CN115626877B - Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions - Google Patents
Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions Download PDFInfo
- Publication number
- CN115626877B CN115626877B CN202211212997.8A CN202211212997A CN115626877B CN 115626877 B CN115626877 B CN 115626877B CN 202211212997 A CN202211212997 A CN 202211212997A CN 115626877 B CN115626877 B CN 115626877B
- Authority
- CN
- China
- Prior art keywords
- polyacid
- ions
- americium
- separation
- ultrafiltration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 actinide ions Chemical class 0.000 title claims abstract description 51
- 238000000926 separation method Methods 0.000 title claims abstract description 40
- 229910052768 actinide Inorganic materials 0.000 title claims abstract description 28
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- KVXHGSVIPDOLBC-UHFFFAOYSA-N selanylidenetungsten Chemical compound [Se].[W] KVXHGSVIPDOLBC-UHFFFAOYSA-N 0.000 title abstract description 9
- 229910052695 Americium Inorganic materials 0.000 claims abstract description 28
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002243 precursor Substances 0.000 claims abstract description 11
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 9
- 150000002500 ions Chemical class 0.000 claims description 16
- 239000013078 crystal Substances 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 13
- 229910021644 lanthanide ion Inorganic materials 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- KAGCXMYEBHGUDI-UHFFFAOYSA-L copper;diperiodate Chemical group [Cu+2].[O-]I(=O)(=O)=O.[O-]I(=O)(=O)=O KAGCXMYEBHGUDI-UHFFFAOYSA-L 0.000 claims description 4
- 230000020477 pH reduction Effects 0.000 claims description 4
- 229910052781 Neptunium Inorganic materials 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052778 Plutonium Inorganic materials 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 claims description 2
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical group Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 claims description 2
- KTAFYYQZWVSKCK-UHFFFAOYSA-N n-methylmethanamine;nitric acid Chemical compound CNC.O[N+]([O-])=O KTAFYYQZWVSKCK-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000011669 selenium Substances 0.000 abstract description 94
- 238000011084 recovery Methods 0.000 abstract description 8
- 229910052767 actinium Inorganic materials 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 150000001412 amines Chemical class 0.000 abstract description 2
- 230000000536 complexating effect Effects 0.000 abstract description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 35
- 150000003346 selenoethers Chemical class 0.000 description 22
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 18
- 229910052711 selenium Inorganic materials 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 4
- 238000000584 ultraviolet--visible--near infrared spectrum Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010668 complexation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 150000001255 actinides Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002927 high level radioactive waste Substances 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 1
- 208000019155 Radiation injury Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTMSTWBHUVPXGM-UHFFFAOYSA-K [Cu+3].[O-]I(=O)(=O)=O.[O-]I(=O)(=O)=O.[O-]I(=O)(=O)=O Chemical compound [Cu+3].[O-]I(=O)(=O)=O.[O-]I(=O)(=O)=O.[O-]I(=O)(=O)=O RTMSTWBHUVPXGM-UHFFFAOYSA-K 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007705 chemical test Methods 0.000 description 1
- XYNZKHQSHVOGHB-UHFFFAOYSA-N copper(3+) Chemical compound [Cu+3] XYNZKHQSHVOGHB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000009377 nuclear transmutation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/02—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C211/03—Monoamines
- C07C211/04—Mono-, di- or tri-methylamine
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
- C22B3/24—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B58/00—Obtaining gallium or indium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B60/00—Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/54—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及吸附分离技术领域,具体涉及一种硒钨多酸{Se6W45}及其制备方法与在超滤分离锕系离子中的应用。The invention relates to the technical field of adsorption and separation, in particular to selenium tungsten polyacid {Se 6 W 45 }, its preparation method and its application in the ultrafiltration separation of actinide ions.
背景技术Background technique
镅(Am),作为核能发电的副产品,是造成核燃料循环中高放射性废物(HLW)长期放射性毒性的主要因素。Am的有效回收,并转化为短寿命或稳定的核素,将大大减少核能对环境的影响。在HLW中,高中子截面的镧系元素(Lns)的共存严重影响了其嬗变效率,因此需要Am和Lns之间的有效分离,这是现代工业中最具挑战性的化学分离之一。这种困难主要源于它们的相似的化学行为,因为Am和Lns都以热力学稳定的三价阳离子存在于溶液中,特别是具有几乎相同的离子半径和配位化学。Americium (Am), a by-product of nuclear power generation, is a major contributor to the long-term radiotoxicity of high-level waste (HLW) in the nuclear fuel cycle. The effective recovery of Am and its transformation into short-lived or stable nuclides will greatly reduce the impact of nuclear energy on the environment. In HLW, the coexistence of lanthanides (Lns) with high neutron cross-sections severely affects their transmutation efficiency, thus requiring an effective separation between Am and Lns, which is one of the most challenging chemical separations in modern industry. This difficulty mainly stems from their similar chemical behavior, since both Am and Lns exist in solution as thermodynamically stable trivalent cations, especially with nearly identical ionic radii and coordination chemistries.
传统的分离方法利用了三价Am离子和Lns离子之间细微的键合差异,其中含氮或硫的萃取剂通过溶剂萃取过程使Am比Lns优先分配。然而,由于Am(III)和Ln(III)之间的区分能力有限,以及产生大量的二次放射性有机废物,这种分离策略仍然受到阻碍。目前,虽然各国研究人员已经探索了各种技术,包括溶剂萃取,沉淀和离子交换法,但由于AmO2 2+/AmO2 +和AmO2 2+/Am3+的还原电位分别为1.60V和1.68V(相对于pH为0时的SCE)。因此,当Am(VI)离子接触有机萃取剂/溶剂或通过色谱柱时,可以在几秒钟内产生Am(III)物种,使这些分离效率大幅降低。因此,亟需一种可高效分离锕系离子(包含镅)与镧系离子的方法。Conventional separation methods exploit the subtle bonding differences between trivalent Am ions and Lns ions, where nitrogen- or sulfur-containing extractants cause Am to be preferentially assigned over Lns through a solvent extraction process. However, this separation strategy is still hampered by the limited ability to distinguish between Am(III) and Ln(III) and the generation of large amounts of secondary radioactive organic waste. At present, although researchers from various countries have explored various techniques, including solvent extraction, precipitation and ion exchange methods, the reduction potentials of AmO 2 2+ /AmO 2 + and AmO 2 2+ /Am 3+ are 1.60V and 1.68V (vs. SCE at pH 0). Thus, when Am(VI) ions contact organic extractants/solvents or pass through the column, Am(III) species can be generated within seconds, making these separations much less efficient. Therefore, there is an urgent need for a method for efficiently separating actinide ions (including americium) and lanthanide ions.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种硒钨多酸{Se6W45}及其制备方法与在超滤分离锕系离子中的应用,本发明制备了一种带有平面供体位点的空穴的硒钨多酸{Se6W45},该位点可与锕酰离子(AnO2 2+)的五角双锥配位几何形状精确配位,但不适合结合镧系离子的球状配位,通过硒钨多酸{Se6W45}与六价锕系离子的配位形成纳米级簇,实现锕系离子与镧系离子的高效分离。The technical problem to be solved by the present invention is to provide a kind of selenide tungsten polyacid {Se 6 W 45 } and its preparation method and its application in the ultrafiltration separation of actinide ions. Selenide tungstic polyacid {Se 6 W 45 } for holes, this site can precisely coordinate with the pentagonal bipyramidal coordination geometry of actinide ions (AnO 2 2+ ), but is not suitable for binding the globular coordination of lanthanide ions By coordinating selenide tungsten polyacid {Se 6 W 45 } with hexavalent actinide ions to form nanoscale clusters, the efficient separation of actinide ions and lanthanide ions is achieved.
为了解决上述技术问题,本发明提供一下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:
本发明第一方面提供了一种硒钨多酸{Se6W45},其化学式为[(CH3)2NH2]15Na0.8(H3O)8.2[Se6W45O159(H2O)9]·27H2O;所述多酸{Se6W45}属于单斜晶系,空间群为P21/m,晶胞参数为:a=15.6207(6),b=33.5801(11),c=20.8294(7),α=90°,β=98.130(2)°,γ=90°, The first aspect of the present invention provides a selenium tungstic acid {Se 6 W 45 }, whose chemical formula is [(CH 3 ) 2 NH 2 ] 15 Na 0.8 (H 3 O) 8.2 [Se 6 W 45 O 159 (H 2 O) 9 ]·27H 2 O; the polyacid {Se 6 W 45 } belongs to the monoclinic crystal system, the space group is P2 1 /m, and the unit cell parameters are: a=15.6207(6), b=33.5801( 11), c=20.8294(7), α=90°, β=98.130(2)°, γ=90°,
本发明第二方面提供了一种第一方面所述的硒钨多酸{Se6W45}的制备方法,向前驱体多酸{Se6W39}水溶液中加入有机胺盐、无机酸,酸化处理后静置得到所述硒钨多酸{Se6W45};所述前驱体多酸{Se6W39}为Na24[H6Se6W39O144]·74H2O。The second aspect of the present invention provides a method for preparing the selenium tungstic acid {Se 6 W 45 } described in the first aspect, adding an organic amine salt and an inorganic acid to the aqueous solution of the precursor polyacid {Se 6 W 39 }, After the acidification treatment, the polyselenotungstic acid {Se 6 W 45 } is obtained by standing still; the precursor polyacid {Se 6 W 39 } is Na 24 [H 6 Se 6 W 39 O 144 ]·74H 2 O.
进一步地,向前驱体多酸{Se6W39}的水溶液中加入有机胺盐,搅拌溶解后再加入无机酸进行酸化处理,静置12~36h后得到所述硒钨多酸{Se6W45}晶体。Further, add an organic amine salt to the aqueous solution of the precursor polyacid {Se 6 W 39 }, stir and dissolve, then add an inorganic acid for acidification treatment, and obtain the selenium tungsten polyacid {Se 6 W 39 } after standing for 12-36 hours 45 } Crystal.
进一步地,所述有机胺盐为氯化二甲基铵和/或硝酸二甲基铵。Further, the organic amine salt is dimethylammonium chloride and/or dimethylammonium nitrate.
进一步地,所述无机酸为硝酸和/或盐酸。Further, the inorganic acid is nitric acid and/or hydrochloric acid.
进一步地,所述前驱体多酸{Se6W39}、有机胺盐与无机酸的摩尔比为1:100~150:100~150,例如1:145:126。Further, the molar ratio of the precursor polyacid {Se 6 W 39 }, organic amine salt and inorganic acid is 1:100-150:100-150, for example 1:145:126.
进一步地,将静置后得到的硒钨多酸{Se6W45}晶体经冷水洗涤后,置于室温下晾干备用。Further, after standing still, the crystals of selenotungstic acid {Se 6 W 45 } were washed with cold water, and dried at room temperature for later use.
本发明第三方面提供了一种第一方面所述的硒钨多酸{Se6W45}在超滤分离锕系离子中的应用。The third aspect of the present invention provides an application of the selenide tungstic acid {Se 6 W 45 } described in the first aspect in the ultrafiltration separation of actinide ions.
进一步地,向含锕系离子的水溶液中加入氧化剂,待锕系离子转化为AnO2 2+后,再加入硒钨多酸{Se6W45}与AnO2 2+形成纳米级簇,进行超滤分离;其中,An为U、Np、Pu或Am;Further, add an oxidizing agent to the aqueous solution containing actinide ions, and after the actinide ions are converted into AnO 2 2+ , then add selenium tungstic acid {Se 6 W 45 } and AnO 2 2+ to form nano-scale clusters for super Separation by filtration; Wherein, An is U, Np, Pu or Am;
进一步地,步骤(1)中,所述氧化剂为高碘酸高铜。Further, in step (1), the oxidizing agent is high copper periodate.
进一步地,步骤(1)中,所述纳米级簇在pH≤1条件下形成。Further, in step (1), the nanoscale clusters are formed under the condition of pH≤1.
本发明第四方面提供了一种第一方面所述的所述硒钨多酸{Se6W45}在分离镅离子与镧系离子中的应用。The fourth aspect of the present invention provides an application of the selenide tungstic polyacid {Se 6 W 45 } described in the first aspect in separating americium ions and lanthanide ions.
进一步地,向含有镅离子和镧系离子的溶液中加入氧化剂,将镅离子转化为AmO2 2+后,再加入硒钨多酸{Se6W45}与AmO2 2+形成纳米级簇,超滤分离得到纳米级簇,收集分离后截留的纳米级簇。Further, add an oxidizing agent to the solution containing americium ions and lanthanide ions to convert the americium ions into AmO 2 2+ , then add selenium tungstic acid {Se 6 W 45 } and AmO 2 2+ to form nanoscale clusters, Nanoscale clusters are obtained by ultrafiltration separation, and the nanoscale clusters retained after separation are collected.
进一步地,对硒钨多酸{Se6W45}与AmO2 2+形成的纳米级簇进行还原处理,得到三价镅离子,超滤回收释放的硒钨多酸{Se6W45}。Further, the nano-scale clusters formed by selenide tungstic acid {Se 6 W 45 } and AmO 2 2+ were reduced to obtain trivalent americium ions, and the released selenide tungstic acid {Se 6 W 45 } was recovered by ultrafiltration.
本发明的有益效果:Beneficial effects of the present invention:
1.本发明设计合成了一种水溶性的穴状硒钨多酸{Se6W45},该多酸配备了一个带有平面供体位点的空穴,可与AnO2 2+的五角双锥配位几何形状精确匹配,且完全不适合结合镧系离子的球状配位,因此,本发明合成的硒钨多酸{Se6W45}可与AnO2 2+精确配位形成纳米级簇,使六价锕系离子尤其是六价镅离子可以稳定到足以实现分离应用的水平,有效解决到了氧化法中六价镅离子不稳定的问题,实现镅离子和镧系离子的高效分离。1. The present invention has designed and synthesized a water-soluble cavernous selenium tungsten polyacid {Se 6 W 45 }, which is equipped with a hole with a planar donor site, which can be combined with the pentagonal doublet of AnO 2 2+ The cone coordination geometry is precisely matched, and it is completely unsuitable for binding spherical coordination of lanthanide ions. Therefore, the synthesized selenium tungstic acid {Se 6 W 45 } can be precisely coordinated with AnO 2 2+ to form nanoscale clusters , so that hexavalent actinide ions, especially hexavalent americium ions, can be stabilized to a level sufficient for separation applications, effectively solving the problem of instability of hexavalent americium ions in the oxidation method, and realizing efficient separation of americium ions and lanthanide ions.
2.本发明基于硒钨多酸{Se6W45}识别性配位AnO2 2+形成纳米级簇,提高六价锕系离子的稳定性,并利用纳米级簇与镧系离子尺寸的差异,通过超滤分离的方法实现锕系离子与镧系离子的快速、高效分离,该技术方法操作简单,能耗低,且无二次有机废液,对环境友好,为锕离子分离以及镧、锕离子的高效分离提供了新思路。2. The present invention forms nano-scale clusters based on selenium tungsten polyacid {Se 6 W 45 } recognition coordination AnO 2 2+ , improves the stability of hexavalent actinide ions, and utilizes the size difference between nano-scale clusters and lanthanide ions , the fast and efficient separation of actinide ions and lanthanide ions is realized by the method of ultrafiltration separation. This technical method is simple to operate, low in energy consumption, and has no secondary organic waste liquid, which is environmentally friendly. The efficient separation of actinium ions provides a new idea.
附图说明Description of drawings
图1为实施例1中由前驱体多酸{Se6W39}合成硒钨多酸{Se6W45}的组装示意图;Figure 1 is a schematic diagram of the assembly of selenium tungstic acid {Se 6 W 45 } synthesized from the precursor polyacid {Se 6 W 39 } in Example 1;
图2为实施例2光谱滴定过程中的UV-vis-NIR光谱图,UO2 2+(a)、PuO2 2+(b)、NpO2 2+(c)和AmO2 2+(d);Fig. 2 is the UV-vis-NIR spectrogram in the spectral titration process of
图3为高碘酸高铜(III)氧化的0.25mM Am的0.1M HNO3水溶液在2.0eq硒钨多酸{Se6W45}存在下静置24h后的UV-vis-NIR光谱;Fig. 3 is the UV-vis-NIR spectrum of the 0.25mM Am 0.1M HNO aqueous solution oxidized by periodate high copper (III) in the presence of 2.0eq selenium tungstic acid {Se 6 W 45 } for 24h ;
图4为Am(VI)在多酸{Se6W45}存在或十二烷存在下的自还原;Figure 4 shows the self-reduction of Am(VI) in the presence of polyacid {Se 6 W 45 } or in the presence of dodecane;
图5为硒钨多酸{Se6W45}与六价锕系离子组装反应的化学方程式;Figure 5 is the chemical equation for the assembly reaction of selenide tungstic acid {Se 6 W 45 } and hexavalent actinide ions;
图6为An(VI)-POM、An(VI)的结构图及An=O的平均键长表;Fig. 6 is the structure chart of An(VI)-POM, An(VI) and the average bond length table of An=O;
图7为U(VI)-POM、Np(VI)-POM、Pu(VI)-POM和Am(VI)-POM的单晶图片及其UV-vis-NIR光谱图;Figure 7 is a single crystal picture of U(VI)-POM, Np(VI)-POM, Pu(VI)-POM and Am(VI)-POM and its UV-vis-NIR spectrum;
图8为U(VI)、Np(VI)、Pu(VI)、Am(VI)超滤分离的截留系数;Fig. 8 is U(VI), Np(VI), Pu(VI), Am(VI) ultrafiltration separation coefficient of rejection;
图9为实施例4所述纳米多酸超滤与其它镅氧化分离技术中分离因子和回收率的比较;Fig. 9 is the comparison of separation factor and recovery rate in the nanometer polyacid ultrafiltration described in
图10为采用硒钨多酸{Se6W45}超滤分离的方法分离镅离子与镧系离子的示意图。Fig. 10 is a schematic diagram of separating americium ions and lanthanide ions by using selenium tungstic acid {Se 6 W 45 } ultrafiltration separation method.
具体实施方式Detailed ways
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
实施例1硒钨多酸{Se6W45}的合成The synthesis of
本实施例涉及一种硒钨多酸{Se6W45}的合成,合成示意图如图1所示,具体制备过程如下:This example involves the synthesis of a selenium tungstic polyacid {Se 6 W 45 }, the synthesis schematic diagram is shown in Figure 1, and the specific preparation process is as follows:
将30mg的Na24[H6Se6W39O144]·74H2O({Se6W39})(0.0024mmol)加入到小玻璃瓶中,用800μL水溶液溶解,向其中加入30mg的(CH3)2NH2Cl(0.368mmol),搅拌溶解后再加入20μL6M HNO3溶液酸化。静置一天后,在溶液底部得到无色块状晶体。所得晶体产物用冷水洗涤,后于室温下晾干。Add 30 mg of Na 24 [H 6 Se 6 W 39 O 144 ]·74H 2 O({Se 6 W 39 }) (0.0024 mmol) into a vial, dissolve it with 800 μL of aqueous solution, and add 30 mg of (CH 3 ) 2 NH 2 Cl (0.368mmol), stirred and dissolved, then added 20 μL 6M HNO 3 solution to acidify. After standing for one day, colorless blocky crystals were obtained at the bottom of the solution. The resulting crystalline product was washed with cold water and dried at room temperature.
如图1所示,前驱体多酸{Se6W39}与有机胺在酸性条件下组成目标硒钨多酸{Se6W45},其空穴的孔径由变为/>且多酸{Se6W45}带有的空穴具有四个平面氧配体的位点。经单晶X射线衍射(SCXRD)分析,制备得到的多酸[(CH3)2NH2]15Na0.8(H3O)8.2[Se6W45O159(H2O)9]·27H2O(简写为{Se6W45})。元素分析理论值:C,2.81;H 1.70;N,1.64;Na,0.14;Se,3.69;W,64.60.实验值((%)):C,3.18;H,1.34;N,1.68;Na,0.14;Se,3.73;W,63.29。{Se6W45}属于单斜晶系,空间群为P21/m,晶胞参数为:a=15.6207(6),b=33.5801(11),c=20.8294(7),α=90°,β=98.130(2)°,γ=90°,/> As shown in Figure 1, the precursor polyacid {Se 6 W 39 } and organic amine form the target selenide tungstic acid {Se 6 W 45 } under acidic conditions, and the hole diameter is given by becomes /> And the hole contained by the polyacid {Se 6 W 45 } has four planar oxygen ligand sites. According to single crystal X-ray diffraction (SCXRD) analysis, the prepared polyacid [(CH 3 ) 2 NH 2 ] 15 Na 0.8 (H 3 O) 8.2 [Se 6 W 45 O 159 (H 2 O) 9 ]·27H 2 O (abbreviated as {Se 6 W 45 }). Theoretical value of elemental analysis: C, 2.81; H 1.70; N, 1.64; Na, 0.14; Se, 3.69; W, 64.60. Experimental value ((%)): C, 3.18; 0.14; Se, 3.73; W, 63.29. {Se 6 W 45 } belongs to the monoclinic crystal system, the space group is P2 1 /m, and the unit cell parameters are: a=15.6207(6), b=33.5801(11), c=20.8294(7), α=90° ,β=98.130(2)°,γ=90°,/>
实施例2硒钨多酸{Se6W45}与六价锕系离子的络合Example 2 Complexation of selenium tungstic acid {Se 6 W 45 } and hexavalent actinide ions
本实施例以锕系元素(An)238U、237Np、242Pu以及243Am为例,研究硒钨多酸{Se6W45}对六价锕系离子的络合能力,具体操作如下:This embodiment takes actinide elements (An) 238 U, 237 Np, 242 Pu and 243 Am as examples to study the complexing ability of selenium tungsten polyacid {Se 6 W 45 } to hexavalent actinide ions. The specific operations are as follows:
(1)六价锕系离子AnO2 2+的制备:分别取400μL锕系离子(0.575mM)的0.1M HNO3水溶液中,加入1.7mg高碘酸高铜,摇晃10分钟,通过紫外-可见-近红外(UV-vis-NIR)光谱仪监测AnO2 2+离子的生成。(1) Preparation of hexavalent actinide ions AnO 2 2+ : Take 400 μL of actinide ions (0.575 mM) in 0.1M HNO 3 aqueous solution, add 1.7 mg of high copper periodate, shake for 10 minutes, and measure the concentration by ultraviolet-visible - A near-infrared (UV-vis-NIR) spectrometer monitors the generation of AnO 2 2+ ions.
(2)硒钨多酸{Se6W45}与六价锕系离子的络合:将实施例1所述方法制备的硒钨多酸{Se6W45},溶解在0.1M HNO3水溶液中制备得到2.0mM的硒钨多酸{Se6W45}溶液,将硒钨多酸{Se6W45}溶液滴加至步骤(1)中含六价锕系离子AnO2 2+的溶液中(每次10μL),摇晃后,通过光谱仪观察An(VI)特征吸收峰的变化情况。(2) Complexation of selenide tungstic acid {Se 6 W 45 } and hexavalent actinide ions: Dissolve the selenide tungstic acid {Se 6 W 45 } prepared by the method described in Example 1 in 0.1M HNO 3 aqueous solution Prepare 2.0mM selenide tungstic acid {Se 6 W 45 } solution, add the selenide tungstic acid {Se 6 W 45 } solution dropwise to the solution containing hexavalent actinide ions AnO 2 2+ in step (1) (10 μL each time), after shaking, observe the change of the characteristic absorption peak of An(VI) by a spectrometer.
光谱滴定结果如图2a~2d所示,其中,图2b~2d分别为向NpO2 2+、PuO2 2+、AmO2 2+溶液中滴加硒钨多酸{Se6W45}后的光谱变化图,由图可知,相应的特征吸收峰在加入硒钨多酸{Se6W45}后发生显著的变化;图2b中波长831nm对应的为PuO2 2+的特征峰,841nm对应的为PuO2 2+-多酸{Se6W45}络合物(简称Pu(VI)-POM)的特征峰,随硒钨多酸{Se6W45}滴定量的增加,831nm对应的特征峰的吸收降低,相应的841nm对应的Pu(VI)-POM的特征峰的吸收增强;图2c中波长1224nm对应的为NpO2 2+的特征峰,1251nm对应的为NpO2 2+-多酸{Se6W45}络合物(简称Np(VI)-POM)的特征峰;图2d中波长666nm对应的为AmO2 2+的特征峰,677nm对应的为AmO2 2+-多酸{Se6W45}络合物(简称Am(VI)-POM)的特征峰。通过滴定数据计算可知,上述AnO2 2 +与硒钨多酸{Se6W45}之间形成了1:1的络合物。Spectral titration results are shown in Figures 2a-2d, among which, Figures 2b-2d are the results of adding selenium tungstic acid {Se 6 W 45 } to NpO 2 2+ , PuO 2 2+ , and AmO 2 2+ solutions respectively. Spectral change diagram, it can be seen from the figure that the corresponding characteristic absorption peaks changed significantly after adding selenium tungsten polyacid {Se 6 W 45 }; in Figure 2b, the wavelength 831nm corresponds to the characteristic peak of PuO 2 2+ , and the wavelength 841nm corresponds to It is the characteristic peak of PuO 2 2+ -polyacid {Se 6 W 45 } complex (referred to as Pu(VI)-POM), with the increase of selenium tungstic acid {Se 6 W 45 } titration, the characteristic peak corresponding to 831nm The absorption of the peak decreases, and the corresponding absorption of the characteristic peak of Pu(VI)-POM corresponding to 841nm increases; in Figure 2c, the wavelength 1224nm corresponds to the characteristic peak of NpO 2 2+ , and the wavelength 1251nm corresponds to NpO 2 2+ -polyacid The characteristic peak of {Se 6 W 45 } complex (Np(VI)-POM for short); in Figure 2d, the wavelength 666nm corresponds to the characteristic peak of AmO 2 2+ , and the wavelength 677nm corresponds to AmO 2 2+ -polyacid{ The characteristic peak of Se 6 W 45 } complex (referred to as Am(VI)-POM). According to the calculation of the titration data, a 1:1 complex is formed between the above-mentioned AnO 2 2 + and selenide tungstic acid {Se 6 W 45 }.
进一步研究硒钨多酸{Se6W45}与六价锕系离子AnO2 2+形成的络合物的稳定性,以极不稳定的Am(VI)为例,在2.0eq硒钨多酸{Se6W45}存在下,用高碘酸铜(III)氧化的0.25mMAm的0.1M HNO3水溶液的UV-vis-NIR光谱在24小时内的变化如图3所示,络合产物仅减少了0.67%;此外,研究了Am(VI)在硒钨多酸{Se6W45}存在或十二烷存在下的自还原速率,结果如图4所示,Am(VI)在多酸体系中的还原动力学速率仅为-5.71×10-4mM/h,比游离AmO2 2+离子的自还原或十二烷诱导的还原动力学速率至少慢两个数量级。通过上述溶液化学试验结果可知,在无机硒钨多酸{Se6W45}的强络合的帮助下,Am(VI)可以持续稳定到以前无法实现的分离应用水平。Further research on the stability of complexes formed by selenide tungstic acid {Se 6 W 45 } and hexavalent actinide ions AnO 2 2+ , taking the extremely unstable Am(VI) as an example, at 2.0eq selenium tungstic acid In the presence of {Se 6 W 45 }, the change of UV-vis-NIR spectrum of 0.25 mMAm 0.1 M HNO 3 aqueous solution oxidized with copper(III) periodate within 24 hours is shown in Fig. 3, and the complexed product is only Reduced by 0.67%; In addition, the self-reduction rate of Am(VI) in the presence of selenide tungstic acid {Se 6 W 45 } or dodecane was studied, the results are shown in Figure 4, Am(VI) in polyacid The reduction kinetic rate in the system is only -5.71×10 -4 mM/h, which is at least two orders of magnitude slower than the self-reduction or dodecane-induced reduction kinetic rate of free AmO 2 2+ ions. From the above solution chemical test results, it can be seen that with the help of the strong complexation of inorganic selenide tungstic acid {Se 6 W 45 }, Am(VI) can be continuously stabilized to the level of separation application that could not be achieved before.
实施例3六价锕系多酸(An(VI)-POM)的晶体结构The crystal structure of
为进一步探索AnO2 2+离子与硒钨多酸{Se6W45}之间的相互作用,本实施例通过将AnO2 2+离子(An=238U、237Np、242Pu以及243Am)与硒钨多酸{Se6W45}在溶液中反应制备了一系列An(VI)-POM晶体,制备条件以及结果如图5所示,其中,UO2 2+、NpO2 2+、PuO2 2+分别与硒钨多酸{Se6W45}在室温、pH为1的条件下反应1天得到相应的An(VI)-POM晶体,AmO2 2+与硒钨多酸{Se6W45}在4℃、pH为1的条件下反应6h得到Am(VI)-POM单晶。In order to further explore the interaction between AnO 2 2+ ions and selenide tungstic acid {Se 6 W 45 }, this example uses AnO 2 2+ ions (An= 238 U, 237 Np, 242 Pu and 243 Am) A series of An(VI)-POM crystals were prepared by reacting with selenide tungstic acid {Se 6 W 45 } in solution. The preparation conditions and results are shown in Fig. 5. Among them, UO 2 2+ , NpO 2 2+ , PuO 2 2+ were reacted with selenium tungstic acid {Se 6 W 45 } at room temperature and
经单晶X射线衍射(SCXRD)分析表明上述An(VI)-POM单晶具有同构结构,均属于单斜空间群P21/m;如图6所示,AnO2 2+离子完全封装在预先设计的空穴内,AnO2 2+离子的赤道氧原子由四个不同的WO6 6-基团和一个配位水提供,形成五角双锥配位几何结构。在An(VI)-POM中,U(VI)、Np(VI)、Pu(VI)和Am(VI)的平均An=O轴向键长分别为1.734(2)、1.727(3)、1.714(4)和为了证明硒钨多酸{Se6W45}中AnO2 2+离子的氧化态,利用这些单晶样品测试了固态UV-vis-NIR吸收光谱,如图7所示,展示了典型电子跃迁,包括349nm(UO2 2+)的电荷转移跃迁和841nm(PuO2 2+)、1242nm(NpO2 2+)以及674nm(AmO2 2+)的5f→5f跃迁,与实施例2中光谱滴定结果相吻合。Single crystal X-ray diffraction (SCXRD) analysis shows that the above-mentioned An(VI)-POM single crystals have isomorphic structures, and all belong to the monoclinic space group P2 1 /m; as shown in Figure 6, AnO 2 2+ ions are completely encapsulated in Inside the predesigned holes, the equatorial oxygen atoms of AnO 2 2+ ions are provided by four different WO 6 6- groups and a coordination water, forming a pentagonal bipyramidal coordination geometry. In An(VI)-POM, the average An=O axial bond lengths of U(VI), Np(VI), Pu(VI) and Am(VI) are 1.734(2), 1.727(3), 1.714, respectively (4) and In order to prove the oxidation state of AnO 2 2+ ions in selenide tungstic acid {Se 6 W 45 }, solid-state UV-vis-NIR absorption spectra were tested using these single crystal samples, as shown in Figure 7, showing typical electronic transitions, Including 349nm (UO 2 2+ ) charge transfer transition and 841nm (PuO 2 2+ ), 1242nm (NpO 2 2+ ) and 674nm (AmO 2 2+ ) 5f → 5f transition, and the spectral titration results in Example 2 match.
通过上述晶体学结果、光谱数据结果可知,硒钨多酸{Se6W45}中的空穴可与AnO2 2+离子的配位几何形状精确匹配。According to the above crystallographic results and spectral data results, it can be seen that the holes in selenide tungstic acid {Se 6 W 45 } can precisely match the coordination geometry of AnO 2 2+ ions.
实施例4硒钨多酸{Se6W45}对锕系离子的超滤分离Example 4 Selenium tungstic acid {Se 6 W 45 } ultrafiltration separation of actinide ions
本实施例利用硒钨多酸{Se6W45}对六价镅离子进行超滤分离,主要包括氧化、纳米级簇组装、超滤分离以及还原回收过程。具体操作步骤如下:In this example, selenium tungsten polyacid {Se 6 W 45 } is used to separate hexavalent americium ions by ultrafiltration, which mainly includes oxidation, nano-scale cluster assembly, ultrafiltration separation and reduction recovery process. The specific operation steps are as follows:
(1)氧化:取400μL Am(III)(0.25mM)的0.1M HNO3水溶液中,加入1.7mg高碘酸高铜,摇晃10分钟,通过光谱确定约有99%Am(VI);(1) Oxidation: Take 400 μL of Am(III) (0.25 mM) in 0.1M HNO 3 aqueous solution, add 1.7 mg of high copper periodate, shake for 10 minutes, and determine about 99% Am(VI) by spectroscopy;
(2)纳米级簇组装:取80μL氧化后的Am溶液,加入到1.0mL含硒钨多酸{Se6W45}的0.1M HNO3水溶液(多酸浓度0.5mg/mL)中,置于摇床摇晃5min;(2) Nanoscale cluster assembly: Take 80 μL of the oxidized Am solution, add it to 1.0 mL of 0.1M HNO 3 aqueous solution containing selenium tungstic acid {Se 6 W 45 } (polyacid concentration 0.5 mg/mL), place Shake the shaker for 5 minutes;
(3)超滤分离:取450μL用0.5mL超滤管(Pall,3kDa MWCO)在离心机5000×g离心力下离心10~20分钟,分离得到纳米级簇Am(VI)-POM;(3) Ultrafiltration separation: take 450 μL and use a 0.5mL ultrafiltration tube (Pall, 3kDa MWCO) to centrifuge for 10-20 minutes under the centrifugal force of 5000×g in a centrifuge to obtain nano-scale cluster Am(VI)-POM;
(4)还原回收:向纯化后的Am(VI)-POM中加入双氧水还原得到Am(III),超滤回收释放硒钨多酸{Se6W45},用于下一个分离循环。(4) Reduction recovery: Am(III) is obtained by adding hydrogen peroxide to the purified Am(VI)-POM, which is recovered by ultrafiltration to release selenium tungstic acid {Se 6 W 45 } for the next separation cycle.
分别取起始镅多酸混合溶液、步骤(3)超滤分离后的渗透液以及步骤(4)超滤分离后的渗透液各100μL,再分别加入2mL液闪液混合均匀后,用液闪仪测定其放射性。为了量化分离效果,截留因子(rejection coefficient,R)由下式计算:Take 100 μL each of the starting americium polyacid mixed solution, the permeate separated by ultrafiltration in step (3) and the permeate separated by ultrafiltration in step (4), add 2 mL of liquid flash liquid and mix well, then use liquid flash The radioactivity was measured by the instrument. In order to quantify the separation effect, the rejection coefficient (R) was calculated by the following formula:
R=(1-Cp/Cf)×100% (I)R=(1-C p /C f )×100% (I)
其中,Cf和Cp分别是起始镅多酸混合溶液和步骤(3)超滤后的渗透液中α放射性计数(CPM)。Wherein, C f and C p are α radioactive counts (CPM) in the initial americium polyacid mixed solution and the permeate after ultrafiltration in step (3), respectively.
此外,本实施例采用上述多酸络合超滤的方法分别处理U(VI)、Np(VI)、Pu(VI)以及Eu(III),结果如图8所示,其中U(VI)、Np(VI)、Pu(VI)和Am(VI)的截留系数均超过90%,Eu经上述氧化处理后仍为三价离子,其截留系数仅为1.7±0.6%,如图9所示,镅与镧系离子使用本发明所述超滤分离方法进行分离的分离因子>750,远高于其它分离技术。回收率通过计算步骤(4)超滤分离后的渗透液与起始镅多酸混合溶液中α放射性计数的比值得到,经计算Am通过上述方法处理后的回收率高于92%,显著高于目前公开的其它镅氧化相关分离技术,相应数据整理于下表1中。In addition, this embodiment adopts the above-mentioned multi-acid complex ultrafiltration method to process U(VI), Np(VI), Pu(VI) and Eu(III) respectively, and the results are shown in Figure 8, where U(VI), The rejection coefficients of Np(VI), Pu(VI) and Am(VI) are all over 90%, and Eu is still a trivalent ion after the above-mentioned oxidation treatment, and its rejection coefficient is only 1.7±0.6%, as shown in Figure 9, The separation factor of americium and lanthanide ions separated by the ultrafiltration separation method of the present invention is greater than 750, which is much higher than other separation techniques. The rate of recovery is obtained by calculating the ratio of the permeate after the ultrafiltration separation of step (4) and the alpha radioactive count in the initial americium polyacid mixed solution, and the rate of recovery after calculating Am through the above-mentioned method is higher than 92%, which is significantly higher than The corresponding data of other americium oxidation-related separation technologies disclosed so far are summarized in Table 1 below.
表1镅氧化分离技术中镅回收率Table 1 Americium recovery rate in americium oxidation separation technology
Ref.1:B.J.Mincher,L.R.Martin,N.C.Schmitt,Solv.Extract.Ion Exch.30,445-456(2012).Ref.1: B.J.Mincher, L.R.Martin, N.C.Schmitt, Solv.Extract.Ion Exch.30,445-456(2012).
Ref.2:M.Kamoshida,T.Fukasawa,J.Nucl.Sci.Technol.33,403-408(1996).Ref. 2: M. Kamoshida, T. Fukasawa, J. Nucl. Sci. Technol. 33, 403-408 (1996).
Ref.3:M.Kamoshida,T.Fukasawa,F.Kawamura,J.Nucl.Sci.Technol.35,185-189(1998).Ref. 3: M. Kamoshida, T. Fukasawa, F. Kawamura, J. Nucl. Sci. Technol. 35, 185-189 (1998).
Ref.4:B.J.Mincher et al.,Solv.Extract.Ion Exch.32,153-166(2014).Ref.4:B.J.Mincher et al.,Solv.Extract.Ion Exch.32,153-166(2014).
Ref.5:J.D.Burns,B.A.Moyer,Inorg.Chem.55,8913-8919(2016).Ref.5: J.D.Burns, B.A.Moyer, Inorg.Chem.55, 8913-8919(2016).
Ref.6:Y.Koma,A.Aoshima,M.Kamoshida,A.Sasahira,J.Nucl.Sci.Technol.3,317-32(2002).Ref. 6: Y. Koma, A. Aoshima, M. Kamoshida, A. Sasahira, J. Nucl. Sci. Technol. 3, 317-32 (2002).
上述U(VI)、Np(VI)、Pu(VI)、Am(VI)分别指代UO2 2+、NpO2 2+、PuO2 2+、AmO2 2+;Am(III)、Eu(III)分别指代对应元素的三价离子。The above U(VI), Np(VI), Pu(VI), Am(VI) respectively refer to UO 2 2+ , NpO 2 2+ , PuO 2 2+ , AmO 2 2+ ; Am(III), Eu( III) respectively refer to the trivalent ions of the corresponding elements.
以上所述实施例仅是为充分说明本发明而所举的较佳的施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.
Claims (8)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211212997.8A CN115626877B (en) | 2022-09-30 | 2022-09-30 | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions |
| PCT/CN2023/084553 WO2024066260A1 (en) | 2022-09-30 | 2023-03-29 | Selenium-tungsten polyoxometalate and preparation method therefor, and use thereof in ultra-filtration separation of actinide ions |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211212997.8A CN115626877B (en) | 2022-09-30 | 2022-09-30 | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115626877A CN115626877A (en) | 2023-01-20 |
| CN115626877B true CN115626877B (en) | 2023-07-11 |
Family
ID=84904260
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211212997.8A Active CN115626877B (en) | 2022-09-30 | 2022-09-30 | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN115626877B (en) |
| WO (1) | WO2024066260A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115626877B (en) * | 2022-09-30 | 2023-07-11 | 苏州大学 | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101553313A (en) * | 2006-12-01 | 2009-10-07 | Lg化学株式会社 | Heteropoly acid catalyst and method of preparing the same |
| CN102430428A (en) * | 2011-09-07 | 2012-05-02 | 南京大学 | Desulfurization application method of super-deep oxidative desulfurization catalyst |
| CN107999108A (en) * | 2017-12-13 | 2018-05-08 | 中国石油大学(华东) | Molybdenum carbide or tungsten carbide catalyst of a kind of nitrogen-phosphor codoping carbon load and its preparation method and application |
| CN110960676A (en) * | 2019-12-27 | 2020-04-07 | 国家纳米科学中心 | A kind of iron-substituted dimerselenotungstic acid nanocluster and preparation method and application thereof |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2731717B1 (en) * | 1995-03-15 | 1997-04-25 | Commissariat Energie Atomique | PROCESS FOR THE ELECTROCHEMICAL OXIDATION OF AM (VII) TO AM (VI), USEFUL FOR SEPARATING AMERICIUM FROM USED NUCLEAR FUEL PROCESSING SOLUTIONS |
| FR2896705B1 (en) * | 2006-01-30 | 2008-12-05 | Commissariat Energie Atomique | PROCESS FOR THE SEPARATION IN AQUEOUS MEDIUM OF AT LEAST ONE ACTINIDE ELEMENT OF LANTHANIDE ELEMENTS BY COMPLEXATION AND MEMBRANE FILTRATION |
| WO2012115273A1 (en) * | 2011-02-22 | 2012-08-30 | National Institute For Materials Science | Method for extraction and separation of lanthanoid elements and actinoid elements, and means for extraction and separation of lanthanoid elements and actinoid elements |
| CN114988500A (en) * | 2022-05-24 | 2022-09-02 | 河南大学 | Uranium-containing selenium tungstate and preparation method and application thereof |
| CN115626877B (en) * | 2022-09-30 | 2023-07-11 | 苏州大学 | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions |
-
2022
- 2022-09-30 CN CN202211212997.8A patent/CN115626877B/en active Active
-
2023
- 2023-03-29 WO PCT/CN2023/084553 patent/WO2024066260A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101553313A (en) * | 2006-12-01 | 2009-10-07 | Lg化学株式会社 | Heteropoly acid catalyst and method of preparing the same |
| CN102430428A (en) * | 2011-09-07 | 2012-05-02 | 南京大学 | Desulfurization application method of super-deep oxidative desulfurization catalyst |
| CN107999108A (en) * | 2017-12-13 | 2018-05-08 | 中国石油大学(华东) | Molybdenum carbide or tungsten carbide catalyst of a kind of nitrogen-phosphor codoping carbon load and its preparation method and application |
| CN110960676A (en) * | 2019-12-27 | 2020-04-07 | 国家纳米科学中心 | A kind of iron-substituted dimerselenotungstic acid nanocluster and preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024066260A1 (en) | 2024-04-04 |
| CN115626877A (en) | 2023-01-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sun et al. | A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant | |
| Burns et al. | Captivation with encapsulation: a dozen years of exploring uranyl peroxide capsules | |
| Li et al. | Lead citrate precursor route to synthesize nanostructural lead oxide from spent lead acid battery paste | |
| CN115626877B (en) | Selenium-tungsten polyacid, preparation method thereof and application thereof in ultrafiltration separation of actinide ions | |
| Wu et al. | Preparation of high-purity lead carbonate and lead oxide from spent lead paste | |
| CN114427033A (en) | Method for separating heavy metals and recovering phosphorus and iron from sludge incineration ash | |
| Liu et al. | Efficient selective leaching of ytterbium and lutetium oxides by new hydrophobic deep eutectic solvents | |
| Blanchard et al. | Neodymium uranyl peroxide synthesis by ion exchange on ammonium uranyl peroxide nanoclusters | |
| Liu et al. | Cobalt recovery from lithium battery leachate using hydrophobic deep eutectic solvents: Performance and mechanism | |
| JP4452837B2 (en) | Extraction separation method | |
| Liu et al. | Synthesis of new extractant P113 for cerium (IV) extraction and higher separation over thorium from bastnaesite | |
| CN115094250A (en) | A method for recovering hafnium and other metals from hafnium-containing waste residue | |
| CN115522052A (en) | A recovery method for rare and precious metals in spent fuel reprocessing high-level waste liquid | |
| CN110184463A (en) | Method that is a kind of while extracting golden simple substance and the second metal simple-substance | |
| Alguacil et al. | Recent Uses of Ionic Liquids in the Recovery and Utilization of Rare Earth Elements | |
| CN102465203A (en) | A method for directly preparing cerium fluoride in an extraction and separation process | |
| CN118398944A (en) | A method for jointly recovering waste ternary lithium battery positive electrode powder and lithium iron phosphate battery positive electrode powder | |
| WO2022082324A1 (en) | Solid-liquid extraction process for recovering ions of interest from solid materials | |
| CN107311118B (en) | Method for removing radioactive thorium element in rare earth minerals | |
| Wang et al. | Separation of lithium and nickel using ionic liquids and tributyl phosphate | |
| CN114752783B (en) | An efficient method for separating Sr2+ and Cs+ | |
| US10026510B2 (en) | Process for the synthesis of a mixed peroxide or hydroxo-peroxide of an actinyl and of at least one doubly, triply or quadruply charged metal cation, mixed peroxide or hydroxo-peroxide thus obtained and uses thereof | |
| CN107739854A (en) | A kind of method that high pure rare earth metals are extracted by rare earth phosphate rock | |
| CN101997112A (en) | Method for preparing lithium iron phosphate-lithium vanadium phosphate composite precursor from coulsonite | |
| CN112142589A (en) | A method for synthesizing cobalt oxalate dihydrate from leaching solution of positive electrode active material of waste lithium battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |