2)和电荷载流子的质量(X)的关系。等式2表达第一峰的m/z位置((m/z)1)与离子的非电荷载流子质量(M)、第二峰的电荷状态(z2)和电荷载流子的质量(X)的关系。值得注意的是,等式2假设第一峰与第二峰之间的电荷状态差为1。因此,在第一峰与第二峰之间的估计的电荷状态差值不是1的其它示例中,等式2中的1被替换为那个值。
基于等式1和2的等式3表达第二峰中离子的电荷状态(z2)与第二峰的m/z位置((m/z)2)、第一峰的m/z位置((m/z)1)和电荷载流子的质量(M)之间的关系。这些值中的每一个由检测器测量,或者从电离的样本和/或样本制备过程中获知。例如,常见的电荷载流子是质子,其质量约为1个原子质量单位(AMU)。因而,可以使用等式3确定形成第二峰的离子的电荷状态(z2)。基于确定的形成第二峰的离子的电荷状态(z2),可以确定形成第一峰的离子的电荷状态(z1)。与最初估计或确定的粗略电荷状态相比,确定的电荷状态可以是细化的电荷状态。
细化的电荷状态应当是整数或接近整数,诸如在整数的阈值内。如果不是,那么粗略的电荷状态标识或细化的电荷状态标识可能是不正确的。因而,粗略的和/或细化的电荷状态标识可以仅在细化的识别出的电荷状态是某个阈值内的整数时才被接受。如果不是,那么可以重新估计粗略的电荷状态,并且用修正后的粗略的电荷状态再次执行该方法。此外,为了潜在地增加对指派的信心,可以识别具有相邻电荷状态的第三峰。第三峰与前两个峰中的至少一个形成一对,并且针对所述共同峰的电荷状态标识在两对中都匹配。The refined state of charge should be an integer or close to an integer, such as within a threshold of integers. If not, then the coarse charge state identification or the fine charge state identification may be incorrect. Thus, coarse and/or refined charge state identifications may only be accepted if the refined identified charge states are integers within a certain threshold. If not, the coarse state of charge can be re-estimated and the method performed again with the revised coarse state of charge. Furthermore, to potentially increase confidence in the assignment, a third peak with an adjacent charge state could be identified. The third peak forms a pair with at least one of the first two peaks, and the charge state identification for the common peak matches in both pairs.
图3F描绘了用于电荷状态指派的另一个示例方法3300。方法3300利用图像-电荷检测器。与ADC检测器不同,图像-电荷检测器检测质量分析器中离子的振荡。图12描绘了由图像-电荷检测器测得的瞬态时域信号的示例图,该瞬态时域信号包括来自在质量分析器中振荡的多个离子中的每一个的分量。为了将由图像-电荷检测器测得的瞬态时域信号分解成单独的分量,将瞬态时域信号转换成频域信号。转换方法包括但不限于傅立叶变换或小波变换。频域信号中的峰与在质量分析器中振荡的多个离子中的各个离子对应。频域峰使用众所周知的取决于特定类型的质量分析器的公式转换成m/z峰,以生成质谱。FIG. 3F depicts another
因此,对于图像-电荷检测器,频域信号或峰的强度与底层离子的电荷状态成比例,类似于上述脉冲如何与电荷状态成比例。因此,频域(FD)峰的强度或其它特点可以被用于生成与上面讨论的脉冲-特点分布相似的分布。从FD峰的特点生成的分布可以被称为FD-峰-特点分布或FD-峰-强度分布,其中FD峰的强度被用作感兴趣的特点。然后可以以与脉冲-特点分布基本相同的方式使用FD-峰-特点分布来确定电荷状态。Thus, for an image-charge detector, the intensity of the frequency-domain signal or peak is proportional to the charge state of the underlying ions, similar to how the pulse described above is proportional to the charge state. Thus, the intensity or other characteristics of the frequency domain (FD) peaks can be used to generate a distribution similar to the pulse-characteristic distribution discussed above. The distributions generated from the characteristics of the FD peaks can be referred to as FD-peak-characteristic distributions or FD-peak-intensity distributions, where the intensity of the FD peaks is used as the feature of interest. The FD-peak-characteristic distribution can then be used to determine the state of charge in substantially the same manner as the pulse-characteristic distribution.
返回到图3F,在操作3302处,检测由质量分析器中的多个离子的振荡在质量分析器的图像电荷检测器上感应出的瞬态时域信号。在操作3304处,瞬态时域信号被转换成多个频域(FD)峰。每个频域峰可以与多个离子中的一个离子对应。Returning to Figure 3F, at
在操作3306处,生成一个或多个FD-峰-特点分布。例如,生成的FD-峰-特点分布可以针对特定的FD-峰-特点(诸如强度)生成。在操作3308处,基于在操作3306中生成的一个或多个FD-峰-特点分布,生成在操作3302中检测到的多个离子中的一个或多个离子的电荷状态的标识。基于FD-峰-特点分布识别电荷状态可以使用本文描述的任何方法使用脉冲-特点分布来执行。例如,FD-峰-特点分布可以用来代替脉冲-特点分布。At
在操作3310处,为检测到的离子生成质谱。在操作3308中,可以基于识别出的(一个或多个)电荷状态生成质谱。例如,利用已知的电荷状态,重叠峰可以被解析或以其它方式在质谱中指示。例如,因为用于形成质谱的离子的电荷状态是已知的或在操作3308中被识别,所以可以生成用于检测到的离子的去卷积的质谱。对于去卷积的质谱,质谱的一个轴可以是质量而不是每电荷质量(m/z)。在操作3312处,可以识别样本中与检测到的离子对应的化合物或化合物的量。可以从操作304中生成的质谱和/或从操作3312中识别出的(一个或多个)电荷状态识别化合物或化合物量。At
图13描绘了包括图像-电荷检测器1318的示例系统1300。图13的系统包括质谱仪1310以及包括存储器和处理器1320的计算组件。系统的计算元件(诸如处理器1320和存储器)可以包括在质谱仪本身中,位于质谱仪附近,或位于远离质谱仪的位置。一般而言,系统的计算元件可以与检测器1318电子通信,使得计算元件能够接收从检测器1318生成的信号。处理器1320可以包括多个处理器并且可以包括任何类型的用于处理信号并生成本文讨论的结果的合适处理组件。FIG. 13 depicts an
质谱仪1310包括质量分析器1317。质量分析器1317包括图像-电荷检测器1318。图像-电荷检测器1318为检测到的离子生成振幅与离子电荷状态成比例的振荡信号或瞬态时域信号。质量分析器1317可以是可以使用图像-电荷检测器检测离子的任何类型的质量分析器,包括但不限于静电线性离子阱(ELIT)、FT-ICR或轨道阱质量分析器。质量分析器1317在图13中被示为ELIT,并且图像-电荷检测器1318被示为ELIT的拾取电极。
质量分析器1317检测由质量分析器1317中的多个离子的振荡在图像电荷检测器1318上感应出的瞬态时域信号1319。通过质谱仪1310将多个离子传输到质量分析器1317。处理器1320将瞬态时域信号1319转换成多个频域脉冲或峰1321。每个频域信号与多个离子中的一个离子对应。例如,处理器1320使用傅立叶变换将瞬态时域信号1319转换成多个频域峰1321。The
处理器1320可以将多个频域峰1321中的每个频域峰的强度与和两个或更多个不同电荷状态范围对应的两个或更多个不同预定强度范围进行比较。处理器1320可以基于该比较将每个频域峰存储在与两个或更多个预定强度范围对应的两个或更多个数据集1322之一中。处理器1320可以基于频域峰和/或本文讨论的识别出的电荷状态创建质谱。
在各种实施例中,在获取期间,处理器1320将瞬态时域信号1319转换成多个频域峰1321,将每个频域峰的强度与两个或更多个不同的预定强度范围进行比较,并将每个频域峰存储在两个或更多个数据集1322之一中。在替代实施例中,在获取之后,处理器1320将瞬态时域信号1319转换成多个频域峰1321,将每个频域峰的强度与两个或更多个不同的预定强度范围进行比较,并将每个频域峰存储在两个或更多个数据集1322之一中。In various embodiments, during acquisition, the
如上面所讨论的,如果同一离子的多个副本同时在质量分析器1317中振荡,那么测得的强度可以与电荷状态不成比例。因此,在各种实施例中,质谱仪1310将离子传输到质量分析器1317,使得质量分析器1317在任何给定时间仅包括具有特定m/z和电荷状态的单个离子。As discussed above, if multiple copies of the same ion are oscillating in the
在各种实施例中,图13的系统还包括离子源设备1311。例如,离子源设备1311可以是电喷雾离子源(ESI)设备。离子源设备1311在图13中被示为质谱仪1310的一部分,但也可以是分离的设备。In various embodiments, the system of FIG. 13 also includes an
此外,质谱仪1310还包括解离设备。解离设备可以是但不限于ExD设备1315或CID设备1313。解离设备可以被用于例如自顶向下的蛋白质分析。In addition,
在自顶向下的蛋白质分析中,离子源设备1311使样本的蛋白质电离,在离子束中产生用于蛋白质的多个前体离子。解离设备解离离子束中的多个前体离子,产生离子束中具有不同电荷状态的多个产物离子。如上所述,质谱仪1310将多个产物离子传输到质量分析器1317,使得多个产物离子是通过质谱仪1310传输到质量分析器1317的多个离子。In top-down protein analysis, the
在各种实施例中,处理器1320被用于控制离子源设备1311和质谱仪1310或向其提供指令并分析收集的数据。处理器1320通过例如控制一个或多个电压、电流或压力源(未示出)来控制或提供指令。In various embodiments,
图4描绘了用于电荷状态指派的另一个示例方法400。如果同位素分布对于至少多个峰没有被充分解析,那么方法400可以特别有用。操作401-404可以与操作3010-3040基本相同。在操作405处,可以估计特征的电荷状态。该特征可以由共享相似脉冲-特点分布的多个峰形成,并且可以如上文关于操作3050-3060所讨论的那样执行峰的分组以形成特征。在操作406处,对于在操作405中估计的每个可能的电荷状态,可以识别邻近的峰并且可以对邻近的峰的可能性进行评分。在操作407处,基于在操作407处执行的评分来选择最可能的候选。然后可以在操作408中将检测事件指派给特征,并且可以基于特征的电荷状态将特征电荷状态指派给检测事件。FIG. 4 depicts another
在另一个示例中,图3A-3E中的方法可以与图4中的方法组合。在这种示例中,可以使用图3D的方法3000中描述的策略来处理具有充分解析的同位素模式的峰。对于同位素模式基本上未解析的剩余峰,可以使用图4中的策略。在这种组合中,可以采用额外的步骤来定义找到的峰是否是同位素解析的。例如,这个步骤可以将检测到的特征的峰宽度与这个质谱仪的特征峰宽度进行比较,以获得已解析的特征和未解析的特征;In another example, the methods in FIGS. 3A-3E may be combined with the method in FIG. 4 . In such an example, the strategy described in
对于所有这些方法,一般可以设想三个积极的结果并且它们的效用实际上可以完全相同。首先,使用关于各个检测事件的信息(例如,电荷状态),可以使用公式(m/z-mp)*Z生成去卷积d质谱,Z是确定的电荷状态,其中mp是质子d质量。其次,这个信息可以被用于构成覆盖整个m/z范围或m/z范围的区段的每个电荷状态的谱的集合。第三,这个信息可以被用于生成各个特征的列表,每个特征都具有指派给它的m/z和z。然后可以基于识别出的特征确定或生成被分析样本中存在的化合物和/或化合物的量。For all these methods, three positive outcomes can generally be envisioned and their utility can be virtually identical. First, using information about each detected event (e.g., charge state), a deconvoluted d-mass spectrum can be generated using the formula (m/ zmp )*Z, where Z is the determined charge state, where mp is the proton d-mass. Second, this information can be used to construct a collection of spectra for each charge state covering the entire m/z range or a segment of the m/z range. Third, this information can be used to generate a list of features, each with m/z and z assigned to it. The compound and/or the amount of the compound present in the analyzed sample can then be determined or generated based on the identified features.
对于所有描述的实施例,将电荷状态指派给个体检测事件的步骤可以用指派源自形成特征的离子的所述检测事件的概率并因此指派所述检测事件与指派给这个特征的电荷状态相关联的概率代替或包括其。例如,此类概率可以使用贝叶斯框架来计算。在整理代表性质谱(或者全部或者部分)的后续步骤中,来自检测事件的比例贡献然后可以相应地分布在它所表示的特征之间以及它们在质谱内的相应位置。For all described embodiments, the step of assigning charge states to individual detection events may be associated with assigning a probability of said detection event originating from ions forming a feature and thus assigning said detection event to the charge state assigned to this feature Probability of replaces or includes it. For example, such probabilities can be calculated using a Bayesian framework. In a subsequent step of collating a representative mass spectrum (either in whole or in part), the proportional contribution from a detected event can then be distributed accordingly between the features it represents and their corresponding positions within the mass spectrum.
虽然结合各种实施例描述了本教导,但本教导并不旨在限于这些实施例。相反,如本领域技术人员将认识到的,本教导包括各种替代、修改和等同物。While the present teachings have been described in connection with various embodiments, the present teachings are not intended to be limited to such embodiments. On the contrary, the present teachings encompass various alternatives, modifications and equivalents, as will be recognized by those skilled in the art.
例如,上面参考根据本公开的各方面的方法、系统和计算机程序产品的框图和/或操作说明来描述本公开的方面。方框中注明的功能/动作可以指派给此功能的电荷状态不按任何流程图中所示的次序出现。例如,取决于所涉及的功能性/动作,相继示出的两个方框实际上可以基本上并发地执行,或者这些方框有时可以以相反的次序执行。另外,如本文和权利要求中所使用的,短语“元素A、元素B或元素C中的至少一个”旨在传达以下任何一种:元素A、元素B、元素C、元素A和B、元素A和C,元素B和C,以及元素A、B和C。For example, aspects of the present disclosure are described above with reference to block diagrams and/or operational illustrations of methods, systems and computer program products according to aspects of the present disclosure. The functions/actions noted in the boxes may be assigned charge states for this function not appearing in the order shown in any flowchart. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Additionally, as used herein and in the claims, the phrase "at least one of element A, element B, or element C" is intended to convey any of the following: element A, element B, element C, elements A and B, element A and C, elements B and C, and elements A, B, and C.
本申请中提供的一个或多个方面的描述和说明不旨在以任何方式限制或限定所要求保护的本公开的范围。本申请中提供的方面、示例和细节被认为足以传达所有权并使其他人能够做出和使用要求保护的公开的最佳模式。要求保护的公开不应当被解释为限于本申请中提供的任何方面、示例或细节。无论是组合地还是分开地示出和描述,各种特征(结构和方法)都旨在选择性地包括或省略以产生具有特定特征集的实施例。已经提供了本申请的描述和说明,本领域技术人员可以设想落入本申请中实施的总体发明构思的更广泛方面的精神内的不背离要求保护的公开的更广范围的变化、修改和替代方面。The description and illustration of one or more aspects provided in this application are not intended to limit or limit the scope of the claimed disclosure in any way. The aspects, examples and details provided in this application are believed to be sufficient to convey ownership and to enable others to make and use the best mode of the claimed disclosure. The claimed disclosure should not be construed as limited to any aspect, example or detail provided in the application. Whether shown and described in combination or separately, various features (structures and methods) are intended to be selectively included or omitted to yield an embodiment having a particular set of features. Having provided the description and illustrations of the present application, those skilled in the art can conceive of the broader changes, modifications and substitutions that fall within the spirit of the broader aspects of the general inventive concept embodied in the application without departing from the claimed disclosure aspect.
Claims (40)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063024987P | 2020-05-14 | 2020-05-14 | |
| US63/024,987 | 2020-05-14 | ||
| PCT/IB2021/000330 WO2021229301A1 (en) | 2020-05-14 | 2021-05-14 | Charge state determination of a single ion detection event |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115605976A true CN115605976A (en) | 2023-01-13 |
Family
ID=76943044
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202180035275.7A Pending CN115605976A (en) | 2020-05-14 | 2021-05-14 | Charge state determination for single ion detection events |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP4150658A1 (en) |
| JP (1) | JP7729840B2 (en) |
| CN (1) | CN115605976A (en) |
| WO (1) | WO2021229301A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117849159B (en) * | 2024-01-09 | 2025-01-07 | 融智生物科技(青岛)有限公司 | M protein detection method, electronic equipment and storage medium |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7141784B2 (en) | 2004-05-24 | 2006-11-28 | University Of Massachusetts | Multiplexed tandem mass spectrometry |
| CN101115991B (en) | 2005-05-13 | 2011-06-15 | 株式会社岛津制作所 | Mass analysis data analysis device and mass analysis data analysis method |
| JP4839254B2 (en) | 2007-03-30 | 2011-12-21 | 株式会社日立ハイテクノロジーズ | Mass spectrometry data analysis method |
| CN110718442B (en) * | 2015-01-23 | 2022-08-16 | 加州理工学院 | Integrated hybrid NEMS mass spectrometry |
| JP6899560B2 (en) * | 2017-05-23 | 2021-07-07 | 株式会社島津製作所 | Mass spectrometric data analyzer and mass spectrometric data analysis program |
| US11335547B2 (en) | 2018-04-10 | 2022-05-17 | Dh Technologies Development Pte. Ltd. | Top down analysis of antibodies in mass spectrometry |
| US11848181B2 (en) | 2019-01-31 | 2023-12-19 | Dh Technologies Development Pte. Ltd. | Acquisition strategy for top-down analysis with reduced background and peak overlapping |
-
2021
- 2021-05-14 CN CN202180035275.7A patent/CN115605976A/en active Pending
- 2021-05-14 JP JP2022568791A patent/JP7729840B2/en active Active
- 2021-05-14 EP EP21742481.1A patent/EP4150658A1/en active Pending
- 2021-05-14 WO PCT/IB2021/000330 patent/WO2021229301A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| JP2023526246A (en) | 2023-06-21 |
| EP4150658A1 (en) | 2023-03-22 |
| JP7729840B2 (en) | 2025-08-26 |
| WO2021229301A1 (en) | 2021-11-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4818270B2 (en) | System and method for grouping precursor and fragment ions using selected ion chromatograms | |
| US10593530B2 (en) | Method for identification of the monoisotopic mass of species of molecules | |
| JP6090479B2 (en) | Mass spectrometer | |
| US20140138535A1 (en) | Interpreting Multiplexed Tandem Mass Spectra Using Local Spectral Libraries | |
| US10325766B2 (en) | Method of optimising spectral data | |
| JP4821400B2 (en) | Structural analysis system | |
| CN115004307A (en) | Methods and systems for identifying compounds in complex biological or environmental samples | |
| JP7729840B2 (en) | Charge state determination of single ion detection events | |
| JP7667250B2 (en) | Systems and methods for charge state assignment in mass spectrometry - Patents.com | |
| US12362161B2 (en) | Charge state determination of a single ion detection event | |
| Chen et al. | Automated charge state determination of complex isotope-resolved mass spectra by peak-target Fourier transform | |
| GB2564018A (en) | Method of optimising spectral data | |
| CN113740408B (en) | Method and apparatus for determining interferences in MS scan data, filtering ions, and performing mass spectrometry on a sample | |
| Needham et al. | i, United States Patent (10) Patent No.: US 7,800,055 B2 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |